
AN914/1098 1/22

APPLICATION NOTE

USING THE ST626X SPI AS A UART
by 8-bit Micro Application Team

1 INTRODUCTION

The purpose of this note is to give indications on how to use ST626x SPI in order to perform
UART serial communication. The principles of operation as well as limitations are described.
As an example, reception and transmission at 9600 baud are presented. However, baud rates
up to 19200 are supported.

2 UART OVERVIEW

A UART (Universal Asynchronous Receiver Transmitter) is an asynchronous communication
interface. The protocol used in this application note is as follows:

A reception or transmission frame contains:

– 1 START BIT that is a high to low transition (falling edge). The START BIT is valid if the line
stays at level ’0’ during one SPI clock (one bit time period). It corresponds to the beginning
of receive or transmit frame.

– 8 BITS of data corresponding to the data to be received or transmitted. The LSB is input or
output first.

– 1 PARITY BIT or 2ND STOP BIT or 1 EXTRA BIT

– 1 STOP BIT which is a ’1’ level during one bit time period. It corresponds to the end of frame.

The commonly used baud rates in asynchronous communication are: 1200, 2400, 4800,
9600, and 19200 baud. Transmission is started by sending a Start bit (a ’0’ for one bit time pe-
riod) followed by the 8 data values (LSB first) and the value of the 9th bit. The output is then
set to ’1’ for of one bit time period to generate a Stop bit. Reception is started when a falling
edge is detected on the input pin. The 9-bit stream that follows is shifted in and the UART
waits during one bit time period for the Stop bit.

Note : It is possible to receive and transmit more or less than the described 8 bits data + 1
parity bit while using the ST626x SPI as a UART. The number of bits per burst is largely up to
the user.

LSB MSB

d0 d1 d2 d3 d4 d5 d6 d7 d8

Start
bit

8 bit data
Parity

bit
Stop
bit

1

ST626X SPI OVERVIEW

2/22

3 ST626X SPI OVERVIEW

The SPI peripheral is a synchronous serial interface with programmable receiver and trans-
mitter modes. It can operate either in Master or in Slave mode. It consists of 3 pins SCK
(clock), SIN (data in) and SOUT (data out) which also provide alternate I/O pin functions (PC4,
PC2, PC3). The clock polarity, clock phase and the number of bits per burst can be selected
using the SPI Mode Control and Divide registers.

The SPI comprises the following 8-bit registers:

– an 8-bit Data/Shift register SPIDSR (E0h)

– a Divide register SPIDIV (E1h)

– a Mode Control register SPIMOD (E2h)

– a Miscellaneous register MISCR (DDh)
Figure 1. SPI Block Diagram

Data transfer to or from the SPI Shift register (SPIDSR, the case in this note) is started by set-
ting SPRUN (bit 7 of SPIMOD register) to ’1’. The SPI Shift register is simultaneously fed by
the SIN pin and feeds the SOUT pin during both transmission and reception. The SPRUN bit
is automatically cleared by the SPI cell at the end of transmission or reception and an interrupt
request can be generated. It is associated with interrupt vector #2.

The division ratio between the core clock (Fosc divided by 13) and the clock supplied to the
Shift register in Master mode is shown in Table 1.

VR02128C

SPI CLK-
DIVIDER

A BIT
COUNTER

FILTER

FILTER

D0 D1 D2 D3 D4 D5 D6 D7

Fosc/13

BIT 0-2
SPI DIV

REGISTER

BIT 3-6
SPI DIV

REGISTER
Interrupt

CLOCK

SCK
PC4

SIN
PC2 SOUT

PC3

to processor data bus

SHIFT REGISTER

3/22

OPERATING PRINCIPLES

Table 1. Selection of clock division ratio

4 OPERATING PRINCIPLES

ST626x SPI will be set in Master mode to use the internal clock division (SPCLK, bit 4 of SPI
Mode Control Register is set to ’1’).

