
AN1017/1098 1/38

APPLICATION NOTE

USING THE ST7 UNIVERSAL SERIAL BUS
MICROCONTROLLER

by Microcontroller Division Applications

1 INTRODUCTION

1.1 WHAT IS USB

Figure 1. A USB topology example

The Universal Serial Bus is an industry standard that brings Plug-and-Play technology to the
PC peripherals. The key features are:

■ Ease of use: peripherals will be detected and configured automatically when physically
attached, hot plugging allows adding and removing devices without powering down or
rebooting, using a single connector for all devices.

■ Built in power distribution for low power devices.

■ Port expansion: enables up to 127 different PC peripherals to be plugged to a PC.

MonitorKbd PC

Mouse Printer

HUB HUB HOST/HUB

Phone Speakers

1

2/38

Table of Contents

1 INTRODUCTION . 1

1.1 WHAT IS USB . 1

1.2 SCOPE . 4

2 DEVICE ENUMERATION AND CONFIGURATION . 5

2.1 USB RESET . 5

2.2 ENUMERATION . 5

3 DATA TRANSFER . 7

3.1 OVERVIEW . 7
3.1.1 DMA BUFFERS . 7
3.1.2 CTR INTERRUPT . 7

3.2 RECEIVE AND TRANSMIT PROCEDURES . 9
3.2.1 RECEIVE PROCEDURE ON ENDPOINT 0 . 9
3.2.2 TRANSMIT PROCEDURE ON ENDPOINT 0 AND ENDPOINT 1 10

3.3 DATA TRANSFER WITH ENDPOINT 0 . 11
3.3.1 SETUP STAGE . 12
3.3.2 DATA STAGE . 14
3.3.3 STATUS STAGE . 14

3.4 DATA TRANSFER WITH ENDPOINT 1 . 14
3.4.1 INTERRUPT TRANSACTION . 14

4 POWER MANAGEMENT . 15

4.1 SUSPEND/RESUME OPERATIONS . 15
4.1.1 ENTERING SUSPEND STATE . 15
4.1.2 EXITING SUSPEND STATE . 17

4.2 REMOTE WAKE-UP . 17

5 PROGRAM FLOW . 19

5.1 PROGRAM ARCHITECTURE . 19

5.2 USB INITIALIZATION . 21

5.3 USB POLLING . 21

5.4 USB INTERRUPT . 23

1

3/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

5.5 TRANSFER . 25
5.5.1 SETUP STAGE . 28
5.5.2 DATA STAGES . 34

5.6 STATUS STAGES . 36
5.6.1 STATUS IN STAGE . 36
5.6.2 STATUS OUT STAGE . 37

5.7 USB RESET . 37

5.8 START OF FRAME EVENT . 37

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

4/38

1.2 SCOPE

The ST7 USB interface is a Universal Serial Bus peripheral that provides a means of con-
necting a PC peripheral serving as a function to a PC host. It supports low speed data trans-
fers.

Objectives: this application note describes an example firmware for interaction with the USB
interface hardware and support interactions between a USB device and a host system.

The USB function firmware is divided into three layers as shown in figure 2.

USB function layer : this firmware layer implements the functionality provided by the device.

USB logical device layer: this firmware layer implements all standard USB requests and low
speed data transfers.

USB bus interface layer: this firmware layer is the interface between the USB logical device
layer and the USB interface hardware.

The USB logical device is discussed in detailed in this application note.
Figure 2. USB software model

The following chapters provide flowcharts and description of the firmware routines needed to
support the USB device operations:

• Device enumeration and configuration

• Data transfers

• Power management

Function

USB Logical
Device

USB Bus
Interface

USB Device

Client SW

USB System SW

USB Bus
Interface

USB Host

Physical (wire) communications flow

Logical (SW) communications flow

Capability

Provides common
device abstraction

Physical Interface,
Signaling

USB cable

5/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

2 DEVICE ENUMERATION AND CONFIGURATION

When a USB device is attached, the host issues a reset signal. When the reset signal is re-
leased, the device enters the unenumerated state.

2.1 USB RESET

The USB reset is independent from the chip reset. A USB reset signal resets the USB inter-
face peripheral but not the ST7 core and other peripherals.

