
AN985/1098 1/7

APPLICATION NOTE

EXECUTING CODE IN ST7 RAM
by 8-Bit Micro Application Team

1 INTRODUCTION

The purpose of this document is to give some guidelines about how to write and execute as-
sembly code in RAM with the ST7 8-bit Microcontroller.

2 ST7 MEMORY MAPPING

The memory mapping in the ST72251 is shown in the following figure.

The ST7 RAM and ROM locations are addressed and read in the same way. For the ST7 core
fetching and decoding instructions located either in RAM or ROM, take the same time, there is
no limitation executing code in RAM.

But the difficulties come from the fact that the RAM content is undetermined after power-up.
So the RAM locations have to be filled with the code after reset. There are two ways to do that:

– The code is located in the ST7 ROM and is copied in RAM after reset.

0000h

RAM

ROM
(8K Bytes)

Interrupt

H/W Registers

017Fh

0080h

Short Addressing
RAM (zero page)

16-bit Addressing
RAM

Stack
64 bytes

007Fh

0180h

DFFFh

Reserved

(256 Bytes)

0100h

0140h

017Fh

0080h

E000h

FFDFh
FFE0h

FFFFh

00FFh

013Fh

ST72251 Memory Mapping

& Reset Vectors

1

2/7

– The code is loaded in the RAM through external communication.

The application does not need special instructions to execute code in RAM. But the manage-
ment of the labels in RAM has to be done carefully.

The code has to follow the “BYTES” directive if it is located in the short address RAM named
“zero page ”(usually from 80h to FFh). All labels are treated into account as bytes.

If the code is located in RAM locations above the address 100h, it has to follow the “WORDS” di-
rective.

3 CODE COPIED FROM ST7 ROM TO RAM

As described in the software example at the end of this document, we are using ST7 directives
which allow you to store, in a ROM segment, the code to be used in RAM. The directives used
in our example are:
segment byte at 100-13F ’ram1’

segment byte at EF00-FFDF ’romtocop’

segment ’ram1>romtocop’

The code written in the ‘romtocop’ segment is a copy of the ‘ram1’ segment. The volatile code
is then stored in a non volatile location (the ‘romtocop ’ segment). So after each reset, the first
instruction of the application must be translated from the ‘romtocop ’ segment to the ‘ram1 ’
segment.

In the software example given in this application note, the two routines named “addition” and
“subtraction” are located in the segment ‘ram1>romtocop ’. After being copied in the ‘ram1’
segment the routines can be executed.

4 RAM CONTENT FILLED THROUGH EXTERNAL COMMUNICATION

The RAM content is filled with the code to execute using an external communication from a
device to the ST7 through the ST7 IOs, SCI, SPI or I2C peripherals. When the transfer is com-
pleted the code can be executed by loading the program counter with the first code address in
RAM.

If the CALL instruction is used, the code located in RAM must contain the RET instruction to be
able to go back to the code located in ROM.

3/7

5 FLOWCHART

The program given as example is structured as follows:

Reset

MCU processes the “CALL addition ” instruction jumping
to ‘ram1 ’ segment to execute the “addition ” routine.
Then goes back to the ‘rom’ segment
executing the ‘RET’ instruction.

‘rom’ segment code execution

MCU processes the “CALL subtraction ” instruction jumping
to ‘ram1 ’ segment to execute the “subtraction ” routine.
Then goes back to the ‘rom’ segment
executing the ‘RET’ instruction.

‘rom’ segment code execution

copy the N code bytes of “addition ”
& “subtraction ” routines
from ‘romtocop ’ to ‘ram1 ’

4/7

6 SOFTWARE

A software example is given below showing how to use code copied from ST7 ROM to RAM.
The assembly code given is for guidance only. The file cannot be used on its own. The com-
plete software environment can be found on the web.

st7/

;*********************************** *************************************

; TITLE: MODULE1.AS M

; AUTHOR: PPG Microcontr oller Applications Team

; DESCRIPTION: Short Demonstr ation Program where code is executed

; in RAM after being copied from ROM to RAM.

