
AN973/1098 1/24

APPLICATION NOTE

SCI SOFTWARE COMMUNICATION
WITH A PC USING ST72251 16-BIT TIMER

by 8-Bit Micro Application Team

1 INTRODUCTION

This document presents a standard communication between a ST7 microcontroller and a PC.
It shows how to emulate a SCI communication in half-duplex mode by software, using the ST7
timer resource.

2 SCI COMMUNICATION

The main features of a SCI communications interface are summarized below.

2.1 MAIN FEATURES

The Serial Communication Interface (SCI) offers a flexible means of full-duplex data exchange
with external equipment requiring an industry standard NRZ asynchronous serial data format.

The SCI allows a very wide range of baud rates and different baud rates for transmission and
reception.

In SCI communication, only two signals are needed, one for transmission and the other for re-
ception. No clock signal is needed as it works in asynchronous mode. Each device has a
Transmit Data Output pin (OCMP1 pin for the ST7) and a Receive Data Input pin (ICAP1 pin
for the ST7). See Figure 1.
Figure 1. ST7 and timer set-up for SCI communication

The user must be very careful in identifying the use of each pin. This can easily be done by
putting the device in transmission and checking with an oscilloscope if a transmission frame is
present or not.

ST7

Timer

DEVICE

RDI

TDO

OCMP1

ICAP1

1

RS232 COMMUNICATION WITH A PC

2/24

2.2 BAUD RATES

Transmission and reception can be driven by their own baud rate generator. However be
aware that for correct communication, the receiver must have a reception baud rate strictly
equal to the transmission baud rate of the transmitter. If not, the communication will be cor-
rupted . As soon as this condition is met, a wide range of baud rates is possible.

2.3 FRAMES

Any transmission is Least Significant Bit first. A data word is usually 8 bits long. A data frame
begins with a «start bit», which is a ‘0‘ bit and ends with a «stop bit», which is a ‘1‘ bit. See
Figure 2.
Figure 2. Frames

In some cases, a 9th bit can be used, as a parity bit or as a second stop bit.

3 RS232 COMMUNICATION WITH A PC

3.1 MAIN FEATURES

Electrical and protocol characteristics of RS232 are different from those used by the SCI. In
RS232 communication, high level is typically +7V and low level is typically -7V, while the SCI
peripheral works at TTL levels (0, +5V).

Furthermore, the polarities are different. A ‘1‘ bit coming from the SCI corresponds to a ‘0‘ bit
in RS232, and a ‘0‘ bit to a ‘1‘ bit. It is true for all bits including the start and stop bits .

So it is necessary to implement a conversion between the PC and the ST7. In the application,
a MAX232 is used for this purpose.

3.2 PC CONFIGURATION

The PC will be used as a terminal. The description below refers to the Windows 3.11 environ-
ment. Under Windows 95, the terminal application is called hyperterminal.

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Stop
Bit

Next
Start
Bit

8-bit Word length

Data Frame
Next Data Frame

3/24

ST72251 CONFIGURATION

Under Windows, open the «terminal» application. To configure it, go to the communication in
parameters menu. The options of this window must be the same as the ones defined for your
ST7.

After selecting the right serial communication port, select the same baud rate as the one set
for the ST7. As the PC accepts only one baud rate, transmission and reception baud rates will
have the same value. Data word must be 8 bits, but you can choose to use 1 or 2 stop bits.
«Flow control» can be either Xon/Xoff or none.

The PC is then correctly configured.

4 ST72251 CONFIGURATION

This application was implemented with a ST72251. This microcontroller uses a 16 MHz ex-
ternal clock. A description of the baud rate selection is given later in this application note.

4.1 GENERAL INITIALIZATION

ST72251 internal clock works at 16MHz/2 = 8MHz.

Two pins of the ST7 are used:

- Input capture 1 pin of timer A (ICAP1 pin).

- Output compare 1 pin of timer A (OCMP1 pin).

