
AN972/1098 1/7

APPLICATION NOTE

ST7 Software SPI master communication
by 8-Bit Micro Application

INTRODUCTION

The goal of this application note is to present a basic software driver to emulate a master SPI
full duplex communication through standard ST7 I/O ports.

1 SPI COMMUNICATION DEFINITION

The software SPI communication is based on three signal lines:

– CLK: Clock line

– MO: Master output data line

– MI: Master input data line

These three signals allow synchronous full duplex master communication.

PHASE AND POLARITY

The timing relationship between clock and data signal is fixed. The polarity can be reversed
easily inverting the falling and rising edges of the clock in the software. Concerning the phase
a deeper modification has to be done reversing the read and the write data order in front of the
clock signal. The chosen implemented configuration is given by the Figure 1.

Figure 1. Clock / Data Sampling

Write data bit on MO

Read data bit from MI

MSB Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 LSB

CLK

MO

Bit n

1

SPI SOFTWARE COMMUNICATION DRIVER IMPLEMENTATION

2/7

2 SPI SOFTWARE COMMUNICATION DRIVER IMPLEMENTATION

2.1 HARDWARE CONFIGURATION

The ST7 software SPI communication driver test hardware is composed by a single ST72251
microcontroller (see Figure 2.) running with fCPU at 8 MHz.

Three I/O ports (PC0, PC1 and PC2) are used as SPI communication lines (resp. MI, MO,
CLK). As it is a full duplex communication, the MO and MI lines are connected together to
allow a pseudo simultaneous data write/read from/to the ST7 memory.

The signal can also be checked through an oscilloscope.

Figure 2. ST7 Software SPI Communication Driver Test Configuration

2.2 SOFTWARE DRIVER ALGORITHM

Based on the previous hardware description, the driver test software is composed by a trans-
mission of an 8-byte ROM buffer on MO line concurrently received on the MI line and then
stored in a 8-byte RAM buffer. This parallel sequence is possible thanks to the full duplex ca-
pability of the communication.

FULL DUPLEX 8-BIT COMMUNICATION DRIVER

The principle of this driver is to use the ST7 Carry flag of the CC register as the data slicer. The
data byte to transmit is given in A register and the receive data byte is returned in the same A
register. The flowchart shown in Figure 3. explains this algorithm.

SPEED

The maximum communication speed is computed from two parameters:

– fCPU which gives the CPU cycle time

– the software instruction sequence which composes the driver described in Figure 3.

This maximum speed can be decreased by the software inserting waiting steps.

ST72251

I/O
P

O
R

T

PC2

PC1

PC0 MI

MO

CLK

3/7

SPI SOFTWARE COMMUNICATION DRIVER IMPLEMENTATION

Figure 3. Full Duplex 8-bit Communication Driver Flowchart

As the ST7 is running at 8 Mhz internal frequency, the maximum speed is given by the number
of ST7 instruction cycles needed for this communication (see Figure 4.) taking into account a
50% ratio of high/low level on the bus.

Figure 4. Communication Speed

X = 8

Rotate A register

1

c 7 0

Carry
Flag

Force MO line highForce MO line low

Force CLK line high
Copy MI line status in Carry Flag

Force CLK line low

X = X-1

X

0

0

> 0

Force CLK line high

Force CLK line low

P
O

LA
R

IT
Y

IN
V

E
R

S
IO

N

fS PI

fCPU

32 35+
2

------------------ 
 
------------------------ 238 8KHz,= =

Write data bit on MO Read data bit from MI

17 cycles

5~8 cycles

5 cycles

5 cycles

CLK

MO Bit n

TPERIODE = 32~35 cycles

SOFTWARE

4/7

3 SOFTWARE

The assembly code given below is for guidance only. For missing label declaration please
refer to the register label description of the datasheet or the ST web software library
(“ST72251.inc” file...).

st7/

;****************** (c) 1997 STMicroelectronics ***********************

; PROJECT : ST7 SOFTWARE SPI COMMUNICATION DEMO SYSTEM

; COMPILER : ST7 ASSEMBLY CHAIN

; MODULE : spi_sw.asm

; CREATION DATE : 13/03/98

; AUTHOR : 8-Bit Micro Application / STMicroelectronics Rousset

;-*

; THE SOFTWARE INCLUDED IN THIS FILE IS FOR GUIDANCE ONLY. STMicroelectronics

; SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL

; DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM USE OF THIS SOFTWARE.