When a USB reset signal is detected on the bus, the RESET bit in the ISTR register is set and
an USB interrupt is generated. All the USB interface registers are reset.

2.2 ENUMERATION

The host performs a bus enumeration to identify the attached device and to assign a unique
address to it. The device responds to the requests sent by the host during the enumeration
process on its default pipe (endpoint 0).

Enumeration steps:

1. Get device descriptor.

The host send a get device descriptor request. The device replies with its device descriptor to
report its attributes (Device Class, maximum packet size for endpoint zero).

2. Set address

A USB device uses the default address after reset until the host assigns a unique address
using the set address request. The firmware writes the device address assigned by the host in
the DADDR register.

NOTE: The firmware must write the device address only after completion of the set address
operation because the status stage that concludes the control transfer still uses the default ad-
dress.

3. Get configuration

The host sends a get configuration. The device replies with its configuration descriptor, inter-
face descriptor and endpoint descriptor. The configuration descriptor describes the number of
interfaces provided by the configuration, the power source (Bus or Self powered) and the max-
imum power consumption of the USB device from the bus. The Interface descriptor describes
the number of endpoints used by this interface. The Endpoint descriptor describes the transfer
type supported and the bandwidth requirements.

Others Class-specific descriptors may be returned by the device depending on the function
implemented.

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

6/38

4. Set Configuration

The host assigns a configuration value to the device based on the configuration information.
The device is then in configured state and can draw the amount of power described in the con-
figuration descriptor.

The device is now configured and ready to be used.

7/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

3 DATA TRANSFER

3.1 OVERVIEW

The ST7 USB interface can receive data on endpoint 0,1,2 and send data through endpoint
0,1,2 (endpoint 2 may not be available on all ST7 microcontrollers). The transfer types sup-
ported by the ST7 are:

1. Control transfer with endpoint 0 (SETUP, OUT and IN tokens)

2. Interrupt transaction with endpoint 1 (IN token)

Note: Transmission and reception on Endpoints 1 and 2 may be supported, depending on the
microcontroller type and the conditional compilation options chosen (see CONDCOMP.H file).

3.1.1 DMA buffers

The received and sent data are stored in RAM buffers assigned to the DMA of the USB inter-
face.

DMA buffers are a contiguous RAM area. The firmware must write the starting address of the
DMA memory area in the DMAR register and in the DA7 and DA6 bits of the IDR register. The
six least significant bits of the IDR register are managed by hardware. For detailed information
on the mapping, see USB interface chapter of the ST7 data sheet.

3.1.2 CTR interrupt

When a correct transfer operation has been performed, a CTR interrupt (see CTR bit in the
ISTR register) is generated. The following events generate a CTR interrupt:

1. ACK handshake returned by the host after a data has been sent in response to an IN token

2. Valid SETUP or OUT token received followed by a data packet and ACK handshake re-
turned to the host by hardware

Figure 3 describes the interaction between the received token packet and the hardware reg-
ister of the ST7 USB interface. The token packet contains:

1. PID field specifying either IN, OUT or SETUP token

2. ADDR and ENDP fields identifying the endpoint that will receive the data packet following
the token packet.

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

8/38

Figure 3. Token packet reception

The firmware must determine the data transfer direction and the endpoint number which has
sent or received data by reading the IDR and PIDR registers.

The following table shows the data transfer direction corresponding to the each PID.

PID name Data transfer direction
SETUP, OUT from host to device

IN from device to host

PID ADDR ENDP CRC5

Write into
Must match with

Endpoint Reception Register

Token Packet

TP3 TP2 - - - - - -

CTRL DTOG
RX

STAT
[1]

STAT
[0]

EnA[3] EnA[2] EnA[1] EnA[0]

- ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0

7

DADDR register

IDR register

Must match with

9/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

3.2 RECEIVE AND TRANSMIT PROCEDURES

3.2.1 Receive procedure on endpoint 0

Endpoint 0 receive data operation is explained in the figure 4.
Figure 4. Reception procedure

When the device receives a SETUP or an OUT PID, if the device address and the endpoint
number contained in the SETUP or OUT packet match with the address written in DADDR
register and one of the two endpoint numbers, the following operations are performed:

1. If the STAT_TX bits of the endpoint addressed are set to STALL, a STALL handshake is re-
turned by hardware to the host.