The ICAP1 pin is the alternate function of pin 0 of Port B. During the initialization it is config-
ured as an input.

The OCMP1 pin is the alternate function of pin 1 of Port B. During the initialization it is config-
ured as an output with high level. This level is the default level for SCI communication.

Please, refer to the datasheet for the description of the initialization of these pins as input or
output.

4.2 TIMER CONFIGURATION

The timer consists of a 16-bit free-running counter driven by a programmable prescaler. It in-
cludes a time overflow, two input captures and two output compares.

4.2.1 General description

The timer is associated with two control registers, one status register, and six pairs (16-bits) of
data registers for to the input captures, the output compares, the counter and the alternate
counter.

The bits used in the application are described below.

ST72251 CONFIGURATION

4/24

Timer A control register 1 (TACR1):

- ICIE: Input Capture Interrupt Enable

If set, a timer interrupt occurs when the ICF1 or ICF2 bit of the TASR register is set.

- OCIE: Output Compare Interrupt Enable

If set, a timer interrupt occurs when the OCF1 or OCF2 bit of the TASR register is set.

- FOLV1: Forced Output Level 1

Forces the OLVL1 bit to be copied to the OCMP1 pin when set.

- IEDG1: Input Edge 1

When reset, a falling edge triggers the capture. When set, a rising edge triggers the capture.

- OLVL1: Output Level 1

This bit is copied to the OCMP1 pin if an output compare 1 event occurs while the OC1E bit of
TACR2 register is set.

Timer A control register 2 (TACR2):

- OC1E: Output Compare 1 Enable

When set, the OCMP1 pin is assigned to the output compare 1 capability.

- CC1-CC0: Clock Control

The value of the timer clock is given by these bits.

Timer A status register (TASR):

This register is used in the application to recognize which event has generated a timer inter-
rupt.

When set, the ICF1 bit (Input Capture Flag 1) indicates that an input capture 1 occurred, and
the OCF1 bit (Output Compare Flag 1) indicates that an output compare 1 occurred.

5/24

ST72251 CONFIGURATION

The other flags are not used in this application.

4.2.2 Timer initialization

First the value of the prescaler must be chosen. This is done using the CC1&CC0 bits of the
TACR2 register. In the application fCPU/4 is selected, resetting these two bits.

The OCMP1 pin is dedicated to the output compare 1 capability by setting the OC1E bit of the
TACR2 register.

In the application a new byte is recognized by the falling edge by means of the start bit. So the
falling edge is selected for input capture 1, resetting the IEDG1 bit of the TACR1 register.

The default value for SCI communication (‘1‘) is put into the OLVL1 bit of the TACR1 register,
and this value is forced to the OCMP1 pin setting the FOLV1 bit of the TACR1 register. So the
line is put high.

The output compares are enabled by setting the OCIE bit of the TACR1 register.

A first output compare 1 is generated so the OLVL1 value is put on the OCMP1 pin. Then we
can stop forcing this value by resetting the FOLV1 bit of the TACR1 register.

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

6/24

Figure 3. Timer initialization

5 SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

The software at the end of this application note is the driver for emulating the SCI with a timer.
The complete software can be found on the ST internet website. It is of course only an ex-
ample. It is up to the user to adapt it to his specific application.

5.1 GENERAL DESCRIPTION

In this application, a ST72251 is connected to a PC. The communication is performed using
the «terminal» application of Windows 3.11.

A ASCII character is sent by the PC to the ST7. As the ST7 sends the same character as re-
ceived, it is very easy to check if the communication is correct. Note that this program does
not manage communication errors.

initialization

TACR1 = 0x49

TACR2 = 0x80

TAOC1HR = TAACHR+1
TAOC1LR = 0x10

OCF1 = 1?

FOLV1 = 0

reset OCF1

return

TIMER A

no

yes

7/24

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

The communication described is a half-duplex communication. The software sends a first
character, then it enters reception mode. When a character is received, it enters transmission
mode, sends it and so on.

The software uses interrupt strategy which allows to have other applications to work at the
same time.

