ST10

FAMILY PROGRAMMING MANUAL

Release 1

Ref: ST10FPM

ST10 FAMILY PROGRAMMING MANUAL

TABLE OF CONTENTS Page
1 INTRODUGCTION ...ttt ettt et e e ettt e e sttt ee e s e st e ee e s abbbeee e e nbee s 3
2 STANDARD INSTRUCTION SETitiiiiiiiiiiiiieeeiiie ettt eee e eniees 4
2.1 ADDRESSING MODES......coiiiiiiiiii ettt 4
211 Short adreSSING MOUES.coiiii ittt e e e re e e e s e s s e snannees 4
21.2 LONG AddreSSiNg MOAEuviiiiiiiiie et e e e eeeee e s 5
2.1.3 DPP override MeCRaNISM ..o 6
214 INdirect addreSSiNG MOUEScccviiiiiiiie e re e e s 6
215 1O 0] 011 7= £ 7
2.1.6 Branch target addresSSing MOUES........uveiiiiiieiiii ettt e 7
2.2 INSTRUCTION EXECUTION TIMES ...ttt 8
221 Definition of MEaSUrEMENT UNITScooiiiiiiiiiiie e 9
222 MiNIMUM SEALE TIMES.....eiiiiiie ittt e e et ee e e e s s e e nnnnees 10
223 Additional StAte tIMESooi it 10
2.3 INSTRUCTION SET SUMMARY ..ottt ettt ettt snene s 13
2.4 INSTRUCTION SET ORDERED BY FUNCTIONAL GROUPcccoiiiiiiiiiiiiieeriiieen, 15
25 INSTRUCTION SET ORDERED BY OPCODESooiiiiiiiieiiiiiie e 26
2.6 INSTRUCTION CONVENTIONSciiiittiiiiiiiittitie ettt ettt nne s 34
26.1 INSEFUCTION NAIME ...ttt e e st et e e e s s eeeee e s 34
2.6.2 S} 1= VGO PR PP 34
2.6.3 (@071 =i {0 o FR TP PUPPURROUPPRRTN 34
26.4 DTz U TV 01T ST PPPPTPUPPPRRIN 35
2.6.5 [DT=EYod] oo FO PP PRTP R TPI 35
2.6.6 (@7e]pTo 11 i o] I T Lo [T RT PP 35
2.6.7 L F= o ST PRT PP 36
2.6.8 AAAreSSING MOUESviiiie ittt ettt e b e ee e e st ee e st be e e e sabeeee e s 37
2.7 ATOMIC AND EXTENDED INSTRUCTIONSooiiiiiiiiiiiiiiiiit et 38
2.8 INSTRUCTION DESCRIPTIONSoiiiiiiiiiiit ittt 39
3 MAC INSTRUCTION SET ...oiiiiiiiiiiiie ettt ee et 123
3.1 ADDRESSING MODES......cooiiiiiiii e 123
3.2 MAC INSTRUCTION EXECUTION TIME ...ttt 124
3.3 MAC INSTRUCTION SET SUMMARY ..ottt ettt 124
3.4 MAC INSTRUCTION CONVENTIONS.......ooiiiiiiiiiiiiiiie et 126
34.1 (O] 01=] =10 [0 TSP PR P UPPPPRROUPPRRTN 126
34.2 (O] 01=] =X i{o] KSR UP PP 126
3.4.3 ADDIEVIALIONS ...ttt et 126
344 Data addreSSing MOUES.ccooiiiiiiiiii et 126
3.4.5 INSEIUCTION FOIMAL......eiiiiiiiiit et 127
3.4.6 FIAY STALES ...ttt et ettt e et e et e e e s 127
3.4.7 Repeated iNSrUCHION SYNTAXcviiiiiiiiiiii sttt e e 127
3.4.8 SRIFEVAIUE ... e 127
3.5 MAC INSTRUCTION DESCRIPTIONSuiiiiiiiiiiiie et 127
4 REVISION HISTORY ..ottt 170

£’7 1/172

ST10 FAMILY PROGRAMMING MANUAL

2/172

4

72

ST10

ST10 FAMILY PROGRAMMING MANUAL

1- INTRODUCTION

This programming manual details the instruction
set for the ST10 family of products. The manual is
arranged in two sections. Section 1 details the
standard instruction set and includes all of the
basic instructions.

Section 2 details the extension to the instruction
set provided by the MAC. The MAC instructions
are only available to devices containing the MAC,
refer to the datasheet for device-specific
information.

In the standard instruction set, addressing modes,
instruction execution times, minimum state times
and the causes of additional state times are
defined. Cross reference tables of instruction
mnemonics, hexadecimal opcode, address
modes and number of bytes, are provided for the
optimization of instruction sequences.

Instruction set tables ordered by functional group,
can be used to identify the best instruction for a
given application. Instruction set tables ordered
by hexadecimal opcode can be used to identify

January 2000

specific instructions when reading executable
code i.e. during the de-bugging phase. Finally,
each instruction is described individually on a
page of standard format, using the conventions
defined in this manual. For ease of use, the
instructions are listed alphabetically.

The MAC instruction set is divided into its 5
functional groups: Multiply and Multiply-
Accumulate, 32-Bit Arithmetic, Shift, Compare
and Transfer Instructions. Two new addressing
modes supply the MAC with up to 2 new operands
per instruction.

Cross reference tables of MAC instruction
mnemonics by address mode, and MAC
instruction mnemonic by functional code can be
used for quick reference.

As for the standard instruction set, each
instruction has been described individually in a
standard format according to defined conventions.
For convenience, the instructions are described in
alphabetical order.

3/172

ST10 FAMILY PROGRAMMING MANUAL

2 - STANDARD INSTRUCTION SET

2.1 - Addressing Modes

2.1.1 - Short adressing modes

The ST10 family of devices use several powerful
addressing modes for access to word, byte and bit
data. This section describes short, long and indi-
rect address modes, constants and branch target
addressing modes. Short addressing modes use
an implicit base offset address to specify the
24-bit physical address. Short addressing modes
give access to the GPR, SFR or bit-addressable
memory spacePhysicalAddress = BaseAddress +
A x ShortAddress.

A =1 for byte GPRs, A =2 for word GPRs
(see Table 1).

Rw, Rb

Specifies direct access to any GPR in the cur-
rently active context (register bank). Both 'Rw’ and
'Rb’ require four bits in the instruction format. The
base address of the current register bank is deter-
mined by the content of register CP. 'Rw’ specifies
a 4-bit word GPR address relative to the base
address (CP), while 'Rb’ specifies a 4 bit byte
GPR address relative to the base address (CP).

Note:

reg

Specifies direct access to any (E)SFR or GPR in
the currently active context (register bank). 'reg’
requires eight bits in the instruction format. Short
'reg’ addresses from 00h to EFh always specify
(E)SFRs. In this case, the factor 'A’ equals 2 and
the base address is 00'FO00h for the standard
SFR area, or 00'FEOOh for the extended ESFR
area. ‘reg’ accesses to the ESFR area require a
preceding EXT*R instruction to switch the base
address. Depending on the opcode of an instruc-
tion, either the total word (for word operations), or

Table 1 : Short addressing mode summary

the low byte (for byte operations) of an SFR can
be addressed via 'reg'. Note that the high byte of
an SFR cannot be accessed by the 'reg' address-
ing mode. Short 'reg' addresses from FOh to FFh
always specify GPRs. In this case, only the lower
four bits of 'reg' are significant for physical
address generation, therefore it can be regarded
as identical to the address generation described
for the 'Rb' and 'Rw' addressing modes.

bitoff

Specifies direct access to any word in the
bit-addressable memory space. 'bitoff' requires
eight bits in the instruction format. Depending on
the specified ‘'bitoff range, different base
addresses are used to generate physical
addresses: Short 'bitoff' addresses from 00h to
7Fh use 00'FDOOh as a base address, therefore
they specify the 128 highest internal RAM word
locations (O0O’FDOOh to OO0'FDFEh).Short 'bitoff’
addresses from 80h to EFh use O0'FFOOh as a
base address to specify the highest internal SFR
word locations (00'FFO0Oh to OO’FFDEh) or use
00’F100h as a base address to specify the highest
internal ESFR word locations (00'F100h to
00’'F1DEh). ‘bitoff’ accesses to the ESFR area
require a preceding EXT*R instruction to switch
the base address. For short 'bitoff' addresses from
FOh to FFh, only the lowest four bits and the
contents of the CP register are used to generate
the physical address of the selected word GPR.

bitaddr

Any bit address is specified by a word address
within the bit-addressable memory space (see
'bitoff'), and by a bit position (‘bitpos’) within that
word. Thus, 'bitaddr' requires twelve bits in the
instruction format.

Mnemo Physical Address Short Address Range Scope of Access

Rw (CP) + 2*Rw Rw =0..15 GPRs (Word) 16 values

Rb (CP) + 1*Rb Rb =0..15 GPRs (Byte) 16 values

reg 00’'FEOOh + 2*reg reg = 00h...EFh SFRs (Word, Low byte)
00’FO00h + 2*reg reg = 00h...EFh ESFRs (Word, Low byte)
(CP) + 2*(reg"OFh) reg = FOh...FFh GPRs (Word) 16 values
(CP) + 1*(reg"OFh) reg = FOh...FFh GPRs (Bytes) 16 values

bitoff 00’'FDOOh + 2*bitoff bitoff = 00h...7Fh RAM Bit word offset 128 values
00’'FFO0Nh + 2*(bitoff*"FFh) bitoff = 80h...EFh SFR Bit word offset 128 values
(CP) + 2*(bitoff*"OFh) bitoff = FOh...FFh GPR Bit word offset 16 values

bitaddr | Word offset as with bitoff bitoff = 00h...FFh Any single bit
Immediate bit position bitpos =0..15

4/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

2.1.2 - Long addressing mode

Long addressing mode uses one of the four DPP
registers to specify a physical 18-bit or 24-bit
address. Any word or byte data within the entire
address space can be accessed in this mode. All
devices support an override mechanism for the
DPP addressing scheme (see section 2.1.3 - DPP
override mechanism).

Long addresses (16-bit) are treated in two parts.
Bits 13...0 specify a 14-bit data page offset, and
bits 15...14 specify the Data Page Pointer (1 of 4).
The DPP is used to generate the physical 24-bit
address (see Figure 1).

Figure 1 : Interpretation of a 16-bit long address

All ST10 devices support an address space of up
to 16MByte, so only the lower ten bits of the
selected DPP register content are concatenated
with the 14-bit data page offset to build the physi-
cal address.

Note: Word accesses on odd byte addresses
are not executed, but rather trigger a
hardware trap. After reset, the DPP regis-
ters are initialized so that all long
addresses are directly mapped onto the
identical physical addresses, within seg-

ment O.

16-bit Long Address
15 14 13 0

selects Data Page Pointer |

9 0
DPPO T 14-bit page offset
DPP1 .
DPP2 .
DPP3 X

23 l 1413 A 0

24-bit Physical Address

The long addressing mode is referred to by the mnemonic “mem”.

Table 2 : Summary of long address modes

Mnemo Physical Address Long Address Range Scope of Access
mem (DPPO) [| mem”"3FFFh 0000h...3FFFh Any Word or Byte
(DPP1) || mem~3FFFh 4000h...7FFFh
(DPP2) || mem~3FFFh 8000h...BFFFh
(DPP3) [| mem”*3FFFh C000h...FFFFh
mem pag || mem”"3FFFh 0000h...FFFFh (14-bit) Any Word or Byte
mem seg || mem 0000h...FFFFh (16-bit) Any Word or Byte
£’7 5/172

ST10 FAMILY PROGRAMMING MANUAL

2.1.3 - DPP override mechanism

The DPP override mechanism temporarily
bypasses the DPP addressing scheme. The
EXTP(R) and EXTS(R) instructions override this
addressing mechanism. Instruction EXTP(R)
replaces the content of the respective DPP
register, while instruction EXTS(R) concatenates
the complete 16-bit long address with the
specified segment base address. The overriding
page or segment may be specified directly as a
constant (#pag, #seg) or by a word GPR (Rw)
(see Figure 2).

2.1.4 - Indirect addressing modes

Indirect addressing modes can be considered as a
combination of short and long addressing modes.
In this mode, long 16-bit addresses are specified
indirectly by the contents of a word GPR, which is
specified directly by a short 4-bit address (Rw’=0
to 15). Some indirect addressing modes add a
constant value to the GPR contents before the
long 16-bit address is calculated. Other indirect
addressing modes allow decrementing or incre-
menting of the indirect address pointers (GPR con-
tent) by 2 or 1 (referring to words or bytes).

In each case, one of the four DPP registers is
used to specify the physical 18-bit or 24-bit
addresses. Any word or byte data within the entire
memory space can be addressed indirectly. Note
that EXTP(R) and EXTS(R) instructions override
the DPP mechanism.

Instructions using the lowest four word GPRs
(R3...R0) as indirect address pointers are speci-
fied by short 2-bit addresses.

Figure 2 : Overriding the DPP mechanism

Word accesses on odd byte addresses are not
executed, but rather trigger a hardware trap.

After reset, the DPP registers are initialized in a
way that all indirect long addresses are directly
mapped onto the identical physical addresses.

Physical addresses are generated from indirect
address pointers by the following algorithm:

1. Calculate the physical address of the word
GPR which is used as indirect address pointer, by
using the specified short address ('Rw’) and the
current register bank base address (CP).

GPRAddress = (CP) + 2 x ShortAddress

2. Pre-decremented indirect address pointers
(‘-Rw’) are decremented by a data-type-depen-
dent value (A = 1 for byte operations, A = 2 for
word operations), before the long 16-bit address
is generated:
(GPRAddress) = (GPRAddress) - A [optional step!]
3. Calculate the long 16-bit (Rw + #datal6 if
selected) address by adding a constant value (if
selected) to the content of the indirect address
pointer:

Long Address = (GPR Address) + Constant
4. Calculate the physical 18-bit or 24-bit address
using the resulting long address and the corre-
sponding DPP register content (see long ‘'mem’
addressing modes).
Physical Address = (DPPi) + Long Address"3FFFh
5. Post-Incremented indirect address pointers
(‘Rw+’) are incremented by a data-type-depen-
dent value (A = 1 for byte operations, A = 2 for
word operations):
(GPR Address) = (GPR Address) + A [optional step!]

15 14 13 0

EXTP(R): 16-bit Long Address

><] |

#pag |

I

I 14-bit page offset

24-bit Physical Address |

15

EXTS(R): .
16-bit Long Address |

#seg | I

:

16-bit segment offset

24-bit Physical Address | |

6/172

g

ST10 FAMILY PROGRAMMING MANUAL

The following indirect addressing modes are pro-
vided:

Table 3 : Table of indirect address modes

cated to match the data format required for the
operation:

Table 4 : Table of constants

the indirect address pointer are added
before the long 16-bit address is calcu-

lated.

2.1.5 - Constants

The ST10 Family instruction set supports the use
of wordwide or bytewide immediate constants.
For optimum utilization of the available code stor-
age, these constants are represented in the
instruction formats by either 3, 4, 8 or 16 bits.
Therefore, short constants are always
zero-extended, while long constants can be trun-

Table 5 : Branch target address summary

Mnemonic Notes Mnemonic Word operation | Byte operation

[Rw] Most instructions accept any GPR #datas 0000y, + dataz |00, + datag
(R15...R0) as indirect address pointer.
Some instructions, however, only #data, 0000, + data, |00} + data,
accept the lower four GPRs (R3...R0).

—— , #datag 0000y, + datag |[datag

[Rw+] The specified indirect address pointer
is automatically incremented by 2 or 1 #data, datajg datajg * FFy,
(for word or byte data operations) after
the access. #mask 0000y, + mask |mask

[-Rw] The specified indirect address pointer
is automatically decremented by 2 or 1 Note: Immediate constants are always signified
(for word or byte data operations) by a leading number sign “#".
before the access.

[Rw+#data,g] |A 16-bit constant and the contents of 2.1.6 - Branch target addressing modes

Jump and Call instructions use different address-
ing modes to specify the target address and seg-
ment.

Relative, absolute and indirect modes can be
used to update the Instruction Pointer register
(IP), while the Code Segment Pointer register
(CSP) can only be updated with an absolute
value.

A special mode is provided to address the
interrupt and trap jump vector table situated in the
lowest portion of code segment 0.

Mnemonic Target Address Target Segment Valid Address Range
caddr (IP) = caddr - caddr =0000h...FFFEh
rel (IP) = (IP) + 2*rel - rel =00h...7Fh

(IP) = (IP) + 2*(~rel+1) - rel =80h...FFh
[Rw] (IP) = ((CP) + 2*Rw) - Rw =0...15
seg - (CSP) =seg seg =0...255
#trap; (IP) = 0000h + 4*trap; (CSP) = 0000h trapy =00h...7Fh

4

71172

ST10 FAMILY PROGRAMMING MANUAL

caddr

Specifies an absolute 16-bit code address within
the current segment. Branches MAY NOT be
taken to odd code addresses.

Therefore, the least significant bit of ‘caddr’ must
always contain a '0’, otherwise a hardware trap
would occur.

rel

Represents an 8-bit signed word offset address
relative to the current Instruction Pointer contents
which points to the instruction after the branch
instruction.

Depending on the offset address range, either for-
ward ('rel’= 00h to 7Fh) or backward (rel’= 80h to
FFh) branches are possible.

The branch instruction itself is repeatedly exe-
cuted, when 'rel' = -1’ (FFy,) for a word-sized
branch instruction, or 'rel’ = -2’ (FEh) for a dou-
ble-word-sized branch instruction.

[Rw]

The 16-bit branch target instruction address is
determined indirectly by the content of a word
GPR. In contrast to indirect data addresses, indi-
rectly specified code addresses are NOT calcu-
lated by additional pointer registers (e.g. DPP
registers).

Branches MAY NOT be taken to odd code
addresses. Therefore, to prevent a hardware trap,
the least significant bit of the address pointer GPR
must always contain a ‘0.

seg

Specifies an absolute code segment number. All
devices support 256 different code segments, so
only the eight lower bits of the 'seg’ operand value
are used for updating the CSP register.

#trap-

Specifies a particular interrupt or trap number for
branching to the corresponding interrupt or trap
service routine by a jump vector table.

Trap numbers from 00h to 7Fh can be specified,
which allows access to any double word code
location within the address range
00’0000h...00’01FCh in code segment O (i.e. the
interrupt jump vector table).

8/172

For further information on the relation between
trap numbers and interrupt or trap sources, refer
to the device user manual section on “Interrupt
and Trap Functions”.

2.2 - Instruction execution times

The instruction execution time depends on where
the instruction is fetched from, and where the
operands are read from or written to.

The fastest processing mode is to execute a pro-
gram fetched from the internal ROM. In this case
most of the instructions can be processed in just
one machine cycle.

All external memory accesses are performed by
the on-chip External Bus Controller (EBC) which
works in parallel with the CPU.

Instructions from external memory cannot be pro-
cessed as fast as instructions from the internal
ROM, because it is necessary to perform data
transfers sequentially via the external interface.

In contrast to internal ROM program execution,
the time required to process an external program
additionally depends on the length of the instruc-
tions and operands, on the selected bus mode,
and on the duration of an external memory cycle.

Processing a program from the internal RAM
space is not as fast as execution from the internal
ROM area, but it is flexible (i.e. for loading tempo-
rary programs into the internal RAM via the chip's
serial interface, or end-of-line programming via
the bootstrap loader).

The following description evaluates the minimum
and maximum program execution times. which is
sufficient for most requirements. For an exact
determination of the instructions' state times, the
facilities provided by simulators or emulators
should be used.

This section defines measurement units, summa-
rizes the minimum (standard) state times of the
16-bit microcontroller instructions, and describes
the exceptions from the standard timing.

g

ST10 FAMILY PROGRAMMING MANUAL

2.2.1 - Definition of measurement units
The following measurement units are used to define instruction processing times:

[fepul:
[State]:

[ACT]:

Tiot

4

CPU operating frequency (may vary from 1MHz to 80MHz).

One state time is specified by one CPU clock period. Therefore, one State is used as the basic
time unit, because it represents the shortest period of time which has to be considered for
instruction timing evaluations.

1[State] = 1l/fcpyls] ; for fopy = variable
= 50[ns] ; for fCPU =20MHz

ALE (Address Latch Enable) Cycle Time specifies the time required to perform one external
memory access. One ALE Cycle Time consists of either two (for demultiplexed external bus
modes) or three (for multiplexed external bus modes) state times plus a number of state times,
which is determined by the number of waitstates programmed in the MCTC (Memory Cycle
Time Control) and MTTC (Memory Tristate Time Control) bit fields of the SYSCON/BUSCONXx
registers.

For demultiplexed external bus modes:

1.ACT = (2 + (15 - MCTC) + (1 — MTTC)) « States
=100n... 900 ns ; for fcpy = 20MHz

For multiplexed external bus modes:

1.ACT = (3 + (15 - MCTC) + (1 — MTTC)) « States
=150ns ... 950ns ; for fcpy = 20MHz

The total time (T;q¢) taken to process a particular part of a program can be calculated by the
sum of the single instruction processing times (T},) of the considered instructions plus an offset
value of 6 state times which takes into account the solitary filling of the pipeline:

Ttot =T|1 +Tp+...+T|, + 6« States

The time (7)) taken to process a single instruction, consists of a minimum number (T|min)
plus an additional number (T|54¢) of instruction state times and/or ALE Cycle Times:

Tin =Timin * Tiadd

9/172

ST10 FAMILY PROGRAMMING MANUAL

2.2.2 - Minimum state times

The table below shows the minimum number of
state times required to process an instruction
fetched from the internal ROM (Tjpin (ROM)).
This table can also be used to calculate the mini-
mum number of state times for instructions
fetched from the internal RAM (Tymin (RAM)), or
ALE Cycle Times for instructions fetched from the
external memory (Tjmin (EXY)).

Most of the 16-bit microcontroller instructions
(except some branch, multiplication, division and
a special move instructions) require a minimum of
two state times. For internal ROM program execu-
tion, execution time has no dependence on
instruction length, except for some special branch
situations.

To evaluate the execution time for the injected tar-
get instruction of a cache jump instruction, it can
be considered as if it was executed from the inter-
nal ROM, regardless of which memory area the
rest of the current program is really fetched from.

For some of the branch instructions the table
below represents both the standard number of
state times (i.e. the corresponding branch is
taken) and an additional Tjyjn value in parenthe-
ses, which refers to the case where, either the
branch condition is not met, or a cache jump is
taken.

Table 6 : Minimum instruction state times [Unit = ns]

_ TNimin | Timin (ROM)
Instruction (ROM) (20MHz
[States] CPU clk)
CALLI, CALLA 4 (2| 200 (100)
CALLS, CALLR, PCALL 4 200
JB, JBC, JNB, JNBS 4 (2)| 200 (100)
JMPS 4 200
JMPA, JMPI, IMPR 4 (2)| 200 (100)
MUL, MULU 10 500
DIV, DIVL, DIVU, DIVLU 20 1000
MOV[B] Rn, [Rm + #data,¢] | 4 200
RET, RETI, RETP, RETS 4 200
TRAP 4 200
All other instructions 2 100

Instructions executed from the internal RAM
require the same minimum time as they would if

10/172

they were fetched from the internal ROM, plus an
instruction-length dependent number of state
times, as follows:

— For 2-byte instructions:
Timin(RAM) = Tjmin(ROM) + 4 . States

— For 4-byte instructions:
Timin(RAM) = Tjmin(ROM) + 6 « States

Unlike internal ROM program execution, the mini-
mum time Tjpmin(ext) to process an external
instruction also depends on instruction length.
Timin(ext) is either 1 ALE Cycle Time for most of
the 2-byte instructions, or 2 ALE Cycle Times for
most of the 4-byte instructions.

The following formula represents the minimum
execution time of instructions fetched from an
external memory via a 16-bit wide data bus:

— For 2-byte instructions:
Timin(€xt) = LAACT + (Tjmin(ROM) - 2) « States

— For 4-byte instructions:
Timin(ext) = 2:ACTs + (Tjmin(ROM) - 2) « States

For instructions fetched from an external
memory via an 8-bit wide data bus, the
minimum number of required ALE Cycle
Times is twice the number for those of a
16-bit wide bus.

Note:

2.2.3 - Additional state times

Some operand accesses can extend the execu-
tion time of an instruction T,. Since the additional
time Tj5qq is generally caused by internal instruc-
tion pipelining, it may be possible to minimize the
effect by rearranging the instruction sequences.
Simulators and emulators offer a high level of pro-
grammer support for program optimization.

The following operands require additional state
times:

Internal ROM operand reads: T|zqq = 2 « States
Both byte and word operand reads always require
2 additional state times.

4

ST10 FAMILY PROGRAMMING MANUAL

Internal RAM operand reads via indirect addressing modes: Tj5qq =0 or 1 « State

Reading a GPR or any other directly addressed operand within the internal RAM space does NOT cause
additional state time. However, reading an indirectly addressed internal RAM operand will extend the pro-
cessing time by 1 state time, if the preceding instruction auto-increments or auto-decrements a GPR, as
shown in the following example:

I'n : MOV RL, [RO+] ; auto-increment RO
I n+1 : MOV [R3], [R2] ; if R2 points into the internal RAM space:
; T,addzl*State

In this case, the additional time can be avoided by putting another suitable instruction before the instruc-
tion /41 indirectly reading the internal RAM.

Internal SFR operand reads: T|gqq =0, 1 - State or 2 « States
SFR read accesses do NOT usually require additional processing time. In some rare cases, however,
either one or two additional state times will be caused by particular SFR operations:

— Reading an SFR immediately after an instruction, which writes to the internal SFR space, as shown in
the following example:

I'n . MOV TO, #1000h ; wite to Tinmer 0
I n+1 : ADD R3, T1 ; read fromTiner 1. Tigqq = 1 + State

— Reading the PSW register immediately after an instruction which implicitly updates the flags as shown
in the following example:

I'n : ADD RO, #1000h ; inmplicit nodification of PSWTfI ags
I n+1 : BAND C, Z ; read fromPSW T 5qq = 2 « States

— Implicitly incrementing or decrementing the SP register immediately after an instruction which explicitly
writes to the SP register, as shown in the following example:

I'n . MOV SP, #0OFBOOh ; explicit update of the stack pointer
I n+1 . SCXT R1, #1000h ; inplicit decrement of the stack pointer:
v Tladd = 2 = States

In each of these above cases, the extra state times can be avoided by putting other suitable instructions
before the instruction /41 reading the SFR.

External operand reads: Tjgqq =1+ACT

Any external operand reading via a 16-bit wide data bus requires one additional ALE Cycle Time. Read-
ing word operands via an 8-bit wide data bus takes twice as much time (2 ALE Cycle Times) as the read-
ing of byte operands.

External operand writes: Tjgqq = 0 « State ... 1+ ACT

Writing an external operand via a 16-bit wide data bus takes one additional ALE Cycle Time. For timing
calculation of the external program parts, this extra time must always be considered. The value of T|5qq
which must be considered for timing evaluations of internal program parts, may fluctuate between 0 state
times and 1 ALE Cycle Time. This is because external writes are normally performed in parallel to other
CPU operations. Thus, Tj54q could already have been considered in the standard processing time of
another instruction. Writing a word operand via an 8-bit wide data bus requires twice as much time (2 ALE
Cycle Times) as the writing of a byte operand.

Kﬁ 11/172

ST10 FAMILY PROGRAMMING MANUAL

Jumps into the internal ROM space: T|5qq = 0 or 2 « States

The minimum time of 4 state times for standard jumps into the internal ROM space will be extended by 2
additional state times, if the branch target instruction is a double word instruction at a non-aligned double
word location (xxx2h, xxx6h, xxxAh, xxxEh), as shown in the following example:

| abel o ; any non-aligned double word instruction
; (e.g. at location OFFEh)

I n+1 . JMPA cc_UC, | abel , if a standard branch is taken:

v Tladg = 2 « States (T, = 6 +» States)

A cache jump, which normally requires just 2 state times, will be extended by 2 additional state times, if
both the cached jump target instruction and the following instruction are non-aligned double word instruc-
tions, as shown in the following example:

| abel o ; any non-aligned double word instruction
; (e.g. at location 12FAh)

I n+1 Co ; any non-aligned double word instruction
; (e.g. at location 12FEh)

I n+2 : JMPR cc_UC, | abel ; provided that a cache junmp is taken:

v Tladd = 2 « States (T, = 4 » States)

If necessary, these extra state times can be avoided by allocating double word jump target instructions to
aligned double word addresses (xxx0h, xxx4h, xxx8h, xxxCh).

Testing Branch Conditions: Tj5qq = 0 or 1 « States

NO extra time is usually required for a conditional branch instructions to decide whether a branch condi-
tion is met or not. However, an additional state time is required if the preceding instruction writes to the
PSW register, as shown in the following example:

I'n . BSET USRO ; inplicit nodification of PSWTfI ags

I n+1 . JMPR cc_Z, | abel , test condition flag in PSW T,5qq= 1 +» State

In this case, the extra state time can be intercepted by putting another suitable instruction before the con-
ditional branch instruction.

12/172

4

ST10 FAMILY PROGRAMMING MANUAL

2.3 - Instruction set summary

The following table lists the instruction mnemonic by hex-code with operand.

Table 7:

Instruction mnemonic by hex-code with operand

veyepy ‘Umy NIW ‘O3 Umy ‘[OTp# + Umy] 934 'Wan yaavo ‘o3s 1134 dod
x4
AOW gAON AOW gAON gAON B AOW gAON B B SdINC
93y
Yerep# ‘Umy ¥aavo ‘'o3y [OTp# + Wmy] ‘Umy Tyereq ‘93y [+Ymy] ["my] | ¥aavd ‘0D o3y
x3
AOW GAOW 1vod - FAON - AOW FAON AOWN 9AOW VdINC d13y HSNd
SAAON SAAON SAAON zerep# ‘Bed#| [“my] [*my] |daaavo ‘o93s Zpy Uy
Cerepy [O¥my] ‘[oixall | “my [OTp# + “my] NAW ‘'93d| (Y)sLx3 (d)s1x3 xa
YLX3/OINOLY AOWO0D NOW 1X0S /(d)dIxa | AON gnowW STIVO S13d | /(d)dLx3
Wy “Umy W3 ‘93 ; " o EESRAENL " ; -
93400 ‘[0 “my] | [*Tp# + “my] ““my Tp# ‘'93Y [“my] [“my] [¥aavo ‘00 o
Z9AOW B ZIAONW 3401S0D AOW ZIAONW 1X0S B AOW 9AOW V1O 134 dON
2adND g1d0 2ddiND 93400 ‘‘my | Umy ‘[OTp# + Umy] 2adND Umy [Wmy] SANC 13y Ypg ‘Umy
xq
3401500 aAON 1IN 1SS AOW 9AOW d1IvO | dHSY
Ypg ‘Umy Umy NI Umy T - Mpy ‘Umy T ppelig ‘ppeLig N - o
My my NI ['my] 'my ['my] [Umy] 00 | “my “my Xy
TAdND 993N TAdWO XXX0D FAON 1aMSIa [Tadwo | 1amAds | AON 9AOW oar [iR\%e] UHSY
2adno g1d0 2adno [O“myd] ‘[Oixal] [“md] ‘Wan _ 2IdnD [+4my] Uy 1Ny deny | [my] 99 %
XXX0D AOW NQdMd | AOW 9AOW dvdl IdNC
Tpg “Imy Imy WIN My T . Tpy Imy o 13 ‘ppeLig o | o
[O%m] “my N3N ‘["my] - My [my-] _lo o ‘8
s | €| €
TIdND 93N 1dND XXX00D AOW TIdND 31al AOWN 9AOW ar B B G m m
o £ | E
j<le} 940 j<le} 940 j<le} a40 <le) a40 40 940 |ppelig ‘ppeLia| Umy | Ypg Umy g |2 |a@
€erep# ‘Umy 2 o H XL
yoxa niAId gHS S 13|48
Uamy Umy NIW ‘O3 934 'Wan Tejepy ‘03y [+my] Umy @ o]
[my] Umy [ppeLig ‘ppeLig| Umy |Wmy Umy
X9
anvy 9aNvy anvy aaNy anvy aaNy anvy aaNy ANy 9anvy anve IAa dHS
doxX gHOX "OX 40X dOX 40X doxX 40X dOX 9dOX [ppeLig ‘ppeLig| UYmy | Yp# “Umy
. x§
Eerepy My dos nAId THs
Umy Umy NI ‘O3 o3y ‘WA 9Terepy ‘03y [+'my] “Umy
[my] Ymy |ppeLig ‘ppeLid]| Umy |Ymy Umy
Xy
dND 9dWO dND 9dNO B B dND adND dNO 9dnD AOWSG Ald THS
oans 204Ns oans 08NS 28ans 204NSs oans g0dns | 2ans goans|ppelig ‘ppelig Yp# Umy
. - XE
Eeyeps My NAOWE o
Wy *Umy N3N ‘D3 934 ‘Wan 9Terep ‘03 [+'my] “my
[my] ‘Umy [ppeLIg ‘ppeLIg|Umy Umy | Umy Umy
Xz
ans 2ans ans a4ans ans 24ans ans a4ans ans gdns dNog doldd yox
oaav g0aav oaav g0aav oaav goaav oaav g0aav | oaav goaav Ha149 NN | p# “Umy
X
Eerep# 'my T
. . Eereps 704
Umy ‘Umy NENRSER] o3y ‘WIN Tejepy ‘93y [+my] Ymy |, N Umy Umy
T MSYIN 440119 o
['my] “my my “Umy o
aav gaav aav gaav aav aaav aav gaav aavy aaav 1a14g NN 7104
MO
0X TX X €X X GX 9Xx X 8X 6X VX gx X ax | ax | 4x
ybIH

13/172

ST10 FAMILY PROGRAMMING MANUAL

Table 8 lists the instructions by their mnemonic and identifies the addressing modes that may be used with
a specific instruction and the instruction length, depending on the selected addressing mode (in bytes).