2. If the STAT_TX bits of the endpoint addressed are set to NAK, a NAK handshake is re-
turned by hardware to the host.

3. If the STAT_TX bits of the endpoint addressed are set to VALID, a DMA request on that
endpoint is performed. Data are transferred in the DMA buffer. If the CRC is correct, an ACK
handshake is returned by hardware to the host, DTOG_RX bit is toggled and the hardware
disables the endpoint by setting the STAT_RX bits to 10 (NAK). The CTR bit in ISTR register
is set, causing an interrupt if enabled.

Firmware writes VALID in STAT_RX bits of EP0RB register to enable reception

Valid SETUP/OUT Token received

Hardware replies ACK and generates a CTR Interrupt

CTR Interrupt

Firmware reads:

1. EP1 and EP0 bits of IDR register to determine which endpoint has generated the interrrupt

2. TP3 and TP2 bits of PIDR register to determine the token type received

Firmware clears CTR bit of ISTR register

IRET

Firmware performs data processing

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

10/38

The following table summarizes the behavior of the USB interface when a SETUP/OUT token
is received by endpoint 0.

3.2.2 Transmit procedure on endpoint 0 and endpoint 1

The transmit operation is explained in the figure 5.
Figure 5. Transmission procedure

When the device receives an IN PID, if the device address and the endpoint number contained
in the IN packet match with the address written in DADDR register and one of the two endpoint
numbers, the following operations are performed:

1. If the STAT_TX bits of the endpoint addressed are set to STALL, a STALL handshake is re-
turned by hardware to the host.

STAT_RX1 STAT_RX0 Action performed by hardware when SETUP/OUT token received
0 0 No action. USB interface ignores the received token
0 1 STALL handshake returned
1 0 NAK handshake returned

1 1

1. Data received

2. STAT_RX0 reset

3. ACK handshake returned

Firmware writes:

1. data in the DMA endpoint transmit buffer

2. number of bytes to transmit in the TBCn bits of EPnRA register

3. VALID in STAT_TX bits of EPnRA register to enable transmission

Valid IN Token received

Hardware returns a data packet

ACK received: CTR Interrupt

Firmware reads:

1. EP1 and EP0 bits of IDR register to determine which endpoint has generated the interrrupt

2. TP3 and TP2 bits of PIDR register to determine the token type received

Firmware clears CTR bit of ISTR register

IRET

11/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

2. If the STAT_TX bits of the endpoint addressed are set to NAK, a NAK handshake is re-
turned by hardware to the host.

3. If the STAT_TX bits of the endpoint addressed are set to VALID, a DMA request on that
endpoint is performed. A DATA0 or DATA1 data packet is sent according to the DTOG_TX bit
in EPnRA register. After the last byte in the DMA buffer is sent, the CRC is sent by hardware.
Upon receipt of ACK handshake from the host, DTOG_TX bit is toggled and the hardware dis-
ables the endpoint by setting the STAT_TX bits to 10 (NAK). The CTR bit in ISTR register is
set, causing an interrupt if enabled.

The following table summarizes the behavior of the USB interface when a IN token is received
by endpoint 0.

3.3 DATA TRANSFER WITH ENDPOINT 0

Endpoint 0 supports control transfers. There are two types of control transfers:

1. Control transfer with data phase

2. No-data control transfer.

As a consequence, a control transfer may have three transaction stages:

1. Setup Stage

2. Data Stage (not for no-data control transfer)

3. Status Stage

The figure 6 shows an example of control transfer with one data IN stage (only 8 data bytes
are exchanged).

STAT_TX1 STAT_TX0 Action performed by hardware when IN token received
0 0 No action. USB interface ignores the received token
0 1 STALL handshake returned
1 0 NAK handshake returned

1 1
1. Data sent

2. STAT_TX0 reset

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

12/38

Figure 6. Control transfer

3.3.1 Setup stage

The host sends a setup token followed by a data field of 8 bytes. Endpoint 0 must always be
able to accept a setup token. To support this requirement, the status bits STAT_RX0 and
STAT_RX1 of the EP0RB register must be re-write to VALID after every data reception on
endpoint 0.