The user must select its transmission speed by defining variables del_1bh, del_1bl,
del_sampl, del_samph.

The output compare 1 is used to generate the bit clock. So an output compare 1 interrupt oc-
curs each time a bit must be sent or received.

When the ST7 is in reception mode, it detects the start of a new byte (falling edge of the start
bit). An input capture 1 interrupt occurs. Then each data bit is sampled three times in the
middle of the bit and a decision is made. If there are more ‘1‘s than ‘0‘s, the bit received is a
‘1‘, else it is a ‘0‘.

5.2 HARDWARE

The ST7 emulated MCU cannot be directly connected to a PC, as it uses the RS232 protocol.
The conversion between SCI and RS232 can be done using a MAX232. An overview sche-
matic is given below (Figure 4.).
Figure 4. Overview Schematic

Be sure that the three main devices (PC, ST7, MAX232) have the same electrical reference
(GND).

The Receive Data pin (RD) of the serial port of the PC must correspond to the OCMP1 pin of
the ST7, and the Transmit Data pin (TD) to the ICAP1 pin.

PC

TERMINAL

serial port TD
RD

GROUND

MAX232

INOUT
OUTIN

ST72251

GND

GND

GND

ICAP1 pin
OCMP1 pin

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

8/24

5.3 FLOWCHARTS

The flowcharts of the application are presented below. The main flowchart is given in Figure 5.
The timer A interrupt flowchart is given in Figure 6. and the timer A initialization is given in
Figure 3.

The software uses software register: sci_status register.

SP: Sampling Phase of reception mode. BR: Byte Received flag.
RE: Reception Enable. BS: Byte Sent flag.
TE: Transmission Enable.

Figure 5. Main Flowchart

SPBRREBSTE

initialization

SCI_Rx

SCI_Tx

SCI_Tx

TX_byte = RX_byte

MAIN

timer a
initialization

port

9/24

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

Figure 6. Timer A Interrupt Flowchart

tima_rt

OCMP1?

OCMP2?

ICAP1?

ta_oc1

ta_ic1

iret

iret

iret

iretremove ICAP2 interrupt

remove OCMP2 interrupt

yes

no

no

no

yes

yes

count = 0?

TAOC1R = TAACR no

yes

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

10/24

Figure 7. Transmission and Reception Flowcharts

sci_status = set TE bit

count = 0

TAOC1R = TAACR+0x0030

OLVL1 = 0

BS = 1?

rim

sim

SCI_Tx

sci_status = set RE bit

count = 0, Rx_byte = 0

ICIE = 1, OCIE = 0

remove ICAP interrupts

BR = 1?

rim

sim

SCI_Rx

p_bit = 1

returnreturn

yes

no

yes

no

11/24

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

Figure 8. Input Capture 1 Flowchart

SP = 1

return

ICIE = 0, OCIE = 1

remove ICAP interrupts

TAOC1R = TAACR+1.5 bit delay

ta_ic1

remove OCMP1 interrupt

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

12/24

Figure 9. Output Compare 1 Flowchart

ta_oc1

return

sci_status=RE?

count = 9?

count = 8?

OLVL1 = 1

OLVL1 = 0

TAOC1R = TAOC1R+1 bit delay

count = count+1

remove OCMP interrupts

sci_status=RE+SP?

make three samples

2 or 3 samples
are ‘1‘s?

bit received = 1bit received = 0

OLVL1 = 1

count = 8?

next bit = 1?

A

A

A

yes

yes

yes

yes

yes

yes

A yes

no

no

no

no

no

no

no
BR = 1

BS = 1

13/24

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

5.4 SOFTWARE

The assembly code given below is guidance only. The file cannot be used alone. The com-
plete software can be found in the ST internet website.
st7/

;**************** (c) 1997 STMicroelectronics **********************

;

;PROJECT: EVALUATION BOARD - ST7 SCI DEMO SYSTEM

;COMPILER: ST7 ASSEMBLY CHAIN

;MODULE: sci_io.asm

;CREATION DATE: 06/03/98

;AUTHOR: PPG Micro Application / STMicroelectronics Rousset

;

;-*

;

; THE SOFTWARE INCLUDED IN THIS FILE IS FOR GUIDANCE ONLY. STMicroelectronics

; SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL

; DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM USE OF THIS SOFTWARE.

