
AN1064/1098 1/30

APPLICATION NOTE

WRITING OPTIMIZED HIWARE C LANGUAGE FOR ST7
by Microcontroller Division Application Team

INTRODUCTION

The C language originally created for UNIX system computers is used now in a wide number
of application areas especially in embedded 8-bit microcontroller systems. This choice to ex-
tend the C language to micro applications is mainly due to:

■ Its structured language based on data types and enhanced control structures.

■ Its portability to different microcontroller target machines.

The purpose of this note is to present how to write an optimized C software application for ST7
embedded system programming. The main topics focus on how to write C source code that
generates the smallest code and data size. To reach this goal some specific C language ex-
tensions have to be used like compiler options and pragmas.

This application note is based on the ST7 Hiware C compiler but some examples can be ap-
plied to other ST7 C compilers. It is not exhaustive and for more details concerning the ST7 Hi-
ware C compiler please refer to the “HICROSS for ST7” manual.

1

2/30

Table of Contents

INTRODUCTION . 1

1 COMPILER OVERVIEW AND SYNTAX . 4

2 WRITING C FOR ST7 . 4

2.1 BASIC TYPE SIZE . 4

2.2 LOCAL VARIABLES AND PARAMETERS STRATEGY 4

2.3 PARAMETER PASSING AND FUNCTION RETURN . 5

2.4 MEMORY ALLOCATION . 5
2.4.1 CONSTANT MEMORY ALLOCATION . 6
2.4.2 VARIABLE DATA MEMORY ALLOCATION . 6
2.4.3 CODE MEMORY ALLOCATION . 7

2.5 MEMORY ACCESS VIA POINTER . 8

2.6 INTERRUPT HANDLING . 8
2.6.1 FUNCTION AS INTERRUPT SERVICE ROUTINE . 8
2.6.2 INTERRUPT FUNCTIONS AND HIWARE INTERNAL VARIABLES 9

2.7 HLI ASSEMBLER . 10
2.7.1 SYNTAX . 10
2.7.2 HLI ASSEMBLER AND C LANGUAGE . 10
2.7.3 SPECIFIC HLI ASSEMBLER FEATURES . 11

3 GENERAL C PROGRAMMING RULES . 12

3.1 SOURCE AND HEADER FILES . 12

3.2 MEANINGFUL NAMING STRATEGY . 12

3.3 ANSI C LANGUAGE . 13

3.4 GENERIC FUNCTIONS VS MACROS . 13

3.5 AVOIDING GOTO STATEMENTS . 13

3.6 STATIC GLOBAL/LOCAL VARIABLES . 13

3.7 VOLATILE QUALIFIERS . 13

3.8 BITFIELD STRUCTURE . 14

4 OPTIMIZING CODE IN ST7 C SOURCE MODULES . 15

3/30

Table of Contents

4.1 GENERAL APPROACH . 15

4.2 OPTIMUM VARIABLE DEFINITIONS . 16
4.2.1 SMALLEST DATA TYPE . 16
4.2.2 ST7 SHORT ADDRESSING MODE . 16
4.2.3 VOLATILE QUALIFIER . 17
4.2.4 STATIC LOCAL VARIABLE . 17
4.2.5 UNION TYPE . 17
4.2.6 AVOID ENUM TYPE . 18
4.2.7 OPTIMUM TABLE AND STRUCTURE ACCESS . 18
4.2.8 MASKED BYTE VARIABLES INSTEAD OF BITFIELDS 19
4.2.9 OPTIMIZED INT TYPE . 21
4.2.10OPTIMUM POINTER ACCESS . 21
4.2.11BASIC TYPE CONVERSION . 21
4.2.12NO OPTIMIZATION: REGISTER, AUTO. 22

4.3 TEMPORARY COMPILER VARIABLES . 22

4.4 OPTIMUM CONSTANT DEFINITIONS . 22

4.5 OPTIMUM C STATEMENT MANAGEMENT . 23
4.5.1 NON-RELEVANT C SOURCE CODE . 23

4.5.1.1UNREACHABLE CODE . 23
4.5.1.2REDUNDANT CODE . 24

4.5.2 BYTE SIZE OBJECT OPERATIONS . 24
4.5.2.1OPTIMUM BASIC OPERATIONS . 24
4.5.2.2BYTE DIVISION . 24
4.5.2.3OPTIMUM BYTE SHIFT . 25

4.5.3 WORD SIZE OBJECT OPERATION . 25
4.5.3.1OPTIMUM BASIC OPERATIONS . 25
4.5.3.2WORD MULTIPLICATION AND DIVISION 26

4.5.4 CONDITIONAL STATEMENTS . 26
4.5.4.1IF STATEMENT INSTEAD OF SWITCH . 26
4.5.4.2TEST CONDITION ORDER . 27
4.5.4.3IF STATEMENTS AND ASSIGNMENTS . 27

4.6 OPTIMUM FUNCTION MANAGEMENT . 28
4.6.1 FUNCTIONS VS MACROS . 28
4.6.2 FUNCTION PARAMETERS AND RETURN VALUE 28
4.6.3 FUNCTION PARAMETER DECLARATION ORDER 29

5 CONCLUSION . 30

COMPILER OVERVIEW AND SYNTAX

4/30

1 COMPILER OVERVIEW AND SYNTAX

The ST7 Hiware C compiler is an application which can be launched either through a batch
command (from the make file for instance) or an interactive window interface. In both cases
the command line has the following structure:

Note : If in the active “default.env” file the COMPOPTIONS variable is filled with default com-
piler options, these options are taken into account for each compilation.

2 WRITING C FOR ST7

2.1 BASIC TYPE SIZE

As the ANSI C specifies that the size of the basic types is given by the architecture of the
target microcontroller, the following table gives the default format for the ST7.

2.2 LOCAL VARIABLES AND PARAMETERS STRATEGY

Usually in most compilers the local variables and parameters are stored in the stack. To gen-
erate the most efficient code for the ST7 architecture, the Hiware C compiler does not use the
stack for this purpose. A dedicated RAM area (called OVERLAP) where the data are over-
lapped as much as possible with reference to the execution structure is preferred.