The hardware interface ACKs the valid setup token and generates a Correct TRansfer (CTR)
USB interrupt.

In the figure 7 endpoint number is 0 and the PID type is SETUP.

Packet # Sync SETUP ADDR ENDP CRC5
SETUP Token

231 00000001 0xB4 0x00 0x0 0x08

Packet # Sync DATA0 DATA CRC16
SETUP data token

232 00000001 0xC3 80 06 00 01 00 00 40 00 0x8829

Packet # Sync ACK
ACK handshake from ST7

233 00000001 0x48

Packet # Sync IN ADDR ENDP CRC5
IN token of data IN stage

234 00000001 0x96 0x00 0x0 0x08

Packet # Sync DATA1 DATA CRC16
data returned by ST7

235 __000001 0xd2 12 01 00 01 00 00 00 08

Packet # Sync ACK
ACK handshake from host

236 00000001 0X48

Packet # Sync OUT ADDR ENDP CRC5
OUT token of status OUT stage

237 00000001 0x87 0x00 0x0 0x08

Packet # Sync DATA1 DATA CRC16
Zero length data packet sent by host

238 00000001 0xd2 0x0000

Packet # Sync ACK
ACK handshake from ST7

239 00000001 0x48

S
E
T
U
P

D
A
T
A

S
T
A
T
U
S

13/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

Figure 7. Control transfer (Setup stage)

The firmware must decode the 8 bytes received in the data packet following the SETUP token.
The following table describes the 8 bytes of a setup data packet.

Parsing these bytes, the firmware determines:

1. If there is a data phase looking at the wLength value

0 = No-data control transfer

2. The direction of the following data phase (if present) looking at bit 7 of the bmRequestType:

0 = Host to device (OUT data stage)

1 = Device to host (IN data stage)

If no data stage follows the setup stage, the firmware gets ready to perform the status stage.

Offset Field Size Description

0 bmRequestType 1
Used by firmware to determine the data xfer direction, the type
of the request (standard, class, vendor) and the recipient of
the request (device, interface, endpoint).

1 bRequest 1 Request code.
2 wValue 2 Varies according to the request.
4 wIndex 2 Varies according to the request.

6 wLength 2
If = 0, no-data control transfer. Used by firmware to know how
many bytes have to be sent or received by the device.

into TP2-3 bits
of PIDR must match with DADDR,

otherwise no answer send
to Host must match with E0A[3:0] bits

of EP0RA, otherwise no
answer sent to Host

checked, if not correct:
ERROR Interrupt

DTOG_RX set
to 0 by HW Data transferred

Into DMA buffers checked, if not correct:
ERROR Interrupt

SETUP
Packet

Data
Packet

ACK

PID ADDR ENDP CRC5

DATA0 PID DATA CRC16

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

14/38

3.3.2 Data stage

The data stage can be either from the host to the device or from the device to the host. It con-
sists of one or more IN or OUT transactions. The amount of data to be sent during the data
stage and its direction are specified during the setup stage. If, for instance, the amount of data
to be transferred is 18 bytes, the data stage will have two data transfer of 8 bytes (maximum
data payload) and a data transfer of 2 bytes.

3.3.3 Status stage

The status stage of a control transfer is the last operation in the sequence. It can be detected
by the device when there is a change in direction of data flow from the previous stage.

The status stage reports to the host the outcome of previous setup and data stages of the
transfer.

The status stage can use either IN or OUT tokens. For a control read (using IN token during
data stage), the host send an OUT token followed by a zero length data packet and waits for
the ACK handshake from the device. For a control write (using OUT token during data stage),
the host send a IN token, the device returns a zero length data packet and the host returns an
ACK handshake.

3.4 DATA TRANSFER WITH ENDPOINT 1

Endpoint 1 supports interrupt transaction.

3.4.1 Interrupt Transaction

When the function has some data to return to the host through the interrupt pipe, it must write
this data in the DMA buffer and enable endpoint 1 in transmission by setting the EP1RA to
VALID. The host polls endpoint 1 with a polling interval given in the endpoint descriptor by
sending an IN token. The hardware interface replies with STALL, NAK or data.