;

;-*

;

;DESCRIPTION: ST7 emulation of a SCI communication with a timer software

; driver for a RS232 communication. Communication with a

; terminal in half-duplex mode. Validated on ST72251

; using a 16MHz clock.

; When a byte is sent, the program waits for the reception of

; a new byte. It uses timer A interrupts.

; Six basic routines are defined:

; - a timer initialization routine

; - a transmission routine which sends the new byte to

; the terminal.

; - a reception routine which puts the received byte

; from the terminal to RX_byte.

; - the timer A interrupts routine.

; - an input capture 1 routine.

; - an output compare 1 routine.

;

;-*

;

;MODIFICATIONS:

;

; 06/03/98 - V2.0 - New assembly version

;

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

14/24

;**

TITLE ”sci.ASM”

; This title will appear on each

; page of the listing file.

MOTOROLA ; This directive forces the Motorola

; format for the assembly (default).

#INCLUDE ”st72251.inc” ; Include st7285 registers and

; memory mapping file.

;**

; Macro definitions

;**

; bit definition of TACR1 register ~~

#define OLVL1 $0 ; Output level 1.

#define FOLV1 $3 ; Force Output Level 1.

; bit definition of TASR register ~~~

#define OCF2 $3 ; Output Compare Flag 2.

#define ICF2 $4 ; Input Capture Flag 2.

#define OCF1 $6 ; Output Compare Flag 1.

#define ICF1 $7 ; Input Capture Flag 1.

; bit definition of the sci_status register ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#define SP $0 ; Sampling Phase of reception mode.

#define BR $1 ; Byte Received flag.

#define RE $2 ; Reception Enable.

#define BS $3 ; Byte Sent flag.

#define TE $4 ; Transmission Enable.

#define Mask_ICAP1$01;Mask for the PB0 pin (ICAP1)

SPBRREBSTE
sci_status

register

15/24

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

;**

; RAM SEGMENT

;**

BYTES ; following addresses are 8 bit length.

segment byte at 80-FF ’ram0’

; Variable definitions **

.TX_byte DC.B 0; Byte to transmit.

.RX_byte DC.B 0; Reception byte.

.count DC.B 0; Indicate the bit number.

.sci_status DC.B 0; 5 bits software register that indicates the

; communication mode.

; See above for the bits definition.

.p_bit DC.B 0 ; Indicate the position of the bit to receive.

.tmp DC.B 0

;**

; Public routines (defined here)

;**

; routines

;**

; External routines (defined elsewhere)

;**

; routines

;**

; MACROs SUB-ROUTINES LIBRARY SECTION

;**

; (must be placed here and not at the end of the file)

WORDS

segment ’rom’

; Constants definitions ***

; Baud rate selection for f CPU= 8MHz ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; Low and high bytes of the number of timer cycles to create a delay of

; one bit for a transmission speed of 19200bd.

;.del_1bl DC.B $67

;.del_1bh DC.B $00

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

16/24

; Baud rate selection for f CPU= 8MHz ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; Low and high bytes of the number of timer cycles to create a delay of

; one bit for a transmission speed of 9600bd.

;.del_1bl DC.B $D1

;.del_1bh DC.B $00

; Baud rate selection for f CPU= 8MHz ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; Low and high bytes of the number of timer cycles to create a delay of

; one bit for a transmission speed of 4800bd.

.del_1bl DC.B $A1

.del_1bh DC.B $01

; Baud rate selection for f CPU= 8MHz ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; Low and high bytes of the number of timer cycles to create a delay of

; one bit for a transmission speed of 2400bd.