Table 8 : Mnemonic vs address mode & number of bytes

Mnemonic Addressing Modes Bytes Mnemonic Addressing Modes Bytes
ADDI[B] Rw, L, Rw,, 1 2 CPL[B] Rw, 1 2
ADDC[B] Rw, L, [Rwj] 2 NEGI[B]

AND[B] Rw, L, [Rwi+] 2 DIV Rwp, 2
OR[B] Rw, !, #datag 2 DIVL
SUBI[B] reg, #datag 4 DIVLU
SUBCI[B] reg, mem 4 DIVU
XORIB] mem, reg 4 MUL Rw,, Rw, 2
MULU
ASHR Rwy,, Rw, 2 CMPD1/2 Rw,,, #data, 2
ROL / ROR Rw,,, #data, 2 CMPI1/2 Rw,,, #data,g 4
SHL / SHR Rwy,, mem 4
BAND bitaddry ,, bitaddrq q 4 CMP[B] Rw,,, Rw, -
BCMP Rw,,, [Rwi] 1 2
BMOV Rw,, [Rwi+] 2
BMOVN Rwy,, #datag! 2
BOR / BXOR reg, #datag 4
reg, mem 4
BCLR bitaddrg g, 2 CALLA cc, caddr 4
BSET JMPA
BFLDH bitof‘fQ, #maskg, #datag 4 CALLI cc, [Rwy] 2
BFLDL JMPI
MOV[B] Rw, 1, Rw,,? 2 CALLS seg, caddr 4
Rw,!, #data, 2 | [IMPS
Rw,%, [Rw,] 2 CALLR rel 2
Rw,,, [Rw+] 2 JMPR cc, rel 2
[Rw,,], Rwp,? 2 JB bitaddrg g, rel 4
[-Rw], Rw,, 2 JBC
[Rwp], [Rwp] 2 ||INB
[Rw,+], [Rwy)] 2 INBS
[Rw,], [Rwp,+] 2 PCALL reg, caddr
reg, #datajg 4 POP reg
Rwp [Rw,+#data, ¢]* 4 PUSH
[Rw,,+#datag], Rw,, 4 | |RETP
[Rw,], mem 4 SCXT reg, #data;g
mem, [Rw,] 4 reg, mem
reg, mem 4 PRIOR Rwy,, Rwp,
mem, reg 4
14/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

Table 8 : Mnemonic vs address mode & number of bytes (continued)

Mnemonic Addressing Modes Bytes Mnemonic Addressing Modes Bytes
MOVBS Rw,, Rby, 2 TRAP #trap7 2
MOVBZ reg, mem 4 ATOMIC #data, 2

mem, reg 4 EXTR
EXTS Rw,,, #data, EXTP Rw,, #data,
EXTSR #segq, #data, EXTPR #pag, #data,
NOP - SRST/IDLE |-
RET PWRDN
RETI SRVWDT
RETS = DISWDT

EINIT

Note 1. Byte oriented instructions (suffix ‘B’) use Rb instead of Rw (not with [Rw;]!).

2.4 - Instruction set ordered by functional
group

The minimum number of state times required for
instruction execution are given for the following
configurations: internal ROM, internal RAM, exter-
nal memory with a 16-bit demultiplexed and multi-
plexed bus or an 8-bit demultiplexed and
multiplexed bus. These state time figures do not
take into account possible wait states on external
busses or possible additional state times induced
by operand fetches. The following notes apply to
this summary:

Data addressing modes

Rw: Word GPR (RO, R1, ..., R15).

Rb: Byte GPR (RLO, RHO, ..., RL7, RHY7).
reg: SFR or GPR (in case of a byte operation

on an SFR, only the low byte can be
accessed via ‘reg’).

mem: Direct word or byte memory location.

[...]: Indirect word or byte memory location.
(Any word GPR can be used as indirect
address pointer, except for the arithmetic,
logical and compare instructions, where
only RO to R3 are allowed).

bitaddr: Direct bit in the bit-addressable memory
area.

4

bitoff: Direct word in the bit-addressable mem-
ory area.

#data,: Immediate constant (the number of signif-
icant bits that can be user-specified is
given by the appendix “x”).

#maskg:Immediate 8-bit mask used for bit-field
modifications.

Multiply and divide operations

The MDL and MDH registers are implicit source

and/or destination operands of the multiply and

divide instructions.

Branch target addressing modes

caddr: Direct 16-bit jump target address
(Updates the Instruction Pointer).

seg: Direct 8-bit segment address (Updates
the Code Segment Pointer).
rel: Signed 8-bit jump target word offset

address relative to the Instruction
Pointer of the following instruction.

#trap7: Immediate 7-bit trap or interrupt number.
Extension operations

The EXT* instructions override the standard DPP
addressing scheme:

#pag: Immediate 10-bit page address.
#seg: Immediate 8-bit segment address.

15/172

ST10 FAMILY PROGRAMMING MANUAL

Branch condition codes
cc: Symbolically specifiable condition codes

cc_UcC Unconditional cc_NE Not Equal
cc Z Zero cc_ULT Unsigned Less Than
cc_Nz Not Zero cc_ULE Unsigned Less Than or Equal
cc_V Overflow cc_UGE Unsigned Greater Than or Equal
cc_NV No Overflow cc_UGT Unsigned Greater Than
cc_N Negative cc_SLE Signed Less Than or Equal
cc_NN Not Negative cc_SLT Signed Less Than
cc_ C Carry cc_SGE Signed Greater Than or Equal
cc_NC No Carry cc_SGT Signed Greater Than
cc_EQ Equal cc_NET Not Equal and Not End-of-Table
Table 9 : Arithmetic instructions
3 X 3| x
Mnemonic Description § % i E i % é
HERHEHE
Q| 7| »
ADD Rw, Rw Add direct word GPR to direct GPR 21612 |3|4|6|2
ADD Rw, [Rw] Add indirect word memory to direct GPR 213|146 |2
ADD Rw, [Rw+] [Add indirect word memory to direct GPR and post- 21612 (3|46]2
increment source pointer by 2
ADD Rw, #datay [Add immediate word data to direct GPR 2162 |3|4])6 |2
ADD reg, #data,g | Add immediate word data to direct register 218|146 |8(12| 4
ADD reg, mem Add direct word memory to direct register 218|146 |8|12| 4
ADD mem, reg Add direct word register to direct memory 218|146 |8|12| 4
ADDB Rb, Rb Add direct byte GPR to direct GPR 21612346 |2
ADDB Rb, [Rw] Add indirect byte memory to direct GPR 21612 (3|46]2
ADDB Rb, [Rw+] |Add indirect byte memory to direct GPR and post-increment | 2 (6 | 2 | 3 |4 | 6 | 2
source pointer by 1
ADDB Rb, #datay [Add immediate byte data to direct GPR 2162|346 |2
ADDB reg, #data,g | Add immediate byte data to direct register 218|146 |8|12| 4
ADDB reg, mem Add direct byte memory to direct register 218|146 |8|12| 4
ADDB mem, reg Add direct byte register to direct memory 218|146 |8(|12| 4
ADDC Rw, Rw Add direct word GPR to direct GPR with Carry 2162|346 /|2
ADDC Rw, [Rw] Add indirect word memory to direct GPR with Carry 21612 |3|4(6|2
ADDC Rw, [Rw+] [Add indirect word memory to direct GPR with Carry and 21612 |3|4(6|2
post-increment source pointer by 2
ADDC Rw, #datas |Add immediate word data to direct GPR with Carry 2612|346]2
ADDC reg, #data;g | Add immediate word data to direct register with Carry 218|146 |8|12| 4
ADDC reg, mem Add direct word memory to direct register with Carry 2|18|4|6|8|12| 4
ADDC mem, reg Add direct word register to direct memory with Carry 218|146 |8|12| 4
16/172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

Table 9 : Arithmetic instructions (continued)

s| = >§< EIE
Mnemonic Description 8 é z E i % é
HEHHEHE
S| 7| »
ADDCB Rb, Rb Add direct byte GPR to direct GPR with Carry 2162|346 |2
ADDCB Rb, [Rw] Add indirect byte memory to direct GPR with Carry 2 213|146 |2
ADDCB Rb, [Rw+] |Add indirect byte memory to direct GPR with Carry and 2162|346 |2
post-increment source pointer by 1
ADDCB Rb, #datag |Add immediate byte data to direct GPR with Carry 21612 |3|4|6|2
ADDCB reg, #data;g |Add immediate byte data to direct register with Carry 2|18|4(6|8|12| 4
ADDCB reg, mem Add direct byte memory to direct register with Carry 218|146 |8|12| 4
ADDCB mem, reg Add direct byte register to direct memory with Carry 2|18 4|6 |8|12| 4
CPL Rw Complement direct word GPR 21612 |3|4|6|2
CPLB Rb Complement direct byte GPR 21612 (3|46]2
DIV Rw Signed divide register MDL by direct GPR 20124120 (21|22 24 | 2
(16-/16-bit)
DIVL Rw Signed long divide register MD by direct GPR 20124120 (21|22 24 | 2
(32-/16-bit)
DIVLU Rw Unsigned long divide register MD by direct GPR 20124120 (21|22 24 | 2
(32-/16-bit)
DIVU Rw Unsigned divide register MDL by direct GPR 20124120 (21|22 24 | 2
(16-/16-bit)
MUL Rw, Rw Signed multiply direct GPR by direct GPR (16-16-bit) 10(14(10 (11 (12| 14| 2
MULU Rw, Rw Unsigned multiply direct GPR by direct GPR (16-16-bit) 10(14(10 (11 (12| 14| 2
NEG Rw Negate direct word GPR 21612 (3|46]2
NEGB Rb Negate direct byte GPR 21612 (3|46]2
SuUB Rw, Rw Subtract direct word GPR from direct GPR 216|123 |4|6 |2
SUB Rw, [Rw] Subtract indirect word memory from direct GPR 2162|346 |2
SUB Rw, [Rw+] | Subtract indirect word memory from direct GPR & 2162|346 |2
post-increment source pointer by 2
SuUB Rw, #dataz |Subtract immediate word data from direct GPR 2612|3462
SUB reg, #data,g | Subtract immediate word data from direct register 218|146 |8|12| 4
SUB reg, mem Subtract direct word memory from direct register 218|146 |8|12| 4
SUB mem, reg Subtract direct word register from direct memory 218|146 |8|12| 4
SUBB Rb, Rb Subtract direct byte GPR from direct GPR 2162|346 |2
SUBB Rb, [Rw] Subtract indirect byte memory from direct GPR 2162|346 |2
SUBB Rb, [Rw+] |Subtract indirect byte memory from direct GPR & 21612 |3|4|6|2
post-increment source pointer by 1
SUBB Rb, #dataz |Subtract immediate byte data from direct GPR 2612|3462
SUBB reg, #data;g | Subtract immediate byte data from direct register 218|146 |8|12| 4
£’7 17/172

ST10 FAMILY PROGRAMMING MANUAL

Table 9 : Arithmetic instructions (continued)

5 x| x
Mnemonic Description gl | 2| = z % ‘qi
£l €| 3| 2=l 2| @
S E T ol 2 &
S| 7|
SUBB reg, mem Subtract direct byte memory from direct register 218|146 |8|12| 4
SUBB mem, reg Subtract direct byte register from direct memory 218|146 |8|12| 4
SUBC Rw, Rw Subtract direct word GPR from direct GPR with Carry 2162|346 |2
SUBC Rw, [Rw] Subtract indirect word memory from direct GPRwithCarry | 2 |6 | 2 | 3 |4 | 6 | 2
SUBC Rw, [Rw+] | Subtract indirect word memory from direct GPRwithCarry | 2 |6 | 2 | 3 | 4| 6 | 2
and post-increment source pointer by 2
SUBC Rw, #dataz |Subtract immediate word data from direct GPR with Carry 2162|346 |2
SUBC reg, #data;g | Subtract immediate word data from direct register with 218 68|12 4
Carry
SUBC reg, mem Subtract direct word memory from direct registerwithCarry | 2 | 8 [4 [6 [8 | 12 | 4
SUBC mem, reg Subtract direct word register from direct memorywithCarry | 2 | 8 | 4 [6 [8 | 12 | 4
SUBCB Rb, Rb Subtract direct byte GPR from direct GPR with Carry 21612 |3|4|6|2
SUBCB Rb, [Rw] Subtract indirect byte memory from direct GPR with Carry 2162|346 |2
SUBCB Rb, [Rw+] |Subtract indirect byte memory from direct GPR with Carry 2162|346 |2
and post-increment source pointer by 1
SUBCB Rb, #dataz |Subtract immediate byte data from direct GPR with Carry 2162|346 |2
SUBCB reg, #data,g | Subtract immediate byte data from direct registerwithCarry| 2 | 8 | 4 | 6 | 8 | 12 | 4
SUBCB reg, mem Subtract direct byte memory from direct registerwithCarry | 2 | 8 | 4 [6 [8 |12 | 4
SUBCB mem, reg Subtract direct byte register from direct memory withCarry | 2 | 8 | 4 [6 [8 |12 | 4
Table 10 : Logical instructions
x x
s|=2|5|2|3
_ o o|l<|z|=|2[=| 8
Mnemonic Description x| x E =lz|Z| =
ElE2|&|5|5|®
HEIE
AND Rw, Rw Bitwise AND direct word GPR with direct GPR 2623462
AND Rw, [Rw] Bitwise AND indirect word memory with direct GPR 213|416
AND Rw, [Rw+] Bitwise AND indirect word memory with direct GPR and 216|2|3(4]6
post-increment source pointer by 2
AND Rw, #datag |Bitwise AND immediate word data with direct GPR 2162|3462
AND reg, #data,g |Bitwise AND immediate word data with direct register 218|4|6(8]12] 4
AND reg, mem Bitwise AND direct word memory with direct register 218|416 (8]12] 4
AND mem, reg Bitwise AND direct word register with direct memory 28468 |12]| 4
ANDB Rb, Rb Bitwise AND direct byte GPR with direct GPR 216(2]|3(4 2
ANDB Rb, [Rw] Bitwise AND indirect byte memory with direct GPR 21623 (4 2
18/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

Table 10 : Logical instructions (continued)

s|s ;3(x| 5| x
Mnemonic Description 8 é z E § % é
2|2|2]&|5|2|%
SR
ANDB Rb, [Rw+] Bitwise AND indirect byte memory with direct GPR and 21612 |3(4]6]2
post-increment source pointer by 1
ANDB Rb, #datag |Bitwise AND immediate byte data with direct GPR 2162|3462
ANDB reg, #data,g |Bitwise AND immediate byte data with direct register 218|4|6]|8](12(4
ANDB reg, mem Bitwise AND direct byte memory with direct register 28468 |12]| 4
ANDB mem, reg Bitwise AND direct byte register with direct memory 28468 |12]| 4
OR Rw, Rw Bitwise OR direct word GPR with direct GPR 262 (3|4 2
OR Rw, [Rw] Bitwise OR indirect word memory with direct GPR 216(2]|3(4 2
OR Rw, [Rw+] Bitwise OR indirect word memory with direct GPR and 216(2]|3(4 2
post-increment source pointer by 2
OR Rw, #dataz |Bitwise OR immediate word data with direct GPR 2(6)12(3]4|6]2
OR reg, #data,g |Bitwise OR immediate word data with direct register 218|4]|6]|8]|12(4
OR reg, mem Bitwise OR direct word memory with direct register 28468 |12]| 4
OR mem, reg Bitwise OR direct word register with direct memory 218|4|6(8]12] 4
ORB Rb, Rb Bitwise OR direct byte GPR with direct GPR 216(2]|3|4 2
ORB Rb, [Rw] Bitwise OR indirect byte memory with direct GPR 216(2]|3(4 2
ORB Rb, [Rw+] Bitwise OR indirect byte memory with direct GPR and 21623 (4 2
post-increment source pointer by 1
ORB Rb, #data; |Bitwise OR immediate byte data with direct GPR 2(6)12(3]4(|6]2
ORB reg, #data;g |Bitwise OR immediate byte data with direct register 218|4|6]|8]|12(4
ORB reg, mem Bitwise OR direct byte memory with direct register 218|4|6(8]12] 4
ORB mem, reg Bitwise OR direct byte register with direct memory 218|4|6(8]12] 4
XOR Rw, Rw Bitwise XOR direct word GPR with direct GPR 21623 (4 2
XOR Rw, [Rw] Bitwise XOR indirect word memory with direct GPR 216(2]|3(4 2
XOR Rw, [Rw+] Bitwise XOR indirect word memory with direct GPR and 216(2]|3(4 2
post-increment source pointer by 2
XOR Rw, #dataz |Bitwise XOR immediate word data with direct GPR 2162|3462
XOR reg, #data,g |Bitwise XOR immediate word data with direct register 218|4]|6]|8]|12(4
XOR reg, mem Bitwise XOR direct word memory with direct register 218|416 (8]12] 4
XOR mem, reg Bitwise XOR direct word register with direct memory 28468 (12| 4
XORB Rb, Rb Bitwise XOR direct byte GPR with direct GPR 216(2]|3(4 2
XORB Rb, [Rw] Bitwise XOR indirect byte memory with direct GPR 216(2]|3(4 2
XORB Rb, [Rw+] Bitwise XOR indirect byte memory with direct GPR and 216(2]|3(4 2
post-increment source pointer by 1
XORB Rb, #data; |Bitwise XOR immediate byte data with direct GPR 2(6])12(3]4(|6]2
XORB reg, #data,g |Bitwise XOR immediate byte data with direct register 218|4|6]|8](12(4
XORB reg, mem Bitwise XOR direct byte memory with direct register 218|416 (8]12] 4
XORB mem, reg Bitwise XOR direct byte register with direct memory 28468 |12]| 4
£’7 19/172

ST10 FAMILY PROGRAMMING MANUAL

Table 11 : Boolean bit map instructions (continued)

3 x| x
s S =] X
. - ol 2| 2| 2| 3| 2| ¢
Mnemonic Description x| x| Zf =| 2| 2 4
<= = 5 2] 2| 8] @
gl | 2| 9| 8| %
S| 7| @
BAND AND direct bit with direct bit 218(4)16|8]|12| 4
bitaddr, bitaddr
BCLR bitaddr Clear direct bit 21612 416 |2
BCMP Compare direct bit to direct bit 2|8 6(8(12]| 4
bitaddr, bitaddr
BFLDH Bitwise modify masked high byte of bit-addressable direct | 2 |8 | 4 | 6 | 8 |12| 4
bitoff, #maskg,#datag word memory with immediate data
BFLDL Bitwise modify masked low byte of bit-addressable direct 2(8|4|6|8(12]|4
bitoff, #maskg, #datag word memory with immediate data
BMOV Move direct bit to direct bit 2(8|4]|6(8(12]|4
bitaddr, bitaddr
BMOVN Move negated direct bit to direct bit 2(8|4]|6(8(12]|4
bitaddr, bitaddr
BOR OR direct bit with direct bit 2(8|4]|6(8(12]|4
bitaddr, bitaddr
BSET bitaddr Set direct bit 216|123 (4(6]2
BXOR XOR direct bit with direct bit 2184168124
bitaddr, bitaddr
CMP Rw, Rw Compare direct word GPR to direct GPR 216123 |4(6]2
CMP Rw, [Rw] Compare indirect word memory to direct GPR 216123 6|2
CMP Rw, [Rw+] Compare indirect word memory to direct GPR and 216123 |4(6]2
post-increment source pointer by 2
CMP Rw, #datag Compare immediate word data to direct GPR 21623462
CMP reg, #data,g Compare immediate word data to direct register 2(8|4]|6(8(12]|4
CMP reg, mem Compare direct word memory to direct register 2(8|4]|6(8(12]|4
CMPB Rb, Rb Compare direct byte GPR to direct GPR 216123 (4(6]2
CMPB Rb, [Rw] Compare indirect byte memory to direct GPR 2612|3462
CMPB Rb, [Rw+] Compare indirect byte memory to direct GPR and 216123 |4(6]2
post-increment source pointer by 1
CMPB Rb, #datas Compare immediate byte data to direct GPR 216123 6|2
CMPB reg, #data,g Compare immediate byte data to direct register 2(8|4]|6(8(12]|4
CMPB reg, mem Compare direct byte memory to direct register 2(8|4]|6(8(12]|4
20/172 KYI

ST10 FAMILY PROGRAMMING MANUAL

Table 12 : Compare and loop instructions (continued)

3 x| %
s S s > X
| . IEHEEEEE
Mnemonic Description x| x| 2| =| 2| 2 =
; | 2l o =] 5§
E|E| 2|8 5| 2"
gl | @
CMPD1 Rw, #data, Compare immediate word data to direct GPR and 26|12 |3|4(6]2
decrement GPR by 1
CMPD1 Rw, #data;g [Compare immediate word data to direct GPR and 218|146 |8(12(4
decrement GPR by 1
CMPD1 Rw, mem Compare direct word memory to direct GPR and 218|4|6|8|12|4
decrement GPR by 1
CMPD2 Rw, #data, Compare immediate word data to direct GPR and 26|12 |3|4(6]2
decrement GPR by 2
CMPD2 Rw, #data;g [Compare immediate word data to direct GPR and 218|416 |8([12(4
decrement GPR by 2
CMPD2 Rw, mem Compare direct word memory to direct GPR and 218|4|6|8|12|4
decrement GPR by 2
CMPI1 Rw, #data, Compare immediate word data to direct GPR and 216123462
increment GPR by 1
CMPI1 Rw, #data,g |Compare immediate word data to direct GPR and 218|416 |8([12(4
increment GPR by 1
CMPI1 Rw, mem Compare direct word memory to direct GPR and 218|4|6]|8|12|4
increment GPR by 1
CMPI2 Rw, #data, Compare immediate word data to direct GPR and 26|12 |3|4(6]2
increment GPR by 2
CMPI2 Rw, #data,g |Compare immediate word data to direct GPR and 218|416 |8([12(4
increment GPR by 2
CMPI2 Rw, mem Compare direct word memory to direct GPR and 218|4|6]|8|12|4
increment GPR by 2
Table 13 : Prioritize instructions
x
5| x| X
s S S > X
| . ol 2| 23| 3| 3| 8
Mnemonic Description x| 2| = z| 2 <
= = 5| Q| 2| ol o
gl 5| 2| 4| 2| &
gl 7@
PRIOR Rw, Rw Determine number of shift cycles to normalize directword | 2 [6 |2 | 3 |4 |6 | 2
GPR and store result in direct word GPR
1577 21/172

ST10 FAMILY PROGRAMMING MANUAL

Table 14 : Shift and rotate instructions (continued)

3 x| x
s S s > x
: . ol 2| 2| 2| 2| 2| g
Mnemonic Description x| x E = 2| 2| =
<= 2| 3 Q| =| ol m
gl £ i ©| 2]
gl 7
ASHR Rw, Rw Arithmetic (sign bit) shift right direct word GPR; numberof |2 [6 |2 |3 |4 |6 | 2
shift cycles specified by direct GPR
ASHR Rw, #data, Arithmetic (sign bit) shift right direct word GPR; numberof | 2 [6 |2 |3 |4 |6 | 2
shift cycles specified by immediate data
ROL Rw, Rw Rotate left direct word GPR; number of shift cycles 21623462
specified by direct GPR
ROL Rw, #data, Rotate left direct word GPR; number of shift cycles 2(6]2(3[4]6]2
specified by immediate data
ROR Rw, Rw Rotate right direct word GPR; number of shift cycles 21623462
specified by direct GPR
ROR Rw, #data, Rotate right direct word GPR; number of shift cycles 21623462
specified by immediate data
SHL Rw, Rw Shift left direct word GPR; number of shift cycles specified (2 | 6 |2 |3 |4 |6 | 2
by direct GPR
SHL Rw, #data, Shift left direct word GPR; number of shift cycles specified [2 | 6 |2 |3 |4 |6 | 2
by immediate data
SHR Rw, Rw Shift right direct word GPR; number of shift cycles specified [2 | 6 | 2 |3 |4 |6 | 2
by direct GPR
SHR Rw, #data, Shift right direct word GPR; number of shift cycles specified [2 | 6 | 2 |3 |4 |6 | 2
by immediate data
Table 15 : Data movement instructions
X x
s[s|2|3|2]3
- . 512322 2|9
Mnemonic Description x|l|Z2|l=|Z2|2|%
= | = E Q= |a|m
= < i (o] Q 0
S| 7|
MOV Rw, Rw Move direct word GPR to direct GPR 2161234 2
MOV Rw, #data, Move immediate word data to direct GPR 216234 2
MOV reg, #data,g Move immediate word data to direct register 218|416]|8|12| 4
MOV Rw, [Rw] Move indirect word memory to direct GPR 2161234 2
MOV Rw, [Rw+] Move indirect word memory to direct GPR and 2161234 2
post-increment source pointer by 2
MOV [Rw], Rw Move direct word GPR to indirect memory 2161234 2
MOV [-Rw], Rw Pre-decrement destination pointer by 2 and move 4
direct word GPR to indirect memory
MOV [Rw], [Rw] Move indirect word memory to indirect memory 4
MOV [Rw+], [Rw] Move indirect word memory to indirect memory &
post-increment destination pointer by 2
MOV [Rw], [Rw+] Move indirect word memory to indirect memory & 21612 |13|4|6]|2
post-increment source pointer by 2
22/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

Table 15 : Data movement instructions (continued)

51 x| %
s S S > x
. - 5l=<|23|2(2]g
Mnemonic Description x|l|Z2|l=|Z2|2|%
sl |52 |=la|lao
csle|f2|o]|e >
S| |
MOV Rw, [Rw+ #data,g] |Move indirect word memory by base plus constant | 4 (10| 6 | 8 (10|14 | 4
to direct GPR
MOV [Rw+ #data,g], Rw |Move direct word GPR to indirect memorybybase | 2 [8 | 4 | 6 | 8 [12| 4
plus constant
MOV [Rw], mem Move direct word memory to indirect memory 218|468 |12| 4
MOV mem, [Rw] Move indirect word memory to direct memory 218|468]|12| 4
MOV reg, mem Move direct word memory to direct register 218|416]|8|12| 4
MOV mem, reg Move direct word register to direct memory 218|416]|8|12| 4
MOVB Rb, Rb Move direct byte GPR to direct GPR 216|234 2
MOVB Rb, #data, Move immediate byte data to direct GPR 21623]4 2
MOVB reg, #data,g Move immediate byte data to direct register 218|468 |12| 4
MOVB Rb, [Rw] Move indirect byte memory to direct GPR 21623]4 2
MOVB Rb, [Rw+] Move indirect byte memory to direct GPR and 21623]4 2
post-increment source pointer by 1
MOVB [Rw], Rb Move direct byte GPR to indirect memory 216|234 2
MOVB [-Rw], Rb Pre-decrement destination pointer by 1 and move 4
direct byte GPR to indirect memory
MOVB [Rw], [Rw] Move indirect byte memory to indirect memory
MOVB [Rw+], [Rw] Move indirect byte memory to indirect memory and | 2 2 2
post-increment destination pointer by 1
MOVB [Rw], [Rw+] Move indirect byte memory to indirectmemoryand [2 | 6 | 2 | 3 | 4 [6 | 2
post-increment source pointer by 1
MOVB Rb, [Rw+ #data,g] Move indirect byte memory by base plusconstant | 4 |10 6 | 8 |10 |14 | 4
to direct GPR
MOVB [Rw+ #data,g], Rb Move direct byte GPR to indirect memorybybase | 2 | 8 [4 | 6 | 8 |12| 4
plus constant
MOVB [Rw], mem Move direct byte memory to indirect memory 218|416]|8]|12| 4
MOVB mem, [Rw] Move indirect byte memory to direct memory 218|416]|8]|12| 4
MOVB reg, mem Move direct byte memory to direct register 218|416]|8|12| 4
MOVB mem, reg Move direct byte register to direct memory 218|416]|8|12| 4
MOVBS Rw, Rb Move direct byte GPR with sign extensiontodirect | 2 [6 [2 | 3 | 4 [6 | 2
word GPR
MOVBS reg, mem Move direct byte memory with sign extension to 218|416]|8|12| 4
direct word register
MOVBS mem, reg Move direct byte register with sign extension to 218|416]|8|12| 4
direct word memory
MOVBZ Rw, Rb Move direct byte GPR with zero extensiontodirect | 2 [6 [2 | 3 | 4 | 6 | 2
word GPR
MOVBZ reg, mem Move direct byte memory with zero extension to 218|416 |8]|12| 4
direct word register
MOVBZ mem, reg Move direct byte register with zero extension to 218|416]|8|12| 4
direct word memory
1574 23/172

ST10 FAMILY PROGRAMMING MANUAL

Table 16: Jumpand Call Instructions (continued)

3 < x
s S S =] X
. - S|=|2|2|3] 2 |3
Mnemonic Description o o z = z . =
- - = Q = Ko m
IS < 2 © o &
S| 7| =
CALLA cc, caddr |Call absolute subroutine if condition is met 4/2 |10/8| 6/4 | 8/6 |10/8 | 14/12 | 4
CALLI cc, [Rw] [Call indirect subroutine if condition is met 4/2 | 8/6 | 4/12 | 5/3 | 6/4 | 8/6 2
CALLR rel Call relative subroutine 8 4 6 8 2
CALLS seg, caddr | Call absolute subroutine in any code segment 4 10 6 8 10 14 4
JB bitaddr, rel [Jump relative if direct bit is set 4 10 6 8 10 14 4
JBC bitaddr, rel [Jump relative and clear bit if direct bit is set 4 10 6 8 10 14 4
JMPA cc, caddr |Jump absolute if condition is met 4/2 |10/8| 6/4 | 8/6 |10/8 | 14/12 | 4
JMPI cc, [Rw] [Jump indirect if condition is met 4/2 | 8/6 | 4/12 | 5/3 | 6/4 | 8/6 2
JMPR cc, rel Jump relative if condition is met 4/2 | 8/6 | 4/12 | 5/3 | 6/4 | 8/6 2
JMPS seg, caddr | Jump absolute to a code segment 4 10 6 8 10 14 4
JNB bitaddr, rel [Jump relative if direct bit is not set 4 10 6 8 10 14 4
JNBS bitaddr, rel [Jump relative and set bit if direct bit is not set 4 10 6 8 10 14 4
PCALL reg, caddr [Push direct word register onto system stack and | 4 10 6 8 10 14 4
call absolute subroutine
TRAP #trap7 Call interrupt service routine via immediate trap 4 8 4 5 6 8 2
number
Table 17 : System Stack Instructions
gl 2| 2| = »
Mnemonic Description |l gl 3| 2| 2 <
H H | oo
== A m
POP reg Pop direct word register from system stack 2162|134]|6]2
PUSH reg Push direct word register onto system stack 216|213 [4]|6]2
SCXT reg, #data;g | Push direct word register onto system stack and update 218 6 12
register with immediate data
SCXT reg, mem Push direct word register onto system stack and update 218|4|6|8]|12(4
register with direct memory
Table 18 : Return Instructions
2l 2| 2| = ”
Mnemonic Description x| ﬁ ﬁ o =2 9;"
gl €| = 2| ®| ®| @
RET Return from intra-segment subroutine 418|4(|5(6]|8]2
RETI Return from interrupt service subroutine 418|4(5]|6[8]|2
RETP reg Return from intra-segment subroutine and pop direct word | 4 | 8
register from system stack
RETS Return from inter-segment subroutine 418|4(5|6|8]|2
24/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

Table 19 : System Control Instructions (continued)

S| s ;3(3| 3| x
Mnemonic Description 8 é E E i .Ei é
EEHEEE
=1 B Y
ATOMIC #data, Begin ATOMIC sequence 2161213 14)6]2
DISWDT Disable Watchdog Timer 218|4|6(8(12|4
EINIT Signify End-of-Initialization on RSTOUT-pin 218|416 |8]|12]| 4
EXTR #data, Begin EXTended Register sequence * 2161213 14/6/2
EXTP Rw, #data, |Begin EXTended Page sequence’ 2161213 14)6]2
EXTP #pag, #data, |Begin EXTended Page sequencel 2|18|4|6|8(12|4
EXTPR Rw, #data, |Begin EXTended Page and Register sequence * 2161213 14/6/2
EXTPR #pag, #data, |Begin EXTended Page and Register sequence ! 218|4(6]8(12]4
EXTS Rw, #data, |Begin EXTended Segment sequence® 216|2(3|4]6]2
EXTS #seg, #datay |Begin EXTended Segment sequence’ 218|4(6]8(12]4
EXTSR Rw, #data, |Begin EXTended Segment and Register sequence 2(6|2(3]4]6]2
EXTSR #seg, #data; |Begin EXTended Segment and Register sequence 2(8(416|8|12]|4
IDLE Enter Idle Mode 218|4|6(8(12|4
PWRDN Enter Power Down Mode (supposes NMI-pin is low) 218|416 |8]|12]| 4
SRST Software Reset 2846|8124
SRVWDT Service Watchdog Timer 218|4|6(8(12|4
Note 1. The EXT instructions override the standard DPP addressing sheme.
Table 20 : Miscellaneous instructions
X
AHEIEIEI R
Mnemonic Description x| 2 =1z |z s
E|E|2|& |5 |2 ™
SRR
NOP Null operation 2 6 2 3 4 6 2
Kﬁ 25/172

ST10 FAMILY PROGRAMMING MANUAL

2.5 - Instruction set ordered by opcodes

The following pages list the instruction set ordered
by their hexadecimal opcodes. This is used to
identify specific instructions when reading execut-
able code, i.e. during the debugging phase.