4.1 RECEIVER MODE (EX: 9600 BAUD AT FOSC=8MHZ)

The 3 SPI pins are then configured as follows:

– SCK in Output Push-pull ’0’

– SIN in input with pull-up and interrupt (falling edge)

– SOUT in output push-pull ’1’

Set: MISC = 01h (SOUT switched to SPI output)

SPIDIV = 3Eh (DIV 64, 7 bits per burst)

SPIMOD = 18h (Master mode, Normal polarity and phase, SPI interrupt
disabled, SPI start with SPRUN bit)

SPIDSR = 0FFh (To prevent shifting a level ’0’ on SOUT pin during reception)

SPIDIV BIT 0-2
(CD2-CD0)

Division Ratio
(DIV)

Baud rates at
Fosc = 4Mhz
(4Mhz/13/DIV)

Baud rates at
Fosc = 8Mhz

(8Mhz/13/DIV)
0 0 0 1.00 307600 615300
0 0 1 2.00 153800 307600
0 1 0 4.00 76800 153800
0 1 1 8.00 38400 76800
1 0 0 16.00 19200 38400
1 0 1 32.00 9600 19200
1 1 0 64.00 2400 9600
1 1 1 256.00 1200 2400

OPERATING PRINCIPLES

4/22

Figure 2. RECEIVER MODE EVENTS

START BIT DETECTION :

Since the SIN pin (I/O PC2) is in input with pull-up and INTERRUPT (falling edge sensitive),
when a high to low transition occurs on the RXD line, the program jumps to the PORT C inter-
rupt vector (vector #2).

START BIT VALIDITY CHECK:

Inside the vector #2 interrupt routine, check if SIN is still at level ’0’ for around 40% of the clock
period (ex: at 9600 baud, 40% of 104µs is 41µs => use the “jrs, SIN, enditspi” instruction 5
times for fosc = 8 Mhz). If yes, continue the reception, if not, exit the interrupt routine. The SIN
pin is reconfigured as Input with pull-up WITHOUT interrupt.

FIRST 7-BIT DATA RECEPTION:

Use a delay routine to wait for the completion of 1.5-bit time period (from start bit detection)
before starting the SPI (SPI registers must be previously configured during initialisation
phase). 7 bits will be sampled at a rate of one bit time period. At the end of a 7-bit data recep-
tion, the SPRUN bit (bit7 of the SPIMOD register) is automatically reset. Poll for SPRUN=’0’.
Store the first 7-bit data received. Reload the SPI Data Register with 0FFh to prevent an
output of ’0’ on the SOUT pin (spurious transmission start).

8th BIT, PARITY BIT AND STOP BIT RECEPTION:

Clear the SPI interrupt and reconfigure the SPIDIV register to 1Eh (DIV 64, 3 BITS per
BURST). Restart the SPI (SPRUN bit of SPIMOD register set to ’1’) after a temporisation of
one half bit time period (from SPRUN=’0’ detection). Poll the SPRUN bit for the end of 3-bit re-
ception.

Sin int

Start
bit

Stop
bit

SPI Start

Test ‘0’
during 40%

(40 µs)

Sampling
d0

Sampling
d1

Sampling
d6

Sampling
d7

Sampling
d8

Sampling
Stop bit

104µs

END OF 7-BIT
RECEPTION
(SPRUN=’0’)

SPI RESTART
3-BIT

RECEPTION

END OF 3-BIT
RECEPTION
(SPRUN=’0’)

CHECK STOP BIT
RETI

5/22

OPERATING PRINCIPLES

STOP BIT CHECK:

Check if bit0 of SPIDSR register is ’1’. If yes, process the received data. If not, cancel recep-
tion (do not treat received data). Then exit the vector 2 interrupt routine.

The receiver mode flowchart is given below:
Figure 3. Receiver mode flowchart

START

PC4 (SCK) = OUTPUT PUSHPULL ’0’
PC2 (SIN) = INPUT WITH FALLING EDGE INTERRUPT
PC3 (SOUT) = OUTPUT PUSHPULL ’1’

FALLING EDGE ON SIN ?

STABLE START BIT ?

SIN = INPUT WITH PULLUP
WITHOUT INTERRUPT

DELAY FOR 1.5-BIT TIME
STARTING FROM SIN FALLING EDGE

START SPI FOR 7-BIT DATA RECEPTION

SPRUN = ’0’?

STORE 7-BIT DATA

SPIDSR = FFh

DELAY FOR 0.5-BIT TIME
STARTING FROM SPRUN = ’0’

START SPI FOR 3-BIT DATA RECEPTION

SPRUN = ’0’?

BIT 0 OF SPIDSR = ’1’ ?