;*********************************** *************************************

TITLE ”MODULE1 .ASM” ; this title will appear on each

; page of the listing file

MOTOROLA ; this directive forces the Motorola

; format for the assembly (default)

#INCLUDE ”st72251.inc” ; include st72251 registers and memory mapping file

#INCLUDE ”constant.inc” ; include general constants file

;*********************************** ***********************

; Program code to copy in RAM

;*********************************** ***********************

WORDS ; define subsequent addresses as words

; meaning that all instructions are located

; in the address area above 0FFh in the ST72251

; memory mapping

segment byte at 100-13F ’ram1’ ; these lines define the segment to

segment byte at EF00-FFDF ’romtoco p’ ; copy from ROMTOCOP to RAM1

segment ’ram1>romtocop’ ; the label values stored in the code located

; in the ROMTOCOP segment are defined

; to be executed from the RAM1 segment

.addition ; when the routine is called d2 is already in A

add A,ramloc1 ; A = data2 + data1

ld X,A ; Store (data1 + data2) in X register

ret ; and return to main program in ROM

.subtraction ; when the routine is called d2 is already in A

sub A,ramloc2 ; A= data1 - data2

ld X,A ; Store (data1 - data2) in X register

.end_ram ret ; and return to main program in ROM

5/7

segment ’rom’

;*********************************** ******************************

; This instruction is one of the most important for the linker.

; It means that, until the next segment directive,

; all the code written below will be located in the rom part of the

; memory (start address E000h).

;*********************************** ******************************

.main

.difference equ {end_ram-addition} ; this label contains the number of bytes to

; copy in RAM

ld X,#difference.L ; Load in X the number of bytes to copy

cont ld A,(romtocop,X) ; indexed addressing mode

ld (ram1,X),A ; X bytes from ROMTOCOP to RAM1

dec X

jrpl cont ; the content of the ROMTOCOP segment is

; copied to the RAM1 location to be executed

clr A ;Its instruction’s address is E000h.

loop ld A,#data1 ; Get data1 value

ld ramloc1,A ; and put it in RAM0 segment

ld A,#data2 ; Do it again for data2

ld ramloc2,A

call addition ; call the other module routine stored in RAM1

; and execute it in this location

ld ramloc3,X ; We stock the addition procedure’s result

; in RAM0

ld A,#data2 ; Get data2 value

ld ramloc2,A ; and put it in RAM0 segment

ld A,#data1 ; Do it again for data1

ld ramloc1,A

call subtraction ; call the other module routine stored in RAM1

; and execute it in this location

ld ramloc3,X ; We stock the subtraction procedure’s result

; in RAM0

jp loop ; Do the loop once again

; **

; * *

; * INTERRUPT SUB-ROUTINES LIBRARY SECTION *

; * *

; **

dummy iret ; Empty subroutine. Go back to main (iret instruction)

segment ’vectit’

; ************************** ***

6/7

; This last segment should always be present in your own programs.

; It defines the interrupt vector addresses and the interrupt routines ’ labels

; depending on the microcontroller you are using.

; Refer to the MCU’s datasheet to see the number of interrupt vectors

; used and their addresses.

; Remember that this example is for a ST72251 based application.

; ************************** ***

DC.W dummy ;FFE0-FFE1h location

DC.W dummy ;FFE2-FFE3h location

.i2c_it DC.W dummy ;FFE4-FFE5h location

DC.W dummy ;FFE6-FFE7h location

DC.W dummy ;FFE8-FFE9h location

DC.W dummy ;FFEA-FFEBh location

DC.W dummy ;FFEC-FFEDh location

.timb_it DC.W dummy ;FFEE-FFEFh location

DC.W dummy ;FFF0-FFF1h location

.tima_it DC.W dummy ;FFF2-FFF3h location

.spi_it DC.W dummy ;FFF4-FFF5h location

DC.W dummy ;FFF6-FFF7h location

.ext1_it DC.W dummy ;FFF8-FFF9h location

.ext0_it DC.W dummy ;FFFA-FFFBh location

.softit DC.W dummy ;FFFC-FFFDh location

.reset DC.W main ;FFFE-FFFFh location

END

7/7

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:/ /www.st.com