;-*

; DESCRIPTION : Software driver to emulate a master SPI communication

; through standard ST7 IOs.

;**

TITLE ”SPI_SW.ASM”

MOTOROLA

#INCLUDE ”ST72251.inc” ; ST72251 registers and memory mapping file

;**

; Macro definitions

;**

#defineSPI_MI PCDR,#0 ; SPI MI data line ... PC0 : Input floating.

#defineSPI_MO PCDR,#1 ; SPI MO data line ... PC1 : Output PP.

#defineSPI_CLK PCDR,#2 ; SPI clock linePC2 : Output PP.

;**

; RAM SEGMENT

;**

BYTES ; following addresses are 8 bit length

segment byte at 80-FF ’ram0’

.buff_in DS.B 8 ; Input data buffer.

;**

; ROM SEGMENT

;**

WORDS

segment ’rom’

.buff_out DC.B $FF,$F0,$0F,$CC,$33,$AA,$55,$00 ; Constant output data buffer.

5/7

SOFTWARE

; ************************************

; * SUB-ROUTINES LIBRARY SECTION*

; ************************************

; ---

; ROUTINE NAME : SPI_SwMComm

; INPUT/OUTPUT : Data byte to transmit / Data byte received

; DESCRIPTION : Send-receive a data byte with fullduplex SPI Master protocol.

; COMMENTS : Data write on high clock level and read on low one.

; ---

.SPI_SwMComm ;IN: A=Data / OUT: A=Data

LD X,#$08 ; X reg contains the nb+1 of bit to be transmited.

.spi_1 RLC A ; Transfer next bit from A in the carry and load receive one.

JRC spi_2 ; Transmit data bit from Carry flag to the I/O port.

BRES SPI_MO

JRT spi_3

.spi_2 BSET SPI_MO

.spi_3 BSET SPI_CLK

BTJT SPI_MI,spi_4 ; Copy data bit from line to carry flag.

.spi_4 BRES SPI_CLK

DEC X ; One more bit transmited.

JRNE spi_1 ; Data byte is not yet all transmit => Next bit.

RLC A

RET

; ****************************

; * MAIN-ROUTINES SECTION*

; ****************************

.main LD A,#$06 ; Configure: PC0 in Input floating mode,

LD PCDDR,A ; PC1,PC2 in Output Push-pull.

LD PCOR,A

CLR Y

.next LD A,(buff_out,Y) ; Load data byte to send from ROM output buffer.

CALL SPI_SwMComm ; Compute the full duplex SPI communication.

LD (buff_in,Y),A ; Save receive data byte in RAM input buffer.

INC Y ; Next bytes to transmit and receive.

CP Y,#$08

JRNE next

.end JRA end ; Infinity main loop.

SOFTWARE

6/7

; **

; * INTERRUPT SUB-ROUTINES LIBRARY SECTION*

; **

.dummy_rt iret ; Empty subroutine. Go back to main (iret instruction).

.spi_rt iret

segment ’vectit’

DC.W not used ; FFE0-FFE1h location

DC.W not used ; FFE2-FFE3h location

.i2c_it DC.W dummy_rt ; FFE4-FFE5h location

DC.W not used ; FFE6-FFE7h location

DC.W not used ; FFE8-FFE9h location

DC.W not used ; FFEA-FFEBh location

DC.W not used ; FFEC-FFEDh location

.timb_it DC.W dummy_rt ; FFEE-FFEFh location

DC.W not used ; FFF0-FFF1h location

.tima_it DC.W dummy_rt ; FFF2-FFF3h location

.spi_it DC.W spi_rt ; FFF4-FFF5h location

DC.W not used ; FFF6-FFF7h location

.ext1_it DC.W dummy_rt ; FFF8-FFF9h location

.ext0_it DC.W dummy_rt ; FFFA-FFFBh location

.softit DC.W dummy_rt ; FFFC-FFFDh location

.reset DC.W main ; FFFE-FFFEh location

END

;*** (c) 1997 STMicroelectronics ****************** END OF FILE ****

7/7

SOFTWARE

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1998 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:/ /www.st.com