;.del_1bl DC.B $41

;.del_1bh DC.B $03

; Baud rate selection for f CPU= 8MHz ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; Low and high bytes of the number of timer cycles to create a delay of

; one bit for a transmission speed of 1200bd.

;.del_1bl DC.B $82

;.del_1bh DC.B $06

; Delay to sample in the middle of the first bit ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; Low and high bytes to sample in the middle of the first bit for

; a transmission speed of 19200bd.

;.del_sampl DC.B $4E

;.del_samph DC.B $00

; Delay to sample in the middle of the first bit ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; Low and high bytes to sample in the middle of the first bit for

; a transmission speed of 9600bd.

;.del_sampl DC.B $FD

;.del_samph DC.B $00

; Delay to sample in the middle of the first bit ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; Low and high bytes to sample in the middle of the first bit for

; a transmission speed of 4800bd.

.del_sampl DC.B $35

.del_samph DC.B $02

; Delay to sample in the middle of the first bit ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; Low and high bytes to sample in the middle of the first bit for

; a transmission speed of 2400bd.

;.del_sampl DC.B $A5

;.del_samph DC.B $04

; Delay to sample in the middle of the first bit ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

; Low and high bytes to sample in the middle of the first bit for

; a transmission speed of 1200bd.

;.del_sampl DC.B $88

;.del_samph DC.B $09

17/24

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

; Program code **

; ***

; * *

; * SUB-ROUTINES LIBRARY SECTION *

; * *

; ***

;--

;ROUTINE NAME: port_init

;INPUT/OUTPUT: None.

;DESCRIPTION: Port initialization routine.

;COMMENTS:

;--

.port_init

bset PBDDR,#1 ; Pin 1 of port B in output mode,

bset PBOR,#1 ; will be OCMP1 pin in alternate function.

bres PBOR,#0 ; Pin 0 of port B in input mode,

bres PBDDR,#0 ; will be ICAP1 pin in alternate function.

bres PBDR, #0;Reset of Pins 0 & 1 of the PBDR register

bres PBDR, #1

ret

;--

;ROUTINE NAME: ta_oc1

;INPUT/OUTPUT: TAOC1R, sci_status, TX_byte / TAOC1R, sci_status, RX_byte.

;DESCRIPTION: Send the next bit in transmission mode. Sample and determine

; the value of the next bit in reception mode.

;COMMENTS: Least significant bit first.

;--

.ta_oc1

ld A,sci_status ; Put SCI mode in A.

cp A,#16 ; Transmission mode?

jrne RX ; Yes continue, else go to RX.

; Transmission process ~~

ld A, count

cp A,#9 ; Stop bit sent?

jrne TX_S ; Yes continue, else go to TX_S.

; Byte sent ~~~

bset sci_status,#BS ; Byte sent mode.

jra end_it

TX_S cp A,#8 ; All data sent?

jrne TX ; Yes continue, else go to TX.

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

18/24

; Send stop bit ~~~

bset TACR1,#OLVL1 ; Put OCMP1 pin in high level for stop bit.

jra end_b

; Send next data bit ~~

TX btjf TX_byte,#0,TX_0 ; Is the next bit to send equal to 1?

bset TACR1,#OLVL1 ; Put OCMP1 pin in high level for 1 bit.

jra end_b

TX_0 bres TACR1,#OLVL1 ; Put OCMP1 pin in low level for 1 bit.

; Create a delay of 1 bit ~~~

end_b srl TX_byte ; Put the next bit to send as bit 0 of TX_byte.

end_rx inc count ; Increment bit number.

ld X,TAOC1HR ; Check the last OCMP1 value.

ld A,TAOC1LR

add A,del_1bl ; Add a delay of one bit to this value.

ld Y,A

ld A,X

adc A,del_1bh

ld TAOC1HR,A ; An OCMP1 will occur one bit after

ld A,Y ; the current one.

ld TAOC1LR,A

; End of the output compare management ~~

end_it ld A,TASR ; Remove pending output compare interrupts.

ld A,TAOC1LR

ld A,TAOC2LR

ret ; End.

