
AN979/1098 1/19

APPLICATION NOTE

Driving an Analog Keyboard with the ST7 ADC
by 8-Bit Micro Application

INTRODUCTION

The goal of this application note is to present a standard example of the use of the Analog to
Digital Converter (ADC) of the ST7.

In this note, the use of the ADC cell to emulate a 16 keys analog keyboard is presented. The
technique for the keyboard is to connect the keys by resistive dividers to one of the converter
inputs.

1 ST7 / KEYBOARD INTERFACE

The only point is to connect the analog keyboard with one of the analog inputs of the ST7.
Figure 1. ST7 / keyboard interface set-up

2 ST72311 CONFIGURATION

The application has been validated with a ST72311. Its configuration is described in this part.
Refer to your datasheet for more details.

2.1 I/O CONTROL

The flexibility of the I/O port structure of the ST7 allows the multiplexing of up to 8 analog in-
puts into the ADC. They are the alternate functions of the pins of Port A.

The pins used by the ADC must be declared as inputs to avoid conflicts in alternate function
mode.

Please, refer to the Data Book to configure pins properly.

ST7

ADC

KEYBOARD

analog
input

keyboard
output

high voltage reference

low voltage reference

VDD

VSS

AINx

1

ST72311 CONFIGURATION

2/19

2.2 ANALOG TO DIGITAL CONVERTER

The ST7 ADC is a 8-bits successive approximation converter, with internal sample and hold
circuitry. It has up to 8 multiplexed analog input channels.

The ST7 ADC is specified for +/- 2 LSB.

2.2.1 ADC control

This cell is controlled with the ADC Control Status Register (ADCCSR).

The COCO bit is the conversion complete bit:

- When this bit is set, the conversion is done and the result can be read in the
ADC Data Register.

- When the bit is reset, the conversion is not complete.

The ADON bit:

- The ADC is switched on when this bit is set.

- The ADC is switched off when it is reset.

CH2-CH0 bits:

- They are used to select which analog input to convert. In the ST7285 there are
8 analog pins.

2.2.2 Characteristics

The conversion time is 64 CPU cycles including a sampling time of 31.5 CPU cycles.

The ADC is linear and the digital result of the conversion is given by the formula:

Digital Result 255*Input Voltage
Reference Voltage
--=

3/19

ST72311 CONFIGURATION

2.2.3 Process

First the analog input pins must be configured as inputs (see Section 2.1).

Then the analog channel to convert must be selected using CH2-CH0 bits of ADCCSR reg-
ister.

Setting the ADON bit will switch the converter on.

Note that a stabilization time (typically 30µs) is needed before the converter is enabled.
Figure 2. Flowchart: initialization for the ADC

Once a conversion is done, the COCO bit is set by hardware. It will be reset by a read of the
ADCDR register or by a write into the ADCCSR register.

Once enabled, conversions will run continuously until the peripheral is disabled.

I/O initialization

channel selection

ADC ON

waiting more than 30µs

KBD_init

return

ANALOG KEYBOARD

4/19

Figure 3. Flowchart: conversion process

3 ANALOG KEYBOARD

3.1 PRINCIPLE

The purpose is to recognize a key when pressed. In an analog keyboard each key is associ-
ated with a voltage. The description of an analog keyboard is given by Figure 4.

Figure 4. hardware description of a keyboard with 16 keys

Rup is a pull-up resistor. So, when no key is pressed, Vkey is equal to VDD.

KBD_init

conversion process

COCO = 1?

read ADCDR

no

yes

VDD

Rup

R0

R1

R13

R14

Vss

(keyboard value)

key 0

key 14

key 15

Vkey

with ΣRj >>Rup

key 1

5/19

KEY DECISION

When ‘key i‘ is pressed, the resistor Ri-1 is connected to Vss. Then we have a resistive divider
and Vkey is given by the formula:

So the corresponding voltage of each key is given by the values of the resistors. An equal dis-
tribution of voltage between VDD and VSS is usually recommended.

To recognize a key, the user will measure Vkey and will be able to decide which key was
pressed.

3.2 PRACTICAL LIMITATIONS

Theoretically, with an 8 bits ADC, 255 keys could be decoded. But potential errors must be
taken into account. They can come from the power supply, the key resistivity, the resistor tol-
erance, the ADC linearity. The first two can normally be neglected.

The resistor tolerance is a main limitation as usually 5% tolerance resistors are used. It is ad-
vised to use a 1% tolerance resistor for the pull-up. Changing this resistor highly improves the
keyboard as the pull-up has an influence on every key.