Notes for Opcode Lists

1. Some instructions are encoded by means of
additional bits in the operand field of the instruction

Xx0h - x7h: Rw, #datagor Rb, #datags
x8h - xBh:Rw, [Rw] or Rb, [Rw]
XxCh - xFh Rw, [Rw+] or Rb, [Rw+]

For these instructions only the lowest four GPRs,
RO to R3, can be used as indirect address
pointers.

2. Some instructions are encoded by means of
additional bits in the operand field of the instruc-
tion.

EXTS or
EXTP

Table 21 : Instruction set ordered by Hex code

00X X. XXXX: ATOM C

OIXX. XXXX:

00xX. xxxx: EXTS or ATOM C
10xX. xxxx: EXTSR or EXTR
11xx. xxxx: EXTPR

Notes on the JMPR instructions

The condition code to be tested for the JMPR
instructions is specified by the opcode. Two mne-
monic representation alternatives exist for some
of the condition codes.

Notes on the BCLR and BSET instructions

The position of the bit to be set or to be cleared is
specified by the opcode. The operand “bitaddrg ¢
(where g=0 to 15) refers to a particular bit within a
bit-addressable word.

Notes on the undefined opcodes

A hardware trap occurs when one of the unde-
fined opcodes signified by ‘----" is decoded by the
CPU.

Hex- code Number of Bytes Mnemonic Operand

00 2 ADD Rw,,, Rw,
01 2 ADDB Rbp, Rb,
02 4 ADD reg, mem
03 4 ADDB reg, mem
04 4 ADD mem, reg
05 4 ADDB mem, reg
06 4 ADD reg, #data,g
07 4 ADDB reg, #data,g
08 2 ADD Rwy, [Rw;+] or Rw,,, [Rw;] or Rw,,, #datas
09 2 ADDB Rb,,, [Rw;+] or Rb,, [Rwj] or Rb,,, #datag
0A 4 BFLDL bitoffq, #maskg, #datag
0B 2 MUL Rwp,, Rwp,
oC 2 ROL Rw,,, Rw,
0D 2 JMPR cc_UC, rel
OE 2 BCLR bitaddrg o
OF 2 BSET bitaddrg o
10 2 ADDC Rwp,, Rwp,
11 2 ADDCB Rb,, Rb;,

26/172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand
12 4 ADDC reg, mem
13 4 ADDCB reg, mem
14 4 ADDC mem, reg
15 4 ADDCB mem, reg
16 4 ADDC reg, #data,g
17 4 ADDCB reg, #data,g
18 2 ADDC Rwy, [Rw;+] or Rw,,, [Rw;] or Rw,,, #datas
19 2 ADDCB Rb,,, [Rw;+] or Rb,, [Rwj] or Rb,,, #datag
1A 4 BFLDH bitoffq, #maskg, #datag
1B 2 MULU Rwp,, Rwp,
1C 2 ROL Rw,, #data,
1D 2 JMPR cCc_NET, rel
1E 2 BCLR bitaddrg 4
1F 2 BSET bitaddrg
20 2 SUB Rw,,, Rw,
21 2 SUBB Rb,,, Rby,
22 4 SUB reg, mem
23 4 SuUBB reg, mem
24 4 SUB mem, reg
25 4 SUBB mem, reg
26 4 suB reg, #data,g
27 4 SUBB reg, #datag
28 2 SuUB Rwy,, [Rw;+] or Rw,,, [Rw;] or Rw,,, #datas
29 2 SUBB Rb,, [Rw;+] or Rb,, [Rwj] or Rb,,, #datag
2A 4 BCMP bitaddry ,, bitaddrg q
2B 2 PRIOR Rw,,, Rw,
2C 2 ROR Rw,, Rwp,
2D 2 JMPR cc_EQ, relorcc_2Z, rel
2E 2 BCLR bitaddrg »
2F 2 BSET bitaddrg »
30 2 SUBC Rwp,, Rwp,
31 2 SUBCB Rb,, Rby,
32 4 SUBC reg, mem
33 4 SUBCB reg, mem

4

271172

ST10 FAMILY PROGRAMMING MANUAL

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand

34 4 SUBC mem, reg
35 4 SUBCB mem, reg
36 4 SUBC reg, #data,g
37 4 SUBCB reg, #data,g
38 2 SUBC Rwy, [Rw;+] or Rwy, [Rwj] or Rw,,, #datas
39 2 SUBCB Rb,, [Rw;+] or Rb,, [Rwi] or Rb,,, #datas
3A 4 BMOVN bitaddry ,, bitaddrg q
3B - - -
3C 2 ROR Rw,, #data,
3D 2 JMPR cc_NE, rel or cc_NZ, rel
3E 2 BCLR bitaddrg 3
3F 2 BSET bitaddrg 3
40 2 CMP Rw,, Rwp,
41 2 CMPB Rb,, Rby,
42 4 CMP reg, mem
43 4 CMPB reg, mem
44 - - -
45 - . .
46 4 CMP reg, #data,g
47 4 CMPB reg, #datag
48 2 CMP Rwy,, [Rw;+] or Rw,,, [Rw;] or Rw,,, #datas
49 2 CMPB Rb,,, [Rw;+] or Rb,, [Rwj] or Rb,,, #datag
4A 4 BMOV bitaddry ,, bitaddrg q
4B 2 DIV Rw,,
4C 2 SHL Rw,, Rwp,
4D 2 JMPR cc_V, rel
4E 2 BCLR bitaddrg 4
4F 2 BSET bitaddrg 4
50 2 XOR Rw,,, Rw,
51 2 XORB Rbp, Rb,
52 4 XOR reg, mem
53 4 XORB reg, mem
54 4 XOR mem, reg
55 4 XORB mem, reg

28/172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand
56 4 XOR reg, #data,g
57 4 XORB reg, #datag
58 2 XOR Rw,,, [Rw;+] or Rw,, [Rwj] or Rw,,, #datas
59 2 XORB Rb,, [Rw;+] or Rb,, [Rwj] or Rb,,, #datag
5A 4 BOR bitaddry ,, bitaddrg q
5B 2 DIVU Rwy,
5C 2 SHL Rw,, #data,
5D 2 JMPR cc_NV, rel
5E 2 BCLR bitaddrg 5
5F 2 BSET bitaddrg 5
60 2 AND Rw,, Rw,
61 2 ANDB Rbp, Rb,
62 4 AND reg, mem
63 4 ANDB reg, mem
64 4 AND mem, reg
65 4 ANDB mem, reg
66 4 AND reg, #data,g
67 4 ANDB reg, #datag
68 2 AND Rwy, [Rw;+] or Rwy, [Rwj] or Rw,,, #datas
69 2 ANDB Rb,,, [Rw;+] or Rb,, [Rwj] or Rb,,, #datag
6A 4 BAND bitaddry ,, bitaddrg q
6B 2 DIVL Rw,,
6C 2 SHR Rw,, Rw,
6D 2 JMPR cc_N, rel
6E 2 BCLR bitaddrg ¢
6F 2 BSET bitaddrg ¢
70 2 OR Rw,, Rwp,
71 2 ORB Rb,, Rby,
72 4 OR reg, mem
73 4 ORB reg, mem
74 4 OR mem, reg
75 4 ORB mem, reg
76 4 OR reg, #data,g
77 4 ORB reg, #data,g

4

29/172

ST10 FAMILY PROGRAMMING MANUAL

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand
78 2 OR Rwy,, [Rw;+] or Rw,,, [Rwj] or Rw,,, #datas
79 2 ORB Rb,,, [Rw;+] or Rb,, [Rwj] or Rb,,, #datag
7A 4 BXOR bitaddrz ,, bitaddrg q
7B 2 DIVLU Rwy,
7C 2 SHR Rw,, #data,
7D 2 JMPR cc_NN, rel
7E 2 BCLR bitaddrg 7
7F 2 BSET bitaddrg 7
80 2 CMPI1 Rw,, #data,

81 2 NEG Rwj,

82 4 CMPI1 Rw,,, mem

83 4 Coxxx?t Rw,, [Rw,0]

84 4 MOV [Rwp], mem

85 - - -

86 4 CMPI1 Rw,,, #data,g

87 4 IDLE

88 2 MOV [-Rwp,], Rwp,

89 2 MOVB [[Rw,], Rb,

8A 4 JB bitaddrg g, rel

8B - - -

8C - - -

8D 2 JMPR cc_C, rel or cc_ULT, rel

8E 2 BCLR bitaddrg g

8F 2 BSET bitaddrg g

90 2 CMPI2 Rw,, #data,

91 2 CPL Rw,,

92 4 CMPI2 Rw,,, mem

93 4 Coxxxt [IDXiO], [Rw,0]

94 4 MOV mem, [Rw,,]

95 - - -

96 4 CMPI2 Rw,,, #data,g

97 4 PWRDN

98 2 MOV Rwp,, [Rwy+]

99 2 MOVB Rb,,, [Rwp+]
30/172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand
9A 4 JNB bitaddrg g, rel
9B 2 TRAP #trap7
9C 2 JMPI cc, [Rwy]
9D 2 JMPR cc_NC, rel or cc_UGE, rel
9E 2 BCLR bitaddrg g
9F 2 BSET bitaddrg g
AO 2 CMPD1 Rw,, #data,
Al 2 NEGB Rb,

A2 4 CMPD1 Rw,, mem
A3 4 Coxxx! Rwy,, Rwp,
A4 4 MOVB [Rwy], mem
A5 4 DISWDT

A6 4 CMPD1 Rw,,, #data;g
A7 4 SRVWDT

A8 2 MOV Rwp, [Rw]
A9 2 MOVB Rbp, [Rwp]
AA 4 JBC bitaddrg g, rel
AB 2 CALLI cc, [Rwy]

AC 2 ASHR Rwp,, Rwp,
AD 2 JMPR cc_SGT, rel
AE 2 BCLR bitaddrg 19
AF 2 BSET bitaddrg 19
BO 2 CMPD2 Rw,, #data,
B1 2 CPLB Rb,,

B2 4 CMPD2 Rw,, mem
B3 4 CoSTORE! [Rw,], CoReg
B4 4 MOVB mem, [Rw,]
B5 4 EINIT

B6 4 CMPD2 Rw,, #data,g
B7 4 SRST

B8 2 MOV [Rwp], Rwy,
B9 2 MOVB [Rw,], Rby,
BA 4 JNBS bitaddrg g, rel
BB 2 CALLR rel

4

31/172

ST10 FAMILY PROGRAMMING MANUAL

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand

BC 2 ASHR Rw,, #data,
BD 2 JMPR cc_SLE, rel
BE 2 BCLR bitaddrg 19
BF 2 BSET bitaddrg 19
Co 2 MOVBZ Rb,, Rby,
C1 - -
C2 4 MOVBZ reg, mem
c3 CoSTORE? Rwp,, CoReg
C4 4 MOV [Rw +#dataqg], Rwpy
C5 4 MOVBZ mem, reg
C6 4 SCXT reg, #datag
Cc7 - - -
C8 2 MOV [Rw,], [Rwp]
C9 2 MOVB [Rw,], [Rwy,]
CA 4 CALLA cc, caddr
CB 2 RET
cC 2 NOP
CD 2 JMPR cC_SLT, rel
CE 2 BCLR bitaddrg 12
CF 2 BSET bitaddrg 12
DO 2 MOVBS Rb,,, Rb,
D1 2 ATOMIC/EXTR #data,
D2 4 MOVBS reg, mem
D3 4 CoMoV! [IDXiO], [Rw,O]
D4 4 MOV Rwj,, [Rw+#datag]
D5 4 MOVBS mem, reg
D6 4 SCXT reg, mem
D7 4 EXTP(R)/EXTS(R) #pag, #data,
D8 2 MOV [Rwy+], [Rwpp]
D9 2 MOVB [Rw,+], [Rwy]
DA 4 CALLS seg, caddr
DB 2 RETS
DC 2 EXTP(R)/EXTS(R) |Rw,y, #data,
DD 2 JMPR cc_SGeE, rel

32/172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

Table 21 : Instruction set ordered by Hex code (continued)

Hex- code Number of Bytes Mnemonic Operand
DE 2 BCLR bitaddrg 13
DF 2 BSET bitaddrg 13
EO 2 MOV Rw,, #data,
E1l 2 MOVB Rby,, #datay,
E2 4 PCALL reg, caddr
E3 - - -

E4 4 MOVB [Rw+#datasg], Rby,
ES - - -

E6 4 MOV reg, #data,g
E7 4 MOVB reg, #data,g
E8 2 MOV [Rwp], [Rwy+]
E9 2 MOVB [Rwp], [Rwy+]
EA 4 JMPA cc, caddr

EB 2 RETP reg

EC 2 PUSH reg

ED 2 JMPR cc_UGT, rel
EE 2 BCLR bitaddrg 14
EF 2 BSET bitaddrg 14
FO 2 MOV Rw,, Rwp,

F1 2 MOVB Rb,, Rb,,

F2 4 MOV reg, mem

F3 4 MOVB reg, mem

F4 4 MOVB Rbp,, [Rwy,+#data]
F5 - - -

F6 4 MOV mem, reg

F7 4 MOVB mem, reg

F8 - - -

F9 - - -

FA 4 JMPS seg, caddr
FB 2 RETI

FC 2 POP reg

FD 2 JMPR cc_ULE, rel
FE 2 BCLR bitaddrg 15
FF 2 BSET bitaddrg 15

Note 1. This instruction only applies to products including the MAC.

b7

33/172

ST10 FAMILY PROGRAMMING MANUAL

2.6 - Instruction conventions

This section details the conventions used in the
individual instruction descriptions. Each individual
instruction description is described in a standard
format in separate sections under the following
headings:

2.6.1 - Instruction name
Specifies the mnemonic opcode of the instruction.

2.6.2 - Syntax

Specifies the mnemonic opcode and the required
formal operands of the instruction. Instructions
can have either none, one, two or three operands

summarized at the end of each single instruction
description.

2.6.3 - Operation

The following symbols are used to represent data
movement, arithmetic or logical operators (see
Table 22).

Missing or existing parentheses signifies that the
operand specifies an immediate constant value,
an address, or a pointer to an address as follows:

opX Specifies the immediate constant value
of opX.
(opX) Specifies the contents of opX.

which are separated from each other by commas: (opX,) Specifies the contents of bit n of opX.
MNEMONIC {op1 {,op2 {,0p3} } }. ((opX)) Specifies the contents of the contents of
The operand syntax depends on the addressing opX (i.e. opX is used as pointer to the
mode. All of the available addressing modes are actual operand).
Table 22 : Instruction operation symbols
operator (opY)
(opx) <-- (opy) (opY) is MOVED into (opX)
(opx) + (opy) (opX) is ADDED to (opY)
(opx) - (opy) (opY) is SUBTRACTED from (opX)
(opx) * (opy) (opX) is MULTIPLIED by (opY)
Diadic operations (opx) / (opy) (opX) is DIVIDED by (opY)
(opx) " (opy) (opX) is logically ANDed with (opY)
(opx) v (opy) (opX) is logically ORed with (opY)
(opx) O (opy) (opX) is logically EXCLUSIVELY ORed with (opY)
(opx) <--> (opy) (opX) is COMPARED against (opY)
(opx) mod (opy) (opX) is divided MODULO (opY)
. . operator (opX
Monadic operations (opx) = (opX) is IoF;icaIIy Cg)l\F;IP)LEMENTED
The following abbreviations are used to describe operands:
Table 23 : Operand abbreviations
Abbreviation Description
CP Context Pointer register.
CSP Code Segment Pointer register.
IP Instruction Pointer.
MD Multiply/Divide register (32 bits wide, consists of MDH and MDL).
MDL, MDH Multiply/Divide Low and High registers (each 16 bit wide).
PSW Program Status Word register.
SP System Stack Pointer register.
SYSCON System Configuration register.
C Carry flag in the PSW register.
\% Overflow flag in the PSW register.
SGTDIS Segmentation Disable bit in the SYSCON register.
count Temporary variable for an intermediate storage of the number of shift or rotate cycles which
remain to complete the shift or rotate operation.
tmp Temporary variable for an intermediate result.
0,1,2,. Constant values due to the data format of the specified operation.

34/172

7

ST10 FAMILY PROGRAMMING MANUAL

2.6.4 - Data types

Specifies the particular data type according to the
instruction. Basically, the following data types are
used: BIT, BYTE, WORD, DOUBLEWORD

Except for those instructions which extend byte
data to word data, all instructions have only one
particular data type.

Note that the data types mentioned here do not
take into account accesses to indirect address
pointers or to the system stack which are always
performed with word data. Moreover, no data type
is specified for System Control Instructions and

Table 24 : Condition codes

for those of the branch instructions which do not
access any explicitly addressed data.

2.6.5 - Description

Describes the operation of the instruction.

2.6.6 - Condition code

The following table summarizes the 16 possible
condition codes that can be used within Call and
Branch instructions and shows the mnemonic
abbreviations, the test executed for a specific con-

dition and the 4-bit condition code number.

Condiion Code Condiion Code
cc_UC 1=1 Unconditional Oh
cc Z zZ=1 Zero 2h
cc_Nz Z=0 Not zero 3h
cc_V V=1 Overflow 4h
cc_NV V=0 No overflow 5h
cc_N N=1 Negative 6h
cc_NN N=0 Not negative 7h
cc_C c=1 Carry 8h
cc_NC C=0 No carry 9h
cc_EQ Z=1 Equal 2h
cc_NE Z=0 Not equal 3h
cc_ULT c=1 Unsigned less than 8h
cc_ULE (zveC)=1 Unsigned less than or equal Fh
cc_UGE Cc=0 Unsigned greater than or 9h

equal
cc_UGT (zvec)=0 Unsigned greater than Eh
cc_SLT (NOV)=1 Signed less than Ch
cc_SLE (Zv(NOV) =1 Signed less than or equal Bh
cc_SGE (NOV)=0 Signed greater than or equal Dh
cc_SGT (Zv(NOV)) =0 Signed greater than Ah
cc_NET (ZvE)=0 Not equal AND not end of 1h

table

4

35/172

ST10 FAMILY PROGRAMMING MANUAL

2.6.7 - Flags

This section shows the state of the N, C, V, Z and
E flags in the PSW register. The resulting state of
the flags is represented by the following symbols
(see Table 25).

If the PSW register is specified as the destination

operand of an instruction, the flags can not be

interpreted as described.

This is because the PSW register is modified

according to the data format of the instruction:

— For word operations, the PSW register is over-
written with the word result.

Table 25 : List of flags

— For byte operations, the non-addressed byte is
cleared and the addressed byte is overwritten.

— For bit or bit-field operations on the PSW regis-
ter, only the specified bits are modified.

If the flags are not selected as destination bits,
they stay unchanged i.e. they maintain the state
existing after the previous instruction.

In all cases, if the PSW is the destination operand
of an instruction, the PSW flags do NOT represent
the flags of this instruction, in the normal way.

Symbol

Description

* The flag is set according to the following standard rules

N=1:

Most significant bit of the result is set

Most significant bit of the result is not set

Carry occurred during operation

No Carry occurred during operation

Arithmetic Overflow occurred during operation

No Arithmetic Overflow occurred during operation

Result equals zero

Result does not equal zero

miNIN|I<[<|O|O]|Z
I
rlo|lr|lo|lr|o|lr|o

for byte data.

Source operand represents the lowest negative number, either 8000h for word data or 80h

E=0:

Source operand does not represent the lowest negative number for the specified data type

description.

“S” The flag is set according to non-standard rules. Individual instruction pages or the ALU status flags

The flag is not affected by the operation

“0" The flag is cleared by the operation.

“NOR”

The flag contains the logical NORing of the two specified bit operands.

“AND”

The flag contains the logical ANDing of the two specified bit operands.

“OR”

The flag contains the logical ORing of the two specified bit operands.

“YOR”

The flag contains the logical XORing of the two specified bit operands.

“B” The flag contains the original value of the specified bit operand.

“B” The flag contains the complemented value of the specified bit operand

36/172

g

ST10 FAMILY PROGRAMMING MANUAL

2.6.8 - Addressing modes

Specifies available combinations of addressing
modes. The selected addressing mode combina-
tion is generally specified by the opcode of the
corresponding instruction.

However, there are some arithmetic and logical
instructions where the addressing mode combina-
tion is not specified by the (identical) opcodes but
by particular bits within the operand field.

In the individual instruction description, the
addressing mode is described in terms of mne-

— Mnemonic gives an example of which operands
the instruction will accept.

— Format specifies the format of the instruction as
used in the assembler listing. Figure 3 shows
the reference between the instruction format
representation of the assembler and the corre-
sponding internal organization of the instruction
format (N = nibble = 4 bits). The following sym-
bols are used to describe the instruction for-

monic, format and number of bytes.

mats:

Table 26 : Instruction format symbols

00y, through FFy, Instruction Opcodes
0,1 Constant Values
..... Each of the 4 characters immediately following a colon represents a single bit
i 2-bit short GPR address (Rw;)
ss 8-bit code segment number (seg).
L 2-bit immediate constant (#datay)
A 3-bit immediate constant (#datas)
[4-bit condition code specification (cc)
n 4-bit short GPR address (Rw,, or Rb,))
m 4-bit short GPR address (Rw,,, or Rb;,)
q 4-bit position of the source bit within the word specified by QQ
z 4-bit position of the destination bit within the word specified by ZZ
4-bit immediate constant (#data,)
QQ 8-bit word address of the source bit (bitoff)
rr 8-bit relative target address word offset (rel)
RR 8-bit word address reg
zz 8-bit word address of the destination bit (bitoff)
#it 8-bit immediate constant (#datag)
@@ 8-bit immediate constant (#maskg)
pp 0:00pp 10-bit page address (#¥pag10)
MM MM 16-bit address (mem or caddr; low byte, high byte)
#it ## 16-bit immediate constant (#data,g; low byte, high byte)

4

37/172

ST10 FAMILY PROGRAMMING MANUAL

Number of bytes Specifies the size of an instruc-
tion in bytes. All ST10 instructions are either 2 or 4
bytes. Instructions are classified as either single
word or double word instructions (see Figure 3).

2.7 - ATOMIC and EXTended instructions

ATOMIC, EXTR, EXTP, EXTS, EXTPR, EXTSR
instructions disable standard and PEC interrupts
and class A traps during a sequence of the follow-
ing 1...4 instructions. The length of the sequence
is determined by an operand (op1 or op2, depend-
ing on the instruction). The EXTended instructions
also change the addressing mechanism during
this sequence (see detailed instruction descrip-
tion).

The ATOMIC and EXTended instructions become
active immediately, so no additional NOPs are
required. All instructions requiring multiple cycles
or hold states to be executed are regarded as one
instruction in this sense. Any instruction type can

be used with the ATOMIC and EXTended instruc-
tions.

CAUTION: When a Class B trap interrupts an
ATOMIC or EXTended sequence, this sequence is
terminated, the interrupt lock is removed and the
standard condition is restored, before the trap rou-
tine is executed! The remaining instructions of the
terminated sequence that are executed after
returning from the trap routine, will run under stan-
dard conditions!

CAUTION: When using the ATOMIC and
EXTended instructions with other system control
or branch instructions.

CAUTION: When using nested ATOMIC and
EXTended instructions. There is ONE counter to
control the length of this sort of sequence, i.e.
issuing an ATOMIC or EXTended instruction
within a sequence will reload the counter with
value of the new instruction.

Figure 3 : Instruction format representation
Representation in the N2-N1
Assembler Listing: ——

Internal Organization: MSB

Low Byte 1st word

47

N4-N3

—

N6-N5 N8-N7

N Y

| High Byte 2nd word
Low Byte 2nd word

High Byte 1st word

Bits in ascending order LSB

N8 N7

N6 N5 N4 N3 N2 N1

38/172

g

ST10 FAMILY PROGRAMMING MANUAL

2.8 - Instruction descriptions
This section contains a detailed description of each instruction, listed in alphabetical order.

ADD I nt eger Addition

Synt ax ADD opl, op2
Operation (opl) <-- (opl) + (op2)
Data Types WORD

Description

Performs a 2's complement binary addition of the source operand specified by op2 and the destination
operand specified by opl. The sum is then stored in opl.

Flags
E z \% C N

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise. Used
to signal the end of a table.

z Set if result equals zero. Cleared otherwise.

Vv Set if an arithmetic overflow occurred, i.e. the result cannot be represented in the specified data
type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the specified data type. Cleared other-
wise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
ADD Rw,, Rwp 00 nm 2
ADD Rw,, [Rw] 08 n: 10ii 2
ADD Rw,, [Rw +] 08 n:11ii 2
ADD Rw,, #datag 08 n: O### 2
ADD reg, #datajg 06 RR ## ## 4
ADD reg, mem 02 RR MM MM 4
ADD mem reg 04 RR MM W 4

4

39/172

ST10 FAMILY PROGRAMMING MANUAL

ADDB I nt eger Addition

Synt ax ADDB opl, op2

Oper ation (opl) <-- (opl) + (op2)
Data Types BYTE

Description

Performs a 2's complement binary addition of the source operand specified by op2 and the destination
operand specified by opl. The sum is then stored in opl.

Flags
E z \% C N

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

z Set if result equals zero. Cleared otherwise.

\% Set if an arithmetic overflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.

C Set if a carry is generated from the most significant bit of the specified data type. Cleared
otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

ADDB Rb,, Rb, 01 nm 2

ADDB Rb,, [Rw] 09 n:10ii 2

ADDB Rb,, [Rw +] 09 n:11ii 2

ADDB Rb,, #datagj 09 n: O### 2

ADDB reg, #datajg 07 RR ## ## 4

ADDB reg, nmem 03 RR MM MM 4

ADDB mem reg 05 RR MM W 4

40/172 K7_1

ST10 FAMILY PROGRAMMING MANUAL

ADDC Integer Addition with Carry

Synt ax ADDC opl, op2

Oper ation (opl) <-- (opl) + (0op2) + (O
Data Types WORD

Description

Performs a 2’'s complement binary addition of the source operand specified by op2, the destination oper-
and specified by opl and the previously generated carry bit. The sum is then stored in opl. This instruc-
tion can be used to perform multiple precision arithmetic.

Flags
E \% C N
* S * * *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero and previous Z flag was set. Cleared otherwise.
\% Set if an arithmetic overflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.
C Set if a carry is generated from the most significant bit of the specified data type. Cleared
otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
ADDC Rw,, Rwy, 10 nm 2
ADDC Rw,, [Rw] 18 n: 10i i 2
ADDC Rw,, [Rw +] 18 n:11ii 2
ADDC Rw,, #datag 18 n: O### 2
ADDC reg, #datajg 16 RR ## ## 4
ADDC reg, nmem 12 RR MM WM 4
ADDC mem reg 14 RR MM MM 4

4

41/172

ST10 FAMILY PROGRAMMING MANUAL

ADDCB Integer Addition with Carry

Synt ax ADDCB opl, op2

Oper ation (opl) <-- (opl) + (0op2) + (O
Data Types BYTE

Description

Performs a 2’'s complement binary addition of the source operand specified by op2, the destination oper-
and specified by opl and the previously generated carry bit. The sum is then stored in opl. This instruc-
tion can be used to perform multiple precision arithmetic.

Flags
E \% C N
* S * * *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero and previous Z flag was set. Cleared otherwise.
\% Set if an arithmetic overflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.
C Set if a carry is generated from the most significant bit of the specified data type. Cleared
otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

ADDCB Rb,, Rbn, 11 nm 2

ADDCB Rb,, [Rw] 19 n: 10i i 2

ADDCB Rb,, [Rw +] 19 n:11ii 2

ADDCB Rb,, #datagj 19 n: O### 2

ADDCB reg, #datajg 17 RR ## ## 4

ADDCB reg, nmem 13 RR MM WM 4

ADDCB mem reg 15 RR MM WM 4

42/172 K7_1

ST10 FAMILY PROGRAMMING MANUAL

AND Logi cal AND

Synt ax AND opl, op2

Oper ation (opl) <-- (opl) ™ (o0p2)
Data Types WORD

Description

Performs a bitwise logical AND of the source operand specified by op2 and the destination operand spec-
ified by opl. The result is then stored in opl.

Flags
E z \% C N
* * O O *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
\% Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
AND Rw,, Rwp, 60 nm 2
AND Rw,, [Rw] 68 n: 10i i 2
AND Rw,, [Rw +] 68 n: 11ii 2
AND Rw,, #datag 68 n: O### 2
AND reg, #datajg 66 RR ## ## 4
AND reg, mem 62 RR MM MM 4
AND mem reg 64 RR MM WM 4

4

43/172

ST10 FAMILY PROGRAMMING MANUAL

ANDB Logi cal AND

Synt ax ANDB opl, op2

Oper ation (opl) <-- (opl) ™ (o0p2)
Data Types BYTE

Description

Performs a bitwise logical AND of the source operand specified by op2 and the destination operand spec-
ified by opl. The result is then stored in opl.

Flags
E z \% C N
* * O O *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
\% Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

ANDB Rb,, Rbp 61 nm 2

ANDB Rb,, [Rw] 69 n: 10i i 2

ANDB Rb,, [Rw +] 69 n:11ii 2

ANDB Rb,, #datagj 69 n: O### 2

ANDB reg, #datajg 67 RR ## ## 4

ANDB reg, mem 63 RR MM MM 4

ANDB mem reg 65 RR MM WM 4

44/172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

ASHR Arithnetic Shift Right
Synt ax ASHR opl, op2
Oper ati on (count) <-- (0p2)
(V) <-- 0
(O <-- 0
DO WHI LE (count) # 0
(V) <- (9 v (V)
(O <-- (oplo)
(oply) <-- (oplpsy) [n=0...14]
(count) <-- (count) - 1
END WHI LE
Data Types WORD
Description

Arithmetically shifts the destination word operand op1 right by as many times as specified in the source
operand op2. To preserve the sign of the original operand opl, the most significant bits of the result are
filled with zeros if the original most significant bit was a 0 or with ones if the original most significant bit
was a 1. The Overflow flag is used as a Rounding flag. The least significant bit is shifted into the Carry.
Only shift values between 0 and 15 are allowed. When using a GPR as the count control, only the least
significant 4 bits are used.

Flags
E z C N
* S S *
E Always cleared.
z Set if result equals zero. Cleared otherwise.
\% Set if in any cycle of the shift operation a 1 is shifted out of the carry flag. Cleared for a shift
count of zero.
C The carry flag is set according to the last least significant bit shifted out of opl. Cleared for a
shift count of zero.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
ASHR Rw,, Rwyp, AC nm 2
ASHR Rw,, #datay, BC #n 2

4

45/172

ST10 FAMILY PROGRAMMING MANUAL

ATOM C Begi n ATOM C Sequence
Synt ax ATOM C opl
Oper ati on (count) <-- (opl) [1 < opl < 4]

Di sable interrupts and Cl ass A traps

DO WHI LE ((count) # 0 AND Class_B trap_condition # TRUE)
Next Instruction
(count) <-- (count) - 1

END WHI LE

(count) =0

Enabl e interrupts and traps

Description

Causes standard and PEC interrupts and class A hardware traps to be disabled for a specified humber of
instructions. The ATOMIC instruction becomes immediately active so that no additional NOPs are
required.