Type
Default
format

Default value range Format available
with -T optionmin max

(unsigned) char
8bit

0 255

8bit, 16bit, 32bit

see the
“Hicross for ST7”
manual for more

details option

signed char -128 127

unsigned int

16bit

0 65535

(signed) int -32768 32767

unsigned short 0 65535

(signed) short -32768 32767

enum -32768 32767

unsigned long
32bit

0 4294967295

(signed) long -2147483648 2147483647

float, double IEEE32 1.17...E-38F 3.40...E+38F IEEE32

C:\HICROSS\PROG\CST7.EXE -N -Wpd -Cni -Cc -Ou FILE.C

COMPILER COMMAND
(ONLY NEEDED IN THE BATCH STYLE)

COMPILER OPTIONS

SOURCE FILE TO COMPILE

5/30

WRITING C FOR ST7

In fact, this strategy is due to fact that the ST7 instruction set does not allow simple access to
the data stored in the stack (like LD A,[SP,#-n]). The only possibility would have been a two
instruction solution for each stack data access (LD X,S followed by LD A,([#0x0100+n,X] where
0x0100 is the stack bottom address and n the data place offset).

2.3 PARAMETER PASSING AND FUNCTION RETURN

As it is described in the previous paragraph, by default the function parameters are stored in
the dedicated OVERLAP memory area. But, the last two bytes in the parameter list are also al-
ways passed through ST7 hardware registers (A and X). The two least significant bytes of the
return value are also transferred through these two CPU registers.

This technique does not avoid the use of the OVERLAP area but when it is possible, it does
some optimization of RAM use.

2.4 MEMORY ALLOCATION

First of all the compiler memory model has to be chosen based on the ST7 application type.
The following table gives some guidelines for choosing the correct compiler memory model
option.

*Note : Global variables can be forced in the page 0 through the pragma DATA_SEG SHORT.

Compiler
Option

Memory
Model

Local Data
Parameters

Global Data ST7 Application Type

-Ms SMALL Page 0 Page 0 Application with all used RAM in page 0

-Ml LARGE Page 0 Page 1..N*

Most efficient code generation for a
standard ST7 application (local variables
and parameters used more often than
global data).

-Mx
LARGE

Extended
Page 1..N Page 1..N*

Very large ST7 application with a lot of local
variables and parameters which can not be
stored in page 0

char FunctionName (char prmN, ..., char prm1, char prm0)

A register A register
(int: + X register)

X registerOVERLAP area

the OVERLAP area is used to store these 2 parameters
when A and X are needed for computation in the function.

char AddChar (char p1, char p2)

{ return(p2+p1); }
0000 BF 00 [4] LD p1,X

0002 BB 00 [3] ADD A,p1

0004 81 [6] RET

Only p1 is stored in the OVERLAP area

WRITING C FOR ST7

6/30

2.4.1 CONSTANT MEMORY ALLOCATION

C language constant are declared with a const keyword. By default, the Hiware C compiler al-
locates constants in the DEFAULT_RAM area. To force the constant memory allocation in the
ROM_VAR area the -Cc compiler option has to be activated.

Note : the ROM_VAR keyword has always to be defined in the linker parameter file.

When a constant has to be allocated in a specific ROM area (not in the default one), the
pragma CONST_SEGhas to be used (this pragma is valid up to the next CONST_SEGpragma).

2.4.2 VARIABLE DATA MEMORY ALLOCATION

By default variables are allocated in the DEFAULT_RAM area. In ST7 applications some var-
iables must have fixed addresses (hardware register definitions or variables forced in page 0).
In ANSI style, the only way to do this is to directly use the address and the preprocessor ca-
pability.

The drawback of this method is that real C variables are not used which makes the debugging
task harder. To resolve this, the ST7 Hiware C compiler provides the DATA_SEGpragma. With
this pragma variables can be allocated to a specific memory area.

When variables are allocated to page 0 (from 0x0000 to 0x00FF), the compiler has to know
this information to minimize the code when they are used. This allocation is done through the
pragma qualifier SHORT.

The ST7 Hiware linker allocates memory sequentially in the order of declaration and optimizes
the data memory space when a variable is not used in the application.

Due to this optimization and as each pragma DATA_SEGis valid up to the next, some care has
to be taken when declaring hardware registers. In fact, to avoid hardware register address

const char table[] = {...};
const char *table[] = {...};

#pragma CONST_SEG MY_ROM
const char table[] = {...}; PLACEMENT DECLARED IN

THE LINKER PARAMETER FILE

#define VAR (*(char*) (0x0010))

#pragma DATA_SEG MY_RAM
char var; PLACEMENT DECLARED IN

THE LINKER PARAMETER FILE

#pragma DATA_SEG SHORT MY_PAGE0
char page0var; PLACEMENT DECLARED IN

THE LINKER PARAMETER FILE

7/30

WRITING C FOR ST7

shifting, a “+“ symbol has to be added to each object file name in the linker parameter file
where there is such a declaration.

Note : As the pragma DATA_SEGis valid up to the next one, when using it in a header file, always
remember to reselect the DEFAULT_RAM area at the end.

2.4.3 CODE MEMORY ALLOCATION

In some circumstances, applications need to allocate part of generated code in specific ROM
area. To allow this, the ST7 Hiware C compiler provides a pragma called CODE_SEG.

This pragma is applied to the code in the same way as the DATA_SEGis applied to the variables.
This means that it is valid up to the next pragma statement.

#pragma DATA_SEG SHORT REG_AREA

volatile char ADCDR;

volatile char ADCCSR;

#pragma DATA_SEG DEFAULT

FILE.C

NAMES

FILE.O+

...

PLACEMENT

REG_AREA in NO_INIT 0x0070 TO 0x0072

...

FILE.PRM

Without the + and if the ADCDR register is not used,
the ADCCSR is allocated to address 0x0070
instead of 0x0071.

#pragma DATA_SEG SHORT REG_AREA

...

#pragma DATA_SEG DEFAULT

/* END OF FILE */

FILE.H

#include “ FILE.H “

char var;

...

FILE.C

Without the default pragma,
“ var “ is allocated to REG_AREA.

PLACEMENT DECLARED IN THE PRM FILE

#pragma CODE_SEG MY_ROM

void FctName1 (void) {...}

...

#pragma CODE_SEG DEFAULT

void FctName2 (void) {...}

WRITING C FOR ST7

8/30

2.5 MEMORY ACCESS VIA POINTER

When LARGE memory models are selected (-Ml or -Mx compiler options), the optimum ac-
cess to a data located in page 0 through a pointer can be reached with the use of the “near ”
keyword.