PROCESS RECEIVED DATA

NO

YES

YES

YES

YES

YES

NO

NO

NO

NO

VR02128A

OPERATING PRINCIPLES

6/22

4.2 TRANSMITTER MODE (EX: 9600 BAUD AT FOSC=8MHZ)

The 3 SPI pins are then configured as follows:

– SCK in output push-pull ’0’

– SIN in input with pull-up

– SOUT in output push-pull ’1’

Set: MISC = 00h (SOUT switched to PC3 I/O output)

SPIDSR = XXh (Data to be transmitted: LSB in bit7...MSB in bit0, LSB must be
;shifted out first)

SPIDIV = 3Eh (DIV 64, 7 BITS per BURST)

SPIMOD = 18h (Master mode, Normal polarity and phase, SPI interrupt disabled,
;SPI start with SPRUN bit)

START BIT GENERATION :

Since the SOUT pin is switched to PC3 I/O output and is configured as output PUSHPULL ’1’.
By resetting the SOUT (PC3) data register, this will generate a High to Low transition (=>
START BIT). This level ’0’ is kept during one bit time period.

7-BIT DATA TRANSMISSION:

Switch the SOUT pin to SPI output (MISC=01h) and start the SPI. 7 bits will be automatically
transmitted. Poll the SPRUN bit in the SPIMOD register to synchronise with end of transmis-
sion (it automatically goes to ’0’). The SPI interrupt is intentionally disabled during transmis-
sion and reception to avoid extra code to distinguish an end of reception, an end of transmis-
sion and a PORTC interrupt that are all mapped to vector #2.
Figure 4. Transmitter Mode Events

Set PC3=0’

Start
bit

Stop
bit

SPI START

Switch Sout to
SPI Output Set

d0
Set
d1

Set
d6

Set
d7

Set
d8

104µs

END OF 7-BIT
RECEPTION
(SPRUN=’0’)

SPI RESTART
3-BIT

RECEPTION END OF 3-BIT
TRANSMISSION

(SPRUN=’0’)
7-BIT

TRANSMISSION

Set
d2

Set
Stop bit

RELOAD OF
SPIDSR

7/22

OPERATING PRINCIPLES

8th BIT, PARITY BIT AND STOP BIT TRANSMISSION:

Reconfigure the SPIDIV register to 1Eh (DIV 64, 3 BITS per BURST). RELOAD the SPI data
shift register with new data (bit7/MSB of SPIDSR is for the 8th bit, bit6 is for parity bit and bit5
is for stop bit) and restart SPI (SPRUN bit of SPIMOD register set to ’1’). Poll SPRUN bit of
SPIMOD register to detect end of 3-bit transmission.

OPERATING PRINCIPLES

8/22

The transmitter mode flowchart is given below:
Figure 5. Transmitter Mode Flowchart

VR02128B

START

PC4 (SCK) = OUTPUT PUSHPULL ’0’
PC2 (SIN) = INPUT WITH PULLUP
PC3 (SOUT) = OUTPUT PUSHPULL ’1’

LOAD SPIDSR

START BIT GENERATION PC3 = ’0’

START SPI FOR 7-BIT TRANSMISSION

SPRUN = ’0’?

RELOAD SPIDSR

START SPI FOR 3-BIT TRANSMISSION

SPRUN = ’0’?

YES

YES

NO

NO

MISCR REGISTER = 01h

END OF
TRANSMISSION

9/22

OPERATING PRINCIPLES

4.3 GENERAL REMARKS

1. Even though the ST626x can receive or transmit up to 15 bits per burst, there is only one
8-bit data shift/receive register SPIDSR. When more than 8 bits per burst is programmed,
it is not possible to get or transmit the total number of bits using only the SPI peripheral.
Other I/O pins have to be used. For example, one I/O can be connected to the SIN pin to
transmit the 9th to 15th bit, one I/O can be connected to the SOUT pin to receive the 1st
to the 8th bit and one I/O can be connected to SCK while in Master mode to synchronise
bit sampling (reception) or bit setting (transmission) with UART clock. If such connections
are not implemented, only the last 8 received bits can be retrieved during reception and
only the first 8 bits can be correctly transmitted. To avoid this heavy configuration, to
transmit 13 bits for instance, it is better to transmit one first burst of 7 bits and then a sec-
ond burst of 6 bits instead of one single burst of 13 bits.