Depending on the value of op1, the period of validity of the ATOMIC sequence extends over the sequence
of the next 1 to 4 instructions being executed after the ATOMIC instruction. All instructions requiring multi-
ple cycles or hold states to be executed are regarded as one instruction in this sense. Any instruction type
can be used with the ATOMIC instruction.

Note: The ATOMIC instruction must be used carefully (see Section 2.7 - ATOMIC and EXTended instruc-
tions on page 38).

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
ATOM C #dat a, D1 00##: 0 2
46/172 [71

ST10 FAMILY PROGRAMMING MANUAL

BAND Bit Logical AND

Synt ax BAND opl, op2

Oper ation (opl) <-- (opl) ™ (o0p2)
Data Types BIT

Description

Performs a single bit logical AND of the source bit specified by op2 and the destination bit specified by
opl. The result is then stored in opl.

Flags
E z Y C N
NOR OR AND XOR
E Always cleared.
z Contains the logical NOR of the two specified bits.
\% Contains the logical OR of the two specified bits.
C Contains the logical AND of the two specified bits.
N Contains the logical XOR of the two specified bits.

Addressing Modes

Mnemonic Format Bytes
BAND bitaddr; ,, bitaddrqg g 6A QQ ZZ qz 4
IS7; 47/172

ST10 FAMILY PROGRAMMING MANUAL

BCLR Bit Clear

Synt ax BCLR opl
Oper ation (opl) <-- 0
Data Types BIT

Description

Clears the bit specified by opl. This instruction is primarily used for peripheral and system control.

Flags

E z \% C

B 0 0

E Always cleared.
z Contains the logical negation of the previous state of the specified bit.
\% Always cleared.
C Always cleared.
N Contains the previous state of the specified bit.

Addressing Modes

Mnemonic Format Bytes
BCLR bi t addr g g qE QQ 2
48/172

g

ST10 FAMILY PROGRAMMING MANUAL

BCvVP Bit to Bit Conpare

Synt ax BCwWP opl, op2
Oper ati on (opl) <--> (0op2)
Data Types BIT

Description

Performs a single bit comparison of the source bit specified by operand opl to the source bit specified by
operand op2. No result is written by this instruction. Only the flags are updated.

Flags
E z Y C N
NOR OR AND XOR
E Always cleared.
z Contains the logical NOR of the two specified bits.
\% Contains the logical OR of the two specified bits.
C Contains the logical AND of the two specified bits.
N Contains the logical XOR of the two specified bits.

Addressing Modes

Mnemonic Format Bytes
BCWP bi taddrz ,, bitaddrgq 2A QQ ZZ qz 4
1S7] 49/172

ST10 FAMILY PROGRAMMING MANUAL

BFLDH Bit Field H gh Byte

Synt ax BFLDH opl, op2, op3

Oper ation (tmp) <-- (opl)
(high byte (tnp)) <-- ((high byte (tmp) ~ =0p2) v 0p3)
(opl) <-- (tmp)

Data Types WORD

Description

Replaces those bits in the high byte of the destination word operand opl1 which are selected by an '1’ in
the AND mask op2 with the bits at the corresponding positions in the OR mask specified by op3.

Note: Bits which are masked off by a ‘0’ in the AND mask op2 may be unintentionally altered if the corre-
sponding bit in the OR mask op3 contains a '1’.

Flags
E z v C N
* o o *
E Always cleared.
z Set if the word result equals zero. Cleared otherwise.
\% Always cleared.
C Always cleared.
N Set if the most significant bit of the word result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
BFLDH bitoff Q #mask g, #data g IAQQ# @@ 4

4

50/172

ST10 FAMILY PROGRAMMING MANUAL

BFLDL
Synt ax

Oper ation

Data Types

Description

Bit Field Low Byte

BFLDL opl, op2, op3

(tmp) <-- (opl)

(low byte (tnp)) <--((low byte (tmp) ~ -op2) v op3)
(opl) <-- (tmp)

WORD

Replaces those bits in the low byte of the destination word operand opl which are selected by an '1’ in the
AND mask op2 with the bits at the corresponding positions in the OR mask specified by op3.

Note: Bits which are masked off by a '0’ in the AND mask op2 may be unintentionally altered if the corre-
sponding bit in the OR mask op3 contains a '1’.

Flags
E z v C N
* o o *
E Always cleared.
z Set if the word result equals zero. Cleared otherwise.
\% Always cleared.
C Always cleared.
N Set if the most significant bit of the word result is set. Cleared otherwise.

Addressing Modes

Mnemonic
BFLDL bitoff

4

Format Bytes

o #mask g, #data g 0A QQ @@## 4

51/172

ST10 FAMILY PROGRAMMING MANUAL

BMOV Bit to Bit Mve

Synt ax BMOV opl, op2
Oper ati on (opl) <-- (0p2)
Data Types BIT

Description

Moves a single bit from the source operand specified by op2 into the destination operand specified by
opl. The source bit is examined and the flags are updated accordingly.

Flags

E z \% C

B 0 0

E Always cleared.
z Contains the logical negation of the previous state of the source bit.
\% Always cleared.
C Always cleared.
N Contains the previous state of the source bit.

Addressing Modes

Mnemonic Format Bytes
BMOV bitaddrz ,, bitaddrgq 4A QQ ZZ qz 4
52/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

BMOVN Bit to Bit Move & Negate
Synt ax BMOVN opl, op2
Oper ati on (opl) <-- =(0op2)
Data Types BIT

Description

Moves the complement of a single bit from the source operand specified by op2 into the destination oper-
and specified by opl. The source bit is examined and the flags are updated accordingly.

Flags
E z V C N
0 B 0 0 B

E Always cleared.

Z Contains the logical negation of the previous state of the source bit.

\% Always cleared.

C Always cleared.

N Contains the previous state of the source bit.

Addressing Modes

Mnemonic Format Bytes
BMOVN bitaddr 7 ,, bitaddr g g 3AQQ ZZ gz 4

4

53/172

ST10 FAMILY PROGRAMMING MANUAL

BOR Bit Logical OR

Synt ax BOR opl, op2

Oper ati on (opl) <-- (opl) v (op2)
Data Types BIT

Description

Performs a single bit logical OR of the source bit specified by operand op2 with the destination bit speci-
fied by operand opl. The ORed result is then stored in op1.

Flags
E z Y C N
NOR OR AND XOR
E Always cleared.
z Contains the logical NOR of the two specified bits.
\% Contains the logical OR of the two specified bits.
C Contains the logical AND of the two specified bits.
N Contains the logical XOR of the two specified bits.

Addressing Modes

Mnemonic Format Bytes
BOR bitaddrz ,, bitaddrggq 5A QQ ZZ qz 4
54/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

BSET Bit Set

Synt ax BSET opl
Oper ati on (opl) <-- 1
Data Types BIT

Description

Sets the bit specified by opl. This instruction is primarily used for peripheral and system control.

Flags
E z V C N
0 B 0 0 B

E Always cleared.

Z Contains the logical negation of the previous state of the specified bit.

\% Always cleared.

C Always cleared.

N Contains the previous state of the specified bit.

Addressing Modes

Mnemonic Format Bytes
BSET bi taddr g q gF QQ 2
IS7; 55/172

ST10 FAMILY PROGRAMMING MANUAL

BXOR Bit Logical XOR

Synt ax BXOR opl, op2

Oper ati on (opl) <-- (opl) O (op2)
Data Types BIT

Description

Performs a single bit logical EXCLUSIVE OR of the source bit specified by operand op2 with the destina-
tion bit specified by operand opl. The XORed result is then stored in op1l.

Flags
E z Y C N
NOR OR AND XOR
E Always cleared.
z Contains the logical NOR of the two specified bits.
\% Contains the logical OR of the two specified bits.
C Contains the logical AND of the two specified bits.
N Contains the logical XOR of the two specified bits.

Addressing Modes

Mnemonic Format Bytes
BXOR bitaddry ,, bitaddrgq TA QQ ZZ qz 4
56/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

CALLA Cal | Subroutine Absol ute
Synt ax CALLA opl, op2
Oper ati on I F (opl) THEN
(SP) <-- (SP) - 2
((SP)) <-- (IP)
(1P) <-- 0p2
ELSE
next instruction
END | F
Description

If the condition specified by opl is met, a branch to the absolute memory location specified by the second
operand op2 is taken. The value of the instruction pointer, IP, is placed onto the system stack. Because
the IP always points to the instruction following the branch instruction, the value stored on the system
stack represents the return address of the calling routine. If the condition is not met, no action is taken
and the next instruction is executed normally.

Condition Codes
See condition code Table 24 - page 35.

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
CALLA cc, caddr CA cO MM MM 4

4

57/172

ST10 FAMILY PROGRAMMING MANUAL

CALLI Cal | Subroutine Indirect
Synt ax CALLI opl, op2
Oper ati on I F (opl) THEN
(SP) <-- (SP) - 2
((SP)) <-- (IP)
(1P) <-- (op2)
ELSE
next instruction
END | F
Description

If the condition specified by op1l is met, a branch to the location specified indirectly by the second operand
op2 is taken. The value of the instruction pointer, IP, is placed onto the system stack. Because the IP
always points to the instruction following the branch instruction, the value stored on the system stack rep-
resents the return address of the calling routine. If the condition is not met, no action is taken and the next
instruction is executed normally.

Condition Codes
See condition code Table 24 - page 35.

Flags
E Z \% C N
E Not affected
Z Not affected
\% Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
CALLI cc, [Rw,] AB cn 2
58/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

CALLR Cal |l Subroutine Relative
Synt ax CALLR opl
Oper ati on (SP) <-- (SP) - 2
((SP)) <-- (IP)
(1P <-- (IP) + sign_extend (opl)
Description

A branch is taken to the location specified by the instruction pointer, IP, plus the relative displacement,
opl. The displacement is a two’s complement number which is sign extended and counts the relative dis-
tance in words. The value of the instruction pointer (IP) is placed onto the system stack. Because the IP
always points to the instruction following the branch instruction, the value stored on the system stack rep-
resents the return address of the calling routine. The value of the IP used in the target address calculation
is the address of the instruction following the CALLR instruction.

Condition Codes
See condition code Table 24 - page 35.

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
CALLR rel BB rr 2

4

59/172

ST10 FAMILY PROGRAMMING MANUAL

CALLS Call Inter-Segnment Subroutine
Synt ax CALLS opl, op2
Oper ati on (SP) <-- (SP) - 2
((SP)) <-- (CSP)
(SP) <-- (sP) - 2
((SP)) <-- (IP)
(CsP) <-- opl
(1P) <-- 0p2
Description

A branch is taken to the absolute location specified by op2 within the segment specified by opl. The
value of the instruction pointer (IP) is placed onto the system stack. Because the IP always points to the
instruction following the branch instruction, the value stored on the system stack represents the return
address to the calling routine. The previous value of the CSP is also placed on the system stack to insure

correct return to the calling segment.

Condition Codes
See condition code Table 24 - page 35.

Flags
E z \Y;
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format
CALLS seg, caddr DA ss WM W
60/172

Bytes

4

ST10 FAMILY PROGRAMMING MANUAL

CcwP I nt eger Conpare

Synt ax CwP opl, op2
Oper ati on (opl) <--> (0op2)
Data Types WORD

Description

The source operand specified by opl is compared to the source operand specified by op2 by performing
a 2’s complement binary subtraction of op2 from opl. The flags are set according to the rules of subtrac-
tion. The operands remain unchanged.

Flags
E z Y N
* * * S *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
\% Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
CcwP Rw,, Rwy, 40 nm 2
CwP Rw,, [Rw] 48 n: 10i i 2
CcwP Rw,, [Rw +] 48 n: 11ii 2
CwP Rw,, #datag 48 n: O### 2
CcwP reg, #datagg 46 RR ## ## 4
CwP reg, nmem 42 RR MM WM 4

4

61/172

ST10 FAMILY PROGRAMMING MANUAL

CvPB
Synt ax
Oper ation

Data Types

Description

I nt eger

CvPB

(opl)
BYTE

Conpar e

opl, op2
<--> (op2)

The source operand specified by opl is compared to the source operand specified by op2 by performing
a 2’s complement binary subtraction of op2 from opl. The flags are set according to the rules of subtrac-
tion. The operands remain unchanged

Flag
E \%
* *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
\% Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Addressing Modes
Mnemonic Format Bytes
CvPB Rb,, Rbq, 41 nm 2
CvVPB Rb,, [Rw] 49 n: 10i i 2
CVPB Rb,, [Rw +] 49 n: 11ii 2
CvPB Rb,, #dataj 49 n: O### 2
CvPB reg, #datagg 47 RR ## ## 4
CvPB reg, nmem 43 RR MM W 4
62/172 K7_I

ST10 FAMILY PROGRAMMING MANUAL

CwvPD1 I nt eger Compare & Decrenment by 1
Synt ax CwvPD1 opl, op2
Oper ati on (opl) <--> (0op2)

(opl) <-- (opl) -1
Dat a Types WORD
Description

This instruction is used to enhance the performance and flexibility of loops. The source operand specified
by op1l is compared to the source operand specified by op2 by performing a 2's complement binary sub-
traction of op2 from opl. Operand opl may specify ONLY GPR registers. Once the subtraction has com-
pleted, the operand opl is decremented by one. Using the set flags, a branch instruction can then be
used in conjunction with this instruction to form common high level language FOR loops of any range.

Flags
E z \% C N
* * * S *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
Vv Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
CMPD1 Rw,, #datay A0 #n 2
CwvPD1 Rw,, #datag A6 Fn ## ## 4
CMPD1 Rw,, mem A2 Fn MM MM 4

4

63/172

ST10 FAMILY PROGRAMMING MANUAL

CwVPD2 I nt eger Compare & Decrenment by 2
Synt ax CwPD2 opl, op2
Oper ati on (opl) <--> (0op2)

(opl) <-- (opl) - 2
Dat a Types WORD
Description

This instruction is used to enhance the performance and flexibility of loops. The source operand specified
by op1l is compared to the source operand specified by op2 by performing a 2's complement binary sub-
traction of op2 from opl. Operand opl may specify ONLY GPR registers. Once the subtraction has com-
pleted, the operand opl is decremented by two. Using the set flags, a branch instruction can then be
used in conjunction with this instruction to form common high level language FOR loops of any range.

Flags
E z \% C N
* * * S *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
Vv Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

CwvPD2 Rw,, #data, BO #n 2

CwvPD2 Rw,, #dataqg B6 Fn ## ## 4

CwPD2 Rw,, nmem B2 Fn MM MM 4

64/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

CwPI 1 I nt eger
Synt ax CwPI 1
Oper ati on (opl)

(opl)
Data Types WORD
Description

opl,

Conpare & Increment by 1

<--> (op2)

(opl) + 1

This instruction is used to enhance the performance and flexibility of loops. The source operand specified
by op1l is compared to the source operand specified by op2 by performing a 2's complement binary sub-
traction of op2 from opl. Operand opl may specify ONLY GPR registers. Once the subtraction has com-
pleted, the operand op1l is incremented by one. Using the set flags, a branch instruction can then be used

in conjunction with this instruction to form common high level language FOR loops of any range.

Flags
E \%

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.

z Set if result equals zero. Cleared otherwise.

Vv Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.

C Set if a borrow is generated. Cleared otherwise.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

CwvPI 1 Rw,, #data, 80 #n 2

CwvPI 1 Rw,, #dataqg 86 Fn ## ## 4

CwvPI 1 Rw,, nmem 82 Fn VWM W 4

4

65/172

ST10 FAMILY PROGRAMMING MANUAL

CwWPI 2 I nteger Compare & Increnment by 2
Synt ax CWPI 2 opl, op2
Oper ati on (opl) <--> (0op2)

(opl) <-- (opl) + 2
Dat a Types WORD
Description

This instruction is used to enhance the performance and flexibility of loops. The source operand specified
by op1l is compared to the source operand specified by op2 by performing a 2's complement binary sub-
traction of op2 from opl. Operand opl may specify ONLY GPR registers. Once the subtraction has com-
pleted, the operand opl is incremented by two. Using the set flags, a branch instruction can then be used
in conjunction with this instruction to form common high level language FOR loops of any range.

Flags
E z \% C N
* * * S *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
Vv Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

CWPI 2 Rw,, #datay 90 #n 2

CWVPI 2 Rw,, #datag 96 Fn ## ## 4

CWPI 2 Rw,, nmem 92 Fn MM MM 4

66/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

CPL Integer One’s Complement
Syntax CPL opl
Operation (opl) <-- =(opl)
Data Types WORD

Description

Performs a 1's complement of the source operand specified by opl. The result is stored back into op1.

Flags
E z \% C N
* * o O *
E Set if the value of op1l represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
\% Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
CPL Rwy 91 n0 2

4

67/172

ST10 FAMILY PROGRAMMING MANUAL

CPLB Integer One’s Complement
Syntax CPL opl
Operation (opl) <-- =(opl)
Data Types BYTE

Description

Performs a 1's complement of the source operand specified by opl. The result is stored back into op1.

Flags
E z \% C N
* * o o *
E Set if the value of op1l represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
\% Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
CPLB Rh, B1n0 2
68/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

DI SWDOT Di sabl e Wat chdog Ti ner
Synt ax DI SWOT

Oper ati on Di sabl e t he watchdog tiner
Description

This instruction disables the watchdog timer. The watchdog timer is enabled by a reset. The DISWDT
instruction allows the watchdog timer to be disabled for applications which do not require a watchdog
function. Following a reset, this instruction can be executed at any time until either a Service Watchdog
Timer instruction (SRVWDT) or an End of Initialization instruction (EINIT) are executed. Once one of
these instructions has been executed, the DISWDT instruction will have no effect. To insure that this
instruction is not accidentally executed, it is implemented as a protected instruction.

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
DI SWOT A5 5A A5 A5 4

69/172

4

ST10 FAMILY PROGRAMMING MANUAL

DV 16- by-16 Signed Division
Synt ax D v opl
Oper ati on (MDL) <-- (ML) / (opl)
(MDH) <-- (ML) nod (opl)
Data Types WORD
Description

Performs a signed 16-bit by 16-bit division of the low order word stored in the MD register by the source
word operand opl. The signed quotient is then stored in the low order word of the MD register (MDL) and
the remainder is stored in the high order word of the MD register (MDH).

Flags

E z C N

* S o *
E Always cleared.
z Set if result equals zero. Cleared otherwise.
\% Set if an arithmetic overflow occurred, i.e. the result cannot be represented in a word data
type, or if the divisor (opl) was zero. Cleared otherwise.

C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
DV Rw,, 4B nn 2
70/172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

DI VL 32-by-16 Signed Division

Synt ax Dl VL opl

Oper ati on (MDL) <-- (MD) / (opl)
(MDH) <-- (MD) nod (opl)

Data Types WORD, DOUBLEWORD

Description

Performs an extended signed 32-bit by 16-bit division of the two words stored in the MD register by the
source word operand opl. The signed quotient is then stored in the low order word of the MD register
(MDL) and the remainder is stored in the high order word of the MD register (MDH).

Flags

E z C N

* S o *
E Always cleared.
z Set if result equals zero. Cleared otherwise.
\% Set if an arithmetic overflow occurred, i.e. the result cannot be represented in a word data
type, or if the divisor (opl) was zero. Cleared otherwise.

C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
DI VL Rw,, 6B nn 2
IYI 71/172

ST10 FAMILY PROGRAMMING MANUAL

DI VLU 32-by-16 Unsigned Division

Synt ax Dl VLU opl

Oper ati on (MDL) <-- (MD) / (opl)
(MDH) <-- (MD) nod (opl)

Data Types WORD, DOUBLEWORD

Description

Performs an extended unsigned 32-bit by 16-bit division of the two words stored in the MD register by the
source word operand opl. The unsigned quotient is then stored in the low order word of the MD register
(MDL) and the remainder is stored in the high order word of the MD register (MDH).

Flags

E z C N

* S o *
E Always cleared.
z Set if result equals zero. Cleared otherwise.
\% Set if an arithmetic overflow occurred, i.e. the result cannot be represented in a word data
type, or if the divisor (opl) was zero. Cleared otherwise.

C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
DI VLU Rwj, 7B nn 2
721172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

Dl VU 16- by-16 Unsigned Divi sion
Synt ax Dl VU opl
Oper ati on (MDL) <-- (ML) / (opl)
(MDH) <-- (ML) nod (opl)
Data Types WORD
Description

Performs an unsigned 16-bit by 16-bit division of the low order word stored in the MD register by the
source word operand opl. The signed quotient is then stored in the low order word of the MD register
(MDL) and the remainder is stored in the high order word of the MD register (MDH).

Flags

E z C N

* S o *
E Always cleared.
z Set if result equals zero. Cleared otherwise.
\% Set if an arithmetic overflow occurred, i.e. the result cannot be represented in a word data
type, or if the divisor (opl) was zero. Cleared otherwise.

C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
DI VU Rw,, 5B nn 2
IS7; 73/172

ST10 FAMILY PROGRAMMING MANUAL

EINIT End of Initialization
Synt ax EINT

Oper ation End of Initialization
Description

This instruction is used to signal the end of the initialization portion of a program. After a reset, the reset
output pin RSTOUT is pulled low. It remains low until the EINIT instruction has been executed at which
time it goes high. This enables the program to signal the external circuitry that it has successfully initial-
ized the microcontroller. After the EINIT instruction has been executed, execution of the Disable Watch-
dog Timer instruction (DISWDT) has no effect. To insure that this instruction is not accidentally executed,
it is implemented as a protected instruction.

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
EINT B5 4A B5 B5 4
74/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

EXTP Begi n EXTended Page Sequence
Synt ax EXTP opl, op2
Oper ati on (count) <-- (op2) [1 < op2 < 4]

Di sable interrupts and Cl ass A traps

Dat a_Page = (opl)

DO WHI LE ((count) # 0 AND Class_B trap_condition # TRUE)
Next Instruction
(count) <-- (count) - 1

END WHI LE

(count) =0

Dat a_Page = (DPPx)

Enabl e interrupts and traps

Description

Overrides the standard DPP addressing scheme of the long and indirect addressing modes for a specified
number of instructions. During their execution, both standard and PEC interrupts and class A hardware
traps are locked. The EXTP instruction becomes immediately active such that no additional NOPs are
required.

For any long (‘'mem’) or indirect ([...]) address in the EXTP instruction sequence, the 10-bit page number
(address bits A23-A14) is not determined by the contents of a DPP register but by the value of opl itself.
The 14-bit page offset (address bits A13-A0) is derived from the long or indirect address as usual.The
value of op2 defines the length of the effected instruction sequence.

Note: The EXTP instruction must be used carefully (see Section 2.7 - ATOMIC and EXTended instruc-
tions on page 38).

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
EXTP Rwm #dat a, DC O1##: m 2
EXTP #pag, #data, D7 01##:0 pp 0: 00pp 4

4

751172

ST10 FAMILY PROGRAMMING MANUAL

EXTPR Begi n EXTended Page & Regi ster Sequence
Synt ax EXTPR opl, op2
Oper ati on (count) <-- (op2) [1 < op2 < 4]

Di sable interrupts and Cl ass A traps

Dat a_Page = (opl) AND SFR range = Extended

DO WHI LE ((count) # 0 AND Class_B trap_condition # TRUE)
Next Instruction
(count) <-- (count) - 1

END WHI LE

(count) =0

Dat a_Page = (DPPx) AND SFR range = Standard

Enabl e interrupts and traps

Description

Overrides the standard DPP addressing scheme of the long and indirect addressing modes and causes
all SFR or SFR bit accesses via the 'reg’, 'bitoff’ or ’bitaddr’ addressing modes being made to the
Extended SFR space for a specified number of instructions. During their execution, both standard and
PEC interrupts and class A hardware traps are locked. For any long (‘'mem’) or indirect ([...]) address in
the EXTP instruction sequence, the 10-bit page number (address bits A23-A14) is not determined by the
contents of a DPP register but by the value of opl itself. The 14-bit page offset (address bits A13-A0) is
derived from the long or indirect address as usual. The value of op2 defines the length of the effected
instruction sequence.

Note: The EXTPR instruction must be used carefully (see Section 2.7 - ATOMIC and EXTended instruc-
tions on page 38).

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes

EXTPR Rwm #dat a, DC 11##:m 2

EXTPR #pag, #data, D7 11##:0 pp 0: 00pp 4

76/172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

EXTR Begi n EXTended Regi ster Sequence
Synt ax EXTR opl
Oper ati on (count) <-- (opl) [1 < opl < 4]

Di sable interrupts and Cl ass A traps

SFR_range = Ext ended

DO WHI LE ((count) # 0 AND Class_B trap_condition # TRUE)
Next Instruction

(count) <-- (count) - 1

END WHI LE

(count) =0

SFR range = Standard

Enabl e interrupts and traps

Description

Causes all SFR or SFR bit accesses via the “reg”, “bitoff” or “bitaddr” addressing modes being made to
the Extended SFR space for a specified number of instructions. During their execution, both standard and
PEC interrupts and class A hardware traps are locked.

The value of opl defines the length of the effected instruction sequence.

Note: The EXTR instruction must be used carefully (see Section 2.7 - ATOMIC and EXTended instruc-
tions on page 38).

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
EXTR #dat a, D1 10##:0 2

4

771172

ST10 FAMILY PROGRAMMING MANUAL

EXTS Begi n EXTended Segnent Sequence
Synt ax EXTS opl, op2
Oper ati on (count) <-- (op2) [1 < op2 < 4]

Di sable interrupts and Cl ass A traps

Dat a_Segnment = (opl)

DO WHI LE ((count) # 0 AND Class_B trap_condition # TRUE)
Next Instruction
(count) <-- (count) - 1

END WHI LE

(count) =0

Dat a_Page = (DPPx)

Enabl e interrupts and traps

Description

Overrides the standard DPP addressing scheme of the long and indirect addressing modes for a specified
number of instructions. During their execution, both standard and PEC interrupts and class A hardware
traps are locked. The EXTS instruction becomes immediately active such that no additional NOPs are
required.

For any long (‘'mem’) or indirect ([...]) address in an EXTS instruction sequence, the value of opl deter-
mines the 8-bit segment (address bits A23-A16) valid for the corresponding data access. The long or indi-
rect address itself represents the 16-bit segment offset (address bits A15-A0).

The value of op2 defines the length of the effected instruction sequence.

Note: The EXTS instruction must be used carefully (see Section 2.7 - ATOMIC and EXTended instruc-
tions on page 38).

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes

EXTS Rwm #dat a, DC 00##: m 2

EXTS #seg, #data, D7 00##:0 ss 00 4

781172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

EXTSR Begi n EXTended Segnent & Regi ster Sequence
Synt ax EXTSR opl, op2
Oper ati on (count) <-- (op2) [1 < op2 < 4]

Di sable interrupts and Cl ass A traps

Dat a_Segnment = (opl) AND SFR range = Extended

DO WHI LE ((count) # 0 AND Class_B trap_condition # TRUE)
Next Instruction

(count) <-- (count) - 1

END WHI LE

(count) =0

Dat a_Page = (DPPx) AND SFR range = Standard

Enabl e interrupts and traps

Description

Overrides the standard DPP addressing scheme of the long and indirect addressing modes and causes
all SFR or SFR bit accesses via the 'reg’, 'bitoff’ or ’bitaddr’ addressing modes being made to the
Extended SFR space for a specified number of instructions. During their execution, both standard and
PEC interrupts and class A hardware traps are locked. The EXTSR instruction becomes immediately
active such that no additional NOPs are required. For any long ('mem’) or indirect ([...]) address in an
EXTSR instruction sequence, the value of opl determines the 8-bit segment (address bits A23-A16) valid
for the corresponding data access. The long or indirect address itself represents the 16-bit segment offset
(address bits A15-A0). The value of op2 defines the length of the effected instruction sequence.

Note: The EXTSR instruction must be used carefully (see Section 2.7 - ATOMIC and EXTended instruc-
tions on page 38).

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
EXTSR Rwm #dat a, DC 10##: m 2
EXTSR #seg, #data, D7 10##:0 ss 00 4

4

791172

ST10 FAMILY PROGRAMMING MANUAL

| DLE Enter 1dle Mde
Synt ax | DLE

Oper ati on Enter 1dle Mde
Description

This instruction causes the part to enter the idle mode. In this mode, the CPU is powered down while the
peripherals remain running. It remains powered down until a peripheral interrupt or external interrupt
occurs. To insure that this instruction is not accidentally executed, it is implemented as a protected
instruction.

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
| DLE 87 78 87 87 4
80/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

JB Rel ative Junp if Bit Set
Synt ax JB opl, op2
Oper ati on IF (opl) =1 THEN
(1P <-- (IP) + sign_extend (op2)
ELSE
Next Instruction
END | F
Data Types BIT

Description

If the bit specified by op1l is set, program execution continues at the location of the instruction pointer, IP,
plus the specified displacement, op2. The displacement is a two’s complement number which is sign
extended and counts the relative distance in words. The value of the IP used in the target address calcu-
lation is the address of the instruction following the JB instruction. If the specified bit is clear, the instruc-
tion following the JB instruction is executed.

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
JB bitaddrgq, rel 8A @Qrr g0 4

4

81/172

ST10 FAMILY PROGRAMMING MANUAL

JBC Relative Junp if Bit Set & Clear Bit
Synt ax JBC opl, op2
Oper ati on IF (opl) =1 THEN
(opl) =0
(1P <-- (IP) + sign_extend (op2)
ELSE
Next Instruction
END | F
Data Types BIT

Description

If the bit specified by op1l is set, program execution continues at the location of the instruction pointer, IP,
plus the specified displacement, op2. The bit specified by opl is cleared, allowing implementation of
semaphore operations. The displacement is a two’s complement number which is sign extended and
counts the relative distance in words. The value of the IP used in the target address calculation is the
address of the instruction following the JBC instruction. If the specified bit was clear, the instruction follow-
ing the JBC instruction is executed.

Flags
E z \% C N
B 0 0
E Always cleared
z Contains logical negation of the previous state of the specified bit.
\% Always cleared
C Always cleared
N Contains the previous state of the specified bit.

Addressing Modes

Mnemonic Format Bytes
JBC bitaddrg g, rel AA Qrr g0 4
82/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

JMPA Absol ute Conditional Junp
Synt ax JMPA opl, op2
Oper ati on IF (opl) =1 THEN
(1P) <-- 0p2
ELSE
Next Instruction
END | F
Description

If the condition specified by opl is met, a branch to the absolute address specified by op2 is taken. If the
condition is not met, no action is taken, and the instruction following the JMPA instruction is executed nor-
mally.

Condition Codes
See Condition code Table 24 - page 35.

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
JMPA cc, caddr EA cO MM WM 4

4

83/172

ST10 FAMILY PROGRAMMING MANUAL

JMPI
Synt ax

Oper ation

Description

I ndirect Conditional Junp

JMPI opl, op2
IF (opl) = 1 THEN

(1P <-- (op2)
ELSE

Next Instruction
END | F

If the condition specified by opl is met, a branch to the absolute address specified by op2 is taken. If the
condition is not met, no action is taken, and the instruction following the JMPI instruction is executed nor-

mally.

Condition Codes

See Condition code Table 24 - page 35.

Flags
E z \Y; N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected
Addressing Modes
Mnemonic Format Bytes
JMPI cc, [Rw,] 9C cn 2

84/172

4

ST10 FAMILY PROGRAMMING MANUAL

JMPR Rel ative Conditional Junp
Synt ax JMPR opl, op2
Oper ati on IF (opl) =1 THEN
(1P <-- (IP) + sign_extend (op2)
ELSE
Next Instruction
END | F
Description

If the condition specified by opl is met, program execution continues at the location of the instruction
pointer, IP, plus the specified displacement, op2. The displacement is a two’s complement number which
is sign extended and counts the relative distance in words. The value of the IP used in the target address
calculation is the address of the instruction following the IMPR instruction. If the specified condition is not
met, program execution continues normally with the instruction following the JMPR instruction.

Condition Codes
See condition code Table 24 - page 35.

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
JMPR cc, rel cDrr 2

4

85/172

ST10 FAMILY PROGRAMMING MANUAL

JMPS
Synt ax

Oper ation

Description

Absol ute I nter-Segnment Junp

Branches unconditionally to the absolute address specified by op2 within the segment specified by op1.