When the SMALL memory model is selected (-Ms compiler option), the only access to a data
located outside page 0 through a pointer can only be accessed with the use of the “far ” key-
word.

2.6 INTERRUPT HANDLING

As the ST7 has interrupt management capabilities which are not included in the ANSI C
standard, specific pragmas are implemented in the Hiware compiler.

2.6.1 FUNCTION AS INTERRUPT SERVICE ROUTINE

Writing a TRAP_PROCpragma before a function definition will produce the replacement of the RET

instruction by an IRET one at the exit of this function.

Note : To secure the unused interrupt vectors, write an empty dummy interrupt function.

char * near FunctionName (char * near ptr)

{ return ((char * near) ptr +1); }

0000 AB 01 [2] ADD A,#0x01

0002 97 [2] LD X,A

0003 4F [3] CLR A

0004 A9 00 [2] ADC A,#0x00

0006 90 97 [3] LD Y,A

0008 9F [2] LD A,X

0009 93 [2] LD X,Y

000A 81 [6] RET

Without near keyword:

0000 4C [3] INC A

0001 81 [6] RET

With near keyword:

char * far FunctionName (char * far ptr)

{ return ((char * far) ptr +1); }

0000 AB 01 [2] ADD A,#0x01

0002 97 [2] LD X,A

0003 4F [3] CLR A

0004 A9 00 [2] ADC A,#0x00

0006 90 97 [3] LD Y,A

0008 9F [2] LD A,X

0009 93 [2] LD X,Y

000A 81 [6] RET

With far keyword:

0000 4C [3] INC A

0001 81 [6] RET

Without far keyword:

#pragma TRAP_PROC

void InterruptFct (void) {...}

...

IRET
Generated code:

9/30

WRITING C FOR ST7

2.6.2 INTERRUPT FUNCTIONS AND HIWARE INTERNAL VARIABLES

By default the ST7 Hiware C compiler allocates 3 storage variables for extended operations.
These variables called _SEX (for indirect storing), _LEX (for indirect loading) and _R_Z (tem-
porary storage) are located in page 0.

These variables can be used at any time (not controlled by programmer) in the application, ei-
ther in the main program or in the interrupt routines. For this reason, as a first development
step, the pragma SAVE_REGShas to be used to save these software registers. As a second step,
after checking the generated code of the interrupt routine, this pragma can be removed if pos-
sible.

Note : The drawback of using the SAVE_REGSpragma is that the code size is increased by 34
bytes, the interrupt latency increased by 34 cycles (4.25µs with fCPU=8MHz) and the total du-
ration of the interrupt routine execution increased by 79 cycles (9.875µs with fCPU=8MHz).

char *ptr;

*ptr = 0xFF;

0000 C6 00 01 [4] LD A,ptr:0x1

0003 B7 01 [4] LD _SEX:0x1,A

0005 A6 FF [2] LD A,#0xFF

0007 CE 00 00 [4] LD X,ptr

000A BF 00 [4] LD _SEX,X

000C 92 C7 00 [7] LD [_SEX.W],A

000F 81 [6] RET

90 89 [4] PUSH Y

B6 00 [3] LD A,_R_Z

88 [3] PUSH A

B6 01 [3] LD A,_LEX:0x1

88 [3] PUSH A

B6 00 [3] LD A,_LEX

88 [3] PUSH A

B6 01 [3] LD A,_SEX:0x1

88 [3] PUSH A

B6 00 [3] LD A,_SEX

88 [3] PUSH A

...

84 [4] POP A

B7 00 [4] LD _SEX,A

84 [4] POP A

B7 01 [4] LD _SEX:0x1,A

84 [4] POP A

B7 00 [4] LD _LEX,A

84 [4] POP A

B7 01 [4] LD _LEX:0x1,A

84 [4] POP A

B7 00 [4] LD _R_Z,A

90 85 [5] POP Y

80 [9] IRET

#pragma TRAP_PROC SAVE_REGS

void InterruptFct (void) {...}

INTERRUPT PROLOG
+ 17 bytes
+ 34 cycles

INTERRUPT EPILOG
+ 17 bytes
+ 45 cycles

WRITING C FOR ST7

10/30

2.7 HLI ASSEMBLER

For critical source code specifically written for the ST7 microcontroller (mandatory write se-
quence, critical software timing...), the C language is not appropriate. To provide a solution Hi-
ware C compiler provides a powerful HLI (high level inline) assembler.

2.7.1 SYNTAX

The Hiware HLI assembler is based on the ST7 instruction set (cf. ST7 Programming Manual)
and the asm keyword.

2.7.2 HLI ASSEMBLER AND C LANGUAGE

All C source data objects are directly accessible with the HLI assembler (variables, functions,
macros...).

Note : As in the ANSI C preprocessor, the # symbol is used for string concatenation, and as the
ST7 instruction set uses this symbol for immediate values, the Hiware C compiler provides a

asm LD A,X;

asm {

LD A,X

LD Y,A

...

}

HLI ASSEMBLER BLOCK

SINGLE HLI ASSEMBLER INSTRUCTION

#define CST 10

struct {char field1; char field2;} str;

char var, array[10];

...

asm {

LD A,0xA100

CP A,#CST

LD A,str.field2

LD A,array[4] <=> LD A,array:7

LD A,#var

LD A,#LOW(var)

LD A,#HIGH(var)

CALL fct

}

VARIABLE

C6 A1 00 [4] LD A,0xA100

A1 0A [2] CP A,#0x0A

C6 00 01 [4] LD A,str:0x1

C6 00 07 [4] LD A,array:0x7

A6 00 [2] LD A,#var

A6 00 [2] LD A,#var

A6 01 [2] LD A,#HIGH(var)

CD 00 00 [6] CALL fct

ADDRESS ACCESS

DIRECT ACCESS
TO THE MEMORY

11/30

WRITING C FOR ST7

dedicated NO_STRING_CONSTRpragma which disables this preprocessor feature. This pragma is
valid for all the source modules.

2.7.3 SPECIFIC HLI ASSEMBLER FEATURES

In the HLI syntax, the ST7 branches and data insertion in the code are possible. The following
example shows some possible combinations:

Notes :
1) The compiler optimizes absolute branches into relative ones whenever possible.
2) In the same way as ANSI C labels, the HLI assembler labels are valid only in the current
function.