2. A certain number of instructions must be executed (start bit validity test, start/restart of
SPI, switching of SOUT pin...) after start bit detection or after one burst transfer. The
processing sequence usually needs minimum 5 instructions. Since one ST6 instruction
usually takes 4 instruction cycles (i.e. 6.5µs at 8Mhz), this limits the possible transfer baud
rates. The possible baud rates are:

The SPI clock periods given by SPI division ratio are:

These timings are used as reference for reception or transmission synchronisation.

SPIDIV BIT 0-2
(CD2-CD0)

Division
Ratio

Baud rates at 4Mhz
(4Mhz/13/DIV)

Baud rates at 8Mhz
(8Mhz/13/DIV)

1 0 1 32.00 9600 19200
1 1 0 64.00 2400 9600
1 1 1 256.00 1200 2400

Baud rates SPI clock period
19200 52 µs
9600 104 µs
2400 416 µs
1200 832 µs

OPERATING PRINCIPLES

10/22

3. It is mandatory to take the SPI timing diagrams into account (4 possible choices, depend-
ing on clock polarity and phase selection, please refer to the ST626x databook) in order
not to generate spurious falling edge on the SOUT pin during reception, which can be
understood by the other chip as a start of transmission. Since shifting data in through SIN
will simultaneously shift data out through SOUT, when the first bit shifted in is a ’0’, a level
’0’ will be present on the SOUT pin after receiving 8 bits (with SPI configured as 8 bits per
burst in reception mode, CPOL=0, CPHA=0). Therefore, care must be taken to load the
SPI data/shift register with 0FFh before any reception and receive less than 8 bits per
burst. For example, to receive 10 bits, one can receive a first burst of 7 bits and then a
second burst of 3 bits instead of a first burst of 8 bits and a second of 2 bits.

4. For transmission, it is also better to transmit less than 8 bits per burst. During an 8-bit
transmission process, the first shifted bit into the SPIDSR register should be a level ’1’
since the SIN pin should always be at level ’1’ during transmission (Half duplex mode).
Therefore, after 8 bit transmission, a level ’1’ is present on the SOUT pin (with the SPI
configured as 8 bit per burst transmission mode, CPOL=0, CPHA=0). If the Parity bit to be
transmitted is ’0’, there will be a glitch on the SOUT pin until the SPIDSR register is
reloaded. Care is then required to reload SPIDSR register as soon as possible after the
first transmitted burst otherwise a wrong value will be read for the parity bit. To avoid this
problem, for example, when transmitting 10 bits, it is safer to transmit a first burst of 7 bits
(1st to 7th bit) and then a second burst of 3 bits (8th bit, parity bit and stop bit) instead of a
first burst of 8 bits and a second of 2 bits. For the first burst of 7 bits, the SPIDSR register
must nevertheless contain the first 8 bits in order to pre-position the 8th bit during the tran-
sition between the 2 bursts.

5. In this note, the SPI is started by setting the SPRUN bit (bit 7 of SPIMOD register) to ’1’.
Independently of selected the SPI divide ratio, the first active edge of the SPI clock, while
in Master mode, will be present at SCK (PC4) pin, 9 or 10 Fosc clocks after SPRUN is set.
This explains the chosen SPI start position in receiver and transmitter modes.

11/22

OPERATING PRINCIPLES

4.4 LIMITATIONS

1. ONLY HALF DUPLEX MODE IS POSSIBLE: transmission and reception can not be proc-
essed at the same time.

2. MAIN CONSTRAINT IN RECEIVER MODE: the CPU must be available during the whole
reception i.e. NO INTERRUPT SHOULD OCCUR from the start to the end of reception
otherwise the transfer will be desynchronised and the received data wrong. If maskable
interrupts are needed in the code, the NMI pin must be used to set the reception as a
NON-MASKABLE INTERRUPT routine. NMI is connected to the SIN pin. When a Start bit
occurs, the high-to-low transition will generate an NMI and the MCU switches to NMI
mode under which the reception will be processed. If another falling edges are received
on the NMI pin, only one is latched and will be processed when the first NMI ends up. To
distinguish a real start bit interrupt from a spurious NMI interrupt, the SIN input is read at
the beginning of NMI interrupt routine. If it is a ’0’ level, this is a Start bit and the reception
routine can be executed. If it is a ’1’ level, exit the NMI routine.