Flags

Z 0O < NmMm

Addressing

Mnemonic
JMPS

86/172

Not affected
Not affected
Not affected
Not affected
Not affected

Modes

FA ss MM W

4

ST10 FAMILY PROGRAMMING MANUAL

JNB Rel ative Junp if Bit Cl ear
Synt ax JNB opl, op2
Oper ati on IF (opl) = 0 THEN
(IP) <-- (IP) + sign_extend (op2)
ELSE
Next Instruction
END | F
Data Types BIT

Description

If the bit specified by op1l is clear, program execution continues at the location of the instruction pointer,
IP, plus the specified displacement, op2. The displacement is a two’s complement number which is sign
extended and counts the relative distance in words. The value of the IP used in the target address calcu-
lation is the address of the instruction following the JNB instruction. If the specified bit is set, the instruc-
tion following the JNB instruction is executed.

Flags
E Z \% C N
E Not affected
Z Not affected
\% Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
JNB bitaddrg g, rel 9A QQ rr qO 4

4

87/172

ST10 FAMILY PROGRAMMING MANUAL

JNBS Rel ative Junp if Bit Clear & Set Bit
Synt ax JNBS opl, op2
Oper ati on IF (opl) = 0 THEN
(opl) =1
(1P <-- (IP) + sign_extend (op2)
ELSE
Next Instruction
END | F
Data Types BIT

Description

If the bit specified by op1l is clear, program execution continues at the location of the instruction pointer,
IP, plus the specified displacement, op2. The bit specified by op1l is set, allowing implementation of sema-
phore operations. The displacement is a two’s complement number which is sign extended and counts
the relative distance in words. The value of the IP used in the target address calculation is the address of
the instruction following the JNBS instruction. If the specified bit was set, the instruction following the
JNBS instruction is executed.

Flags
E z \% C N
B 0 0
E Always cleared.
z Contains logical negation of the previous state of the specified bit.
\% Always cleared.
C Always cleared.
N Contains the previous state of the specified bit.

Addressing Modes

Mnemonic Format Bytes
JNBS bitaddrg g, rel BA Qrr q0 4
88/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

MoV Move Dat a

Synt ax MoV opl, op2
Oper ation (opl) <-- (0p2)
Data Types WORD

Description

Moves the contents of the source operand specified by op2 to the location specified by the destination
operand opl. The contents of the moved data is examined, and the flags are updated accordingly.

Flags
E z \% C N
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if the value of the source operand op2 equals zero. Cleared otherwise.
\% Not affected.
C Not affected.
N Set if the most significant bit of the source operand op2 is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
MoV Rw,, Rw, FO nm 2
MoV Rw,, #data, EO #n 2
MoV reg, #datajg E6 RR ## ## 4
MoV Rw,, [Rwy] A8 nm 2
MoV Rw,, [Rwt] 98 nm 2
MoV [RWy] , Rw, B8 nm 2
oY [-Rw], Rw, 88 nm 2
MoV [Rw.], [Rwy] C8 nm 2
MoV [Rw,+], [Rwy D8 nm 2
MoV [Rw,], [Rwgt] E8 nm 2
MOV Rw,, [Rw+#dat a;g] D4 nm ## ## 4
MOV [Rw#dat ag] , Rw, CA nm ## ## 4
MoV [Rw,], mem 84 On MM MM 4
MoV mem [Rw,] 94 On MM MM 4
MoV reg, mem F2 RR MM MM 4
MoV mem reg F6 RR MM MM 4

4

89/172

ST10 FAMILY PROGRAMMING MANUAL

MOVB Move Dat a

Synt ax MOVB opl, op2
Oper ation (opl) <-- (0p2)
Data Types BYTE

Description

Moves the contents of the source operand specified by op2 to the location specified by the destination
operand opl. The contents of the moved data is examined, and the flags are updated accordingly.

Flags
E z \% C N
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if the value of the source operand op2 equals zero. Cleared otherwise.
\% Not affected.
C Not affected.
N Set if the most significant bit of the source operand op2 is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
MOVB Rb,, Rb., F1 nm 2
MOVB Rb,, #data, El #n 2
MOVB reg, #datagg E7 RR ## ## 4
MOVB Rb,, [Rwy] A9 nm 2
MOVB Rb,, [Rwyt] 99 nm 2
MOVB [Rwy], Rb, B9 nm 2
MOVB [-Rwy], Rby, 89 nm 2
MOVB [Rw.], [Rw] C9 nm 2
MOVB [Rw,+], [Rwy D9 nm 2
MOVB [Rwy], [Rwpt] E9 nm 2
MOVB Rb,, [Rwyt#dat ael F4 nm ## ## 4
MOVB [Rwyt#dat a1g] , Rbp E4 nm ## ## 4
MOVB [Rw,], nmem A4 On MM MMV 4
MOVB mem [Rw,] B4 On MM MM 4
MOVB reg, nmem F3 RR MM MM 4
MOVB mem reg F7 RR MM WM 4
90/172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

MOVBS Move Byte Sign Extend
Synt ax MOVBS opl, op2
Oper ati on (1 ow byte opl) <-- (0p2)

I F (op2;) =1 THEN

(high byte opl) <-- FFy,
ELSE

(high byte opl) <-- 00y
END | F

Data Types WORD, BYTE

Description

Moves and sign extends the contents of the source byte specified by op2 to the word location specified by
the destination operand opl. The contents of the moved data is examined, and the flags are updated
accordingly.

Flags
E z \% C N
E Always cleared.
z Set if the value of the source operand op2 equals zero. Cleared otherwise.
\% Not affected.
C Not affected.
N Set if the most significant bit of the source operand op2 is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
MOVBS Rb,, Rbq, DO M 2
MOVBS reg, mem D2 RR MM WM 4
MOVBS mem reg D5 RR MM MM 4

4

91/172

ST10 FAMILY PROGRAMMING MANUAL

MOVBZ Move Byte Zero Extend

Synt ax MOVBZ opl, op2

Oper ati on (1 ow byte opl) <-- (0p2)
(high byte opl) <-- 00y

Data Types WORD, BYTE

Description

Moves and zero extends the contents of the source byte specified by op2 to the word location specified
by the destination operand opl. The contents of the moved data is examined, and the flags are updated
accordingly.

Flags
E z \% C N
E Always cleared.
z Set if the value of the source operand op2 equals zero. Cleared otherwise.
\% Not affected.
C Not affected.
N Always cleared.

Addressing Modes

Mnemonic Format Bytes

MOVBZ Rb,, Rb., CO nmm 2

MOVBZ reg, nmem C2 RR MM W 4

MOVBZ mem reg S RR M W 4

92/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

MUL Si gned Multiplication

Synt ax MUL opl, op2

Oper ation (MD) <-- (opl) * (o0p2)
Data Types WORD

Description

Performs a 16-bit by 16-bit signed multiplication using the two words specified by operands opl and op2
respectively. The signed 32-bit result is placed in the MD register.

Flags

E z C N

* S o *

E Always cleared.
z Set if the result equals zero. Cleared otherwise.
\% This bit is set if the result cannot be represented in a word data type. Cleared otherwise.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

MUL RW,, Rw, 0B nm 2

4

93/172

ST10 FAMILY PROGRAMMING MANUAL

MULU Unsi gned Mul tiplication

Synt ax MULU opl, op2

Oper ati on (MD) <-- (opl) * (op2)
Data Types WORD

Description

Performs a 16-bit by 16-bit unsigned multiplication using the two words specified by operands opl and
op2 respectively. The unsigned 32-bit result is placed in the MD register.

Flags

E z C N

* S o *

E Always cleared.
z Set if the result equals zero. Cleared otherwise.
\% This bit is set if the result cannot be represented in a word data type. Cleared otherwise.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
MULU Rw,, Rwy, 1B nm 2
94/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

NEG Integer Two’s Complement

Syntax NEG opl

Operation (opl) <-- 0 - (opl)
Data Types WORD

Description

Performs a binary 2's complement of the source operand specified by opl. The result is then stored in
opl.

Flags
E z Y N
* * * S *
E Set if the value of opl represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
\% Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
NEG Rw, 81 n0 2
1S7] 95/172

ST10 FAMILY PROGRAMMING MANUAL

NEGB Integer Two’s Complement

Syntax NEGB opl

Operation (opl) <-- 0 - (opl)
Data Types BYTE

Description

Performs a binary 2's complement of the source operand specified by opl. The result is then stored in
opl.

Flags
E z V C N
* * * S *
E Set if the value of op1l represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
Z Set if result equals zero. Cleared otherwise.
\% Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
NEGB Rb,, Al nO 2
96/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

NOP No Operation
Synt ax NOP

Oper ati on No Operation
Description

This instruction causes a null operation to be performed. A null operation causes no change in the status
of the flags.

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
NOP CC 00 2

4

97/172

ST10 FAMILY PROGRAMMING MANUAL

OR Logi cal OR

Synt ax OR opl, op2

Oper ati on (opl) <-- (opl) v (op2)
Data Types WORD

Description

Performs a bitwise logical OR of the source operand specified by op2 and the destination operand spec-
ified by opl. The result is then stored in opl.

Flags
E z \% C N
* * O O *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
\% Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

R Rw,, Rwp, 70 nm 2

OoR Rw,, [Rw] 78 n: 10ii 2

OR Rw,, [Rw +] 78 n: 11ii 2

OR Rw,, #datag 78 n: O### 2

OR reg, #datagg 76 RR ## ## 4

OR reg, nmem 72 RR \M WM 4

OR mem reg 74 RR MM W 4

98/172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

ORB Logi cal OR

Synt ax CRB opl, op2

Oper ati on (opl) <-- (opl) v (op2)
Data Types BYTE

Description

Performs a bitwise logical OR of the source operand specified by op2 and the destination operand spec-
ified by opl. The result is then stored in opl.

Flags
E z \% C N
* * O O *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
\% Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
ORB Rb,, Rb,, 71 nm 2
ORB Rb,, [Rw] 79 n:10ii 2
ORB Rb,, [Rw +] 79 n: 11ii 2
ORB Rb,, #datagj 79 n: O### 2
ORB reg, #datajg 77 RR ## ## 4
ORB reg, nmem 73 RR MM W 4
CRB mem reg 75 RR MM W 4

4

99/172

ST10 FAMILY PROGRAMMING MANUAL

PCALL Push Word & Cal |l Subroutine Absol ute
Synt ax PCALL opl, op2
Oper ation (tmp) <-- (opl)
(SP) <-- (SP) - 2
((SP)) <-- (tnp)
(SP) <-- (SP) - 2
((SP)) <-- (IP)
(1P) <-- 0p2
Data Types WORD
Description

Pushes the word specified by operand opl and the value of the instruction pointer, IP, onto the system
stack, and branches to the absolute memory location specified by the second operand op2. Because IP
always points to the instruction following the branch instruction, the value stored on the system stack rep-
resents the return address of the calling routine.

Flags
E z \% C N
E Set if the value of the pushed operand opl represents the lowest possible negative number.
Cleared otherwise. Used to signal the end of a table.
z Set if the value of the pushed operand opl equals zero. Cleared otherwise.
Vv Not affected.
C Not affected.
N Set if the most significant bit of the pushed operand opl is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
PCALL reg, caddr E2 RR MM MM 4
100/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

POP
Synt ax

Oper ation

Data Types

Description

Pop Word from System St ack

POP

(tnp)
(SP)
(opl)

WORD

opl

<- -
<- -
<- -

((SP))
(SP) + 2

(tnp)

Pops one word from the system stack specified by the Stack Pointer into the operand specified by op1l.

The Stack Pointer is then incremented by two.

Flags
E z \%
E Set if the value of the popped word represents the lowest possible negative number. Cleared
otherwise. Used to signal the end of a table.
Z Set if the value of the popped word equals zero. Cleared otherwise.
\% Not affected.
C Not affected.
N Set if the most significant bit of the popped word is set. Cleared otherwise.

Addressing Modes

Mnemonic
POP

4

reg

Format
FC RR

101/172

ST10 FAMILY PROGRAMMING MANUAL

PRI OR Prioritize Register
Synt ax PRI OR opl, op2
Oper ati on (tnp) <-- (0p2)
(count) <-- 0
DO VWHI LE (tnpys) # 1 AND (count) # 15 AND (op2) # O
(tnpn) <-- (tnpn-l)
(count) <-- (count) + 1
END WHI LE
(opl) <-- (count)
Data Types WORD
Description

This instruction stores a count value in the word operand specified by op1l indicating the number of single
bit shifts required to normalize the operand op2 so that its most significant bit is equal to one. If the source
operand op2 equals zero, a zero is written to operand op1 and the zero flag is set. Otherwise the zero flag
is cleared.

Flags
E z \% C
0 * 0 0 0
E Always cleared.
z Set if the source operand op2 equals zero. Cleared otherwise.
\% Always cleared.
C Always cleared.
N Always cleared.

Addressing Modes

Mnemonic Format Bytes
PRI OR Rw,, Rwgp, 2B nm 2
102/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

PUSH
Synt ax

Oper ation

Data Types

Description

Push Word on System Stack

PUSH

(tnp)
(SP)
((sP))

WORD

opl

<- -
<- -
<- -

(opl)
(SP)

(tnp)

2

Moves the word specified by operand opl to the location in the internal system stack specified by the

Stack Pointer, after the Stack Pointer has been decremented by two.

Flags
E z \%
E Set if the value of the pushed word represents the lowest possible negative number. Cleared
otherwise. Used to signal the end of a table.
Z Set if the value of the pushed word equals zero. Cleared otherwise.
\% Not affected.
C Not affected.
N Set if the most significant bit of the pushed word is set. Cleared otherwise.

Addressing Modes

Mnemonic
PUSH

4

reg

Format
EC RR

103/172

ST10 FAMILY PROGRAMMING MANUAL

PVWRDN Enter Power Down Mode
Synt ax PWRDN

Oper ati on Enter Power Down Mode
Description

This instruction causes the part to enter the power down mode. In this mode, all peripherals and the CPU
are powered down until the part is externally reset. To insure that this instruction is not accidentally exe-
cuted, it is implemented as a protected instruction. To further control the action of this instruction, the
PWRDN instruction is only enabled when the non-maskable interrupt pin (NMI) is in the low state. Other-
wise, this instruction has no effect.

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
PWRDN 97 68 97 97 4
104/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

RET Ret urn from Subroutine
Synt ax RET
Oper ation (IP) <-- ((SP))

(SP) <-- (SP) + 2
Description

Returns from a subroutine. The IP is popped from the system stack. Execution resumes at the instruction
following the CALL instruction in the calling routine.

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
RET CB 00 2
IS7; 105/172

ST10 FAMILY PROGRAMMING MANUAL

RETI Return fromlInterrupt Routine
Synt ax RETI
Oper ation (1P) <-- ((SP))
(SP) <-- (SP) + 2
| F (SYSCON. SGTDI S=0) THEN
(CSP) <-- ((SP))
(SP) <-- (SP) + 2
END | F
(PSW <-- ((SP))
(SP) <-- (SP) + 2
Description

Returns from an interrupt routine. The PSW, IP, and CSP are popped off the system stack. Execution
resumes at the instruction which had been interrupted. The previous system state is restored after the
PSW has been popped. The CSP is only popped if segmentation is enabled. This is indicated by the
SGTDIS bit in the SYSCON register.

Flags

Restored from the PSW popped from stack.
Restored from the PSW popped from stack.
Restored from the PSW popped from stack.
Restored from the PSW popped from stack.
Restored from the PSW popped from stack.

Z 0O < NmMm

Addressing Modes

Mnemonic Format Bytes
RETI FB 88 2
106/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

RETP
Synt ax

Oper ation

Data Types

Description

Return from Subroutine & Pop Word

RETP
(1P)
(SP)

(tnp)
(SP)

(opl)
WORD

opl

<- -
<- -
<- -
<- -
<- -

((SP))
(SP) + 2

((SP))
(SP) + 2

(tnp)

Returns from a subroutine. The IP is first popped from the system stack and then the next word is popped
from the system stack into the operand specified by opl. Execution resumes at the instruction following

the CALL instruction in the calling routine.

Flags
E z \%
E Set if the value of the word popped into operand op1l represents the lowest possible negative
number. Cleared otherwise. Used to signal the end of a table.
z Set if the value of the word popped into operand opl equals zero. Cleared otherwise.
Vv Not affected.
C Not affected.
N Set if the most significant bit of the word popped into operand opl is set. Cleared otherwise.

Addressing Modes

Mnemonic
RETP

4

reg

Format
EB RR

107/172

ST10 FAMILY PROGRAMMING MANUAL

RETS Return from I nter-Segnent Subroutine
Synt ax RETS
Oper ation (1P) <-- ((SP))

(SP) <-- (SP) + 2

(CSP) <-- ((SP))

(SP) <-- (SP) + 2
Description

Returns from an inter-segment subroutine. The IP and CSP are popped from the system stack. Execution
resumes at the instruction following the CALLS instruction in the calling routine.

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Mode

Mnemonic Format Bytes
RETS DB 00 2
108/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

RCL Rotate Left
Synt ax ROL opl, op2
Oper ati on (count) <-- (0p2)
(O <-- 0
DO WHI LE (count) # 0
(©) <-- (oplys)
(oplp) <-- (opl,.;) [n=1...15]
(oplp) <-- (O
(count) <-- (count) - 1
END WHI LE
Data Types WORD
Description

Rotates the destination word operand op1 left by as many times as specified by the source operand op2.
Bit 15 is rotated into Bit 0 and into the Carry. Only shift values between 0 and 15 are allowed. When using
a GPR as the count control, only the least significant 4 bits are used.

Flags

E z \% N

* o S *
E Always cleared.
z Set if result equals zero. Cleared otherwise.
\% Always cleared.
C The carry flag is set according to the last most significant bit shifted out of opl. Cleared for a
rotate count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

ROL Rw,, Rw, 0C nm 2

ROL Rw,, #data, 1C #n 2

IS7; 109/172

ST10 FAMILY PROGRAMMING MANUAL

ROR Rot at e Ri ght
Synt ax ROR opl, op2
Oper ati on (count) <-- (0p2)
(O <-- 0
(V) <-- 0
DO WHI LE (count) # 0
(V) <-- (V) v (O
(O <-- (oplo)
(oply) <-- (oplpsy) [n=0...14]
(oplys) <-- (O
(count) <-- (count) - 1
END WHI LE
Dat a Types WORD
Description

Rotates the destination word operand opl right by as many times as specified by the source operand
op2. Bit 0 is rotated into Bit 15 and into the Carry. Only shift values between 0 and 15 are allowed. When
using a GPR as the count control, only the least significant 4 bits are used.

Flags
E z N
* S S *
E Always cleared.
z Set if result equals zero. Cleared otherwise.
\% Set if in any cycle of the rotate operation a ‘1’ is shifted out of the carry flag. Cleared for a
rotate count of zero.
C The carry flag is set according to the last least significant bit shifted out of opl. Cleared for a
rotate count of zero.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

ROR Rw,, Rwgp, 2C nm 2

ROR Rw,, #datay 3C #n 2

110/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

SCXT Swi tch Cont ext

Synt ax SCXT opl, op2

Oper ation (tmpl) <-- (opl)
(tnmp2) <--(op2)
(SP) <-- (SP) - 2
((SP)) <-- (tnpl)
(opl) <-- (tnp2)

Data Types WORD

Description

Used to switch contexts for any register. Switching context is a push and load operation. The contents of
the register specified by the first operand, opl, are pushed onto the stack. That register is then loaded
with the value specified by the second operand, op2.

Flags
E z \Y; C N
E Not affected
Z Not affected
\/ Not affected
C Not affected
N Not affected

Addressing Modes

Mnemonic Format Bytes
SCXT reg, #datajg C6 RR ## ## 4
SCXT reg, nmem D6 RR MM MM 4

4

111/172

ST10 FAMILY PROGRAMMING MANUAL

SHL Shift Left
Synt ax SHL opl, op2
Oper ati on (count) <-- (0p2)
(O <-- 0
DO WHI LE (count) # 0
(©) <-- (oplys)
(oplp) <-- (oplp.q) [n=1...15]
(oplp) <-- 0
(count) <-- (count) - 1
END WHI LE
Data Types WORD
Description

Shifts the destination word operand opl left by as many times as specified by the source operand op2.
The least significant bits of the result are filled with zeros accordingly. The most significant bit is shifted
into the Carry. Only shift values between 0 and 15 are allowed. When using a GPR as the count control,
only the least significant 4 bits are used.

Flags

E z \% N

* o S *
E Always cleared.
z Set if result equals zero. Cleared otherwise.
\% Always cleared.
C The carry flag is set according to the last most significant bit shifted out of opl. Cleared for a
shift count of zero.

N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

SHL Rw,, Rw, 4C nm 2

SHL Rw,, #datay 5C #n 2

112/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

SHR Shift Ri ght
Synt ax SHR opl, op2
Oper ati on (count) <-- (0p2)
(O <-- 0
(V) <-- 0
DO WHI LE (count) # 0
(V) <- (9 v (V)
(O <-- (oplp)
(oply) <-- (oplp4y) [n=0...14]
(oplys) <-- 0
(count) <-- (count) - 1
END WHI LE
Data Types WORD
Description

Shifts the destination word operand opl right by as many times as specified by the source operand op2.
The most significant bits of the result are filled with zeros accordingly. Since the bits shifted out effectively
represent the remainder, the Overflow flag is used instead as a Rounding flag. This flag together with the
Carry flag helps the user to determine whether the remainder bits lost were greater than, less than or
equal to one half an least significant bit. Only shift values between 0 and 15 are allowed. When using a
GPR as the count control, only the least significant 4 bits are used.

Flags
z \% C N
* S S *
E Always cleared.
Z Set if result equals zero. Cleared otherwise.
\% Set if in any cycle of the shift operation a ‘1’ is shifted out of the carry flag. Cleared for a shift
count of zero.
C The carry flag is set according to the last least significant bit shifted out of op1. Cleared for a
shift count of zero.
N Set if the most significant bit of the result is set. Cleared otherwise.
Addressing Modes
Mnemonic Format Bytes
SHR Rw,, Rwgp, 6C nm 2
SHR Rw,, #datay, 7C #n 2

4

113/172

ST10 FAMILY PROGRAMMING MANUAL

SRST Sof t war e Reset
Synt ax SRST

Oper ati on Sof t war e Reset
Description

This instruction is used to perform a software reset. A software reset has the same effect on the micro-
controller as an externally applied hardware reset. To insure that this instruction is not accidentally exe-
cuted, it is implemented as a protected instruction.

Flags
\% C
0 0

E Always cleared.

Z Always cleared.

\% Always cleared.

C Always cleared.

N Always cleared.

Addressing Modes

Mnemonic Format Bytes

SRST B7 48 B7 B7 4

g

114/172

ST10 FAMILY PROGRAMMING MANUAL

SRW\DT Servi ce Watchdog Ti mer
Synt ax SRW\DT

Oper ati on Servi ce Wat chdog Ti nmer
Description

This instruction services the Watchdog Timer. It reloads the high order byte of the Watchdog Timer with a
preset value and clears the low byte on every occurrence. Once this instruction has been executed, the
watchdog timer cannot be disabled. To insure that this instruction is not accidentally executed, it is imple-
mented as a protected instruction.

Flags
E z \Y; C N
E Not affected.
Z Not affected.
\ Not affected.
C Not affected.
N Not affected.

Addressing Modes

Mnemonic Format Bytes
SRW\DT A7 58 A7 A7 4
IS7; 115/172

ST10 FAMILY PROGRAMMING MANUAL

SUB I nt eger Subtraction

Synt ax SuB opl, op2

Oper ati on (opl) <-- (opl) - (op2)
Data Types WORD

Description

Performs a 2’s complement binary subtraction of the source operand specified by op2 from the destina-
tion operand specified by opl. The result is then stored in opl.

Flags
E z Y N
* * * S *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
\% Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

SuUB Rw,, Rwgy, 20 nm 2

SuUB Rw,, [Rw] 28 n: 10ii 2

SUB Rw,, [Rw +] 28 n: 11ii 2

SUB Rw,, #datagj 28 n: O### 2

SUB reg, #datagg 26 RR ## ## 4

SuB reg, nmem 22 RR MM MM 4

SuB mem reg 24 RR MM MM 4

116/172 K7_I

ST10 FAMILY PROGRAMMING MANUAL

SUBB I nt eger Subtraction

Synt ax SuUBB opl, op2

Oper ati on (opl) <-- (opl) - (op2)
Data Types BYTE

Description

Performs a 2’s complement binary subtraction of the source operand specified by op2 from the destina-
tion operand specified by opl. The result is then stored in opl.

Flags
E z Y N
* * * S *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
\% Set if an arithmetic underflow occurred, ie. the result cannot be represented in the specified
data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
SUBB Rb,, Rbg, 21 nm 2
SUBB Rb,, [Rw] 29 n: 10ii 2
SUBB Rb,, [Rw +] 29 n:11ii 2
SUBB Rb,, #datagj 29 n: O### 2
SUBB reg, #datagg 27 RR ## ## 4
SUBB reg, nmem 23 RR MM W 4
SuUBB mem reg 25 RR MM MM 4

4

117/172

ST10 FAMILY PROGRAMMING MANUAL

SUBC I nteger Subtraction with Carry

Synt ax SUBC opl, op2

Oper ation (opl) <-- (opl) - (op2) - (O
Data Types WORD

Description

Performs a 2's complement binary subtraction of the source operand specified by op2 and the previously
generated carry bit from the destination operand specified by opl. The result is then stored in opl. This
instruction can be used to perform multiple precision arithmetic.

Flags
E Y N
* S * S *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero and the previous Z flag was set. Cleared otherwise.
\% Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

SUBC Rw,, Rwq, 30 nm 2

SUBC Rw,, [Rw] 38 n: 10ii 2

SUBC Rw,, [Rw +] 38 n:11ii 2

SUBC Rw,, #datag 38 n: O### 2

SuBC reg, #datagg 36 RR ## ## 4

SUBC reg, nmem 32 RR MM W 4

SUBC mem reg 34 RR MM W 4

118/172 K7_I

ST10 FAMILY PROGRAMMING MANUAL

SUBCB I nteger Subtraction with Carry

Synt ax SUBCB opl, op2

Oper ation (opl) <-- (opl) - (op2) - (O
Data Types BYTE

Description

Performs a 2's complement binary subtraction of the source operand specified by op2 and the previously
generated carry bit from the destination operand specified by opl. The result is then stored in opl. This
instruction can be used to perform multiple precision arithmetic.

Flags
E Y N
* S * S *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero and the previous Z flag was set. Cleared otherwise.
\% Set if an arithmetic underflow occurred, i.e. the result cannot be represented in the specified
data type. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
SUBCB Rb,, Rby, 31 nm 2
SUBCB Rb,, [Rw] 39 n: 10ii 2
SUBCB Rb,, [Rw +] 39 n:1lii 2
SUBCB Rb,, #datagj 39 n: O### 2
SUBCB reg, #datajg 37 RR ## ## 4
SUBCB reg, nmem 33 RR MM W 4
SUBCB mem reg 35 RR MM W 4

4

119/172

ST10 FAMILY PROGRAMMING MANUAL

TRAP Sof tware Trap
Synt ax TRAP opl
Oper ation (SP) <-- (SP) - 2
((SP)) <-- (PSW
| F (SYSCON. SGTDI S=0) THEN
(SP) <-- (SP) - 2
((SP)) <-- (CSP)
(CSP) <-0
END | F
(SP) <-- (SP) - 2
((SP)) <-- (1P
(IP) <-- zero_extend (opl*4)
Description

Invokes a trap or interrupt routine based on the specified operand, opl. The invoked routine is deter-
mined by branching to the specified vector table entry point. This routine has no indication of whether it
was called by software or hardware. System state is preserved identically to hardware interrupt entry
except that the CPU priority level is not affected. The RETI, return from interrupt, instruction is used to
resume execution after the trap or interrupt routine has completed. The CSP is pushed if segmentation is
enabled. This is indicated by the SGTDIS bit in the SYSCON register.

Flags
E z \Y; C N
E Not affected.
Z Not affected.
\ Not affected.
C Not affected.
N Not affected.

Addressing Modes

Mnemonic Format Bytes
TRAP #trap7 9B t:tttO 2

4

120/172

ST10 FAMILY PROGRAMMING MANUAL

XOR Logi cal Exclusive OR

Synt ax XOR opl, op2

Oper ati on (opl) <-- (opl) O (op2)
Data Types WORD

Description

Performs a bitwise logical EXCLUSIVE OR of the source operand specified by op2 and the destination
operand specified by opl. The result is then stored in opl.

Flags
E z \% C N
* * O O *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
\% Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes
XOR Rw,, Rwy, 50 nm 2
XOR Rw,, [Rw] 58 n: 10i i 2
XOR Rw,, [Rw +] 58 n:11ii 2
XOR Rw,, #datag 58 n: O### 2
XOR reg, #datajg 56 RR ## ## 4
XOR reg, mem 52 RR MM WM 4
XOR mem reg 54 RR MM W 4

4

121/172

ST10 FAMILY PROGRAMMING MANUAL

XORB Logi cal Exclusive OR

Synt ax XORB opl. Op2

Oper ati on (opl) <-- (opl) O (op2)
Data Types BYTE

Description

Performs a bitwise logical EXCLUSIVE OR of the source operand specified by op2 and the destination
operand specified by opl. The result is then stored in opl.

Flags
E z \% C N
* * O O *
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.
Used to signal the end of a table.
z Set if result equals zero. Cleared otherwise.
\% Always cleared.
C Always cleared.
N Set if the most significant bit of the result is set. Cleared otherwise.

Addressing Modes

Mnemonic Format Bytes

XCRB Rb,, Rb,, 51 nm 2

XORB Rb,, [Rw] 59 n: 10ii 2

XORB Rb,, [Rw +] 59 n:11ii 2

XORB Rb,, #datag 59 n: O### 2

XORB reg, #datagg 57 RR ## ## 4

XORB reg, nmem 53 RR WM WM 4

XCRB mem reg 55 RR MM W 4

122/172 K7_1

ST10 FAMILY PROGRAMMING MANUAL

3 - MAC INSTRUCTION SET

This section describes the instruction set for the
MAC. Refer to device datasheets for information
about which ST10 devices include the MAC.

3.1 - Addressing modes

MAC instructions use some standard ST10
addressing modes such as GPR direct or #datas
for immediate shift value. To supply the MAC with
up to 2 new operands per instruction cycle, new
MAC instruction addressing modes have been
added. These allow indirect addressing with
address pointer post-modification. Double indirect
addressing requires 2 pointers, one of which can
be supplied by any GPR, the other is provided by
one of two new specific SFRs IDXg and IDX;. Two
pairs of offset registers QRO/QR1 and QX0/QX1
are associated with each pointer (GPR or IDX;).
The GPR pointer gives access to the entire mem-
ory space, whereas IDX; are limited to the internal
Dual-Port RAM, except for the CoMOV instruc-
tion. The following table shows the various combi-

nations of pointer post-modification for each of
these 2 new addressing modes (see Table 27).

When using pointer post-modification addressing
modes, the address pointed to (i.e the value in the
IDX; or Rwy, register) must be a legal address,
even if its content is not modified. An odd value
(e.g. in RO when using [RO] post-modification
adressing mode) will trigger the class-B hardware
Trap 28h (lllegal Word Operand Access Trap
(ILLOPA)).

In this document the symbols “[Rw,0]" and
“[IDX;O]" are used to refer to these addressing
modes.

A new instruction CoSTORE transfers a value
from a MAC register to any location in memory.
This instruction uses a specific addressing mode
for the MAC registers, called CoReg. The follow-
ing table gives the 5-bit addresses of the MAC
registers corresponding to this CoReg addressing
mode. Unused addresses are reserved for future
revisions (see Table 28).

Table 27 : Pointer post-modification for [Rw,]" and “[IDXilJ] addressing modes

Symbol Mnemonic Address Pointer Operation

“IDX,0]” stands for * [IDX] (IDX;) <-- (IDX;) (no-op)

[IDX+] (IDX;) <-- (IDX;) +2 (i=0,1)

[IDX;] (IDX)) <-- (IDX)) -2 (i=0,1)

[IDX;+ QX] (IDX;) < (IDX)) + (QX)) (i, j =0,1)

[IDX; - QX]] (IDX)) <-- (IDX) - (QX) (i, j =0,1)
“[Rw,O]” stands for [Rwy] (Rwy) <-- (Rwy) (no-op)

[Rwp,+] (Rwp) <-- (Rwp) +2 (n=0...15)

[Rwp-] (Rwp) <-- (Rw,) -2 (n=0...15)

[Rw, + QR] (Rwy) <-- (Rwp) + (QR)) (n=0...15; =0,1)

[Rwy - QR (Rwy) <~ (Rw) - (QR) (n=0...15; | =0,1)

Note 1. IDX; can only contain even values. Therefore, bit 0 always equals zero.