RX cp A,#5 ; Reception mode?

jrne end_it ; Yes continue, else go to end_it.

; Reception mode ~~

ld A,count

cp A,#8 ; Byte completely received?

jreq RX_e ; No continue, else go to RX_e.

; Check the new bit ~~~

ld A,PBDR

and A,#Mask_ICAP1 ; Check the first sample of ICAP1 pin.

ld tmp,A

ld A,PBDR

and A,#Mask_ICAP1 ; Check the second sample of ICAP1 pin.

add A,tmp ; Add it to the first value.

ld tmp,A

ld A,PBDR

19/24

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

and A,#Mask_ICAP1 ; Check the third sample of ICAP1 pin.

add A,tmp ; Add it to the former value.

cp A,#$02 ; Two or three ’1’ received?

jrmi RX_0 ; Yes continue, else go to RX_0.

ld A,RX_byte

add A,p_bit

ld RX_byte,A ; Set bit with number count of RX_byte.

; Create a delay of 1 bit ~~~

RX_0 sll p_bit

jra end_rx

; New byte received ~~~

RX_e bset sci_status,#BR ; Byte received mode.

jra end_it

;--

;ROUTINE NAME : ta_ic1

;INPUT/OUTPUT: None / sci_status.

;DESCRIPTION : Enters in sampling mode.

;COMMENTS : Done when an input capture 1 event occurs

; while in reception mode.

;--

.ta_ic1

; Create a delay of one bit and a half ~~

ld X,TAACHR ; Check the current value of timer A.

ld A,TAACLR

add A,del_sampl ; Add a delay to have a OCMP1, 1.5 bit

ld Y,A ; after the ICAP1.

ld A,X

adc A,del_samph

ld TAOC1HR,A ; An output compare will occur in 1.5 bit.

ld A,TASR ; Remove pending OCMP1 interrupt.

ld A,Y

ld TAOC1LR,A

; Enter in sampling mode ~~

bset sci_status,#SP ; Enter sampling mode.

ld A,#$41 ; Enable OCMP interrupts,

ld TACR1,A ; disable ICAP interrupts.

ld A,TAIC1LR ; Remove pending ICAP interrupts.

ld A,TAIC2LR

ret

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

20/24

;--

;ROUTINE NAME:TA_init

;INPUT/OUTPUT: None.

;DESCRIPTION: Initialization routine of timer A.

;COMMENTS:

;--

.TA_init

; Initialization of control registers ~~~

ld A,#$49 ; OCMP enabled, force the OLVL1 value to

ld TACR1,A ; OCMP1 pin when OC1E is set.

ld A,#$80

ld TACR2,A ; Set OC1E: OCMP1 pin in alternate mode.

; Generate a first OCMP1 ~~

ld A,TAACHR

inc A

ld TAOC1HR,A

ld A,#$10

ld TAOC1LR,A

att btjf TASR,#OCF1,att ; Waits until a OCMP1 occurs.

bres TACR1,#FOLV1 ; Stop forcing OLVL1 to OCMP1 pin.

ld A,TAOC1LR ; Clear OCMP1 flag.

ret

;--

;ROUTINE NAME: SCI_Tx

;INPUT/OUTPUT: Byte to transmit (TX_byte) / None.

;DESCRIPTION: Transmit one byte via output_compare_1 pin of timer A.

;COMMENTS: Least significant bit first.

;--

.SCI_Tx

; Enter transmission mode ~~~

ld A,#$10

ld sci_status,A ; Enter transmission mode.

clr count ; Clear bit number (LSB first).

; Generate a delay before the first OCMP1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

ld X,TAACHR ; Check the current value of timer A.

ld A,TAACLR

add A,#$30 ; Add a delay to this value.

ld Y,A

ld A,X

adc A,#$00

ld TAOC1HR,A ; An output compare will occur after the delay.

ld A,Y

ld TAOC1LR,A

21/24

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

bres TACR1,#OLVL1 ; Put OCMP1 pin in low level for start bit.

rim ; Remove interrupt mask.