In Hiware HLI assembler syntax, only a few operators are available for constant expressions.
These are: + - * / ().

#pragma NO_STRING_CONSTR

#define LDA10 LD A,#10

...

asm LDA10;

A6 0A [2] LD A,#0x0A

asm {

JP clear

DC 0xFF

clear: CLR X

SKIP

loop: INC X

JRNE loop

}
INC X INSTRUCTION

0000 20 01 [3] JRT *1 abs=0003

0002 FF [4] LD (X),X

0003 5F [3] CLR X

0004 21 [3] SKIP <JRF>

0005 5C [3] INC X

0006 26 FD [3] JRNE *-3 abs=0005

IS SKIPPED IN THE
1ST LOOP RLL

asm ADD A,#12+(2-4)+4*5/2; AB 14 [2] ADD A,#0x14

GENERAL C PROGRAMMING RULES

12/30

3 GENERAL C PROGRAMMING RULES

The goal of this chapter is to give some C programming rules to improve the legibility, the port-
ability and the robustness of the application C source code. In some circumstances, these
rules can help to optimize the generated code size.

3.1 SOURCE AND HEADER FILES

To get a structured software application, whenever possible associate one header file “*.h”
with each “*.c” source file. This header file should contain all the extern definitions and macros
of the corresponding source file (all data and functions which can be used in other modules).

Note : The ST7 C compiler provides a -Wpd option to prevent extern definition omissions.

To prevent #include recursions, all header files have to be preprocessed. To avoid the dupli-
cation of declarations in several files (*.h and *.c), macro definitions and variable declarations
have to be defined in the header file with extern preprocessing.

Note : in the ST7 Hiware C compiler a dedicated pragma (called ONCE) can replace the
header file preprocessing (FILE_H).

3.2 MEANINGFUL NAMING STRATEGY

For reusable and legible C software modules, try as much as possible to implement a function,
variable, preprocessor symbol and module naming strategy.

#ifndef FILE_H

#define FILE_H

#ifdef FILE_C

#define EXT

#else

#define EXT extern

#endif

#define MACRO ...

EXT char myvar; ...

#endif

FILE.H #define FILE_C

#include ”FILE.H”

...

myvar = MACRO;

...

FILE.C

#define MOD_MACRO ...

char Mod_cVar ;

int MOD_iFct (void)

{...}

MOD_FILE.C

TYPE

UPPERCASE

UPPERCASE + MIXCASE

MIXCASE

13/30

GENERAL C PROGRAMMING RULES

3.3 ANSI C LANGUAGE

The most important rule to get the best code portability is to write C program as much as pos-
sible in ANSI C like language. Sometimes, it is better to use pragma instead of specific non-
ANSI instructions as the unknown pragmas have to be ignored by a compiler.

3.4 GENERIC FUNCTIONS VS MACROS

Use generic functions as much as possible instead of macros or specific functions.

Keep only very simple macros which generates optimum code (less instruction bytes than a
CALL instruction).

Note : All repeated instruction blocks in the source code have to be shrunk to a single function
whenever possible.

3.5 AVOIDING GOTO STATEMENTS

To get the most legible source code the goto statement as to be avoided each time there is an
alternative.

3.6 STATIC GLOBAL/LOCAL VARIABLES

For good legibility and a well structured application, the following C language objects have to
be declared as static :

– A global variable used in the module where it is declared.

– A function used only in the module where it is declared.

– A permanent local variable in a function.

A temporary local variable in a function has always to be declared as a local variable to save
RAM area using the OVERLAP strategy.

3.7 VOLATILE QUALIFIERS

For all microcontroller hardware registers which can have their value modified directly by the
hardware (status registers...), the volatile qualifier has to be added to their definition to allow
the compiler to disable the register value memory optimization.

char exported_var;

static char module_var;

static void module_fct (void)

{ ... }

void exported_fct (void)

{ char tmp_local_var;

static char perm_local_var;

...}

GENERAL C PROGRAMMING RULES

14/30

3.8 BITFIELD STRUCTURE

As ANSI C does not specify the bit allocation order in a bitfield, the use of this structure should
be avoided for portability reasons. Consequently, bitfield structures should not be used for mi-
crocontroller hardware register definitions.

15/30

OPTIMIZING CODE IN ST7 C SOURCE MODULES

4 OPTIMIZING CODE IN ST7 C SOURCE MODULES

4.1 GENERAL APPROACH

To get the optimum generated code from the ST7 Hiware C compiler, the following conditions
have to be met:

■ Choose the memory model that suits the application, bearing in mind that the optimum is the
SMALL one, then the LARGE one and finally the LARGE Extended one (to be avoided if it
is possible). When Linking with a LARGE memory model, use the near keyword as much as
possible when accessing short addressing data with pointers.

■ Choose the best compiler options:
-Cni : by default the ANSI C operations with data type smaller than int have to be promoted
to int (integral promotion). With this option, this integral promotion is omitted. Be aware that
this option can generate some wrong code like the carry mistake in the following example:

-Ou : this optimization option removes all assignments to local variables not referenced later
on in the code.

-Os /-Ot : by default the compiler optimizes the generated code size wise (-Os). This default
option is based mainly on the use of library CALL statements instead of single level instruction
sequences (when -Ot option is selected). The following example illustrates this compiler
option choice.

Note : The -Ol or -Or optimization options have no effect in the ST7 Hiware C compiler.

C6 00 00 [4] LD A,c1

CB 00 00 [4] ADD A,c2

C7 00 01 [5] LD i1:0x1,A

5F [3] CLR X

CF 00 00 [5] LD i1,X

int i1; char c1, c2;

...

i1 = c1 + c2;

THE BYTE ADDITION
CARRY IS IGNORED

AD 00 [6] CALLR fctcall

A6 01 [2] LD A,#0x01

B7 00 [4] LD c1,A

81 [6] RET

20 00 [3] JRT fctcall

void function (char c1)

{ fctcall();

c1 =1;

}
-Ou

C6 00 00[4] LD A,sc1

CD 00 00[6] CALL _SEXT16

C7 00 01[5] LD i1:0x1,A

CF 00 00[5] LD i1,X

int i1;

signed char sc1;

void function (void) {

i1 = sc1; ...}

-Ot

C6 00 00 [4] LD A,sc1

5F [3] CLR X

4D [3] TNZ A

2A 01 [3] JRPL label

5A [3] DEC X

C7 00 01 [5] label: LD i1:0x1,A

CF 00 00 [5] LD i1,X
-Os

OPTIMIZING CODE IN ST7 C SOURCE MODULES

16/30

4.2 OPTIMUM VARIABLE DEFINITIONS

4.2.1 SMALLEST DATA TYPE

To get the optimum code with a 8-bit microcontroller, the use of the smallest data type size is
the best way. In the ANSI C language the smallest types are the bit (bitfield) and the char type
(8 bits).