Table 28 : MAC register addresses for CoReg

Register Description Address
MSW MAC-Unit Status Word 00000
MAH MAC-Unit Accumulator High 00001
MAS “limited” MAH 00010
MAL MAC-Unit Accumulator Low 00100
MCW MAC-Unit Control Word 00101
MRW MAC-Unit Repeat Word 00110

4

123/172

ST10 FAMILY PROGRAMMING MANUAL

3.2 - MAC Instruction Execution Time

The instruction execution time for MAC
instructions is calculated in the same way as that
of the standard instruction set. To calculate the

3.3 - MAC instruction set summary

execution time for MAC instructions, refer to
Instruction execution times in Table 6, considering
MAC instructions to be 4-byte instructions with a
minimum state time number of 2.

Table 29 : MAC instruction mnemonic by addressing mode and repeatability

Mnemonic Addressing Modes Rep Mnemonic Addressing Modes Rep
CoMUL Rwy, Rw, No CoMACM [IDXO], [Rwy,O] Yes
CoMULu [IDX;O], [Rw,O] No CoMACMu
CoMULus Rw,, [Rw,,0] No CoMACMus
CoMULsu CoMACMsu
CoMUL- CoMACM-

CoMULu- CoMACMu-
CoMULus- CoMACMus-
CoMULsu- CoMACMsu-
CoMUL + rnd CoMACM + rnd
CoMULu + rnd CoMACMu + rnd
CoMULus + rnd CoMACMus + rnd
CoMULsu + rnd CoMACMsu + rnd
CoMAC Rwp, Rwp, No CoMACMR
CoMACu [IDX;O], [Rw,O] Yes CoMACMRu
CoMACus Rw,, [Rw,,0] Yes CoMACMRus
CoMACsu CoMACMRsu
CoMAC- CoMACMR + rnd
CoMACu- CoMACMRu + rnd
CoMACus- CoMACMRus + rnd
CoMACsu- CoMACMRsu + rnd
CoMAC + rnd CoADD Rw,, Rwpp, No
CoMACu +rnd CoADD2 [IDX;0], [Rwp, 0] Yes
CoMACus + rnd CoSuB Rw,, [Rw,0O] Yes
CoMACsu + rnd CoSUB2
CoMACR CoSUBR
CoMACRu CoSUB2R
CoMACRus CoMAX
CoMACRsu CoMIN
CoMACR +rnd CoLOAD Rwp, Rwpp, No
CoMACRu + rnd CoLOAD- [IDX;0], [Rwpy, O] No
CoMACRus + rnd CoLOAD2 Rw,, [Rw,0O] No
CoMACRsu + rnd CoLOAD2-
CoCMP
CoNOP [Rw,0O] Yes CoSHL Rwp, Yes
[IDX;O], [Rw,O] Yes CoSHR #datag No
CoASHR [Rw,0O] Yes
CoNEG - No CoASHR + rnd
CoNEG +rnd CoABS - No
CoRND Rwp, Rwpp, No
CoSTORE Rw, , CoReg No [IDXO], [Rwy,O] No
[Rw,O], CoReg Yes Rw,, [Rw,,,0] No
CoMOV [IDX;O], [Rwpy, O] Yes
124/172 KY_I

ST10 FAMILY PROGRAMMING MANUAL

The following table gives the MAC Function Code
of each instruction. This Function Code is the third

co-processor as its operation code. Unused func-
tion codes are treated as CoNOP Function Code

byte of the new instruction and is used by the by the MAC.
Table 30 : MAC instruction function code (hexa)
Mnemonic Function Code Mnemonic Function Code

CoMUL (e{0] CoMACM D8
CoMULu 00 CoMACMu 18
CoMULus 80 CoMACMus 98
CoMULsu 40 CoMACMsu 58
CoMUL- C8 CoMACM- E8
CoMULu- 08 CoMACMu- 28
CoMULus- 88 CoMACMus- A8
CoMULsu- 48 CoMACMsu- 68
CoMUL +rnd C1l CoMACM + rnd D9
CoMULu + rnd 01 CoMACMu + rnd 19
CoMULus + rnd 81 CoMACMus + rnd 99
CoMULsu + rnd 41 CoMACMsu + rnd 59
CoMAC DO CoMACMR F9
CoMACu 10 CoMACMRu 38
CoMACus 90 CoMACMRus B8
CoMACsu 50 CoMACMRsu 78
CoMAC- EO CoMACMR + rnd F9
CoMACu- 20 CoMACMRu + rnd 39
CoMACus- AO CoMACMRus + rnd B9
CoMACsu- 60 CoMACMRsu + rnd 79
CoMAC + rnd D1 CoADD 02
CoMACu + rnd 11 CoADD2 42
CoMACus + rnd 91 CoSuUB 0A
CoMACsu + rnd 51 CoSUB2 4A
CoMACR FO CoSUBR 12
CoMACRu 30 CoSUB2R 52
CoMACRus BO CoMAX 3A
CoMACRsu 70 CoMIN 7A
CoMACR + rnd F1 CoLOAD 22
CoMACRu +rnd 31 CoLOAD- 2A
CoMACRus + rnd B1 CoLOAD?2 62
CoMACRsu + rnd 71 CoLOAD2- 6A
CoNOP 5A CoCMP c2
CoNEG 32 CoSHL #datas 82
CoNEG + rnd 72 CoSHL other 8A
CoRND B2 CoSHR #datag 92
CoOABS - 1A CoSHR other 9A
CoABS opl, op2 CA CoASHR #datas A2
CoSTORE wwww:w000 CoASHR other AA
CoMOV 00 CoASHR + rnd #datag B2

CoASHR + rnd other BA

b7

125/172

ST10 FAMILY PROGRAMMING MANUAL

3.4 - MAC instruction conventions
This section details the conventions used to describe the MAC instruction set.

3.4.1 - Operands

Operand Description
opX Specifies the immediate constant value of opX
(opX) Specifies the contents of opX
(opXp) Specifies the contents of bit n of opX
((opX)) Specifies the contents of opX (i.e. opX is used as pointer to the actual operand)
rnd plus 00 0000 8000},
3.4.2 - Operations
(opX)<-- (opY) (opY) is MOVED into (opX)
(opX) + (opY) (opX) is ADDED to (opY)
(opX) - (opY) (opY) is SUBTRACTED from (opX)
Diadic (opX) * (opY) (opX) is MULTIPLIED by (opY)
operations (opX) <--> (opY) (opY) is COMPARED against (opX)
opX\opY (opX) is CONCATANATED to (opY) (LSW)
Max ((opX), (opY)) MAXIMUM value between (opX) and (opY)
Min ((opX), (opY)) MINIMUM value between (opX) and (opY)
(opX) << (opX) is Logically SHIFTED Left
Monadic (opX) >> (opX) is Logically SHIFTED Right
Operations (opX) >>, (opX) is Arithmetically SHIFTED Right
Abs (opX) ABSOLUTE value of (opX)

3.4.3 - Abbreviations

Abbreviation Description
C Carry flag in the MSW register
MP MP mode in the MCW register
MS MS mode in the MCW register
MAE 8 most significant bits of the accumulator (lowest byte of the MSW register)

3.4.4 - Data addressing Modes

Addressing mode

Description

“RWn”l or HRWmn :

General Purpose Registers (GPRs) where “n” and “m” are any value between 0 and 15.

[-]:

Indirect word memory location

CoReg: MAC-Unit Register (MSW, MAH, MAL, MAS, MRW, MCW)

ACC: MAC Accumulator consisting of (lowest byte of MSW)\MAH\MAL.

#data, : Immediate constant (the number of significant bits is represented by ‘X’).

126/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

3.4.5 - Instruction format

The instruction format is the same as that of the
standard instruction set.

In addition, the following new symbols are used:

Table 31 : IDX Addressing Mode Encoding and
GPR offset Encoding (continued)

Addressing Mode 4-bit Encoding

+ QR1 6

Instruction Description

X 4-bit IDX addressing mode encoding.
(see following table)

-QR1 7h

3.4.6 - Flag states

:.qqq 3-bit GPR offset encoding for new GPR
indirect with offset encoding.

rrrrer... 5-bit repeat field.

wwww:w... | 5-bit CoReg address for CoOSTORE
instructions.
SSSS: 4-bit immediate shift value.
SSSS:S... 5-bit immediate shift value.

Table 31 : IDX Addressing Mode Encoding and
GPR offset Encoding

Addressing Mode 4-bit Encoding
IDX0 1
IDXO0 + 24
IDXO - 3,
IDX0 + QX0 4,
IDXO0 - QX0 5h
IDX0 + QX1 6
IDXO0 - QX1 7h
IDX1 9
IDX1 + Aq
IDX1 - B
IDX1 + QX0 Ch
IDX1 - QX0 D
IDX1 + QX1 En
IDX1 - QX1 Fn

GPR Offset 3-bit Encoding
no-op 1,
+ 24
- 3h
+ QRO 4,
-QRO 5h

4

Flag Description
- Unchanged
* Modified

3.4.7 - Repeated instruction syntax

Repeatable instructions CoXXX are expressed as
follows when repeated

Repeat #datag times CoXXX... or
Repeat MRW times CoXXX...

When MRW is invoked, the instruction is repeated
(MRWy,,) + 1 times, therefore the maximum num-

ber of times an instruction can be repeated is
8 192 (219) times.

#datas is an integer value specifying the number
of times an instruction is repeated, #datag must be
less than 32.

Therefore, CoXXX can only be repeated less
than 32 times. When the MRW register is used in
the repeat instruction, the 5-bit repeat field is set
to 1.

3.4.8 - Shift value

The shifter authorizes only 8-bit left/right shifts.
Shift values must be between 0-8 (inclusive).
3.5-MAC instruction descriptions

Each instruction is described in a standard format.
See “MAC instruction conventions” on page 126
for detailed information about the instruction con-
ventions. The MAC instruction set is divided into 5
functional groups:

— Multiply and Multiply-Accumulate Instructions
— 40-bit Arithmetic Instructions

— Shift Instructions

— Compare Instructions

— Transfer Instructions

The instructions are described in alphabetical
order.

127/172

ST10 FAMILY PROGRAMMING MANUAL

CoABS Absol ute Val ue

G oup 40-bit Arithmetic Instructions

Synt ax CoABS

Operation (ACC) <-- Abs(ACC)

Synt ax CoABS opl, op2

Operation (ACC) <-- Abs((op2)\(opl))
Data Types ACCUMULATOR, DOUBLE WORD

Resul t 40-bit signed val ue

Description

Compute the absolute value of the Accumulator if no operands are specified or the absolute value of a
40-bit source operand and load the result in the Accumulator. The 40-bit operand results from the con-
catenation of the two source operands opl (LSW) and op2 (MSW) which is then sign-extended. This
instruction is not repeatable.

MAC Flags
N z C S\ E SL
* * 0 _ * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Always cleared.

SV Not affected.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Addressing Modes

Mnemonic Rep Format Bytes

CoABS No A3 00 1A 00 4

CoABS Rw,, Rwy, No A3 nm CA 00 4

CoABS [1DX O], [Rw,J] No 93 Xm CA 0: 0qqq 4

CoABS Rw,, [Rw,d] No 83 nm CA 0: 0qqq 4

128/172 K7_I

ST10 FAMILY PROGRAMMING MANUAL

CoADID 2) Add

G oup 40-bit Arithmetic Instructions

Synt ax CoADD opl, op2

Oper ati on (tnp) <-- (op2)\(opl)
(ACQ) <-- (ACQ) + (tnp)

Synt ax CoADD2 opl, op2

Operation (tp) <-- 2 * (op2)\(opl)
(ACQO) <-- (ACO + (tnp)

Data Types DOUBLE WORD

Resul t 40-bit signed val ue

Description

Adds a 40-bit operand to the 40-bit Accumulator contents and store the result in the accumulator. The
40-bit operand results from the concatenation of the two source operands opl (LSW) and op2 (MSW)
which is then sign-extended. “2” option indicates that the 40-bit operand is also multiplied by two prior
being added to ACC. When the MS bit of the MCW register is set and when a 32-bit overflow or underflow
occurs, the obtained result becomes 00 7FFF FFFF,, or FF 8000 0000y, respectively. This instruction is
repeatable with indirect addressing modes and allows up to two parallel memory reads.

MAC Flags
N z C S\ E SL
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result equals zero. Cleared otherwise.
C Set if a carry is generated. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
E Set if MAE is used. Cleared otherwise.
SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Note : The E-flag is set when the nine highest bits of the accumulator are not equal. The SV-flag is set,
when a 40-bit arithmetic overflow/ underflow occurs.

Addressing Modes

Mnemonic Rep Format Bytes
CoADD Rw,, Rwp No A3 nm 02 00 4
CoADD2 Rw,, Rwp, No A3 nm 42 00 4
CoADD [1DX 0], [Rw] Yes 93 XmO02 rrrr:rqqq 4
CoADD2 [1DX O], [Rwd] Yes 93 Xm 42 rrrr:rqqq 4
CoADD Rw,, [Rw] Yes 83 nmO2 rrrr:rqqq 4
CoADD2 Rw,, [Rw,d] Yes 83 nm42 rrrr:rqqq 4

£77 129/172

ST10 FAMILY PROGRAMMING MANUAL

Examples
CoADD RO, Rl : (ACC) <-- (ACO) + (R1)\(RO)
CoADD2 R2, [R6+] ; (ACO) <-- (ACC) + 2*(((R6))\(R2))
; (R6) <-- (R6) + 2
Repeat 3 tinmes CoADD
CoADD [1 DX1+QX1], [RLO+QRO] ; (ACC) <-- (ACC) + (((RL0))\((1DX1)))
. (RL0) <-- (R10) + (QRO)
© (IDX1) <-- (IDX1) + (QX1)
Repeat MRWti nmes CoADD2
CoADD2 R4, [R8 - QR1] © (ACO) <-- (ACC) + 2*(((R8))\(R4))
; (R8) <-- (R8) - (QR1)
Addition Examples
Instr. MS opl op 2 ACC (before) ACC (after) N z C SV | E | SL
COoADD x | 0000, | FFFF, | 00 0100 0000 00 00OFF 0000y, 0 0 1 -l o | -
CoADD2 X 0000, | 0200y 00 0300 0000y, 00 0700 0000y, 0 0 0 - 0 -
CoADD 0 | 0000, | 4000, | 7F BFFF FFFF, || 7F FFFF FFFF, 0 0 0 - 1 -
COoADD 0 | 0001, | 4000, | 7F BFFF FFFF} 80 0000 0000y, 1 0 0 11| -
CoADD 0 | FFFF, | FFFF, | FF FFFF FFFF,, || FF FFFF FFFE, 1 0 1 - 0 -
CoADD 0 | FFFF, | FFFF, | 000000 0001, 00 0000 0000y, 0 1 1 - 1o -
CoADD 0 | FFFF, | FFFF, | 80 0000 0000}, 7F FFFF FFFF;, 0 0 1 1|1 -
CoADD2 0 0001, | 2000y FF C000 0001, 00 0000 0003y, 0 0 1 - 0 -
CoADD2 | 0 | 0001, | 1800, | FF CO00 0001} FF FO00 0003, 1 0 0 -l o | -
CoADD 0 | B4Al, | 73C2, | 007241 AOC3y, 00 E604 5564, 0 0 0 - 1 -
1 00 7FFF FFFF,, 0 0 0 - 0|1
CoADD 0 | B4A1, | A3C2;, | FF 8241 AOC3y, FF 2604 5564, 1 0 1 - 1 -
1 FF 8000 0000y, 1 0 1 - 0 1
CoADD 0 | B4A1, | 73C2, | 7F B241 AOC3,, 80 2604 5564, 1 0 0 1|1 -
CoADD 0 | B4A1, | A3C2;,, | 800241 AOC3, 7F A604 5564, 0 0 1 1|1 -
130/172 K7_I

ST10 FAMILY PROGRAMMING MANUAL

CoASHR Accunul ator Arithnetic Shift Right wth Optional Round
G oup Shift Instructions
Synt ax CoASHRop1
CoASHR opl, rnd
Oper ati on (count) <-- (opl)
(O <-- 0
DO WVHI LE (count) # O
(ACC,) <-- (ACGyq) [n=0-38]
(count) <-- (count) -1
END WHI LE
I F (rnd) THEN
(ACC) <-- (ACC) + 00008000H
(MAL) <-- 0
END | F
Data Types ACCUMULATOR
Resul t 40-bit signed val ue
Description

Arithmetically shifts the ACC register right by as many times as specified by the operand opl. To preserve
the sign of the ACC register, the most significant bits of the result are filled with sign 0O if the original most
significant bit was a 0 or with sign 1 if the original most significant bit was 1. Only shift values between 0
and 8 are allowed. “opl1” can be either a 5-bit unsigned immediate data, or the least significant 5 bits (con-
sidered as unsigned data) of any register directly or indirectly addressed operand. Without “rnd” option,
the MS bit of the MCW register does not affect the result. While with “rnd” option and if the MS bit is set
and when a 32-bit overflow or underflow occurs, the obtained result becomes 00 7FFF FFFF, or FF 8000
0000y, respectively. This instruction is repeatable when “op 1” is not an immediate operand.

MAC Flags
N z C S\ E SL
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result equals zero. Cleared otherwise.
C Set if a carry is generated (rnd). Cleared otherwise.
SV Set if an arithmetic overflow occurred (rnd). Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SL Set if the contents of the ACC is automatically saturated (rnd). Not affected otherwise

Addressing Modes

Mnemonic Rep Format Bytes
CoASHR Rw, Yes A3 nn AA rrrr:r000 4
CoASHR Rw,, rnd Yes A3 nn BA rrrr:r000 4
CoASHR #dat ag No A3 00 A2 ssss:s000 4
CoASHR #dat ag, rnd No A3 00 B2 ssss:s000 4
CoASHR [Rw,d] Yes 83 mMm AA rrrr:rqqq 4
CoASHR [Rw. 7], rnd Yes 83 mMm BA rrrr:rqqq 4
Examples

CoASHR #3, rnd i (ACC) <-- (ACC) >>a 3 + rnd

CoASHR R3 7 (ACC) <-- (ACC) >>a (R3)4.9

CoASHR [R10 - QRO] 7 (ACO) <-- (ACQ) >>a ((R10)) 4.9

; (RL0) <-- (R10) - (QRO)
Kﬁ 131/172

ST10 FAMILY PROGRAMMING MANUAL

CoCWP Conpar e

G oup Compare I nstructions

Synt ax CoCVP opl, op2

Oper ati on tnp <-- (op2)\(opl)
(ACC) <--> (tnp)

Data Types DOUBLE WORD

Description

Subtracts a 40-bit signed operand from the 40-bit Accumulator content and update the N, Z and C flags
contained in the MSW register leaving the accumulator unchanged. The 40-bit operand results from the
concatenation, “\”, of the two source operands opl (LSW) and op2 (MSW) which is then sign-extended.
The MS bit of the MCW register does not affect the result. This instruction is not repeatable and allows up
to two parallel memory reads.

MAC Flags
N z C S\ E SL
N Set if the most significant bit of the result is set. Cleared otherwise.
z Set if the result equals zero. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
SV Not affected.
E Not affected.
SL Not affected.

Addressing Modes

Mnemonic Rep Format Bytes
CoCMP Rw,, Rwp No A3 nm C2 00 4
CoCWP [1DX O], [RwI] No 93 Xm C2 0: 0qqq 4
CoCMP Rw,, [Rw] No 83 nm C2 0: 0qqq 4
Examples

CoCMP [1 DX1+QX0], [R11+QR1] i MBWN, Z,0) <--(ACC) - ((R11))\((I1DX1))

- (R11) <-- (R11) + (QR1)
- (IDX1) <-- (IDX1) + (QX0)

CoCMWP RL, [R2-] © MBWN, Z, O <-- (ACO) - ((R2))\(R1)
; (R2) <-- (R2) - 2
CoCMWP R2, R5 © MBWN, Z, O <-- (ACC) - (R5)\(R2)

132/172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

CoLQA(2) (-)
G oup

Synt ax
Operation

Synt ax
Operation

Synt ax
Operation

Synt ax
Operation

Data Types
Resul t

Description

Load Accunul at or

40-bit Arithnetic I nstructions

CoLOAD opl,

(tnp)
(ACC)

CoLOAD-

(tnp)
(ACC)

CoLQOAD2 opl,

(tnp)
(ACC)

CoLOAD2-

(tnp)
(ACC)

DOUBLE WORD

opl,

op2
<- -
<- -
opl!
<- -
<- -

<- -
<- -

<- -
<- -

40-bit signed val ue

*

+

*

(op2)\ (opl)
0 + (tnp)
op2

(op2)\ (opl)
0

(tnp)

(op2)\ (opl)
(tnp)

(op2)\ (opl)
(tnp)

Loads the accumulator with a 40-bit source operand. The 40-bit source operand results from the concate-

nation of the two source operands opl (LSW) and op2 (MSW) which is then sign-extended. “2” and

options indicate that the 40-bit operand is also multiplied by two or/and negated, respectively, prior being
stored in the accumulator. The “-” option indicates that the source operand is 2's complemented. When
the MS bit of the MCW register is set and when a 32-bit overflow or underflow occurs, the obtained result
becomes 00 7FFF FFFF,, or FF 8000 0000}, respectively. This instruction is not repeatable and allows up
to two parallel memory reads.

MAC Flags

N z C S\ E SL
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result equals zero. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
SV Not affected.
E Set if the MAE is used. Cleared otherwise.
SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.
Addressing Modes
Mnemonic Rep Format Bytes
CoLOAD Rw,, Rwp, No A3 nm 22 00 4
CoLQAD- Rw,, Rwp No A3 nm 2A 00 4
CoLOAD2 Rw,, Rwp No A3 nm 62 00 4
CoLOAD2- Rw,, Rwp No A3 nm 6A 00 4
CoLOAD [1DX O], [Rw,/] No 93 Xm 22 0: 0qqq 4
CoLQAD- [1DX O], [Rw,/] No 93 Xm 2A 0: 0qqq 4
CoLOAD2 [1DX 0], [Rw{J] No 93 Xm 62 0: 0qqq 4
CoLOAD2- [1DX 0], [Rw{d] No 93 Xm 6A 0: 0qqq 4
CoLOAD Rw,, [RwJ] No 83 nm 22 0: 0qqq 4
CoLQAD Rw,, [RwJ] No 83 nm 2A 0: 0qqq 4
CoLOAD2 Rw,, [RwJ] No 83 nm 62 0: 0qqq 4
CoLOAD2- Rw,, [RwJ] No 83 nm 6A 0: 0qqq 4
£77 133/172

ST10 FAMILY PROGRAMMING MANUAL

CoMAC(R/ -) Mul ti ply-Accunul ate & Optional Round

G oup Mul tiply/Miltiply-Accunul ate Instructions
Synt ax CoMAC opl, op2

Oper ati on IF (MP = 1) THEN

(tmp) <-- ((opl) * (op2)) << 1
(ACC) <-- (ACQ) + (tnp)
ELSE
(tmp) <-- (opl) * (op2)
(ACC) <-- (ACC) + (tnp)

END | F
Synt ax CoMAC opl, op2, rnd
Oper ati on IF (MP = 1) THEN

(tmp) <-- ((opl) * (op2)) << 1

(ACC) <-- (ACC) + (tnmp) + 00 0000 8000
ELSE

(tmp) <-- (opl) * (op2)

(ACC) <-- (ACC) + (tnp) + 00 0000 8000

END | F

(MAL) <-- O
Synt ax CoMAC- opl, op2
Oper ati on IF (MP = 1) THEN

(tmp) <-- ((opl) * (op2)) << 1
(ACC) <-- (ACC) - (tnp)
ELSE
(tmp) <-- (opl) * (op2)
(ACC) <-- (ACC) - (tnp)

END | F
Synt ax CoMACR opl, op2
Oper ati on IF (MP = 1) THEN

(tmp) <-- ((opl) * (op2)) << 1
(ACQ) <-- (tmp) - (ACC)

ELSE
(tmp) <-- (opl) * (op2)
(ACC) <-- (tmp) - (ACC)

END | F
Synt ax CoMACRop1, op2, rnd
Operation IF (MP = 1) THEN

(tmp) <-- ((opl) * (op2)) << 1

(ACC) <-- (tnp) - (ACC) + 00 0000 8000
ELSE

(tmp) <-- (opl) * (op2)

(ACC) <-- (tnp) - (ACC) + 00 0000 8000

END | F
(MAL) <-- O
Data Types DOUBLE WORD
Resul t 40-bit signed val ue

Description

Multiplies the two signed 16-bit source operands “opl” and “op2”. The obtained signed 32-bit product is first
sign-extended, then the condition MP flag is set, it is one-bit left shifted, then it is optionally negated prior
being added/subtracted to/from the 40-bit ACC register content. Finally, the obtained result is optionally
rounded before being stored in the 40-bit ACC register. The “-” option is used to negate the specified product,
the “R” option is used to negate the accumulator content, and finally the “rnd” option is used to round the
result using two’s complement rounding. The default sign option is “+” and the default round option is “no
round”. When “rnd” option is used, MAL register is automatically cleared. Note that “rnd” and “-” are exclusive
as well as “-” and “R”. This instruction might be repeated and allows up to two parallel memory reads.

134/172 KY_I

ST10 FAMILY PROGRAMMING MANUAL

MAC Flags
N

SV E SL

*

numwuoOoNZ2

Addressing Modes

Mnemonic

CoMAC
CoNVAC-
CoMAC
CoMACR
CoMACR
CoMAC
CoNVAC-
CoMAC
CoMACR
CoMACR
CoMAC
CoNAC-
CoMVAC
CoMACR
CoMACR

Examples

CoMAC
CoNAC-

CoMAC

3§ 3§ 3§ 3§

Rw,, Rw,
[1Dx 0],
[1DX O],
[1DX 0],
[1DX O],
[1DX 0],

r nd

rnd

[Rwpfd]
[Rwpf]
[Rwpf1],
[Rwpf]
[Rwpf1],

Rwp, [Rwi{d]
Rup, [Rwi{d]
[RwWH], rnd

RW,,
R, [Ryf]
RW,,

[RwWH], rnd

R3, R4, rnd

R2, [R6+]

[1 DXO+QX0] ,

Repeat 3 tinmes CoMAC

CoMVAC

[1DX1 -

Repeat MRWtinmes CoMAC

CoMAC - R3,

CoMACR

b7

[1DX1],

[R7 - QRO]

Qx1],

[R4+],

r nd

r nd

[R11+QRO]

[RO+QR1]

rnd

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result equals zero. Cleared otherwise.
Set if a carry or borrow is generated. Cleared otherwise.
\% Set if an arithmetic overflow occurred. Not affected otherwise.
Set if the MAE is used. Cleared otherwise.
L Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Rep Format Bytes
No A3 nm DO 00

No A3 nm EO 00

No A3 nm D1 00

No A3 nm FO 00

No A3 nm F1 00

Yes 93 Xm DO rrrr:rqqq

Yes 93 XmEO rrrr:rqqq

Yes 93 Xm D1 rrrr:rqqq

Yes 93 XmFO rrrr:rqqq

Yes 93 XmF1 rrrr:rqqq
Yes 83 nmDO rrrr:rqqq
Yes 83 nmEO rrrr:rqqq
Yes 83 nm Dlrrrr:rqqq
Yes 83 nmFO rrrr:rqqq
Yes 83 nmF1 rrrr:rqqq

B R L T T T S N s N S N S N)

(ACC) <-- (ACC) + (R3)*(R4) + rnd
(ACC) <-- (ACQ) (R2)*((R6))

(R6) <-- (RB) +
(ACC) <-- (ACC) + ((1DX0))*((RL1))

(R11) <-- (RL1) + (QRO)
(I1DX0) <-- (IDX0) + (QX0)

+ N

+

(ACC) <-- (ACC) + ((IDX1))*((R9))
(R9) <-- (R9) + (QR1)
(IDX1) <-- (IDX1) - (QX1)

(ACC) <-- (ACQ) - (R3)*((R7))

(R7) <-- (R7) - (QRO)

(ACC) <-- ((IDX1))*((R4)) - (ACC) + rnd
(R4) <-- (R4) + 2

135/172

ST10 FAMILY PROGRAMMING MANUAL

CoMAC(R) u(-) Unsi gned Mul tiply-Accunul ate & Optional Round
G oup Mul tiply/Miltiply-Accunul ate Instructions
Synt ax CoMACuU opl, op2
Oper ati on (tnp) <-- (opl) * (op2)
(ACO) <-- (ACC) + (tnp)
Synt ax CoMACu opl, op2, rnd
Operation (tmp) <-- (opl) * (op2)
(ACC) <-- (ACO) + (tnp) + 00 0000 8000y
(MAL) <-- O
Synt ax CoMACu- opl, op2
Oper ati on (tnp) <-- (opl) * (op2)
(ACO) <-- (ACC) - (tnp)
Synt ax CoMACRu opl, op2
Oper ati on (tnp) <-- (opl) * (op2)
(ACC) <-- (tnp) - (ACQ)
Synt ax CoMACRu op1, op2, rnd
Operation (tmp) <-- (opl) * (op2)
(ACC) <-- (tnp) - (ACC) + 00 0000 8000y
(MAL) <-- O
Data Types DOUBLE WORD
Resul t 40-bit signed val ue
Description

Multiplies the two unsigned 16-bit source operands “opl” and “op2”. The obtained unsigned 32-bit prod-
uct is first zero-extended and then optionally negated prior being added/subtracted to/from the 40-bit
ACC register content, finally, the obtained result is optionally rounded before being stored in the 40-bit
ACC register. The result is never affected by the MP mode flag contained in the MCW register. “-” option
is used to negate the specified product, “R” option is used to negate the accumulator content, and finally
“rnd” option is used to round the result using two’s complement rounding. The default sign option is “+”
and the default round option is “no round”. When “rnd” option is used, MAL register is automatically
cleared. Note that “rnd” and “-" are exclusive as well as “-” and “R”. This instruction might be repeated and
allows up to two parallel memory reads.

MAC Flags
N z C S\ E SL
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result equals zero. Cleared otherwise.
C Set if a carry or borrow is generated. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

4

136/172

ST10 FAMILY PROGRAMMING MANUAL

Addressing Modes

Mnemonic

CoMACu
CoMACu-
CoMACu
CoMACRu
CoMACRu
CoMACuU
CoMACu-
CoNMACu
CoMACRu
CoMACRu
CoMACu
CoMACu-
CoMACu
CoMACRu
CoMACRu

Examples

CoMACu
CoMACu-
CoMACu

Repeat 3 tines

Repeat MRW
tinmes

CoMACRu

4

3§ 3§ 3§ 3§

Rw,, Rw,
[1Dx O],
[1Dx 0],
[1Dx O],
[1Dx 0],
[1Dx O],

r nd

rnd

[Rw{]]

[Rwi{]
[RwH], rnd
[Ry]
[RwH], rnd

Rwh, - [R[]

Rw,

R5, RS,
R2, [R7]
[1DXO0 -

CoMACu [1 DX1+],

CoMACu- R3, [R7 - QRO]

[1DXL -

e [Rwefd]
, [Rwyd], rnd

[Rw]
, [Rwyd], rnd

rnd

QX0], [Ril -

QX0], [R4],

[RO-]

Py

ep

S
S
S
S
Yes
Yes
Yes
Yes
Yes
Yes

S oo 0688586

QRO]

r nd

’
1

Format Bytes

A3 nm 10 00
A3 nm 20 00
A3 nm 11 00
A3 nm 30 00
A3 nm 31 00
93 Xm 10 rrrr:rqqq
93 Xm 20 rrrr:rqqq
93 Xm 11 rrrr:rqqq
93 Xm 30 rrrr:rqqqg
93 Xm 31 rrrr:rqqq
83 nm 10 rrrr:rqqq
83 nm 20 rrrr:rqqq
83 nm 11 rrrr:rqqq
83 nm 30 rrrr:rqqq
83 nm 31 rrrr:rqqq

E N N S T S T S T S N S N S S S S .)