3. Receiver mode has a higher priority than transmitter mode which is the opposite case in a
real UART. If a transmission is interrupted by a reception, the data transmitted will be cor-
rupted. Therefore, software MUST monitor the priority using an I/O pin (ex: PC0) as a
BUSY FLAG. Before transmitting data to the ST626x MCU, the external chip must check
if the line is busy (ST626x transmitting) or not (PC0 set to ’1’). If busy, it must wait until the
end of the ST626x transmission. The ST626x micro should have the same behaviour:
before transmitting to the external chip, it should check the busy flag.

4. A typical UART cell provides a 2-to-1 majority voting system inside the data reception
mechanism to determine the logic state of the asynchronous incoming serial logic bit by
taking 3 timed samples within a bit time. Using ST626x SPI as a UART does not provide
this “2 to 1” sampling decision. The RXD line must therefore be stable (no fluctuation).

APPENDIX

12/22

5 APPENDIX

A code example for 9600 baud rate communication is given below. The transmission and re-
ception results are shown immediately after the code.
;*************** ***

;*

;* USING ST626X SPI AS UART

;* METHOD: SPI 7-BIT BURST + 3-BIT BURST

;* AT 9600 BAUD RATE with Fosc = 8Mhz

;* BASED ON SCK STARTS 9 CLOCKS AFTER SPRUN=’1 ’

;*************** ***

.W_ON

.DP_ON

;|==

;| Assembly method without linker : ast6 -s -l -m uart6x.asm

;| (Need 626x.asm file)

;|==

;|==

;| Assembly directives

;|==

.title “ST626X SPI AS UART”; This directive

; defines a new title

.vers “st6265”

.romsize 4

;*************** ***

;* Data space needed registers

;*************** ***

count .def 084h ; Used for number of delay loop

spi_reg .def 085h ; b7:8th bit; b6:parity bit; b5:stop bit to

;be transmitted during

; 2nd 3-bit BURST

senddata .def 086h ; The first 8-bit Data to be transmitted

;(b7: MSB; b0:LSB).

spirec .def 087h!m; Store the first 7 bits received.

;|==

;| ST626x registers

;|==

.input “626X.asm”

13/22

APPENDIX

;|==

;| constants definition

;|==

;SPIMOD USED BITS

;================

sprun .equ 7

spie .equ 6

spin .equ 3

spint .equ 7

;SPI_REG USED BITS

=================

d7 .equ 7

d8 .equ 6

stopbit .equ 5

;SPI PINS IN PORTC

================

scl .equ 4

sout .equ 3

sin .equ 2

;*************** ***

;* PROGRAM SPACE

;*************** ***

;|==

;| main program

;|==

.org 0080h

start reti

call init_spi

wavail

jrr 0, drc, wavail; Wait for end of reception if processed

; jp uarttxd ; Use this to debug transmission (jump to

;transmission routine)

APPENDIX

14/22

;*************** ***

; ROUTINE TO DEBUG RECEPTION

; NEED TO CONNECT ARTIMout/PB6 to Sin/PC2 to get reception frame

;*************** ***

receive

ldi arlr, 00h ; Connect ARTIMout/PB6 to Sin/PC2 in order

;to start reception

ldi arrc, 00h

ldi arcp, 0BFh

ldi arsc0, 00h

ldi arsc1, 0C0h

ldi armc, 0E0h

loop jp loop ; To debug reception

;*************** ***

; ROUTINE TO DEBUG TRANSMISSION

; SEND: Startb it=’0’;d0=’1’;d1=’0’;d2=’1’;d3=’0’;d4=’1’;d5=’0’;d6=’1’

; d7=’0’ ;d8=’0 ’;Stopbit=’1’

;*************** ***

uarttxd

ldi drc, 008h ; Line busy (pc0= ’0’) => can not receive NOW

ldi senddata, 055h ; Data to be transmitted (d0...d7)

ldi spi_reg, 0BFh ; b7: 8th bit (d7), b6: 9th bit (d8), b5:stopbit.