15/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

4 POWER MANAGEMENT

The ST7 supports the following USB power management features:

• suspend/resume

• remote wake-up

4.1 SUSPEND/RESUME OPERATIONS

4.1.1 Entering suspend state

When no activity is seen on the bus for more than 3 ms, the ST7 enters suspend state. This
functionality is implemented through the USB SUSP interrupt.

When this interrupt occurs the corresponding bmUsbIntFlag bit is set and the firmware must
then set the SUSP bit in CTRL register to enter suspend state.

The firmware main loop checks if the SUSP bit is set to Halt the microcontroller in order to
meet the power requirement of the USB specification. The whole application must not draw
more than 500 µA from the USB bus in suspend state (only in bus powered applications).

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

16/38

Figure 8. Entering suspend mode program

Main loop

SUSP interrupt routine

IRET

SUSP interrupt

Set SUSP bit in the CTRL
register

SUSP
 bit in the CTRL

register
set

Halt
N

Y

VR02127A

Clear SUSP bit of the ISTR
register

17/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

4.1.2 Exiting suspend state

The microcontroller exits halt mode when one of the three following events occur.

1. Resume signal on the USB bus. The microcontroller exits halt mode and jumps to the USB
end suspend interrupt routine.

2. USB reset on the USB bus. The microcontroller exits halt mode and jumps to the USB reset
interrupt routine.

3. An external interrupt event is generated through an I/O port pin by the application. Then the
microcontroller exits from Halt mode and jumps to the corresponding interrupt routine.

4.2 REMOTE WAKE-UP

When the ST7 is in suspend state and an enabled external interrupt occurs, it can initiate a
resume signaling to wake up the system.

The function restarts the CPU clocks and executes the external interrupt routine. Within this
external interrupt routine, the firmware clears the SUSP bit in the CTRL register and sets the
RESUME bit in the CTLR register to force the resume signal on the USB bus. The firmware
must keep the RESUME bit set for at least 20 ms.

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

18/38

Figure 9. Remote wake-up program

External interrupt routine

Suspend State

Clear SUSP bit in the CTRL register

Set RESUME bit in the CTRL register

Wait for at least 20 ms

Clear RESUME bit in the CTRL register

Awake State

External interrupt

IRET

VR02127B

19/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

5 PROGRAM FLOW

This chapter provides flowcharts of a low speed USB interface basic driver. These flowcharts
describe the operations that the firmware must do to support data transfers used by standard
USB requests.

5.1 PROGRAM ARCHITECTURE

The USB events are managed by interrupt. A single interrupt vector is used for the USB inter-
rupt sources. The firmware must determine the interrupt origin by reading the ISTR register,
set a bit in a software register and clear the interrupt flag.

The USB polling routine reads the software register to determine the USB interrupt source and
jump to the corresponding interrupt routine.

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

20/38

Figure 10. USB program architecture

Before entering the main loop, the firmware must initialize the USB interface hardware.

USB
interrupt
routine

USB routines

Data IN stage

Transfert

Setup

M ain loop

U SB po lling:
C hecks if a

so ftware in terrup t
flag is se t and
jum ps to the

co rresponding
rou tine

F irm w are finds
out the o rig in o f

the U sb In te rrup t

F irm w are se ts the
so ftware flag

co rresponding to
the U sb In te rrup t

sou rce

F irm w are clea rs
the In terrupt flag

in the ISTR
reg iste r

IRET

USB interrupt

VR 02127C

21/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

5.2 USB INITIALIZATION

This routine initializes the hardware and resets the software registers to enable the USB inter-
face. The initialization steps are:

1. Set the starting address of the endpoint DMA buffers

2. Enable endpoint 0 in reception

3. Write interrupt mask register

4. Power ON the internal 3.3V regulator to supply the external pull-up resistor used for detec-
tion by a hub.

5. Enable interrupts

5.3 USB POLLING

This routine is in the main loop and checks if a bit in the software interrupt register is set and
jumps to the corresponding interrupt routine. The following figure describes the interaction be-
tween the USB polling routine in the main loop and the other USB routines.

