KYIw APPLICATION NOTE

STARTING WITH ST7 ASSEMBLY TOOL CHAIN

by the 8-Bit Micro Application Team

INTRODUCTION

The purpose of this document is to give guidelines for starting a ST7 application design based
on the STMicroelectronics Assembly tool chain.

1 ST7 TOOL CHAIN OVERVIEW

The ST7 tool chain is a cross development system for ST7 microcontroller based applications.
It runs in the DOS environment on a PC machine. The UNIX environment will not be described
in this note; please refer to the user documentation for this purpose (ST7 Software Tools User
Manual).

A first overview is given in Figure 1. Assembler options are described in chapter 5.3.
Figure 1. File Flow

|
(.NC)
{(.AsMm }—M ASM LYN
DEBUGGING/ |[g—] =] 15D
PROGRAMMING
TOOLS 4— s10 Y&—{ OBSEND [«
Legend: Input File Option Output File
TOOL -opt ouT

It includes the following development tools:

« ASM: Assembler for the ST7 microcontroller.

« LYN: Linker for resolving cross-references and allocating memory to object files.
« OBSEND: File formatter for generating the S19 files for the debugging tools.

« LIB: Librarian utility for creating and maintaining object file libraries.

AN988/0699 1/8

STARTING WITH ST7 ASSEMBLY TOOL CHAIN

2 INSTALLATION PROCEDURE

The ST7 Assembly Tool Chain can be installed from Internet or from the ST7 CD ROM. It's
completely free of charge and you can easily download the last version of this software from

the ST Internet site (http://st7.st.com).

When the installation is finished, do not forget to reboot your PC because the autoexec.bat

file is automatically modified as follows:
PATH=c:<installation_directory>

SET METAI=c:<installation_directory>
SET DOS4G=QUIET

The second statement allows the assembler to find the ST7.TAB file in the installation direc-
tory even if the assembler is executed from your development directory.

The last one includes the installation directory in your DOS path so that you can launch the

tools from your development directory.

3 SETTING UP A NEW APPLICATION

3.1 ST7 SOFTWARE LIBRARY

The ST7 software library is formatted as described in Figure 2.. To be fully compatible with the
ST standard software library and support, you are strongly advised to use the same file organ-
ization . However, for very simple applications, the complete source code may be written in a

single source file.
Figure 2. Files organisation

INC files ST72XX const
) Ty Ty =
ASM files ST72XX filel file2 const
ST7.TAB ASSEMBLER

The ST7 software library is available on ST Internet web site.

2/8

4

STARTING WITH ST7 ASSEMBLY TOOL CHAIN

Default file type definition:
ST7.TAB ST7 description table provided with the tool chain.
ST72XX.asm Hardware register definition (see software library).
ST72XX.inc Register prototypes to be included in all modules.

const.asm Constants and global variables definition.
const.inc Constants and global variables prototypes.
fileX.asm Modules containing the code of your application.

4 ASSEMBLER DESCRIPTION

4.1 ASSEMBLER SYNTAX
4.1.1 Labels, mnemonics and directives

A label can be a variable name or an address in your code which is used to simplify the
memory access and JUMPinstructions. Labels should always start in the first column; con-
versely, every statement starting in the first column will be considered as a label.

Mnemonics are given names to simplify the use of opcodes. They should never be put in the
first column. Please refer to the ST7 Programming Manual for their complete description.

Directives give specifications to the assembler or linker to modify their process. They should
never be putin the first column either. Please refer to the ST7 Software Tools User Manual for
their complete description.

Figure 3. Assembly File Example (fileX.asm)

#INCLUDE "ST72251.INC” ; Assembler Directive

WORDS ;. Assembler Directive

segment ’'rom’ ; Linker Directive
NEXT ; Label

LD (Table, X), A ; Mnemonic

DEC X ; Mnemonic

JRPL NEXT ; Mnemonic

Note: the semicolon stands for the comment delimiter. It is valid from its position for the rest of
the current line.

4.1.2 ST7/ and ENDstatements

All assembly source files must start with the ST7/ statement in the first row, first column (this
the only exception to the rule stated in paragraph 4.1.1). This will tell the assembler that the
target processor is an ST7 i.e. the description table can be found in the ST7.TAB file.

4

3/8

STARTING WITH ST7 ASSEMBLY TOOL CHAIN

All assembly source files must finish with the ENDstatement. Forgetting this statement will
generate an error. Take care to put a carriage return after the END statement to be sure it will
be taken into account during the assembly.

Note: Be aware that any code put after the END statement will not be assembled; for this
reason, never put an ENDat the end of an include file otherwise the code in the ASMfile in-
cluding that INC file will never be assembled.

4.1.3 Defining constants and variables

RAM space may be reserved to store variables using the ds.b and ds.w statements (ds.b
for bytes and ds.w for words, see Figure 4.). ROM space may be reserved to store constants
using the dc.b (or BYTE) and dc.w (or WORDstatements. The content of the reserved
memory follows these directives (see Figure 4.). Using WORDnstead of dc.w will reserve
memory with the least significant byte first. BYTEand dc.b are exactly the same.

Note: use the ds. statement whenever you want to allocate memory to a variable, instead of

using the EQUstatement which does not reserve any memory space.
Figure 4. Variables and Constants definition (const.asm file)

BYTES
segment ’'ram0’

.count ds.w 1 ; reserve a word in page 0 for count
WORDS
segment 'raml’

.step ds.b 3 ; reserve three bytes in ram for step
segment 'rom’

.rate dc.w 9600 : reserve a constant word in rom

tab dc.b $AA,%01010101; reserve two constant bytes in rom

4.1.4 BYTES, WORDS and segment definition

The two assembler directives BYTESand WORDSpecify if the labels subsequently defined
have a 8 bit or 16 bit address. Therefore, BYTESshould be used before defining all hardware
registers and RAM variables in page zero (before address $FF). WORDShould be used in any
other case i.e. for RAM variables in other pages, EEPROM variables, code, constants and in-
terrupt vectors in ROM.