;Here d7=’1, d8=’0, Stopbit=’1’

jrs 7, senddata, setd7; Program 8th bit into spi_reg which is

;content of 2nd burst transmission

ldi spi_reg, 03Fh ; b7: 8th bit (d7), b6: 9th bit (d8),

;b5:stopbit. Here d7=’0, d8=’0, Stopbit=’1’

setd7 call transmit

ldi drc, 09h ; Free Busy flag line

jp wavail

;*************** ***

;* USED SUBROUTINES

**************** ***

15/22

APPENDIX

;|==

;| SPI INIT ROUTINE

;|==

init_spi

ldi drc, 009h ; Sout, pc0 in input without pullup. PC0 is

;for the busy flag.

ldi ddrc, 019h ; Scl, Sout, pc0 in output opendrain ’1’ (Sout,

; pc0), ’0’ (Scl)

ldi orc, 01Dh ; Sout (pc3)and pc0 in pushpull ’1’, SCL

;(pc4) in pushpull ’0’

; Sin is in input pullup with interrupt

; (falling edge)

ldi spimod, 018h ; Master mode, normal clock, no filter,

;start by sprun, sin

; SPI interrupt disabled because 1

;spurious interrupt.

ldi spidiv, 03Eh ; 9600 baud rate => 8Mhz/64*13,

;Burst of 7 bits (104us/bit)

ldi spidr, 0FFh ; To make sure that when reception shift,

;no spurious start bit

ldi ior, 10h ; Vector 2 falling edge - authorize

;maskable interrupt

ret

APPENDIX

16/22

;|==

;| TRANSMISSION ROUTINE

;|==

transmit

call rotate

ld spidr, A ; Set the value to be transmitted

ldi drc, 00h ; Transmit Startbit i.e. ’0’ on Sout

ldi count, 07h ; Need 1 bit time (64cuc) from PC3=’0’

; falling edge to switch

; Sout to SPI output

call tempo ; Set delay time

nop ; 2 extra cyc

ldi misc, 01h ; Switch Sout to spi output: here, we waited for

;12cyc(process)+[8*6+2]cyc(tempo)+2cyc(nop)=64cyc

ldi count, 01h ; Wait for 0.5 bit time to start SPI

call tempo ; Set delay time

nop ; 6 extra cyc

nop

nop

set sprun, spimod ; Start spi => send d0...d7 (8bits)

; Here, we waited from misc=01h:

; 12cyc(process)+14cyc(tempo)+6cyc(nop)=32cyc

ld A, spi_reg ; Set 8th bit, 9th bit + stopbit (b5)

ldi drc, 08h ; Set Sout to ’1’ to prevent spurious txd start bit

wtxd1 jrs sprun, spimod, wtxd1

; Wait for spi end of transmission interrupt

; It occurs when Sck goes to 0 after the 8th bit.

ld spidr, A ; Set 8th, 9th and stop bits to spi data register

ldi spidiv, 01Eh ; 3 bits per burst

nop ; Extra 2 cyc

ldi count, 00h ; Set delay time: need to wait for 0.5 bit time before

restart

; SPI.

call tempo ; From SPRUN=’0’, we waited:

; 20cyc(process)+8cyc(tempo)+2cyc(nop)=30cyc

set sprun, spimod ; Wait for 0.5 bit time and start SPI again

17/22

APPENDIX

wtxd2 jrs sprun, spimod, wtxd2

; Wait for spi end of transmission interrupt

; 9th bit and stop bit transmitted

ldi misc, 00h ; Disactivate SPI

ldi spidiv, 03Eh ; 9600 baudrate => 8Mhz/64*13, Burst of 7 bits

;(104us/bit)

ldi spidr, 0FFh ; In case of reception: no spurious start bit on Sout

ret

;|==

;| ROTATION subroutine

;| 70 cycles (113.75us at 8Mhz)