(ACC) <-- (ACC) + (R5)*(R8) + rnd
(ACQ) <-- (ACQ) - (R2)*((R7))
(ACC) <-- (ACC) +

((1DX0))*((R11))

(R11) <-- (RL1) - (QRO)

(1DX0) <-- (1DX0) - (QX0)

(ACC) <-- (ACC) + ((IDX1))*((R9))
(RO) <-- (R9) - 2

(IDX1) <-- (IDX1) + 2

(ACQC) <-- (ACC) - (R3)*((R7))

(R7) <-- (R7) - (QRO)
(ACC) <-- ((IDX1))*((R4))-(ACC)+

r nd

(IDX1) <-- (IDX1) - (QX0)

137/172

ST10 FAMILY PROGRAMMING MANUAL

CoMAC(R) us(-) M xed Mul tiply-Accunul ate & Optional Round
G oup Mul tiply/Miltiply-Accunul ate Instructions
Synt ax CoMACus opl, op2
Oper ati on (tnp) <-- (opl) * (o0p2)
(ACO) <-- (ACC) + (tnp)
Synt ax CoMACus opl, op2, rnd
Oper ati on (tnp) <-- (opl) * (o0p2)
(ACC) <-- (ACC) + (tnp) + 00 0000 8000y
(MAL) <-- O
Synt ax CoMACus- opl, op2
Oper ati on (tnp) <-- (opl) * (op2)
(ACO) <-- (ACC) - (tnp)
Synt ax CoMACRus opl, op2
Oper ati on (tnp) <-- (opl) * (op2)
(ACQ) <-- (tnp) - (ACQ
Synt ax CoMACRus opl, op2, rnd
Oper ati on (tnp) <-- (opl) * (op2)
(ACC) <-- (tnp) - (ACC) + 00 0000 8000y
(MAL) <-- O
Data Types DOUBLE WORD
Resul t 40-bit signed val ue
Description

Multiplies the two unsigned and signed 16-bit source operands “opl” and “op2”, respectively. The
obtained signed 32-bit product is first sign-extended, and then, it is optionally negated prior being added/
subtracted to/from the 40-bit ACC register content, finally the obtained result is optionally rounded before
being stored in the 40-bit ACC register. The result is never affected by the MP mode flag contained in the
MCW register. “-” option is used to negate the specified product, “R” option is used to negate the accumu-
lator content, and finally “rnd” option is used to round the result using two’s complement rounding. The
default sign option is “+” and the default round option is “no round”. When “rnd” option is used, MAL reg-
ister is automatically cleared. Note that “rnd” and “-” are exclusive as well as “-” and “R”. This instruction
might be repeated and allows up to two parallel memory reads.

MAC Flags
N z C S\ E SL
N Set if the most significant bit of the result is set. Cleared otherwise.
z Set if the result equals zero. Cleared otherwise.
C Set if a carry or borrow is generated. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

g

138/172

ST10 FAMILY PROGRAMMING MANUAL

Addressing Modes

Mnemonic Rep Format Bytes
CoMACus Rw,, Rwg, No A3 nm 90 00 4
CoMACus- Rw,, Rw, No A3 nm A0 00 4
CoMACus Rw,, Rw, rnd No A3 nm 91 00 4
CoMACRus Rw,, Rw, No A3 nm BO 00 4
CoMACRus Rw,, Rw, rnd No A3 nm Bl 00 4
CoMACus [1DX 0], [Rw] Yes 93 Xm 90 rrrr:rqqq 4
CoMACus- [1DX O], [Rwd] Yes 93 Xm A0 rrrr:rqqq 4
CoMACus [I1DX0], [Rw,2], rnd Yes 93 Xm 91 rrrr:rqqq 4
CoMACRus [1DX O], [Rwd] Yes 93 XmBO rrrr:rqqq 4
CoMACRus [I1DX0], [Rw,2], rnd Yes 93 Xm Bl rrrr:rqqq 4
CoMACus Rw,, [Rw,d] Yes 83 nm90 rrrr:rqqq 4
CoMACus- Rw,, [Rw 1] Yes 83 nm A0 rrrr:rqqq 4
CoMACus Rw,, [Rw,d], rnd Yes 83 nm 91 rrrr:rqqq 4
CoMACRus Rw,, [Rw /1] Yes 83 nmBO rrrr:rqqq 4
CoMACRus Rw,, [Rw,d], rnd Yes 83 nmBl rrrr:rqqq 4
Examples

CoMACus R5, R8, rnd i (ACO <-- (ACQ + (R5)*(R8) + rnd
CoMACus- R2, [R7] i (ACO <-- (ACO - (R2)*((R7))
CoMACus [IDXO - QX0], [R11 - QRO] ; (ACO <-- (ACO + ((IDX0))*((R11))

; (R11) <-- (R11) - (QRO)
; (IDX0) <-- (IDX0) - (QX0)
Repeat 3 tines CoMACus[| DX1+], [RO-] i (ACO <-- (ACO + ((IDX1))*((R9))
; (R9) <-- (R9) - 2
; (IDX1) <-- (IDX1) + 2

Repeat MRWtinmes CoMAQus- R3, [R7 - QRO] ; (ACO <-- (ACO - (R3)*((R7))
; (R7) <-- (R7) - (QRO)
CoMACRus [IDX1 - QX0], [R4], rnd ; (ACC) <-- ((IDX1))*((R4))-(ACC) +rnd

© (IDX1) <-- (IDX1) - (QX0)

139/172

4

ST10 FAMILY PROGRAMMING MANUAL

CoMAC(R) su(-)

M xed Mul tiply-Accunul ate & Optional Round

G oup Mul tiply/Miltiply-Accunul ate Instructions
Synt ax CoMACsu opl, op2
Oper ati on (tnp) <-- (opl) * (op2)
(ACQ) <-- (ACQ) + (tnp)
Synt ax CoMACsu opl, op2, rnd
Oper ati on (tnp) <-- (opl) * (op2)
(ACC) <-- (ACC) + (tnp) + 00 0000 8000
(MAL) <-- 0
Synt ax CoMACsu- opl, op2
Oper ati on (tnp) <-- (opl) * (op2)
(ACQ) <-- (ACQ) - (tnp)
Synt ax CoMACRsu opl, op2
Oper ati on (tnp) <-- (opl) * (op2)
(ACQ) <-- (tnmp) - (ACQ
Synt ax CoMACRsu opl, op2, rnd
Oper ati on (tnp) <-- (opl) * (op2)
(ACC) <-- (tnp) - (ACC) + 00 0000 8000
(MAL) <-- 0
Data Types DOUBLE WORD
Resul t 40-bit signed val ue
Description

Multiplies the two signed and unsigned 16-bit source operands “opl” and “op2”, respectively. The
obtained signed 32-bit product is first sign-extended, and then, it is optionally negated prior being added/
subtracted to/from the 40-bit ACC register content, finally the obtained result is optionally rounded before
being stored in the 40-bit ACC register. The result is never affected by the MP mode flag contained in the
MCW register. “-” option is used to negate the specified product, “R” option is used to negate the accumu-
lator content, and finally “rnd” option is used to round the result using two’s complement rounding. The
default sign option is “+” and the default round option is “no round”. When “rnd” option is used, MAL reg-
ister is automatically cleared. Note that “rnd” and “-” are exclusive as well as “-” and “R”. This instruction
might be repeated and allows up to two parallel memory reads.

MAC Flags
N z C S\ E SL
N Set if the most significant bit of the result is set. Cleared otherwise.
z Set if the result equals zero. Cleared otherwise.
C Set if a carry or borrow is generated. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.
140/172 IS7}

ST10 FAMILY PROGRAMMING MANUAL

Addressing Modes

Mnemonic

CoMACsu
CoMACsu-
CoMACsu
CoMACRsu
CoMACRsu
CoMACsu
CoMACsu-
CoMACsu
CoMACRsu
CoMACRsu
CoMACsu
CoMACsu-
CoMACsu
CoMACRsu
CoMACRsu

Examples

CoMACsu
CoMACsu-
CoMACsu

Repeat 3 tines

Repeat MRWti mes

CoMACRsu

4

Rep

Rw,, Rwy No
Rw,, Rw, No
Rw,, Rw, rnd No
Rw,, Rw, No
Rw,, Rw, rnd No
[1DX O], [Rw,/] Yes
[1DX 0], [Rw/] Yes
[1DX 0], [Rw,], rnd Yes
[1DX 0], [Rwy] Yes
[1DX 0], [Rw,], rnd Yes
Rw,, [Rw,d] Yes
Rw,, [Rw{]] Yes
Rw,, [Rw,d], rnd Yes
Rw,, [Rw{]] Yes
Rw,, [Rw,d], rnd Yes

R5, R8, rnd

R2, [R7]

[IDX0 - QXO],

CoMACsu [| DX1+],

[1DXL - QXO],

CoMACsu- RS,

[R4],

[RIL - QRO] ;

-]

[R7 - QRO]

rnd

Format

A3
A3
A3
A3
A3
93
93
93
93
93
83
83
83
83
83

nm 50
nm 60
nm 51
nm 70
nm 71
Xm 50
Xm 60
Xm 51
Xm 70
Xm 71
nm 50
nm 60
nm 51
nm 70
nm 71

(ACO <--
(ACO) <--
(ACO <--
(R11) <--

(1DX0) <--

(ACO) <--
(R9) <-- (R9) -

(1DX1) <--

(ACO <--

(R7) <-- (R7)

(ACO <--

(1DX1) <--

00
00
00
00
00
rrrr:
rerr:
rrrr:
rerr:
rrrr:
rrrr:
rrrr:
rrrr:
rrrr:
rrrr:

rqqq
rqqq
rqqq
rqqq
rqqq
rqqq
rqqq
rqqq
rqqq
rqqq

(1DX0) -

(IDX1) + 2

(ACO) - (R3)*((R7))

- (QRO)
((1DX1))*((R4)) - (ACQ

2

(1DX1) -

Bytes

B S S T S T T S N S Y S N N S S N 0N

(ACCO) + (R5)*(R8) + rnd
(ACO) - (R2)*((R7))
(ACC) + ((1Dx0))*((RL1))
(R11) - (QRO)

(ACC) + ((1DX1))*((R9))

141/172

ST10 FAMILY PROGRAMMING MANUAL

CoMACM R/ -) Mul ti ply-Accunul at e
Paral l el Data Move & Optional Round
G oup Mul tiply/Miltiply-Accunul ate Instructions
Synt ax CoMACM opl, op2
Oper ati on IF (MP = 1) THEN
(tmp) <-- ((opl))*((op2)) << 1
(ACQ) <-- (ACQ) + (tnp)
ELSE
(tnp) <-- ((op1))*((op2))
(ACC) <-- (ACC) + (tnp)
END | F
((IDX(-0))) <-- ((1DX))
Synt ax CoMACM opl, op2, rnd
Oper ati on IF (MP = 1) THEN
(tnp) <-- ((opl))*((op2)) << 1
(ACC) <-- (ACC) + (tnp) + 00 0000 8000
ELSE
(tmp) <-- ((opl))*((op2))
(ACC) <-- (ACC) + (tnp) + 00 0000 8000
END | F
(MAL) <-- 0
((1DX (-0)) " ((IDX i)
Synt ax CoMACM- opl, op2
Oper ati on IF (MP = 1) THEN
(tmp) <-- ((op1))*((0p2)) << 1
(ACC) <-- (ACC) - (tmp)
ELSE
(tmp) <-- ((op1))*((op2))
(ACC) <-- (ACC) - (tmp)
END IF
((IDX (- 0))) < ((IDX i)
Synt ax CoMACMR opl, op2
Oper ati on IF (MP = 1) THEN
(tmp) <-- ((op1))*((0p2)) << 1
(ACC) <-- (tmp) - (ACC)
ELSE
(tmp) <-- ((op1))*((op2))
(ACC) <-- (tmp) - (ACC)
END IF
((IDX (- 0))) < ((IDX i)
Synt ax CoMACMR opl, op2, rnd
Oper ati on IF (MP = 1) THEN
(tmp) <-- ((op1))*((0p2)) << 1
(ACC) <-- (tmp) - (ACC) + 00 0000 8000 h
ELSE
(tmp) <-- ((op1))*((op2))
(ACC) <-- (tmp) - (ACC) + 00 0000 8000 h
END IF
(MAL) <-0
(IDX i (- 0))) <-- (DX i)
Data Types DOUBLE WORD
Resul t 40-bit signed value

142/172

ST10 FAMILY PROGRAMMING MANUAL

Description

Multiplies the two signed 16-bit source operands “opl” and “op2”. The obtained signed 32-bit product is
first sign-extended, then and on condition the MP flag is set, it is one-bit left shifted, and next, it is option-
ally negated prior being added/subtracted to/from the 40-bit ACC register content, finally the obtained
result is optionally rounded before being stored in the 40-bit ACC register. “-” option is used to negate the
specified product, “R” option is used to negate the accumulator content, and finally “rnd” option is used to
round the result using two’s complement rounding. The default sign option is “+” and the default round
option is “no round”. When “rnd” option is used, MAL register is automatically cleared. Note that “rnd” and
“-” are exclusive as well as “-” and “R”. This instruction might be repeated and performs two parallel mem-
ory reads. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDX;
overwrites another data located in memory (DPRAM). The address of the overwritten data depends on
the operation executed on IDX;, as explained by the following table

Addressing Mode Overwritten Address

[IDX] (no change)
[IDX;+] (IDX) - 2
[IDX;] (IDX;) + 2

[IDX+QX] (IDX) - (QX)

[IDX; -QXj] (IDX)) + (QX)

MAC Flags
N 4 C SV E SL

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Addressing Modes

Mnemonic Rep Format Bytes
CoMACM [1D% 0], [Rwf] Yes 93 Xm D8 rrrr:rqqq 4
CoMACM [1DX 0], [Rwaf] Yes 93 XmE8 rrrr:rqqq 4
CoMACM [1DX 0], [Rw,], rnd Yes 93 Xm D9 rrrr:rqqq 4
CoMACMR (1ox 0], [Rw] Yes 93 Xm F8 rrrr:rqqq 4
CoMACMR [IDX%0], [Rw{], rnd Yes 93 Xm F9 rrrr:rqqq 4

4

143/172

ST10 FAMILY PROGRAMMING MANUAL

Examples

CoMACM [I DX1+QX0], [RIO+QR1], rnd ; (ACC) <-- (ACCO + ((IDX1))*((RLO)) + rnd
; (R10) <-- (R10) + (QR1)
; (((IDX1)-(QX0))) <-- ((IDX1))
i (I1DX1) <-- (IDX1) + (QX0)

Repeat 3 tinmes CoMACM

CoMACM [IDX0 - QX0], [R8+QRO] ; (ACC) <-- (ACC) + ((1DX0))*((R8))
; (R8) <-- (R8) + (QRO)
;. (((1IDX0) + (QX0))) <-- ((1DX0))
; (IDX0) <-- (IDX0) - (QX0)

Repeat MRWtinmes CoMACM

CoMACM [I DX1+QX1], [R7 - QRO] ; (ACC) <-- (ACC) - ((IDX1))*((R7))
; (R7) <-- (R7) - (QRO)
; (((IDX1) - (QX1))) <-- ((1DX1))
;o (I1DX1) <-- (IDX1) + (QX1)

144/172 KY_I

ST10 FAMILY PROGRAMMING MANUAL

CoMACM R) u(-) Unsi gned Mul tiply-Accumul ate

Paral l el Data Move & Optional Round

G oup Mul tiply/Miltiply-Accunul ate Instructions

Synt ax CoMACMU opl, op2

Qperation (tmp) <-- ((opl))*((op2))
(ACQO) <-- (ACQ) + (tnp)
((rox(-0))) <-- ((1DX))

Synt ax CoMACMU opl, op2, rnd

Operation (tmp) <-- ((opl))*((op2))
(ACC) <-- (ACC) + (tnp) + 00 0000 8000y
(MAL) <-- 0
(10X (-0))) <-- ((IDX))

Synt ax CoMACMUI- opl, op2

Operation (tmp) <-- ((opl))*((op2))
(ACQO) <-- (ACQ) - (tnp)
((rox(-0))) <-- ((1DX))

Synt ax CoMACVRuU opl, op2

Operation (tmp) <-- ((opl))*((op2))
(ACQO) <-- (tmp) - (ACQ)
((rox(-0))) <-- ((1DX))

Synt ax CoMACMRU opl, op2, rnd

Operation (tmp) <-- ((opl))*((op2))
(ACC) <-- (tnp) - (ACC) + 00 0000 8000
(MAL) <-- O
((rox(-0))) <-- ((1DX))

Data Types DOUBLE WORD

Resul t 40-bit signed val ue

Description

Multiplies the two signed 16-bit source operands “opl” and “op2”. The unsigned 32-bit product is first
zero-extended, then optionally negated prior being added/subtracted to/from the 40-bit ACC register
content, finally the obtained result is optionally rounded before being stored in the 40-bit ACC register. “-”
option is used to negate the specified product, “R” option is used to negate the accumulator content, and
finally “rnd” option is used to round the result using two’s complement rounding. The default sign option is
“+” and the default round option is “no round”. When “rnd” option is used, MAL register is automatically
cleared. Note that “rnd” and “-” are exclusive as well as “-" and “R”. This instruction might be repeated and
performs two parallel memory reads. In parallel to the arithmetic operation and to the two parallel reads,
the data pointed to by IDX; overwrites another data located in memory (DPRAM). The address of the
overwritten data depends on the operation executed on IDX;,, as illustrated by the following table.:

Addressing Mode Overwritten Address
[IDX] (no change)
[IDX;+] (IDX)- 2
[IDX;] (IDX;) + 2

[IDXi+QX]] (IDX) - (QX)
[IDX;-QXj] (IDX)) + (QX))

4

145/172

ST10 FAMILY PROGRAMMING MANUAL

MAC Flags

N z C S\ E SL
N Set if the most significant bit of the result is set. Cleared otherwise.
z Set if the result equals zero. Cleared otherwise.
C Set if a carry or borrow is generated. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.
Addressing Modes
Mnemonic Rep Format Bytes
CoMACMU [1DX 0], [Rw] Yes 93 Xm 18 rrrr:rqqq 4
CoMACMU- [1DX O], [Rwd] Yes 93 Xm 28 rrrr:rqqq 4
CoMACMU [I1DX 0], [Rwfd], rnd Yes 93 Xm 19 rrrr:rqqq 4
CoMACMRU [1DX O], [Rwd] Yes 93 Xm 38 rrrr:rqqq 4
CoMACMRU [1DX 0], [Rw,/J], rnd Yes 93 Xm 39 rrrr:rqqq 4
Examples

CoMACMu [I DX1+QX0], [R10+QR1], rnd

Repeat 3 tinmes CoMACMU
CoMACMu [I1DX0 - QX0], [R8+QRO]

Repeat MRWtinmes CoMACMRU
CoMACMRU [I DX1+QX1], [R7 - QRO]

146/172

7 (ACC)<--(ACC)+ ((1DX1))

. (RLO) <--
; (((1DX1)
. (IDX1) <-

; (ACC) <--
; (R8) <--

. (1DX0) <-

; (ACC) <--
; (R7) <--

; (((1DX1)
i (IDX1) <-

(R10) + (QR1)

- (QX0)))
- (I1DX1) +

<- -

(QX0)

((1DX1))

(ACC) + ((IDX0))*((R8))
(R8) + (QRO)
o (((1DX0) + (QX0))) <--

- (1DX0) -

(QX0)

((1DX1))*((R7))
(R7) - (QRO)

- (QX1)))
- (I1DX1) +

<- -

(QX1)

((1DX0))

- (ACQ

((1DX1))

* ((R10))+ rnd

g

ST10 FAMILY PROGRAMMING MANUAL

CoMACM R) us(-) M xed Mul tiply-Accunul ate
Paral l el Data Move & Optional Round
G oup Mul tiply/Miltiply-Accunul ate Instructions
Synt ax CoMACMusS opl, op2
Operation (tmp) <-- ((opl))*((op2))
(ACQO) <-- (ACQ) + (tnp)
((rox(-0))) <-- ((1DX))
Synt ax CoMACMus opl, op2, rnd
Operation (tmp) <-- ((opl))*((op2))
(ACC) <-- (ACC) + (tnp) + 00 0000 8000
(MAL) <-- 0
((rox(-0))) <-- ((1DX))
Synt ax CoMACMuUS - opl, op2
Operation (tmp) <-- ((opl))*((op2))
(ACQO) <-- (ACQ) - (tnp)
((IDx (-0))) <-- ((IDX))
Synt ax CoMACMRuUS opl, op2
Qperation (tmp) <-- ((opl))*((op2))
(ACQO) <-- (tmp) - (ACQ)
((IDx (-0))) <-- ((IDX))
Synt ax CoMACMRuUS opl, op2, rnd
Qperation (tmp) <-- ((opl))*((op2))
(ACC) <-- (tmp) - (ACC) + 00 0000 8000
(MAL) <-- 0
((IDx (-0))) <-- ((IDX))
Data Types DOUBLE WORD
Resul t 40-bit signed val ue
Description

Multiplies the two signed 16-bit source operands “opl” and “op2”. The obtained signed 32-bit product is
first sign-extended, it is then optionally negated prior being added/subtracted to/from the 40-bit ACC regis-
ter content, finally the obtained result is optionally rounded before being stored in the 40-bit ACC register.
“-” option is used to negate the specified product, “R” option is used to negate the accumulator content,
and finally “rnd” option is used to round the result using two’s complement rounding. The default sign
option is “+” and the default round option is “no round”. When “rnd” option is used, MAL register is automat-
ically cleared. Note that “rnd” and “-” are exclusive as well as “-” and “R”. This instruction might be repeated
and performs two parallel memory reads.

In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDX; overwrites
another data located in memory (DPRAM). The address of the overwritten data depends on the operation
executed on IDX;, as illustrated by the following table:

Addressing Mode Overwritten Address
[IDX] (no change)
[IDX;+] (IDX) - 2
[IDX;] (IDX;) + 2
[IDXi+QXj] (IDX;) - (QXJ-)
[IDX; - QXj] (IDX)) + (QX)

4

147172

ST10 FAMILY PROGRAMMING MANUAL

MAC Flags
N Z

SV E SL

* *

N Set if the most significant bit of the result is set. Cleared otherwise.
z Set if the result equals zero. Cleared otherwise.

C Set if a carry or borrow is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Addressing Modes

r nd

r nd

r nd

Mnemonic

CoMACMusS [IDX 0], [Rw,]
CoMACMuS- [1DX O], [Rw]
CoMACMuS [IDX 0], [Rw[l,
CoMACMRus [1DX O], [Rw]
CoMACMRusS [IDX 0], [Rw[l,
Examples

CoMACMUs [| DX1+QX0], [R10+QR1],
Repeat 3 tinmes CoMACMus

CoMACMUs [IDX0 - QX0], [R8+QRO]
Repeat MRW tinmes CoMACMRus
CoMACMRus [| DX1+QX1], [R7 - QRO],

148/172

rnd;

Rep Format Bytes
Yes 93 Xm 98 rrrr:rqqq 4
Yes 93 Xm A8 rrrr:rqqq 4
Yes 93 Xm 99 rrrr:rqqq 4
Yes 93 Xm B8 rrrr:rqqq 4
Yes 93 Xm B9 rrrr:rqqq 4

(ACC) <-- (ACC) + ((1DX1))*((RLO)) +rnd

(R10) <-- (R10) + (QR1)

(((IDX1) - (QX0)))<-- ((IDX1))
(IDX1) <-- (IDX1) + (QX0)

(ACC) <-- (ACC) + ((1DX0))*((R8))
(R8) <-- (R8) + (QRO)

(((IDX0) + (QX0))) <-- ((1DX0))
(1DX0) <-- (1DX0) - (QX0)

(ACC) <- - ((1 DX1)) * ((R7)) - (ACC) +r nd
(R7) <-- (R7) - (QRO)

(((IDX1) - (QX1)))<-- ((I1DX1))
(IDX1) <-- (IDX1) + (QX1)

g

ST10 FAMILY PROGRAMMING MANUAL

CoMACM R) su(-) M x. Ml tiply-Accunul ate
Paral l el Data Move & Optional Round
G oup Mul tiply/Miltiply-Accunul ate Instructions
Synt ax CoMACMs U opl, op2
Operation (tmp) <-- ((opl))*((op2))
(ACQO) <-- (ACQ) + (tnp)
((rox(-0))) <-- ((1DX))
Synt ax CoMACMs U opl, op2, rnd
Operation (tmp) <-- ((opl))*((op2))
(ACC) <-- (ACC) + (tnp) + 00 0000 8000
(MAL) <-- 0
((rox(-0))) <-- ((1DX))
Synt ax CoMACMB U- opl, op2
Operation (tmp) <-- ((opl))*((op2))
(ACQO) <-- (ACQ) - (tnp)
((IDx (-0))) <-- ((IDX))
Synt ax CoMACMRs U opl, op2
Qperation (tmp) <-- ((opl))*((op2))
(ACQO) <-- (tmp) - (ACQ)
((IDx (-0))) <-- ((IDX))
Synt ax CoMACMRs U opl, op2, rnd
Qperation (tmp) <-- ((opl))*((op2))
(ACC) <-- (tmp) - (ACC) + 00 0000 8000
(MAL) <-- 0
((IDx (-0))) <-- ((IDX))
Data Types DOUBLE WORD
Resul t 40-bit signed val ue
Description

Multiplies the two signed 16-bit source operands “opl” and “op2”. The obtained signed 32-bit product is
first sign-extended, it is then optionally negated prior being added/subtracted to/from the 40-bit ACC regis-
ter content, finally the obtained result is optionally rounded before being stored in the 40-bit ACC register.
“-” option is used to negate the specified product, “R” option is used to negate the accumulator content,
and finally “rnd” option is used to round the result using two’s complement rounding. The default sign
option is “+” and the default round option is “no round”. When “rnd” option is used, MAL register is automat-
ically cleared. Note that “rnd” and “-” are exclusive as well as “-” and “R”. This instruction might be repeated
and performs two parallel memory reads.

In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDX; overwrites
another data located in memory (DPRAM). The address of the overwritten data depends on the operation
executed on IDX;, as illustrated by the following table:

Addressing Mode Overwritten Address
[IDX] (no change)
[IDX;+] (IDX) - 2
[IDX;] (IDX;) + 2
[IDXi+QXj] (IDX;) - (QXJ-)
[IDX; - QXj] (IDX)) + (QX)

4

149/172

ST10 FAMILY PROGRAMMING MANUAL

MAC Flags

N z C S\ E SL
N Set if the m.s.b. of the result is set. Cleared otherwise.
z Set if the result equals zero. Cleared otherwise.
C Set if a carry or borrow is generated. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.
Addressing Modes
Mnemonic Rep Format Bytes
CoMACMs U [1DX 0], [Rw] Yes 93 Xm 58 rrrr:rqqq 4
CoMACMs u- [1DX O], [Rwd] Yes 93 Xm 68 rrrr:rqqq 4
CoMACMs U [1DX 0], [Rw/d], rnd Yes 93 Xm 59 rrrr:rqqq 4
CoMACMRS U [1DX O], [Rwd] Yes 93 Xm 78 rrrr:rqqq 4
CoMACVRs U [1DX 0], [Rw2], rnd Yes 93 Xm 79 rrrr:rqqq 4
Example

CoMACMsu [DX1+QX0], [RLO+Q@R1], rnd

Repeat 3 tines CoMACMsu
CoMACMsu [IDXO - QXO0], [R8+QRO], rnd

Repeat MRWtimes CoMACMRsu
CoMACMRsu [I DX1+QX1], [R7 - QRO], rnd

150/172

(ACC) <-- (ACC)+((1DX1))*((RL0)) + rnd
(R10) <-- (R10) + (QR1)

(((IDX1) -(QX0))) <-- ((1DX1))
(1DX1) <-- (IDX1) + (QX0)

(ACC) <-- (ACO + ((IDX0))*((R8))

(R8) <-- (RB)

+ (QRO)

(((IDX0) + (QX0)))<-- ((1DX0))
(1DX0) <-- (I1DX0) - (QX0)

(ACO <-- ((IDX1))*((R7)) - (ACC) + rnd

(R7) <-- (R7)

(((IDX1)) - (K1)) <-- ((1Dx1))

- (QRO)

(1DX1) <-- (IDX1) + (QX1)

g

ST10 FAMILY PROGRAMMING MANUAL

CoMAX Maxi mum
G oup Compare I nstructions
Synt ax CoMAXopl, op2
Oper ati on (tnp) <-- (op2)\(opl)
(ACQ) <-- max((ACQ), (tnmp))
Data Types DOUBLE WORD
Resul t 40-bit signed val ue
Description

Compares a signed 40-bit operand against the ACC register content. The 40-bit operand results from the
concatenation of the two source operands opl (LSW) and op2 (MSW) which is then sign-extended. If the
contents of the ACC register is smaller than the 40-bit operand, then the ACC register is loaded with it.
Otherwise the ACC register remains unchanged. The MS bit of the MCW register does not affect the
result. This instruction is repeatable with indirect addressing modes.

MAC Flags
N z C S\ E SL
* * 0 _ * *

N Set if the most significant bit of the result is set. Cleared otherwise.

z Set if the result equals zero. Cleared otherwise.

C Cleared always.

SV Not affected.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC register is changed. Not affected otherwise.

Addressing Modes

Mnemonic Rep Format Bytes
CoMAX Rw,, Rwp No A3 nm 3A 00 4
CoMAX [1DX 0], [RwI] Yes 93 Xm3A rrrr:rqqq 4
CoMAX Rw,, [Rw,d] Yes 83 nm3Arrrr:rqqq 4
Examples

CoMAX [1 DX1+QX0], [R11+QR1] 7 (ACC) <-- Max((ACO), ((R11))\((IDX1)))

- (R11) <-- (R11) + (QR1)
- (IDX1) <-- (IDX1) + (QX0)

CoMAX R1, R10 i (ACC) <-- Max((ACO, (R10)\(R1))
Repeat 23 tinmes CoMAX
CoMAX R5, [R6 - QRO] ; (ACC) <-- Max((ACC), ((RB))\(R5)))

. (R6) <-- (R6) - (QRO)

Kﬁ 151/172

ST10 FAMILY PROGRAMMING MANUAL

CoM N M ni mum
G oup Compare I nstructions
Synt ax CoM N opl, op2
Oper ati on (tnp) <-- (op2)\(opl)
(ACQ) <-- mn((ACC), (tnp))
Data Types DOUBLE WORD
Resul t 40-bit signed val ue
Description

Compares a signed 40-bit operand against the ACC register content. The 40-bit operand results from the
concatenation of the two source operands opl (LSW) and op2 (MSW) which is then sign-extended. If the
contents of the ACC register is greater than the 40-bit operand, then the ACC register is loaded with it.
Otherwise the ACC register remains unchanged. The MS bit of the MCW register does not affect the
result. This instruction is repeatable with indirect addressing modes.

MAC Flags
N z C S\ E SL
* * 0 _ * *

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Cleared always.

SV Not affected.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC register is changed. Not affected otherwise.

Addressing Modes

Mnemonic Rep Format Bytes
CoM N Rw,, Rwp, No A3 nm 7A 00 4

CoM N [1DX 0], [Rw] Yes 93 Xm 7A rrrr:rqqq 4

CoM N Rw,, [Rw,d] Yes 83 nm7A rrrr:rqqq 4
Examples

CoM N [1 DX1+QX0], [R11+QR1] i (ACO)<-- min((ACO, ((RIL))\((IDX1)))

© (RL1) <-- (RL1) + (QRL)
. (IDX1) <-- (I1DX1) + (QX0)

CoM N R1, R10 ; (ACC) <-- min((ACO, (RLO)\(R1))
Repeat 23 tinmes CoM N
CoM N R5, [R6 - QRO] ; (ACC) <-- min((ACO), ((RE))\(R5)))

. (R6) <-- (R6) - (QRO)

152/172 Ky_l

ST10 FAMILY PROGRAMMING MANUAL

CoMOV Menory to Menory Mbve
G oup Transfer Instructions
Synt ax CoMOV opl, op2
Oper ati on (op1) <-- (o0p2)
Data Types WORD

Description

Moves the contents of the memory location specified by the source operand, op2, to the memory location
specified by the destination operand opl. This instruction is repeatable. Note that, unlike for the other
instructions, IDX; can address the entire memory. This instruction does not affect the Mac Flags but mod-
ify the CPU Flags as any other MOV instruction.

CPU Flags
E z v C N
E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise.

Used to signal the end of a table.

z Set if the value of the source operand op2 equals zero. Cleared otherwise.
Vv Not affected.
C Not affected.
N Set if the most significant bit of the source operand op2 is set. Cleared otherwise.
MAC Flags
N z C S\ E SL
N Not affected.
Z Not affected.
C Not affected.
SV Not affected.
E Not affected.
SL Not affected.