As the ST7 instruction set provides optimum bit handling instructions (BRES, BSET, BTJT,
BTJF and BCP), the software has to use this structure as much as possible for binary data
(this data has always to be located in the page 0). For other data types, char is the preferred
data type to get the optimum generated code.

Using 32-bit variables (floating point arithmetic and long types) on a 8-bit microcontroller is in-
herently inefficient and character or integer arithmetic should be used whenever possible.

4.2.2 ST7 SHORT ADDRESSING MODE

The ST7 instruction set provides three main advantages to variables allocated in page 0 (from
address 0x0000 to 0x00FF):

■ short memory addressing access to get a shorter code. For instance a ”LD A,var“ instruction
needs two bytes when the variable var is allocated to the page 0 while it needs three bytes
when it is allocated outside (30% code size gain).

■ ability to be directly handled by ST7 instructions usually dedicated to CPU registers (INC,
DEC, CLR, CPL, NEG, RLC, RRC, SLA, SLL, SRA, SRL,SWAP, TNZ)..

■ bit handling capability (BRES, BSET, BTJT, BTJF and BCP instructions).

For these three reasons the following variables must be allocated whenever possible in short
address memory space (page 0):
- All variables which have to be used as bitfields,
- The most frequently used standard variables.

char c1;

#pragma DATA_SEG SHORT ZEROPAGE

char cz1,

#pragma DATA_SEG DEFAULT

...

c1++;

cz1++;

...

c1 = c1 >> 1;

cz1 = cz1 >> 1;

LD A,c1

INC A

LD c1,A

INC cz1

LD A,c1

SRL A

LD c1,A

SRL cz1

17/30

OPTIMIZING CODE IN ST7 C SOURCE MODULES

4.2.3 VOLATILE QUALIFIER

To get the optimum generated code, the volatile qualifier has to be used only when it is
needed and not systematically for each hardware register. A control register which can be
modified only by the software or hardware microcontroller reset does not need to be a vola-

tile variable.

4.2.4 STATIC LOCAL VARIABLE

From a legibility point of view the local static definitions are to be used in preference to global
ones whenever possible. This guarantees the robustness of the program against wrong static
local variable use.

In the case of local variable definitions, this qualifier has to be used only for permanent data
(not to be overlapped). Do not use this static qualifier when it is not needed to avoid removing
the overlap optimization for local variables and increasing the used RAM size.

4.2.5 UNION TYPE

All global variables which do not have permanent validity during application execution and
which are not able to be defined as local variables in a function, have to be grouped together
and optimized into union type structures. The use of this method allows optimum RAM alloca-
tion for global variables as it is automatically done with the OVERLAP segment for the param-
eters and local variables.

Note : the var1 value is overwritten during the application execution by the var2 one.

PADR is the data register of the port A and

can be modified in input mode by the hardware

while the PADDR can only be modified by soft-

ware or by a hardware RESET.

volatile char PADR;

volatile char PADDR;

void fct1 (void)

{ static char var;

var++;

...

}

void fct2 (void)

{ static char var;

var=0;

...

}
PERMANENT

LIFE
TEMPORARY

LIFE
(PROGRAM) (FUNCTION)

union {char var1;

char var2; } varunion;

void main (void)

{... varunion.var1 = 10;

... varunion.var2 = 23; ...}

VAR2 USED

MAIN
LOOP

VAR1 USED

OPTIMIZING CODE IN ST7 C SOURCE MODULES

18/30

4.2.6 AVOID ENUM TYPE

In the ANSI C standard the enum type is based on the int type. This means that all enumerated
elements are defined by two bytes for an ST7 target. For this reason and in order to generate
optimum code, this enum type has to be avoided and replaced by preprocessor #define com-
mand (bit or byte format).

4.2.7 OPTIMUM TABLE AND STRUCTURE ACCESS

To get the optimum code size for this table and structure data, each data has to fit as much as
possible into a 256-byte memory space to allow the compiler to use the powerful indexed
memory access of the ST7 instruction set.

enum {TRUE, FALSE} binary;

if (binary == TRUE)...

enum {ENUM1, ENUM2, ... ENUMn} list;

list = ENUM2;

char varbin;

#define BINARY 0x01 /* Select bit 0.*/

if (varbin & BINARY)...

char list;

#define ENUM1 1

#define ENUM2 2

list = ENUM2;

LD X,c2

LD A,(tc2,X)

LD (tc1,X),A

LD X,#0x25

LD A,([ps1.W],X)

LD c1,A

LD X,c2

LD A,(s1:0x0b,X)

LD c2,A

LD A,#ts1:0x4c

LD ps1:0x1,A

LD A,#HIGH(ts1:76)

LD ps1,A

LD X,c1

LD A,#0x26

MUL X,A

LD X,A

LD A,#0x01

LD (ts1,X),A

char c1, c2;

char tc1[20], tc2[10];

struct SType { char f1;

int f2;

char f3[8];

char f4[25];

char f5, f6; };

struct SType s1, ts1[3];

#pragma DATA_SEG SHORT ZEROPAGE

struct SType *ps1;

#pragma DATA_SEG DEFAULT

...

tc1[c2] = tc2[c2];

...

c1 = ps1->f6;

...

c2 = s1.f4[c2];

...

ps1 = &ts1[2];

...

ts1[c1].f1 = 1;

19/30

OPTIMIZING CODE IN ST7 C SOURCE MODULES

The structure and table memory alignment allocation is done according to the defined com-
plex type without creating memory holes. Based on the previous example, the memory imple-
mentation of the ts1 table is the following:

4.2.8 MASKED BYTE VARIABLES INSTEAD OF BITFIELDS

The ANSI C language provides a bitfield structure definition with direct access to the bit data
through a syntactic combination. The ST7 C compiler optimizes the code and generates
BRES, BSET, BTJT, BTJF and BCP instructions when using this bitfield structure (when it is
allocated to page 0).