The segment linker directive is used to define a memory range. This is done once and for all
in the ST72XX.ASMfile as itis only dependent on the ST7 microcontroller you are using. This
directive is also recalled every time you want to put variables or code in a different range.

Note 1: The assembler is not able to find the label length from the reserved word segment
which is only understood by the linker. That is why you have to specify the label length with
BYTESor WORD@®ven if it sometimes seems redundant.

Note 2: WORDS the default statement. You can put it at the beginning of your ASMfiles and
at the end of your INC files.

a8 (574

STARTING WITH ST7 ASSEMBLY TOOL CHAIN

Note 3: BYTESand WORD@®o0 not specify the variable length but the variable address length.
You may have a word (16-bit variable) in page zero and a byte (8-bit variable) stored after ad-
dress $100. This means you must not mix the BYTESand WORDS@irectives with BYTE and
WORIirectives.

4.2 FILE MANAGEMENT
4.2.1 PUBLIC, LOCAL and EXTERN references

By default, all labels are local to one file. If you want to use a label in another module, you have
to specify it as global. This can be done either by putting a dot before the label or using the
PUBLIC directive at the beginning of the file followed by the list of global labels. In the other
module, use the directive EXTERNfollowed by the list of external variables you want to use
(refer to Figure 5.).

Note: local labels are lost at assembly stage. If you want to see all symbolic information in the
debugger windows, define all your label as PUBLIC even if they are not used in another
module.

Figure 5. Using Public and External labels

EXTERN count, table

#INCLUDE “"const.inc” count ds.b 1
table ds.b 128

LD X, count
LD (table, X), A

4.2.2 Error file

By default, an error file cbe.err is generated by the assembler and placed in the current di-
rectory. This file specifies the number of errors encountered, the file name and line number as

4

5/8

STARTING WITH ST7 ASSEMBLY TOOL CHAIN

well as the description of each error. This file makes it easier to debug the code and may be
parsed by a integrated editor.

o errors on assewbly of *EAERERGISEARESHE TARSHY CONSTANT _aSH"

GRELET.ASH{1RE} 2 as51 @ Errer 5h: £ant match Addressing mode ° 1d PADR, %0
GRELET. ASN{183) 2 as? : Erver &6: Illegal undefined label “Ipepl’

BIFars @i assesbily of “CILRERCISEARESUL TARSHAMODHLEYD .ASH’

G ervors ean ascerbly of CCI\EXERCISENRESHMLTLZWASHAMODUELEZ.ASH"

o errors oh assesbly of “LAAERERCISEMRESOLT\ASHASTT2251.A8H"

5 OTHER TOOLS

5.1 LINKER

The linker has no specific option or configuration file. All information to the linker is given
through specific directives in the source file such as the segment directive. To invoke the
linker LYN, the command line has to specify:

— the list of object files to link together separated by a +

— the name of the CODfile you want to generate

— the list of libraries which may be used.

All this information may be written in the command line or put in a response RSPfile as spec-
ified in Figure 6.
Figure 6. Invoking the linker

c:>LYN ST72251+const+file1+file2, appli, library
or
c:>LYN @LIST.RSP

if the RSP file content is:

ST72251+const+filel+file2
appli
library

5.2 OBSEND

OBSEND is a general purpose tool used to convert the CODfile generated by the linker into an
S19 record file which is used by the debugging and programming tools. The command line
(see Figure 7.) has to specify:

— the CODfile output by the linker

— the destination type which can be the screen (v for video) or a file (f)

— the name of the S19 file you want to generate (if the destination is a file)

4

6/8

STARTING WITH ST7 ASSEMBLY TOOL CHAIN

— the format which must be s or x foran S19 record format (refer to the documentation to have
the other available formats).
Figure 7. Invoking OBSEND

c:>OBSEND appli, f, code.S19, s

Note: the command line has to specify the S19 extension as it is HEXby default.

5.3 DEBUGGING THE CODE

Once all the assembly errors have been removed, the code needs to be debugged with an
emulator. To be able to access all the symbolic information (variable names and labels) from
the debugger, the ASMfiles need to be assembled a second time to update the listing file with
the symbolic information held in the map file. This is performed by the -sym assembler option
used in conjunction with the -fi assembler option.

As the command lines will have to be typed in several times, a batch file can be written to au-
tomate the process:

i Compile bat - Notepad

-1i st72i%t.asm
~1i capstant.asm
~1i modulet.asn
~1i module2.asn

sE#22%1 _ndjroonstant_obirmodulel _objvmedule? obj demo._cod;

sm SEF225 -sgm -Fi=domn . map
sn constant ~sym -fi~demm.nap
sm poduliel -sym -Fi=demo.pmap
sn podule? ~sym -~Fi-demo.map

Note 1: the first time, the assembler does not know the absolute addresses because they are
computed by the linker (refer to Figure 1.). A look at the listing file generated by the -li as-
sembler option will show zeros for all absolute addresses.

Note 2: a semicolon can be put at the end of the linker command line to specify there is no
other argument (no library). If you omit this semicolon, you will be prompted for libraries every
time you launch your batch file.

718

4

STARTING WITH ST7 ASSEMBLY TOOL CHAIN

"THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.”

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
[J1999 ST Microelectronics - All Rights Reserved.

Purchase of PC Components by STMicroelectronics conveys a license under the Philips I°C Patent. Rights to use these components in an
I°C system is granted provided that the system conforms to the I1°C Standard Specification as defined by Philips.
STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:// www.st.com

4

8/8