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

22/38

Figure 11. Program flow overview

M ain loop

U SB in itia liza tion

U SB po lling

Transfe rt U SB rese t SO F even t

Se tup
stage

D ata O UT
stage

S ta tus IN
stage

D ata IN
stage

S ta tus
O U T
stage

OUT Token

SO F interrupt
occurred

SETUP
Token

RESET
interrupt
occurred

IN Token OUT Token

CTR in terrupt
occurred

IN Token

VR 02127D

23/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

5.4 USB INTERRUPT

The USB interrupt routine copies the ISTR register masked by the IMR register value to a soft-
ware register and clears the bit of the ISTR register corresponding to the pending interrupt.
The USB polling routine in the main loop checks if an interrupt software flag is set to execute
the corresponding interrupt routine.

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

24/38

Figure 12. USB interrupt routine

Sta rt

W rite bm U sb IntF lag w ith the va lue of the
ISTR register m asked w ith the IM R register

b m U sb IntF lag
SO F b it se t

C lear S O F bit o f the
ISTR register

Y

N

b m U sb IntF lag
R ESE T b it set

C lear R ESET b it o f
the ISTR register

Y

N

b m U sb IntF lag
ES U S P b it set

C lear E SUSP b it o f
the ISTR register

Y

N

b m U sb IntF lag
IO VR b it se t

C lear IO VR b it of the
ISTR register

Y

N

b m U sb IntF lag
ER R b it set

C lear E RR bit o f the
ISTR register

Y

N

b m U sb IntF lag
C TR b it set

R ead P ID nam e
(P ID R reg iste r) and

Endpo in t num ber
(ID R reg iste r)

Y

N

C lear C TR bit o f the
ISTR register

b m U sb IntF lag
D O V R bit se t

Y

IRET

C lear D O VR bit o f the
ISTR register

VR 02127E

25/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

5.5 TRANSFER

This routine is called by USB polling when the CTR (Correct TRansfer) bit in the ISTR register
has been set. It determines which type of token has been received and by which endpoint
number (zero or one) and jumps to the routine corresponding to the current USB event: setup
stage, data IN stage, data OUT stage, status IN stage, status OUT stage on endpoint 0.
Figure 13. Transfer routine

Sta rt

C lear CTR bit o f
bm U sb in tF lag

Endpo in t
num ber = 0

P ID = Se tup

Endpo in t
num ber = 1Se tup

S tage

A

B

PID = IN

P ID = O U T

Error

P ID = IN

D ata sent
th rough pipe 1

D one D one

N

Y

N

N

N

Y

Y

Y

Y

Y

N

(T P [3 :2] = 11)

(T P [3 :2] = 10)

(T P [3 :2] = 10)

(T P [3 :2] = 00)

(EP0 = 0) (EP0 = 1)

N

VR 02127F

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

26/38

Figure 14. IN Token received by endpoint 0

A

C urrent
transfer stage is D ata IN

 S tage?

C urrent
transfer stage is Las t IN

 T ransaction?

D evice
address to det a fte r

S ta tus S tage?

C urrent
transfer stage is: No

D ata S tage O R Las t O U T
Transaction O R D ata S tage

O U T?

Error

D ata IN S tage

Sta tus O U T S tage

Se t A ddress

W rite VAL ID in the
STAT _R X[1:0] b its of
the EP0R B register

D one

N

N

N

N

Y

Y

Y

Y

VR 02127G

27/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

Figure 15. OUT Token received by endpoint 0

N

N

Y

B

C urrent
 trans fe r s tage is Last IN

Transaction?

C urrent
 trans fe r s tage is Da ta

IN stage?

C urrent
 trans fe r s tage is Da ta

O U T S tage?

Sta tus O U T
Stage

Error

W rite VAL ID in the
STAT _R X[1:0] b its of
the EP0RB reg is ter

N o m ore
 data to be
rece ived?

Sta ll Endpo in t0D ata O UT S tage

N ext
packet to rece ive w ill be

the last o f the
transac tion?

W rite VAL ID in the
STAT _R X[1:0] b its of
the EP0RB reg is ter

S ta tus IN s tage

D one

D one

Y

Y

Y

Y

N

NN

VR 02127H

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

28/38

5.5.1 Setup stage

When a setup token is received, the firmware:

1. Saves the next six bytes after the setup token

2. Checks if the control transfer has a data stage or not

3. Decodes the request sent by the host

If the data transfer direction is from the device to the host, the firmware prepares data to be re-
turned when the host sends an IN token, otherwise it sets the hardware ready to receive data
from the host.