The ST7 ADC linearity is specified for +/- 2 LSB. So a margin of 4 LSB must be added to the
resistor tolerance to avoid key decision errors.

These parameters will reduce the number of keys that can be decoded.

4 KEY DECISION

The ST7 is a digital microcontroller. It uses its ADC to measure Vkey. It is then coded in 8 bits.

As the ADC is linear, the best decision is taken when the voltage levels of the keys follow an
equal distribution between VDD and VSS.

In our application, a 16 key keyboard is used. So, the best associated Vkey value of ‘key i‘ is
given by:

The problem is that you cannot choose the perfect values for the resistors. In our application,
the following resistor values were used (see Table 1):

Vkey i

VD D Vss–() Rj
j 0=

i 1–

∑

Rup Rj
j 0=

i 1–

∑+

--=

Vkey i
VDD Vss–() i×

16
--=

KEY DECISION

6/19

Table 1. Example of resistor values for 16 keys

The digital values of the keys after conversion are given in Table 2.

When a key is pressed and after conversion, a decision must be taken on its value. Upper and
lower limits of decision for each key must be defined. These values are the middle of two fol-
lowing typical values, which gives the best noise margin between keys.

The software uses the lower limits to make its decision. They are given in Table 2.

Resistor Value (Ω) Resistor Value (Ω)

Rup 1K R7 220

R0 68 R8 270

R1 75 R9 390

R2 82 R10 560

R3 100 R11 820

R4 120 R12 1K2

R5 150 R13 2K7

R6 180 R14 75

7/19

KEY DECISION

Table 2. Key values

KEY
typical digital

value
lower digital
limit of KEY

KEY
typical digital

value
lower digital
limit of KEY

no key 0xFF 0xF8

‘F‘ 0xEF 0xE7 ‘7‘ 0x70 0x68

‘E‘ 0xDF 0xD6 ‘6‘ 0x60 0x57

‘D‘ 0xCE 0xC7 ‘5‘ 0x4F 0x47

‘C‘ 0xC1 0xB8 ‘4‘ 0x3F 0x37

‘B‘ 0xB0 0xA8 ‘3‘ 0x2F 0x28

‘A‘ 0xA0 0x97 ‘2‘ 0x20 0x18

‘9‘ 0x8F 0x87 ‘1‘ 0x10 0x08

‘8‘ 0x7F 0x78 ‘0‘ 0x00 0x00

DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC

8/19

5 DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC

The software at the end of this application is the ADC driver for keyboards. The complete soft-
ware can be found in the software library. It is only an example. It is the user‘s duty to adapt it
to its application.

5.1 GENERAL DESCRIPTION

A 16 key keyboard is connected to a ST72311 through the analog pin 3 of Port D.

A buzzer is connected to an output pin (PC1).
Figure 5. Application circuitry

The software uses a polling strategy. It makes conversions continuously (no wake-up
process).

First the software initializes the I/Os and the ADC.

When a conversion is done, the software decides if a key was pressed or not.

If not, it waits before analysing the result of a new conversion.

If a key is pressed, it compares it with the former key to know if the key is stabilized. Then, a
buzzer is switched on to indicate to the user that a key is detected.

ST7

ADC analog
input

Rup

R0

R14

VSS

key 0

key 15

output

VDD

buzzer

VDD

VSS

9/19

DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC

5.2 FLOWCHARTS

The main flowcharts of the application are given below Figure 6., Figure 7. & Figure 8. The in-
itialization routine is presented Figure 2.
Figure 6. Flowchart: main program

KBD_init

KBD_val

wait

MAIN

key_process

DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC

10/19

Figure 7. Flowchart: key recognition

COCO = 1?

A >= 128?

A >= 248?

A = key(X)?

X = 16 X = 9

X = X-1

A = key(X)?

X = X-1

X = NO_KEY

X = keyVal(X)

return

A = ADCDR

KBD_val

no

yes

no no

noyes

yes

yes

yes

no

11/19

DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC

Figure 8. Flowchart: key process

PrevVal = X

X = FF?

X = PrevVal?

key_process

activation of

yes

yes

no

no

the buzzer

return

DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC

12/19

5.3 EXTENSION FOR WAKE UP

With the ST7, it is possible to generate a wake-up operation.This can be achieved by a mod-
ification of the circuit. The pull-up resistor must be connected to an additional port pin. During
key polling, this pin is in output mode and active high, thus switching VDD to the pull-up re-
sistor.
Figure 9. Keyboard with wake-up circuitry.

During the wait for a key press, the I/O pin used for the pull-up is switched into a high imped-
ance state (e.g. open drain output mode). The pin used as the ADC input while polling is
switched to the interrupt input with pull-up mode.