Note : for more details concerning the bit order assignment in the bitfield please refer to the
“Hicross for ST7” manual.

But, as the ANSI C does not specify the bit assignment order in a bitfield structure, this struc-
ture is not suitable for generating portable microcontroller code especially when used for hard-
ware register definition.

Then facing this limitation, the use of basic type such as char combined with mask expression
is preferable. The main advantages are:

■ optimum bit instruction code (bit instructions whenever possible and optimum)

■ optimum byte instruction code (byte assignment when optimum)

■ portability (bit assignment order defined by the programmer)

.f1

.f2

.f3[0]

.f3[7]

.f4[0]

.f4[24]

.f5

.f6

38 BYTES

ts1[0]
ts1

ts1[1]

ts1[2]

BSET vbf,#2

BTJF vbf,#0,label

BRES vbf,#1

label:

#pragma DATA_SEG SHORT ZEROPAGE

struct { unsigned intb0:1;

unsigned intb1:1;

unsigned intb2:1;} vbf;

#pragma DATA_SEG DEFAULT

...

vbf.b2 = 1;

if (vbf.b0)

vbf.b1 = 0;

OPTIMIZING CODE IN ST7 C SOURCE MODULES

20/30

The following example illustrates these advantages and shows the purpose of the -Onbf com-
piler option.This option is mainly needed when handling hardware register bit where the set-
ting and clearing sequences are critical.

The following examples describe two masking methods for bit handling. These two methods
are based on preprocessor macros which generate optimum code when the data is located in
page 0.

The first example is based on two parameter macros like the bit instruction set in the ST7 as-
sembler. To get the optimum code each VARvariable has to be located in page 0.

The second method is based on one parameter macro. This single parameter is the “bit ad-
dress” in page 0 of the data to be manipulated. This bit address can be calculated using the
following expression: bit@ = (byte@ x 8) + (7 - bit_place)

MACRO NAME MACRO C SOURCE CODE GENERATED CODE

#define SetBit(VAR, PLACE) (VAR |= (1 << PLACE)) BSET VAR,#PLACE

#define ClrBit(VAR, PLACE) (VAR &= ((1 << PLACE) ^ 255) BRES VAR,#PLACE

#define ValBit(VAR, PLACE) (VAR & (1 << PLACE))
BTJT VAR,#PLACE, label

BTJF VAR,#PLACE, label

MACRO NAME MACRO C SOURCE CODE
GENERATED

CODE

#define BitSet(BIT) (*((unsigned char*) (BIT/8)) |= (~(1<<(7-BIT%8)))) BSET ...,#...

#define BitClr(BIT) (*((unsigned char*) (BIT/8)) &= (1<<(7-BIT%8))) BRES ...,#...

#define BitVal(BIT) (*((unsigned char*) (BIT/8)) & (1<<(7-BIT%8)))
BTJT ...,#...,label

BTJF ...,#...,label

1A 00 [5] BSET vb,#5

17 00 [5] BRES vb,#3

B6 00 [3] LD A,vb

AA F2 [2] OR A,#0xF2

B7 00 [4] LD vb,A

#pragma DATA_SEG SHORT ZEROPAGE

char var;

#pragma DATA_SEG DEFAULT

...

var |= 0x20;

var &= 0xF7;

var |= 0x22;

CODE OPTIMIZED
WITHOUT THE -Onbf

COMPILER OPTION

21/30

OPTIMIZING CODE IN ST7 C SOURCE MODULES

4.2.9 OPTIMIZED INT TYPE

The ST7 is an 8 bit microcontroller so it is not optimized for int type variable handling (2
bytes). Nevertheless, all simple accesses to two byte variables are reduced to the minimum
code size.

4.2.10 OPTIMUM POINTER ACCESS

As the ST7 instruction set allows indirect memory access only on pointers located in the page
0, these pointers have to be allocated as much as possible in the short access memory area
to get the optimum generated code.

4.2.11 BASIC TYPE CONVERSION

In ST7 embedded applications, it is usual to convert basic types such as int to char and con-
versely. Here are some ways of converting these basic types in C language:

Note : The same conversion can be applied to 32 bit types keeping an optimum generated
code.

char c1;

int i1, i2, ti1[10];

...

i1 = i2;

...

i1 = ti1[c1];

LD X,c1

SLL X

LD A,(ti1:0x1,X)

LD i1:0x1,A

LD A,(ti1,X)

LD i1,A

LD A,i2:0x1

LD i1:0x1,A

LD X,i2

LD i1,X

C6 00 01[4] LD A,p1:0x1

B7 01 [4] LD _LEX:0x1,A

CE 00 00[4] LD X,p1

BF 00 [4] LD _LEX,X

92 C6 00[6] LD A,[_LEX.W]

C7 00 00[5] LD c1,A

92 C6 00[6] LD A,[p2.W]

C7 00 00[5] LD c2,A

char c1, c2, *p1;

#pragma DATA_SEG SHORT ZEROPAGE

char *p2;

#pragma DATA_SEG DEFAULT

...

c1 = *p1;

...

c2 = *p2;
p2 in PAGE 0: OPTIMUM

LD A,word1:0x1

LD lsb,A

LD X,A

LD A,word1

LD msb,A

LD word2:0x1,X

LD word2,A

#define LSB(WORD)WORD

#define MSB(WORD)WORD>>8

#define WORD(MSB,LSB)(int) ((int) MSB << 8) + LSB

char msb, lsb;

int word1, word2;

...

lsb = LSB(word1);

msb = MSB(word1);

word2 = WORD(msb, lsb);

OPTIMIZING CODE IN ST7 C SOURCE MODULES

22/30

4.2.12 NO OPTIMIZATION: REGISTER, AUTO.

As the ST7 is an accumulator-based machine, the ANSI C register and auto qualifiers have
no meaning. In fact, the compiler optimizes the code using the A, X and Y CPU registers as
much as possible.

4.3 TEMPORARY COMPILER VARIABLES

For some complex C expressions, the compiler has to use temporary variables to solve the
operations. These temporary variables can be:

■ ST7 CPU registers (A, X or Y)

■ Hiware software registers (_SEX, _LEX or _R_Z)

■ stack locations (using PUSH and POP instructions)

■ spills temporary variables (spill_0, spill_1...)