If there is no data transfer, the program jump to the status IN routine.

29/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

Figure 16. SETUP Token received by endpoint 0

See chapter 9 USB Device Framework of the USB specification for detailed information on
bmRequestType and wLength.

Sta rt

Sa ve the 6 first b ytes o f the U SB D e vice R eq ue st

w Le n gth = 0
(n o da ta sta g e)

Se t U sbC trS ta tus = N O _ D A TA _S TAG E

R eceive d
re q ue st is a

S ta n da rd
R eq u est?

R eceive d
re q ue st is a C lass

R eq u est?

R eceive d
re q ue st is a Ve nd or

R eq u est?

D

*

*

S ta tus IN S tag e

D on e

R eceive d
re q ue st is a

S ta n da rd
R eq u est?

R eceive d
re q ue st is a C lass

R eq u est?

R eceive d
re q ue st is a Ve nd or

R eq u est?

S ta ll En d po in t0

C

*

*

b m R e qu estT yp e[7]= 1 ?

W rite VA LID in the ST AT _R X[1 :0]
b its o f th e E P0 R B re g ister

D AT A IN ST AG E

Se t U sbC trS ta tus =
D AT A_ IN _ ST AG E

Se t U sbC trS ta tus =
D AT A_ O U T _ST AG E

N

N

Y

Y

D on e

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

*:N ot im p lem en ted VR 02127I

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

30/38

Figure 17. Standard request processing with data transfer

See chapter 9 USB Device Framework of the USB specification for detailed information on
bRequest, wValue and wLength.

When the GET_DESCRIPTOR, GET_CONFIGURATION requests are received the function
must return the appropriate descriptor.

C

bR equest
= G E T_DE SC RIP TO R or

S ET_D ES CR IPTO R
wV alue = DE VIC E

CurrentUsbbLenght =
CurrentDescAddPoin te r =

DE V DE SC SIZE

wV alue = STRIN G
CurrentUsbbLenght =

CurrentDescAddPoin te r =
DE V DE SC SIZE

wV alue = CO NFIG UR ATIO N

wV alue = DE VIC E

CurrentUsbbLeng th
=C O NFDE S CS IZE

CurrentUsbbLeng t
h =w Leng th

CurrentDescAddP oin te r = CO NFDE SC SIZE

wV alue=H ID
CurrentUsbbLeng th = H ID DESC SIZE

CurrentDescAddPoin te r = H ID DESC AD D

wV alue=H ID

CurrentUsbbLeng th =
RE P O RTDE S CS IZE

CurrentDescAddPoin te r =
RE P O RTDE S CA DD

bR equest = G ET _INT ER FA CE

bR equest = G ET _S TA TUS

bR equest = G ET _C O NF IG UR AT IO N

S ta ll E np oint0
Done

CurrentUsbbLeng th = w Length
CurrentDescAddPoin te r =

CO NFVA LAD D

CurrentUsbbLeng th = w Length
CurrentDescAddPoin te r =

INTER FAC ED ES CA DD

CurrentUsbbLeng th = w Length
CurrentDescAddPoin te r =

S TA TUS AD D

N

N

N

N

N

N

N

N

N

Y

Y

Y

Y

Y

Y

Y

Y

YY

VR 02127J

31/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

If a descriptor has a length longer than eight bytes, multiple data stages are needed. Two var-
iables are used during the control transfer to return a descriptor stored in ROM to the PC host:

1. CurrentUsbbLength specifies the current total number of bytes to transmit.

2. CurrentDescAddPointer specifies the current position of the descriptor pointer.

For example, if a descriptor is 34 bytes long, four data IN stages of 8 bytes and one of 2 bytes
are needed to return the descriptor.

CurrentUsbbLength is initialized to 34 and CurrentDescAddPointer indicates the starting posi-
tion in the array containing the descriptor before the first IN transfer.

After every data IN stage, CurrentUsbbLength and CurrentDescAddPointer are decreased in
order to indicate the current byte number remaining and the current position of the pointer in
the descriptor array respectively.