;| b7,b6,b5,b4,b3,b2,b1,b0=> b0,b1,b2,b3,b4,b5,b6,b7

;|==

rotate

clr A

jrr 0, senddata, bit1

set 7, A ; Can also use “sla A” because result of jrs is in

; carry

bit1 jrr 1, senddata, bit2

set 6, A

bit2 jrr 2, senddata, bit3

set 5, A

bit3 jrr 3, senddata, bit4

set 4, A

bit4 jrr 4, senddata, bit5

set 3, A

bit5 jrr 5, senddata, bit6

set 2, A

bit6 jrr 6, senddata, bit7

set 1, A

bit7 jrr 7, senddata, endrot

set 0, A

endrot ret

APPENDIX

18/22

;|==

;| DELAY routine

;| 9.75us for each loop

;| total cycles= 6+(n*6)+2= [(n+1)*6 +2] cycles

;| total: (count+1)*9.75us

;|==

tempo

ld A, count

jrz tempend ; If count=0 => no loop

tloop dec A ; 9.75us for each loop

jrnz tloop

tempend

ret

;|==

;| SECTION 1

;|==

.org 0800h

;|==

;| interrupt routine

;|==

;|-------------- --

---------------- ----------------------

;| SPI, PORTC interrupt

;| RECEPTION ROUTINE: 9600 baud; 7-bit reception+ 3-bit reception

;|-------------- --

---------------- ----------------------

it_int2

ldi drc, 008h ; If receive startbit => set busy flag

jrr spint, spidiv, it_rxd1 ; Check if interrupt from spi or not

jp enditspi ; SHOULD NOT HAVE SPI IT SINCE DISABLED

it_rxd1 ; First, receive start bit and prepare 8 bits

; reception using SPI

jrs sin, drc, enditspi ; Test stabil ity of startbit for around 40% of

period

jrs sin, drc, enditspi ; Test stabili ty of startbit

jrs sin, drc, enditspi ; Test stabili ty of startbit

jrs sin, drc, enditspi ; Test stabili ty of startbit

jrs sin, drc, enditspi ; Test stabili ty of startbit

; Time spent for test: 34cyc out of 64cyc => 53%

nextrxd ; We need 1.5-bit time from falling edge of start

;bit (96cyc)

res sin, orc ; Set Sin (PC2) as input with pullup WITHOUT INT

19/22

APPENDIX

ldi misc, 001h ; Switch Sout to spi output

ldi count, 05h ; Set delay time

call tempo ; From it_int2, we waited for: 54cyc(process)

;+38cyc(tempo)+4cyc(nop)=96cyc(need96cyc)

nop ; 4 extra cycles for delay

nop

set sprun, spimod ; Start spi and SPI interrupt stil l disabled

; => receive d0...d6 (7bits). From it_int2 to here,

; we waited for: 96cyc

wrxd1 jrs sprun, spimod, wrxd1

; Wait for end of 7 bits reception

it_rxd2 ; Now, Wait 0.5-bit time and receive the 8th, 9th bit &

check stopbit.

ldi spidiv, 1Eh ; Receive NOW 3 bits

ld A, spidr ; Retrieve first 7 bits data

ldi spidr, 0FFh ; To avoid spurious TXD interrupt when shift ing in/out

ldi count, 00h ; Dummy load for delay

; call tempo ; Too many clocks even if count=00h

ldi count, 00h ; Dummy load for delay

ldi count, 00h ; Dummy load for delay

nop ; 2 extra nop

; From SPRUN=’0’, we waited for

; 16cyc(process)+12cyc(dummyldi)+2cyc(nop)

; =30cyc (instead of 32cyc)

set sprun, spimod ; Start spi (SPI interrupt still disabled).

; Receive d7,d8,stopbit

wrxd2 jrs sprun, spimod, wrxd2

; Wait for end of 3-bit reception

jrr 0, spidr, enditspi ; If no stop bit => DO NOT TREAT RECEIVED DATA

ld spirec, A ; Save to a special data register (not mandatory,

; used for debug)

ld A, spidr ; Retrieve 2nd part

process;... ; Call processing routine

enditspi

ldi misc, 00h ; Disactivate SPI

ldi spidiv, 03Eh ; Reconfigure SPI to 7 bits per burst.

ldi spidr, 0FFh ; Reload SPIDSR to 0FFh for next reception.

set sin, orc ; Set again Sin (PC2) as input with interrupt

ldi drc, 009h ; Release busy flag => line free again

reti

APPENDIX

20/22

;*************** ***

;* Restart and interrupt Vectors

;*************** ***

.org 0ff0h

int4 nop ; Adc, Timer

reti

int3 nop ; Artimer

reti

int2 jp it_int2 ; Spi, Portc

int1 nop ; PortA, PortB

reti

.org 0ffch

nmi nop

reti

res jp start

21/22

APPENDIX

TRANSMISSION RESULT

RECEPTION RESULT

APPENDIX

22/22

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:/ /www.st.com