The spills temporary variables are managed by the compiler like the local variables and the
parameters, which means that they are allocated to the OVERLAP memory segment.

Note : For specific applications where stack management is critical, the compiler -Cns option
has to be used to avoid the stack location being used for temporary storage.

4.4 OPTIMUM CONSTANT DEFINITIONS

In an embedded microcontroller application two kinds of constant definitions exist:

■ the simple constant values

■ the data constant structure (fixed data lists, function pointer tables...)

Both of these constants have to be allocated to the ROM area (see Section 2.4).

char c1, c2;

void f (void);

void function (void) {

char c = c1;

f();

c2 = c;

...}

LD A,c1

PUSH A

CALL f

POP A

LD c2,A

LD A,c1

LD spill_0,A

CALL f

LD A,spill_0

LD c2,A

-Cns

23/30

OPTIMIZING CODE IN ST7 C SOURCE MODULES

When a simple constant value has to be used in an expression, it always has to be defined
through the preprocessor #define command and not through a const variable to avoid ROM
space being unnecessarily allocated to constant values.

On the other hand, for data constants which have to be accessed like tables or for strings
which have to be used several time during an application, using the const variable is the op-
timum solution.

Note : the ST7 C compiler generates the most optimum code either using the #define com-
mand or a const variable. When a const variable is used, it is allocated as data only when it is
mandatory (indexed access...) else the compiler replaces the constant value directly in the
code.

4.5 OPTIMUM C STATEMENT MANAGEMENT

4.5.1 NON-RELEVANT C SOURCE CODE

4.5.1.1 UNREACHABLE CODE

The ST7 C compiler does some automatic optimization for unreachable code which is usually
a sign of a programmer error.

A6 03 [2] LD A,#0x0A

B7 00 00 [5] LD c1,A

#define CONST1 10

const char CONST2 = 10;

char c1;

...

c1 = CONST1;

...

c1 = CONST2; (WI TH
-Cc

OPTI ON)

A6 02 [2] LD A,#0x02

B7 00 00 [5] LD c1,A

...

CE 00 00 LD X,c2

D6 00 00 LD A,(CONST,X)

C7 00 00 LD c1,A

const char CONST[] = {1,2,3};

char c1, c2;

...

c1 = CONST[1];

...

c1 = CONST[c2];

A6 03 [2] LD A,#0x03

B7 00 00 [5] LD c1,A

...

A6 05 [2] LD A,#0x05

B7 00 00 [5] LD c2,A

char c1, c2;

...

c1=2;

c1=3;

...

goto label;

c1=4;

label:

c2=5;

OPTIMIZING CODE IN ST7 C SOURCE MODULES

24/30

4.5.1.2 REDUNDANT CODE

The ST7 C compiler does some automatic optimization for redundant code which is usually a
sign of a programmer error.

4.5.2 BYTE SIZE OBJECT OPERATIONS

The main byte size object in the C language for ST7 is the basic standard char type.

4.5.2.1 OPTIMUM BASIC OPERATIONS

The following example illustrates the efficiency of the byte object used in basic C expressions.

4.5.2.2 BYTE DIVISION

As the ST7 instruction set does not provide a division capability, the application has to be
written as much as possible with power of 2 divisions in order to get the optimum generated
code with shift instructions. Otherwise the generated code has to call the Hicross library and
with a resulting increase in ROM size needs.

Note : For more details on the Hicross library, please refer to the “Hicross for ST7” manual.

char c1, c2;

...

c1 + c2;

...

c1 += 0;

...

c1 |= c1;

Compiler WARNING message.

NO CODE GENERATION

char c1, c2, c3;

...

c1 = c2;

...

c1 = c2 + c3;

...

c1 = c2 - c3;

...

c1 = c2 * c3;

LD A,c2

ADD A,c3

LD c1,A

LD A,c2

LD c1,A

LD A,c2

SUB A,c3

LD c1,A
LD A,c3

LD X,c2

MUL X,A

LD c1,A

char c1, c2, c3;

...

c1 = c2 / 64;

...

c1 = c2 / 63;

LD A,c3

LD X,#0x3F

CALL _BDIVU

LD c2,A

LD A,c2

SWAP A

AND A,#0x0F

SRL A

SRL A

LD c1,A

25/30

OPTIMIZING CODE IN ST7 C SOURCE MODULES

4.5.2.3 OPTIMUM BYTE SHIFT

Inside an ST7 embedded application, it is usual to use shift operations. The ST7 C compiler
provides optimum code generation using SWAPand AND instructions instead of sequential SRL

and SLL ones when it is the best choice.

4.5.3 WORD SIZE OBJECT OPERATION

The basic standard int type is the main word size object (two bytes) in the ST7 C language.

4.5.3.1 OPTIMUM BASIC OPERATIONS

For basic operations on int types like additions and subtractions, the corresponding re-
sources in the ST7 (ADD, ADC, SUB, SUBC instructions) provide an optimum generated
code.

Note : Either for integer addition or subtraction the least significant byte is always affected first.
This can cause some problems in some critical hardware register settings (16-bit timer
counter registers).

char c1;

...

c1 >>= 3;

c1 >>= 4;

c1 >>= 5;

C6 00 00 LD A,c1

44 SRL A

44 SRL A

44 SRL A

C7 00 00 LD c1,A

C6 00 00 LD A,c3

4E SWAP A

A4 0F AND A,#0x0F

44 SRL A

C7 00 00 LD c3,A

C6 00 00 LD A,c2

4E SWAP A

A4 0F AND A,#0x0F

C7 00 00 LD c2,A

LD A,i2:0x1

SUB A,i3:0x1

LD i1:0x1,A

LD A,i2

SBC A,i3

LD i1,A

int i1, i2, i3;

...

i1 = i2 + i3;

...

i1++;

...

i1 = i2 - i3;

LD A,i2:0x1

ADD A,i3:0x1

LD i1:0x1,A

LD A,i2

ADC A,i3

LD i1,A

LD A,i1:0x1

LD X,i1

INC A

JRNE label

INC X

label:

LD i1:0x1,A

LD i1,X

OPTIMIZING CODE IN ST7 C SOURCE MODULES

26/30

4.5.3.2 WORD MULTIPLICATION AND DIVISION

Complex word operations such as multiplication and division need to use the Hicross library to
solve the requested expression as the ST7 CPU does not provide hardware resources for
these purposes.