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

32/38

Figure 18. Example of a 34 bytes long descriptor transfer

Time

34

26

18

10

2

IN transfer #1

@#1

@#2

@#3

@#4

@#5

IN transfer #2

IN transfer #3

IN transfer #4

IN transfer #5

8 bytes

8 bytes

8 bytes

8 bytes

2 bytes

Time

CurrentDescAdpointer will point to address @#1 for the first IN transfer, then to address @#2 for
the second IN transfer till address @#5

C
urren

tU
sbbLe

ngth
 valu

e

33/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

Figure 19. Standard request processing without data transfer

D

bReques t =
CLEAR_FEATURE

bReques t =SET_FEATURE

bReques t =
SET_ADDRESS

bReques t =
SET_INTERFACE

bReques t =
SET_CONFIG URATIO N

Sta ll Endpo in t0

C lear Fea tu re

D one

Se t C onfigu ra tion

Se t In te rface

Se t A ddress

Se t F ea tu re

N

N

N

N

Y

Y

Y

Y

Y

N

VR 02127K

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

34/38

5.5.2 Data stages

5.5.2.1 Data IN stage
Figure 20. Data IN stage

Sta rt

C urre n tU sb b Le ng th <=
M AXP AKE TSIZ E

N

C urre n tU sb b Le ng th == 0

N

b R e q ue st = G ET _ST AT U S

N

b R e q ue st = G ET _D ES C R IP TO R

b R e q ue st =
G ET_ C O N F IG U R A TIO N

N

b R e q ue st = G ET _IN TE R FAC E

N

Error

Se t U sbC trS tatus =
LAST_ IN_TR ANS

G et In te rface

G et C onfigu ra tion

G et D escr ip to r

G e t S ta tus

Send 0 Length Da ta Packet

D one

Y

Y

Y

Y

Y

Y

N

VR 02127L

35/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

5.5.2.2 Data OUT stage
Figure 21. Data OUT stage

Error

bReques t =
SET_DESCRIPTO R

Set D escrip to r

CurrentUsbbLength = 0
Se t U sbCtrS tatus =

LAST_O UT _TR AN S I
N O _M O RE _D ATA

Sta rt

D one

N

N

Y

Y

VR 02127M

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

36/38

5.6 STATUS STAGES

5.6.1 Status IN stage

The function must return a zero length data packet in response to a IN token for the status IN
stage. For a SET_ADDRESS request, the status IN stage routine is somewhat different. The
firmware must wait for the completion of the SET_ADDRESS request processing to assign to
the device the unique address sent by the host since the transfers for this request are ad-
dressed to the default address. A software flag is set if a SET_ADDRESS request is received.
After completion of the control transfer, the firmware checks if this flag is set to write the
unique address in the DADDR register (see figure IN token received by endpoint 0)
Figure 22. Status IN stage

bReques t =
SET_ADDRESS

U sbCtrS ta tus =
AD DR ESS2SET

Send 0 leng th Da ta packe t

S ta rt

D one

N

Y

VR 02127N

37/38

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

5.6.2 Status OUT stage

When the last data IN stage is performed, the firmware executes the status OUT stage rou-
tine. This routine sets the ST_OUT bit in the EP0RA register. When this bit is set, all non zero
data transactions are STALLed by hardware.

When the OUT token of the status OUT stage is received, the status OUT stage routine is
called and then clears the ST_OUT bit.
Figure 23. Status OUT stage

5.7 USB RESET

The USB reset routine is called when a USB reset signal has generated a USB reset interrupt.
The firmware must then re-initialize the USB interface following this sequence:

1. Set the starting address of the endpoint DMA buffers

2. Enable endpoint 0 in reception

3. Write interrupt mask register

3. Power ON the internal 3.3V regulator to supply the external pull-up resistor used for detec-
tion by a hub.

5.8 START OF FRAME EVENT

This routine is called when a SOF indication on the bus has generated a USB SOF interrupt.
See chapter 4.1.1 Entering suspend state for detailed information.

bReques t =
SET_ADDRESS

U sbCtrS ta tus =
AD DR ESS2SET

Send 0 leng th Da ta packe t

S ta rt

D one

N

Y

VR 02127N

USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER

38/38

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