So if any key is pressed an interrupt will be generated if the voltage at this pin is below the
Schmitt trigger low level threshold. The serial resistors in the keyboard chain must not be too
high in this case, therefore the maximum number of keys is reduced in comparison to the
normal mode.

ST7

ADC
Rup

R0

R14

VSS

key 0

key 15

I/O

VSS

analog
input
AINx

13/19

DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC

5.4 SOFTWARE

The assembly code given below is guidance only. The complete software with all the files can
be found in the software library.
st7/

;**************** (c) 1998 STMicroelectronics **********************

;

;PROJECT : EVALUATION BOARD - ST7

;COMPILER : ST7 ASSEMBLY CHAIN

;MODULE : keyb.asm

;CREATION DATE : 02/04/98

;AUTHOR : 8-Bit Micro Application Team

;

;-*

;

; THE SOFTWARE INCLUDED IN THIS FILE IS FOR GUIDANCE ONLY. STMicroelectronics

; SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL

; DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM USE OF THIS SOFTWARE.

;

;-*

;

;DESCRIPTION : ST7 A/D converter driver for the use of an analog keyboard.

; It is validated on a ST72311 demoboard.

; Keyboard is connected the Port D analog pin 3.

; A buzzer, connected to an output pin, is used to

; notify that a key had been detected.

; Two routines are dedicated to the A/D converter :

; - an initialization routine.

; - a routine to recognize the keys of an analog

; keyboard & to give the corresponding values.

;

;-*

;

;MODIFICATIONS :

;

; 02/04/98 - V2.0 - New Assembly version.

;

;**

TITLE ”sci.ASM”

; This title will appear on each

; page of the listing file.

MOTOROLA ; This directive forces the Motorola

; format for the assembly (default).

#INCLUDE ”st72311.inc” ; Include st72311 registers and

; memory mapping file.

DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC

14/19

;**

; Macro definitions

;**

; Miscellaneous values ~~

#define KBD_LINE 3 ; Number of the analog pin of the keyboard.

#define NO_KEY $FF

; ADC_CSR Bit definitions ~~~

#define COCO 7 ; Conversion complete bit.

#define ADON 5 ; A/D converter ON bit.

#define CH2 2 ; Channel selection bit2.

#define CH1 1 ; Channel selection bit1.

#define CH0 0 ; Channel selection bit0.

;**

; RAM SEGMENT

;**

BYTES ; following addresses are 8 bit length.

segment byte at 80-FF ’ram0’

; Variable definitions **

.PrevVal DC.B $FF

.tmp1 DC.B $FF

.tmp2 DC.B $FF

;**

; Public routines (defined here)

;**

; routines

;**

; Extern routines (defined elsewhere)

;**

; routines

;**

; MACROs SUB-ROUTINES LIBRARY SECTION

;**

; (must be placed here and not at the file’s end)

15/19

DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC

WORDS

segment ’rom’

; Constante definitions ***

; Lower values after conversion for all keys ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.key DC.B 0,8,24,40,55,71,87,104,120,135,151,168,184,199,214,231

; Corresponding values for all keys ~~~

.keyVal DC.B $0,$1,$2,$3,$4,$5,$6,$7,$8,$9,$A,$B,$C,$D,$E,$F

; Program code **

; ***

; * *

; * SUB-ROUTINES LIBRARY SECTION *

; * *

; ***

;--

;ROUTINE NAME : wait_l

;INPUT/OUTPUT : None.

;DESCRIPTION : Waiting routine.

;COMMENTS :

;--

.wait_l

LD Y,#$2F ;Give to tmp2 the wanting value. Duration of

LD tmp2,Y ; waiting routine is given by this value.

tst1 LD Y,tmp1 ; Decrease tmp1.

DEC Y

LD tmp1,Y

JRNE tst1 ; Jump to tst1 until tmp1 = 0.

tst2 LD Y,tmp2 ; Decrease tmp2.

DEC Y

LD tmp2,Y

JRNE tst2 ; Jump to tst2 until tmp2 = 0.

ret

DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC

16/19

;--

;ROUTINE NAME : KBD_val

;INPUT/OUTPUT : None / value of the keyboard.

;DESCRIPTION : Recognize the pressed key of the keyboard,

; and give the associated value.

;COMMENTS : When no key is pressed, the routine returns the value FF.

;--

.KBD_val

wait btjf ADCCSR,#COCO,wait ; Wait for the end of conversion.

LD A,ADCDR ; Conversion value in A.

CP A,#128 ; Compare with 128. Is the value negative?