; Loop for sending byte ~~~

waitT btjf sci_status,#BS,waitT ; Byte sent mode?

sim ; Set interrupt mask.

ret

;--

;ROUTINE NAME : SCI_Rx

;INPUT/OUTPUT: None / byte received (RX_byte).

;DESCRIPTION : Receive new byte via input_capture_1 pin of timer A.

;COMMENTS : Least significant bit first.

;--

.SCI_Rx

; Enter reception mode ~~

ld A,#$04

ld sci_status,A ; Reception mode.

ld A,#0

ld count,A ; Clear bit number (LSB first).

ld RX_byte,A ; Clear reception byte.

ld A,#1

ld p_bit,A ; Initialize p_bit.

ld A,#$80

ld TACR1,A ; ICAP enabled, OCMP disabled.

ld A,TASR ; Remove ICAP interrupts.

ld A,TAIC1LR

ld A,TAIC2LR

rim ; Remove interrupt mask.

; Loop for receiving byte ~~~

waitR btjf sci_status,#BR,waitR ; Byte received mode?
sim ; Set interrupt mask.

ret

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

22/24

; ***

; * *

; * MAIN-ROUTINES SECTION *

; * *

; ***

.main

; Initializations ~~~

call port_init

call TA_init

ld A,#’t’

ld TX_byte,A ; First byte to send.

call SCI_Tx

; Main loop, transmission and reception ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

loop call SCI_Rx

ld A,RX_byte

ld TX_byte,A ; Send the received byte.

call SCI_Tx

jra loop

; ***

; * *

; * INTERRUPT SUB-ROUTINES LIBRARY SECTION *

; * *

; ***

.dummy_rt iret ; Empty subroutine. Go back to main (iret instruction).

; Timer interrupts routine ~~

.tima_rt

btjf TASR,#OCF1,oc2 ; Is it an OCMP1? Yes continue, else go to oc2.

ld A,count

jrne ts ; count = 0? Yes continue, else jump to ts.

ld A,TAACHR ; Check the current value of timer A.

ld TAOC1HR,A ; Save it in the OCMP1.

ld A,TAACLR

ld TAOC1LR,A

ts call ta_oc1

iret

oc2 btjf TASR,#OCF2,ic1 ; Is it an OCMP2? Yes continue, else go to ic1.

ld A,TAOC2LR ; Remove OCMP2 interrupt.

iret

23/24

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

ic1 btjf TASR,#ICF1,ic2 ; Is it an ICAP1? Yes continue, else go to ic2.

call ta_ic1

iret

ic2 ld A,TAIC2LR ; Remove ICAP2 interrupt.

iret

segment ’vectit’

DC.W not used;FFE0-FFE1h location

DC.W not used;FFE2-FFE3h location

.i2c_it DC.W dummy_rt ;FFE4-FFE5h location

DC.W not used ;FFE6-FFE7h location

DC.W not used ;FFE8-FFE9h location

DC.W not used ;FFEA-FFEBh location

DC.W not used ;FFEC-FFEDh location

.timb_it DC.W dummy_rt ;FFEE-FFEFh location

DC.W not used;FFF0-FFF1h location

.tima_it DC.W tima_rt ;FFF2-FFF3h location

.spi_rt DC.W dummy_rt ;FFF4-FFF5h location

DC.W not used;FFF6-FFF7h location

.ext1_it DC.W dummy_rt ;FFF8-FFF9h location

.ext0_it DC.W dummy_rt ;FFFA-FFFBh location

.softit DC.W dummy_rt ;FFFC-FFFDh location

.reset DC.W main ;FFFE-FFFFh location

END

;*** (c) 1997 STMicroelectronics ****************** END OF FILE ****

SCI COMMUNICATION BETWEEN ST7 AND PC THROUGH RS232

24/24

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:/ /www.st.com