Note : For more details on the Hicross library, please refer to the “Hicross for ST7” manual.

4.5.4 CONDITIONAL STATEMENTS

4.5.4.1 IF STATEMENT INSTEAD OF SWITCH

The ANSI C language provides two control statements which can be used for the same se-
quential test purpose: IF/ELSE and SWITCH/CASE.

The Hiware C compiler is better optimized for IF/ELSE statements than for SWITCH/CASE
statements so use IF/ELSE as much as possible, also for sequential testing.

Note : Using the IF/ELSE statement also has the advantage of specifying range conditions.

int i1, i2, i3;

...

i1 = i2 * i3;

...

i1 = i2 / i3;

LD X,i2

PUSH X

LD A,i2:0x1

PUSH A

LD A,i3:0x1

LD X,i3

CALL _IMULS

LD i1,X

LD i1:0x1,A

LD X,i3

PUSH X

LD A,i3:0x1

PUSH A

LD A,i4:0x1

LD X,i4

CALL _IDIVS

LD i2,X

LD i2:0x1,A

if (c1==0) c1=1;

else if (c1==10) c1=2;

else if (c1==22) c1=3;

else if (c1==13) c1=4;

else if (c1==45) c1=5;

else c1=6;

switch (c1) {

case 0: c1=1; break;

case 10: c1=2; break;

case 22: c1=3; break;

case 13: c1=4; break;

case 45: c1=5; break;

default : c1=6; break;

}

53 bytes46 bytes

27/30

OPTIMIZING CODE IN ST7 C SOURCE MODULES

4.5.4.2 TEST CONDITION ORDER

In terms of execution speed optimization, the test condition with the highest probability to be
false has always to be considered first. The second rule to take into account is to place the
fastest test conditions first.

Note : this rule has to be applied for IF/ELSE statements but also for all statements condi-
tioned by a test (FOR, WHILE...).

4.5.4.3 IF STATEMENTS AND ASSIGNMENTS

To get the optimum generated code, try as much as possible to include the assignment in the
condition.

Note : This rule has to be applied for IF/ELSE statements but also for all statements condi-
tioned by a test (FOR, WHILE...).

char c1, c2;

...

if (c1 && (c2 & 0x55)) c1 = 0;

...

if ((c2 & 0x55) && c1) c1 = 0;

SAME TEST

LD A,c1

JREQ end

LD A,c2

BCP A,#0x55

JREQ end

CLR A

LD c1,A

end:

LD A,c2

BCP A,#0x55

JREQ end

LD A,c1

JREQ end

CLR A

LD c1,A

end:
SAME GENERATED CODE SIZE

char c1, c2;

...

if (c1+c2 >= 10)c1 += c2;

else c1 = 0;

...

if ((c1+=c2) < 10) c1 = 0;

LD A,c1

ADD A,c2

CP A,#0x0A

JRC label1

LD A,c1

ADD A,c2

JRT label2

label1:CLR A

label2:LD c1,A

LD A,c1

ADD A,c2

LD c1,A

CP A,#0x0A

JRNC end

CLR A

LD c1,A

end:

23 bytes17 bytes

OPTIMIZING CODE IN ST7 C SOURCE MODULES

28/30

4.6 OPTIMUM FUNCTION MANAGEMENT

4.6.1 FUNCTIONS vs MACROS

In term of generated code size for short expression sequences, it is usually better to define a
preprocessor macro instead of a function (such as variable get/clear functions). Given this
condition a compromise between generated code size and legibility has to be selected ac-
cording to priorities depending on the application.

In the first example that follows, the “macro” solution has been chosen. The major advantage
is that the generated code size is minimized each time the var variable is accessed. The draw-
back is that there is no security concerning the access of the var variable from an other
module.

On the contrary, in the second example, the “function” solution has been chosen. The major
advantage is that the var variable is protected against unwanted direct access from another
module (declared static in the file.c module). The drawback is related to the LD, CALL and RET

instructions (code size and execution time increased):

■ In total the generated code size is increased by 4 bytes (LD, RET)

■ Each access to the var variable is increased by 12 cycles (CALL, RET).

The above data assumes that the var variable is allocated outside page 0.

4.6.2 FUNCTION PARAMETERS AND RETURN VALUE

As the A and X registers of the ST7 are used for parameter passing and the function return
value, the C source which generates the optimum code has to contain as many functions as
possible with a maximum of two byte size parameters and two byte size return value.

extern char var;

#define GET_Value var

char var;

...
FILE.H FILE.C

extern char Get_Value(void); static char var;

...

char Get_Value(void)

{ return(var); }

...

FILE.H FILE.C

char fct1(int p0) {...}

int fct2(char p1, char p0) {...}

29/30

OPTIMIZING CODE IN ST7 C SOURCE MODULES

4.6.3 FUNCTION PARAMETER DECLARATION ORDER

To optimize the use of the A and X registers for parameter passing, the order of the parame-
ters in the parameter definition list has to be reversed compared to the order in which they are
used in the function.

The following two examples illustrate the importance of the parameter declaration order.

■ In the first example, the code is optimum with parameter passing through A and X registers
for p1 and p0 .

■ In the second example, the source code is the same as the previous one, only the parameter
declaration order has changed. The result of this move is a drastic increase of the generated
code size (more than 130%) and of the OVERLAP segment usage (2 more bytes).

char fctparam1 (char p2, char p1, char p0)

{ c1 = p0 * p1;

return(p2); }

42 MUL X,A

C7 00 00 LD c1,A

B6 00 LD A,p2

char fctparam2 (char p1, char p0, char p2)

{ c1 = p0 * p1;

return(p2); }

BF 00 LD p0,X

B7 00 LD p2,A

B6 00 LD A,p0

BE 00 LD X,p1

42 MUL X,A

C7 00 00 LD c1,A

B6 00 LD A,p2

CONCLUSION

30/30

5 CONCLUSION

The ST7 Hiware C compiler is a powerful tool for developing ST7 embedded application in C
language. Following the rules described in this document provides a major added value to
generated the optimum C code for an ST7 microcontroller.

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1999 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:// www.st.com