JRPL nega ; Yes, jump to the negative part of the routine.

JRA posi ; No, jump to the positive part of the routine.

; Negative value ~~

nega CP A,#248 ; Special case : A > 247?

JRPL no_K ; Yes, no key was pressed, jump to

; no_K. Else, continue.

LD X,#16

neg_l DEC X ; Decrease X, change relative address of key.

CP A,(key,X) ; ’A’ greater than value at address X of key?

JRPL KBD_V ; Yes, the key is recognized, jump to KBD_V.

JRA neg_l ; No, key not recognized, return into the loop.

; Positive value ~~

posi LD X,#$9

pos_l DEC X ; Decrease X, change relative address of key.

CP A,(key,X) ; ’A’ greater than value at address X of key?

JRPL KBD_V ; Yes, the key is recognized, jump to KBD_V.

JRA pos_l ; No, key not recognized, return into the loop.

; Key recognized, return value ~~

KBD_V LD X,(keyVal,X) ; Put in X the value of the key.

LD PFDR,X ; The converted value appears on LEDS.

ret

; Special case : no key ~~~

no_K LD X,#NO_KEY ; Put in X the default value : no key pressed.

ret

17/19

DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC

;--

;ROUTINE NAME : KBD_init

;INPUT/OUTPUT : None.

;DESCRIPTION : Ports and ADC peripheral’s initialization routine.

;COMMENTS : Do the first conversion to stabilize the converter.

;--

.KBD_init

; Initialization of the pin connected to the keyboard ~~~~~~~~~~~~~~~~~~~

bres PDOR,#KBD_LINE

bres PDDDR,#KBD_LINE ; Input pin defined as input.

; Initialization of the A/D converter ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LD A,#KBD_LINE ; Select the analog input to convert,

LD ADCCSR,A ; converter disabled.

bset ADCCSR,#ADON ; A/D converter switched on.

LD A,#$30 ; Waiting more than 30us for

wait11 DEC A ; stabilization.

JRNE wait11

wait1 btjf ADCCSR,#COCO,wait1 ; Wait the end of the first conversion.

ret

; ***

; * *

; * MAIN-ROUTINES SECTION *

; * *

; ***

.main

; Initialisations ~~~

CALL KBD_init

BRES PCOR,#1 ; Pin 1 of Port C in output mode.

BSET PCDDR,#1

; Main loop, transmission and reception ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

loop CALL KBD_val

CP X,#$FF ; Is a key detected?

JREQ jump ; No, go to jump, else go on.

CP X,PrevVal ; Is new key the same as previous key?

JRNE jump ; No, go to jump, else go on.

; Activation of a buzzer when a key is detected ~~~~~~~~~~~~~~~~~~~~~~~~~

LD Y,#$FF

wait2 LD A,PCDR

XOR A,#$02

LD PCDR,A ; Buzzer on/off.

LD A,#$FF

DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC

18/19

wait21 DEC A ; Waiting to control buzzer frequency.

JRNE wait217

DEC Y ; Loop to control

JRNE wait2 ; duration of the buzzer.

jump LD PrevVal,X ; New key value is saved in PrevVal.

CALL wait_l ; Waiting before looking at a new value

JRA loop

; ***

; * *

; * INTERRUPT SUB-ROUTINES LIBRARY SECTION *

; * *

; ***

.dummy_rt iret ; Empty subroutine. Go back to main (iret instruction).

segment ’vectit’

DC.W dummy_rt ;FFE0-FFE1h location

DC.W dummy_rt ;FFE2-FFE3h location

i2c_it: DC.W dummy_rt ;FFE4-FFE5h location

DC.W i2c_rt ;FFE6-FFE7h location

DC.W dummy_rt ;FFE8-FFE9h location

DC.W dummy_rt ;FFEA-FFEBh location

DC.W dummy_rt ;FFEC-FFEDh location

timb_it: DC.W dummy_rt ;FFEE-FFEFh location

DC.W dummy_rt ;FFF0-FFF1h location

tima_it DC.W dummy_rt ;FFF2-FFF3h location

spi_it: DC.W dummy_rt ;FFF4-FFF5h location

DC.W dummy_rt ;FFF6-FFF7h location

io_bc_it: DC.W dummy_rt ;FFF8-FFF9h location

io_a_it: DC.W dummy_rt ;FFFA-FFFBh location

softit: DC.W dummy_rt ;FFFC-FFFDh location

reset: DC.W main ;FFFE-FFFFh location

END

;*** (c) 1998 STMicroelectronics *************************** END OF FILE ****

19/19

DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:/ /www.st.com