Addressing Modes

Mnemonic Rep Format Bytes
CovOV [1DX 0], [Rw] Yes D3 Xm 00 rrrr:rqqq 4
Examples

Repeat 24 times CoMOV [IDX1+QX0], [RL1+QR1] - ((1DX1)) <-- ((RL1))
© (R11) <-- (RL1) + (QRL)

© (IDX1) <-- (I1DX1) + (QX0)

£’7 153/172

ST10 FAMILY PROGRAMMING MANUAL

CoMUL(-) Signed Miultiply & Optional Round
G oup Mul tiply/Miltiply-Accunul ate Instructions
Synt ax CoMJUL opl, op2
Oper ati on IF (MP = 1) THEN
(ACQ) <-- ((opl) * (op2)) <<1
ELSE
(ACQ) <-- (opl) * (op2)
END | F
Synt ax CoMUL- opl, op2
Oper ati on IF (MP = 1) THEN
(ACO) <-- - (((opl) * (0p2)) << 1)
ELSE
(ACQO) <-- - ((opl) * (op2))
END | F
Synt ax CoMJUL opl, op2, rnd
Operation IF (MP = 1) THEN
(ACC) <-- ((opl) * (op2)) << 1 + 00 0000 8000
ELSE
(ACC) <-- (opl) * (op2) + 00 0000 8000
END | F
(MAL) <-- 0
Data Types DOUBLE WORD
Resul t 32-bit signed val ue
Description

Multiplies the two signed 16-bit source operands “opl” and “op2”. The obtained signed 32-bit product is
first sign-extended, then and on condition MP is set, it is one-bit left shifted, and finally, it is optionally
either negated or rounded before being stored in the 40-bit ACC register. The “-” option is used to negate
the specified product while the “rnd” option is used to round the product using two’s complement round-
ing. The default sign option is “+” and the default round option is “no round”. When “rnd” option is used,
MAL register is automatically cleared. “rnd” and “-” are exclusive. This non-repeatable instruction allows
up to two parallel memory reads

MAC Flags
N z C Y E SL
* * 0 _ * *
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result equals zero. Cleared otherwise.
C Always cleared.
SV Not affected.
E Always cleared when MP is cleared, otherwise, only set in case of 8000, by 8000, multiplication.
SL Not affected when MP or MS are cleared, otherwise, only set in case of 8000;, by 8000y, multipli-
cation.
154/172 K7_I

ST10 FAMILY PROGRAMMING MANUAL

Addressing Modes

Mnemonic Rep Format Bytes
CoMJL Rw,, Rwyp, No A3 nm CO 00 4
CoMUL- Rw,, Rwg, No A3 nm C8 00 4
CoMJL Rw,, Rw, rnd No A3 nm Cl1 00 4
CoMUL [1DX 0], [Rw] No 93 Xm CO0 0: 0qqq 4
CoMUL- [1DX O], [RwI] No 93 Xm C8 0: 0qqq 4
CoMUL [1DX 0], [Rw,d], rnd No 93 Xm C1 0: 0qqq 4
CoMJL Rw,, [Rw,d] No 83 nm CO0 0: 0qqq 4
CoMUL- Rw,, [Rw] No 83 nm C8 0: 0qqq 4
CoMUL Rw,, [Rw,d], rnd No 83 nm C1 0: 0qqq 4
Examples
CoMJL RO, R1, rnd ; (ACC) <-- (RO)*(R1) + rnd
CoMUL- R2, [R6+] ;i (ACO)<-- -(R2)*((RB))
; (R6) <-- (R6) + 2
CoMJL [1 DXO+QX1], [R11+] ; (ACC) <-- ((IDX0))*((R11))
: (R11)<-- (R11) + 2
; (I1DX0) <-- (1DX0) + (0QX1)
CoMUL- [1DX1-], [R15+QRO] ; (ACC) <-- -((IDX1))*((R15))
; (R15) <-- (R15) + (QRO)
; (IDX1) <-- (IDX1) - 2
CoMJL [DX1+QX0], [R9 - QR1], rnd ; (ACC) <-- ((IDX1))*((R9)) + rnd
; (R9) <-- (R9) - (QR1)
i (IDX1) <-- (IDX1) + (QX0).
Multiplication Examples
Cases op1l op 2 rnd MAE MAH MAL N 4 C SV E SL
MP=0, MS=x | 8000, | 8000, 0 00}, 4000, | 0000, || © 0 0 - 0 -
MP=1, MS=0 0 00}, 8000, | 0000, || © 0 0 - 1 -
MP=1, MS=1 0 00y, 7FFFy, | FFFF, 0 0 0 - 0 1
MP=0, MS=x | 7FFF, | 7FFFy 0 00y, 3FFF, | 0001 0 0 0 - 0 -
MP=1, MS=x 0 00y, 7FFE, | 0002, || © 0 0 - 0 -
MP=1, MS=x 1 00y, 7FFE, | 0000, || © 0 0 - 0 -
MP=0, MS=x 4001, | F456y 0 FFy, FD15;, | 7456y 1 0 0 - 0 -
MP=1, MS=x 0 FFy, FA2A,, | ESACy, 1 0 0 - 0 -
MP=0, MS=x 1 FFp, FD15, | 0000, 1 0 0 - 0 -
MP=1, MS=x 1 FFy, FA2By;, | 0000y 1 0 0 - 0 -
£77 155/172

ST10 FAMILY PROGRAMMING MANUAL

CoMULu(-) Unsi gned Multiply & Optional Round

G oup Mul tiply/Miltiply-Accunul ate Instructions

Synt ax CoMJLu opl, op2

Oper ati on (ACC) <-- (opl) * (op2)

Synt ax CoMJLu- opl, op2

Operation (ACCO) <-- - ((opl) * (0op2))

Synt ax CoMULu opl, op2, rnd

Operation (ACC) <-- (opl) * (op2) + 00 0000 8000y
(MAL) <-- 0

Data Types DOUBLE WORD

Resul t 32-bit signed val ue

Description

Multiply the two unsigned 16-bit source operands “opl” and “op2”. The unsigned 32-bit product is first
zero-extended, and then, it is optionally either negated or rounded before being stored in the 40-bit ACC
register. The result is never affected by the MP mode flag of the MCW register. The “-” option is used to
negate the specified product while the “rnd” option is used to round the product using two’s complement
rounding. The default sign option is “+” and the default round option is “no round”. When “rnd” option is
used, MAL register is automatically cleared. “rnd” and “-” are exclusive. This non-repeatable instruction
allows up to two parallel memory reads.

MAC Flags
N z C Y E SL
* * 0 - 0 -

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Always cleared.

SV Not affected.

E Always cleared.

SL Not affected.

Addressing Modes

Mnemonic Rep Format Bytes
CoMJLu Rw,, Rw, No A3 nm 00 00 4
CoMJLu- Rw,, Rwgp, No A3 nm 08 00 4
CoMULuU Rw,, Rw, rnd No A3 nm 01 00 4
CoMJLu [1DX 0], [Rw] No 93 Xm 00 0: 0qqq 4
CoMJLu- [1DX O], [Rw,/] No 93 Xm 08 0: 0qqq 4
CoMJLu [IDX 0], [Rw{], rnd No 93 Xm 01 0: 0qqq 4
CoMULu Rw,, [Rw /] No 83 nm 00 0: 0qqq 4
CoMULu- Rw,, [Rw,d] No 83 nm 08 0: 0qqq 4
CoMULu Rw,, [Rw.J], rnd No 83 nm 01 0: 0qqq 4
156/172 K7_1

ST10 FAMILY PROGRAMMING MANUAL

Notes: The result of CoMULu is never saturated, whatever the value of MS bit is. (see multiplication

examples below).

Examples
CoMULu RO, R1, rnd ; (ACC) <-- (RO)*(R1) + rnd
CoMJLu- R2, [R6+] i (ACO) <-- -(R2)*((R®))
; (R6) <-- (R6) + 2
CoMULu [1DX0], [RL11+] © (ACC) <-- ((1DX0))*((R11))
© (R11) <-- (R11) + 2
CoMULu- [1DX1-], [R15+QRO] . (ACC) <-- -((1DX1))*((R15))
. (RL5) <-- (R15) + (QRO)
© (IDX1) <-- (IDX1) - 2
CoMJLu [1 DX0+QX0], [RO9-], rnd ; (ACC) <-- ((IDX0))*((R9)) + rnd
7 (R9) <-- (R9) - 2
© (I1DX0) <-- (I1DX0) + (QX0).
Multiplication Examples
Cases op1l op 2 rnd MAE MAH MAL N Z C SV E SL
MP=x, MS=x | 8000, | 8000, | x 00, | 4000y, | 0000, || © 0 0 - 0 -
MP=x, MS=x | 7FFF, | 7FFF, | 0 00, | 3FFFy | 0001 || © 0 0 - 0 -
1 00, | 3FFF, | 0000, || © 0 0 - 0 -
MP=x, MS=x | 8001, | F456, | © 00, | 7A2By | F456, || © 0 0 - 0 -
1 00, | 7A2c, | oooo, || O 0 0 - 0 -
MP=x, MS=x | FFFF, | FFFF, | 0 00, | FFFE, | 0001y || © 0 0 - 0 -
1 00, | FFFE, | 0000, || © 0 0 - 0 -
£77 157/172

ST10 FAMILY PROGRAMMING MANUAL

CoMULus(-) M xed Multiply & Optional Round

G oup Mul tiply/Miltiply-Accunul ate Instructions

Synt ax CoMJLus opl, op2

Oper ati on (ACC) <-- (opl) * (op2)

Synt ax CoMJLus- opl, op2

Operation (ACCO) <-- - ((opl) * (0op2))

Synt ax CoMULus opl, op2, rnd

Operation (ACC) <-- (opl) * (op2) + 00 0000 8000y
(MAL) <-- 0

Data Types DOUBLE WORD

Resul t 32-bit signed val ue

Description

Multiply the two 16-bit unsigned and signed source operands “opl” and “op2”, respectively. The obtained
signed 32-bit product is first sign-extended, then it is optionally either negated or rounded before being
stored in the 40-bit ACC register. The result is never affected by the MP mode flag contained in the MCW
register. The “-” option is used to negate the specified product while the “rnd” option is used to round the
product using two’s complement rounding. The default sign option is “+” and the default round option is
“no round”. When “rnd” option is used, MAL register is automatically cleared. “rnd” and “-” are exclusive.
This non-repeatable instruction allows up to two parallel memory reads.

MAC Flags

N Z C SV E SL
* * o - o -

Set if the most significant bit of the result is set. Cleared otherwise.
Set if the result equals zero. Cleared otherwise.
Always cleared.
\% Not affected.
Always cleared.
L Not affected.

numwunoNZZ2

Addressing Modes

Mnemonic Rep Format Bytes
CoMJLus Rw,, Rw, No A3 nm 80 00 4
CoMJLus- Rw,, Rwgp, No A3 nm 88 00 4
CoMJLus Rw,, Rw, rnd No A3 nm 81 00 4
CoMULus [1DX 0], [Rw{J] No 93 Xm 80 0: 0qqq 4
CoMULus- [1DX O], [Rw,/] No 93 Xm 88 0: 0qqq 4
CoMULus [1DX 0], [Rw,/J1], rnd No 93 Xm 81 0:0qqq 4
CoMJLus Rw,, [Rw /-] No 83 nm 80 0: 0qqq 4
CoMJLus- Rw,, [Rw,{J] No 83 nm 88 0: 0qqq 4
CoMULus Rw,, [Rw.J], rnd No 83 nm 81 0: 0qqq 4
158/172 K7_I

ST10 FAMILY PROGRAMMING MANUAL

Examples
CoMJLus RO, R1, rnd ; (ACC) <-- (RO)*(R1) + rnd
CoMJLus- R2, [R6+] i (ACC) <-- -(R2)*((R®))
; (R6) <-- (R6) + 2
CoMJLus [1 DX1+QX0], [R11+QRO] i (ACC) <-- ((IDX1))*((R11))
; (R11) <-- (R11) + (QRO)
i (IDX1) <-- (IDX1) + (QX0)
CoMJLus- [1 DX0], [R15] i (ACC) <-- -((IDX0))*((R15))
CoMJLus [1 DX0+QX0], [R9-QR1], ; (ACC) <-- ((IDX0))*((R9)) + rnd
; (R9) <-- (R9) - (QR1)
; (1DX0) <-- (1DX0) + (QX0).
Multiplication Examples
Cases opl op 2 rnd MAE MAH MAL N 4 C SV E SL
MP=x, MS=x | 8000, | 8000}, X FF €000y, | 0000}, 1 0 0 0
MP=x, MS=x | 7FFFy, | 7FFFy 0 00y, 3FFF, | 0001 0 0 0 0
1 00y, 3FFF, | 0000}, 0 0 0 0
MP=x, MS=x 8001y, | F456y 0 FFy, FA2A,, | F456y 1 0 0 0
1 FFy, FA2B,, | 0000 1 0 0 0
IS7; 159/172

ST10 FAMILY PROGRAMMING MANUAL

CoMULsu(-)
G oup

Synt ax
Operation
Synt ax
Operation
Synt ax

Operation

Data Types

Resul t

Description

M xed Multiply & Optional Round
Mul tiply/ Miltiply-Accunul ate Instructions

CoMULsu opl, op2
(ACQ) <-- (opl) * (op2)
CoMULsu- opl, op2
(ACQ) <-- - ((opl) * (op2))
CoMULsu opl, op2, rnd
(ACO) <-- (opl) * (op2) + 00 0000 8000
(MAL) <-- 0
DOUBLE WORD

32-bit signed val ue

Multiply the two 16-bit signed and unsigned source operands “opl” and “op2”, respectively. The obtained
signed 32-bit product is first sign-extended, then, it is optionally either negated or rounded before being
stored in the 40-bit ACC register. The result is never affected by the MP mode flag contained in the MCW

register. The

option is used to negate the specified product while the “rnd” option is used to round the

product using two’s complement rounding. The default sign option is “+” and the default round option is
“no round”. When “rnd” option is used, MAL register is automatically cleared. “rnd” and “-” are exclusive.
This non-repeatable instruction allows up to two parallel memory reads.

MAC Flags

N z C Y E SL

* * O - -
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result equals zero. Cleared otherwise.
C Always cleared.
SV Not affected.
E Always cleared.
SL Not affected.
Addressing Modes
Mnemonic Rep Format Bytes
CoMULsu Rw,, Rwy, No A3 nm 40 00 4
CoMJULsu- Rw,, Rwq, No A3 nm 48 00 4
CoMJLsu Rw,, Rw, rnd No A3 nm 41 00 4
CoMJLsu [1DX O], [Rw,/] No 93 Xm 40 0: 0qqq 4
CoMJLsu- [1DX 0], [Rw{J] No 93 Xm 48 0: 0qqq 4
CoMJLsu [IDX0O], [Rw,2], rnd No 93 Xm 41 0: 0qqq 4
CoMULsu Rw,, [Rw 1] No 83 nm 40 0: 0qqq 4
CoMJLsu- Rw,, [Rw,d] No 83 nm 48 0: 0qqq 4
CoMULsu Rw,, [Rw,dl,rnd No 83 nm 41 0: 0qqq 4
160/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

Examples
CoMULsu RO, R1, rnd ; (ACC) <-- (RO)*(R1) + rnd
CoMJULsu- R2, [R6+] i (ACC) <-- -(R2)*((R®))
; (R6) <-- (R6) + 2
CoMJULsu [1 DX0], [R1l1+] ; (ACC) <-- ((IDX0))*((R11))
; (R11) <-- (R11) + 2
CoMJLsu- [DX1-], [R15] i (ACC) <-- -((IDX1))*((R15))
; (IDX1) <-- (IDX1) - 2
CoMJULsu [1 DX0O+QX0], [R9 - QR1], rnd ; (ACC) <-- ((IDX0))*((R9)) + rnd

; (R9) <-- (R9) - (QR1)
© (IDX0) <-- (I1DX0) + (QX0).

Multiplication Examples

Cases op1l op 2 rnd MAE MAH MAL N 4 C SV E SL
MP=x, MS=x | 8000, | 8000, | x FF, €000, | 0000y 1 0 0 - 0
MP=x, MS=x | 7FFF, | 7FFF, | © 00}, 3FFF, | 00014 0 0 0 - 0
1 00p, 3FFF, | 0000, || © 0 0 - 0
MP=x, MS=x | 8001, | F456, | © FFp, 85D5,, | F456 1 0 0 - 0
1 FF, 85D6,, | 0000} 1 0 0 - 0
Kﬁ 161/172

ST10 FAMILY PROGRAMMING MANUAL

CoNEG Negat e Accunul ator with Optional Rounding
G oup 32-bit Arithnetic Instructions
Synt ax CoNEG
CoNEG nd
Oper ati on I'F (rnd) THEN
(ACC) <-- 0 - (ACC) + 00 0000 8000
(MAL) <-- O
ELSE
(ACC) <-- 0 - (ACO
END | F
Data Types ACCUMULATOR
Resul t 40-bit signed val ue
Description

The Accumulator content is subtracted from zero and the result is optionally rounded before being stored
in the accumulator register. With “rnd” option MAL is cleared. When the MS bit of the MCW register is set
and when a 32-bit overflow or underflow occurs, the obtained result becomes 00 7FFF FFFF,, or FF 8000

0000y, respectively. This instruction is not repeatable

MAC Flags
N z C S\ E SL
N Set if the m.s.b. of the result is set. Cleared otherwise.
Z Set if the result equals zero. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.
Addressing Modes
Mnemonic Rep Format Bytes
CoNEG No A3 00 32 00 4
CoNEG rnd No A3 00 72 00 4
Examples
CoNEG ; (ACC) <-- 0 - (ACC
CoNEG rnd ;7 (ACC) <-- 0 - (ACC) + rnd
Instr MS rnd ACC (before) ACC (after) N z C SV E SL
CoNEG X No 00 1234 5678, FF EDCB A988, 1 0 0 - 0
CoNEG X Yes 00 1234 5678, FF EDCC 0000, 1 0 0 - 0

162/172

E]..

ST10 FAMILY PROGRAMMING MANUAL

CoNOP No- Oper ati on

Group 40-bit Arithmetic Instructions
Synt ax CoNCP

Operation No Operation

Description

Modifies the address pointers without changing the internal MAC-Unit registers.

MAC Flags
N z C 53 E SL

N Not affected
Z Not affected
C Not affected
SV Not affected
E Not affected
SL Not affected

Addressing Modes

Mnemonic Rep Format Bytes
CoNOP [Rw, 0] Yes 93 1m 5A rrrrirgqq 4
CoNOP [IDX;O], [RwyO] Yes 93 Xm 5A rrrrirqqq 4
Example

CoNOP [I[DX0+QX1], [R11+QR1] ; (R11) <-- (R11) + (QR1)

: (IDX0) <-- (IDX0) + (QX1)

4

163/172

ST10 FAMILY PROGRAMMING MANUAL

CoRND Round Accunul at or

Group Shift Instructions

Synt ax CoRND

Operation (ACC) <-- (ACC) + 00 0000 8000y
(MAL) <-- O

Data Types ACCUMULATOR

Resul t 40-bit signed val ue

Description

Rounds the ACC register contents by adding 0000 8000h to it and store the result in the ACC register and
the lower part of the ACC register, MAL, is cleared. When the MS bit of the MCW register is set and when
a 32-bit overflow or underflow occurs, the obtained result becomes 00 7FFF FFFF;, or FF 8000 0000y,
respectively. This instruction is not repeatable.

MAC Flags
N Y4 C SV E SL
* * * * * *

N Set if the most significant bit of the result is set. Cleared otherwise.

z Set if the result equals zero. Cleared otherwise.

C Set if a carry is generated. Cleared otherwise.

SV Set if an arithmetic overflow occurred. Not affected otherwise.

E Set if the MAE is used. Cleared otherwise.

SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Addressing Modes

Mnemonic Rep Format Bytes
CoRND No A3 00 B2 00 4

Notes: CoRND is equivalent to COASHR #0, rnd.

Example

CoRND © (ACO) <-- (ACO) + rnd

g

164/172

ST10 FAMILY PROGRAMMING MANUAL

CoSHL Accunul ator Logical Shift Left
G oup Shift Instructions
Synt ax CoSHL opl
Oper ati on (count) <-- (opl)
(O <-- 0
DO WVHI LE (count) # 0
(O <-- (ACGg)
(ACC,) <-- (ACGC,.1) [n=1...39]
(ACCy) <-- 0
(count) <-- (count) -1
END WHI LE
Data types ACCUMULATOR
Resul t 40-bit signed val ue
Description

Shifts the ACC register left by the number of times specified by the operand opl. The least significant bits
of the result are filled with zeros. Only shift values from 0 to 8 (inclusive) are allowed. “opl” can be either
a 5-bit unsigned immediate data, or the least significant 5 bits (considered as unsigned data) of any reg-
ister directly or indirectly addressed operand. When the MS bit of the MCW register is set and when a
32-bit overflow or underflow occurs, the obtained result becomes 00 7FFF FFFF;, or FF 8000 0000y,

respectively. This instruction is repeatable when “opl” is not an immediate operand.

MAC Flags

N z C S\ E SL
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result equals zero. Cleared otherwise.
C Carry flag is set according to the last most significant bit shifted out of ACC.
SV Set if the last shifted out bit is different from N.
E Set if the MAE is used. Cleared otherwise.
SL Set if the content of the ACC is automatically saturated. Not affected otherwise.
Addressing Modes
Mnemonic Rep Format Bytes
CoSHL Rw, Yes A3 nn 8A rrrr:r000 4
CoSHL #dat ag No A3 00 82 ssss:s000 4
CoSHL [Rw,] Yes 83 mMm 8A rrrr:rqqq 4
Examples
CoSHL #3 ; (ACC) <-- (ACO) << 3
CoSHL R3 i (ACCO) <-- (ACO) << (R3)49
CoSHL [R10 - QRO] 7 (ACO) <-- (ACO) << ((R10))40

; (R10) <-- (R10) - (QRO)

1S7] 165/172

ST10 FAMILY PROGRAMMING MANUAL

CoSHR Accumul ator Logical Shift Right
G oup Shift Instructions
Synt ax CoSHR opl
Oper ati on (count) <-- (opl)
(O <-- 0
DO WVHI LE (count) # O
((ACGy) <-- (ACGyq1) [n=0-38]
(ACCsg) <-- 0
(count) <-- (count) -1
END WHI LE
Data Types ACCUMULATOR
Resul t 40-bit signed val ue
Description

Shifts the ACC register right by as many times as specified by the operand opl. The most significant bits
of the result are filled with zeros accordingly. Only shift values contained between 0 and 8 are allowed.
“opl” can be either a 5-bit unsigned immediate data, or the least significant 5 bits (considered as
unsigned data) of any register directly or indirectly addressed operand. The MS bit of the MCW register
does not affect the result. This instruction is repeatable when “op 1” is not an immediate operand.

MAC Flags
N z C S\ E SL
* * o - * -

N Set if the most significant bit of the result is set. Cleared otherwise.

Z Set if the result equals zero. Cleared otherwise.

C Cleared always.

SV Not affected.

E Set if the MAE is used. Cleared otherwise.

SL Not affected.

Addressing Modes

Mnemonic Rep Format Bytes
CoSHR Rw, Yes A3 nn QA rrrr:r000 4
CoSHR #dat ag No A3 00 92 ssss:s000 4
CoSHR [Rwi,[1] Yes 83 mMm 9A rrrr:rqqq 4
Examples
CoSHR #3 ; (ACC) <-- (ACO) >> 3
CoSHR R3 i (ACC) <-- (ACO >> (R3)g49
CoSHR [R10 - QRO] 7 (ACC) <-- (ACO) >> ((R10)) 49
; (R10) <-- (R10) - (QRO)
166/172 1S7]

ST10 FAMILY PROGRAMMING MANUAL

CoSTORE Store a MAC-Unit Register
G oup Transfer Instructions
Synt ax CoSTCORE opl, op2
Oper ati on (opl) <-- (o0p2)
Data Types WORD

Description

Moves the contents of a MAC-Unit register specified by the source operand op2 to the location specified
by the destination operand opl. This instruction is repeatable with destination indirect addressing mode
(for example to clear a table in memory)

MAC Flags
N z C 5} E SL

N Not affected
Z Not affected
C Not affected
SV Not affected
E Not affected
SL Not affected

Addressing Modes

Mnemonic Rep Format Bytes
CoSTORE Rw,, CoReg No C3 nn www: w000 00 4
CoSTORE [Rw,00], CoReg Yes B3 nn wwwv wO0O0 rrrr:rqqq 4

Note: Due to pipeline side effects, CoOSTORE cannot be directly followed by a MOV instruction, the
source operand of which is also a MAC-Unit register such as MSW, MAH, MAL, MAS, MRW or MCW. In
this case, a NOP must be inserted between the COSTORE and MOV instruction.

Examples

CoSTORE [RL1+QR1], MAS © ((R11)) <-- limted((ACC))
© (R11) <-- (R11) + (QR1)
Repeat 3 tinmes CoSTORE
CoSTORE [R2-]1, MAL © ((R2)) <-- (MAL)
; (R) <-- (R2) - 2

4

167/172

ST10 FAMILY PROGRAMMING MANUAL

CoSUB(2) (R
G oup
Synt ax

Oper ation

Synt ax

Operation

Synt ax

Operation

Synt ax

Operation

Data Types

Resul t

Description

Subtracts a 40-bit operand from the 40-bit Accumulator contents or vice-versa when the “R” option is
used, and stores the result in the accumulator. The 40-bit operand results from the concatenation of the
two source operands opl (LSW) and op2 (MSW), which is then sign-extended. The “2” option indicates
that the 40-bit operand is also multiplied by 2, prior to being subtracted/added from/to the ACC/negated
ACC. When the most significant bit of the MCW register is set and when a 32-bit overflow or underflow
occurs, the obtained result becomes 00 7FFF FFFF,, or FF 8000 0000y, respectively. This instruction is
repeatable with indirect addressing modes, and allows up to two parallel memory reads

Subt ract

Arithnetic I nstructions

CoSUB

(tnp)
(ACC)

CoSUB2

(tnp)
(ACC)

CoSUBR

(tnp)
(ACC)

CoSUB2R

(tnp)
(ACC)

DOUBLE WORD

opl, op2

<-- (op2)\(opl)
<-- (ACQ) - (tnp)

opl, op2

<-- 2 * (op2)\(opl)
<-- (ACQ) - (tnp)

opl, op2

<-- (op2)\(opl)
<-- (tnp) - (ACQ)

opl, op2

<-- 2 * (op2)\(opl)
<-- (tm) - (ACQO)

40-bit signed val ue

MAC Flags
N S\
N Set if the most significant bit of the result is set. Cleared otherwise.
z Set if the result equals zero. Cleared otherwise.
C Set if a borrow is generated. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SL Set if the contents of the ACC is automatically saturated. Not affected otherwise.

Note: The E-flag is set when the nine highest bits of the accumulator are not equal. The SV-flag is set,

when a 40-bit arithmetic overflow/ underflow occurs.

168/172

ST10 FAMILY PROGRAMMING MANUAL

Addressing Modes

Mnemonic Rep Format Bytes
CoSUB Rw,, Rwpy, No A3 nm OA 00 4
CoSUBR Rw,, Rwp No A3 nm 12 00 4
CoSUB2 Rw,, Rwpy, No A3 nm 4A 00 4
CoSUB2R Rw,, Rwp No A3 nm 52 00 4
CoSuUB [1DX 0], [RwI] Yes 93 Xm OA rrrr:rqqq 4
CoSUBR [1DX 0], [Rw] Yes 93 Xm 12 rrrr:rqqq 4
CoSuB2 [1DX O], [Rwd] Yes 93 Xm 4A rrrr:rqqq 4
CoSUB2R [1DX 0], [Rw] Yes 93 Xm 52 rrrr:rqqq 4
CoSUB Rw,, [Rw,d] Yes 83 nmOA rrrr:rqqq 4
CoSUBR Rw,, [Rw /] Yes 83 nm 12 rrrr:rqqq 4
CoSuB2 Rw,, [Rw,d] Yes 83 nm4A rrrr:rqqq 4
CoSUB2R Rw,, [Rw /] Yes 83 nm 52 rrrr:rqqq 4
Examples
CoSUB RO, R1 ;7 (ACO <-- (ACO - (R1)\(RO)
CoSuB2 R2, [R6+] 7 (A <-- (ACQ) - 2*(((RB)) \ (R))
; (R6) <-- (R6) + 2
Repeat 3 times CoSUB
CoSUB [1DX1+QX1], [RL0+QRO] ; (ACCO) <-- (ACCO) - (((RIO)\((IDX1)))
» (R10) <-- (R10) + (QRO)
; (IDX1) <-- (IDX1) + (QXx1)
Repeat MRWti nes CoSUB2R
CoSUB2R R4, [R8 - (R1] i (ACO <-- 2*(((RB))\(R4)) - (ACO
v (RB) <-- (RB) - (QRL)
Subtraction Examples
Instr. MS opl op 2 ACC (before) ACC (after) N z C [SV| E |SL
CoSUB X 183A, | 72AC, | 00 7FFF FFFF;, 00 0D53 E7C5;, olo]|o|-|o]-
CoSUBR X 183A,, | 72ACy | 00 7FFF FFFF, FF F2AC 183By, 1 0 1 - 0| -
CoSUB2 x | ociby, | 3956 00 E604 5564y, 00 7358 3D2Ay, olo|lo]|-]o]-
CoSUB2R | x | 0CiD, | 3956 00 E604 5564, FF8CA7C2D6, || 1 | O | 12 | - | 0| -
CoSUB 0 FFFF, | FFFF, | 7F FFFF FFFF, 80 0000 0000y, 1 0 1 (1 f1{-
1 00 7FFF FFFFy 0 0 1 (101
CoSuUB2 0 0000y, 3000y, 7F FFFF FFFF, 7F 9FFF FFFFy, 0 0 0 - 1] -
CoSUB2 0 | 0001, | 0000 80 0000 0000y, 7FFFFFFFFE, O [O | 0 | 2 | 1 | -
1 FF 8000 0000y, 1 0 0 1 0 1
£77 169/172

ST10 FAMILY PROGRAMMING MANUAL

4 - REVISION HISTORY

Revision 5 - version 1 of January 2000
Chapter 2.1.4

See 1: GPRAddress = (CP + 2 x ShortAddress)

See 3: LongAddress = (GPRAddress) + Constant)

See 4: PhysicalAddress = (DPPi) + LongAddress * 3FFFh
Seeb: (GPRPAddress) = (GPRDAddress) + A

Chapter 2.2.3 Additional State Times:
"Jumps into the internal ROM Space :..."
— Label

—In+1

— I + 2 IJMPR cc_NC, label

Chapter 2.4:

Table 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
All column 16 bit N-MUX, 16 bit MUX, 8 bit N-MUX, 8 bit MUX.

Revision A - revision 4

This document number 7096626A is the transfer onto ADCS of document 42-1735-05 on the Bristol doc-
ument control system. This revision includes extensive modifications to format. The major modifications

to content are summarized in this table:

r->R

In MAC instructions, upper case R has replaced lower case
r for Reverse operation.

#data, -> #datas

In MAC instructions, immediate shift value uses 5 bits to be
coded, not 4.

Table 30

Instr. CoOMACMus
Instr. CoOMACMus-
Instr. CoMACMus rnd
Instr. COMACMR

function code is 98
function code is A8
function code is 99
function code is F9

Instr. COMACM(R)su(-) Addressing Mode
CoMACRsu [IDX;0], [Rw,0]
CoMACRsu [IDX;0], [Rw,0], rnd
CoMACRsu Rw,,, [Rw.,], rnd

93 Xm 70 rrrrirgqq
93 Xm 71 rrrrirgqq
93 Xm 71 rrrrirgqq

correction in Multiplication examples CoMULu(-) and coMULus(-)

Instruction BMOV

flag Z corrected

Instruction BMOVN

flag Z corrected

Instruction JNBS

flag Z corrected

Instruction MUL

flag N corrected

Instruction MULU

flag N corrected

Instruction SUBCB

flag Z corrected

170/172

g

ST10 FAMILY PROGRAMMING MANUAL

Revision 4 - revision 3

Instructions: CoMULsu(-), CoMULus(-),
CoMAC(r)su(-), CoMAC(r)us(-), COMACM(r)su(-),
CoMAC(r)us(-), CONOP, CoSHL, CoSHR, CoASHR,
CoSTORE

Addressing modes corrected.
Function code in Table 30 corrected.

Instructions JBC and JNBS:

Condition flags corrected.

Table 22: Instruction set ordered by Hex code

Updated to include section CO-FF, MAC
instructions and working register indexes.

Instruction CoMULus(-):

Example corrected.

Table 5: Branch target address summary

Seg address range corrected.

Table 24: Condition codes :

Condition Code Mnemonic cc_N corrected.

Section 2.4.6: Repeated instruction syntax:

Sentence added.

Instruction CoSHL:

Description clarified: “Only shift values from 0
to 8 (inclusive)”.

Instruction CoNOP:

[IDX;0] addressing mode and example

removed. Reference to this addressing mode
removed from Table 29.

Instruction BCLR:

Condition flag Z corrected.

MAC instruction descriptions:

Ordered Alphabetically.

Section 2.1: Addressing modes:

Paragraph added.

Section 1.2.1: Definition of measurement units:

[Fcpu] changed to 0-50MHz.

Revision 3 - revision 2
CoSUBZ2r replaced CoSUBr2.

In MAC instructions, lower case r has replaced upper case R for optional repeat.

Revision 2 - revision 1

“Definition of measurement units” on page 12, ALE Cycle Time corrected.
“Integer Addition with Carry” on page 59: instruction name changed from ADDBC to ADDCB.

4

171/172

ST10 FAMILY PROGRAMMING MANUAL

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.

The ST logo is aregistered trademark of STMicroelectronics
© 2000 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

4

172/172

