
AN971/1098 1/11

APPLICATION NOTE

I2C COMMUNICATION BETWEEN ST7 AND M24Cxx EEPROM
by 8-Bit Micro Application

1 INTRODUCTION

The goal of this application note is to present an practical example of communication using the
I2C peripheral of the ST7. It shows a basic single master communication between a ST7 mi-
crocontroller and an M24Cxx I2C bus EEPROM. The purpose is to implement, from the ST7
through the I2C interface, a write and a read to the external EEPROM without error manage-
ment.

2 ST7 I2C INTERFACE

The ST7 I2C peripheral allows multi master and slave communication with bus error manage-
ment. In this application, only the single master mode is used without error management. As
the polling mode is the most difficult one to implement, the application is based on this mode,
but it can be easily adapted for interrupt management.

The I2C synchronous communication needs only two signals: SCL (Serial clock line) and SDA
(Serial data line). The corresponding port pins have to be configured as floating inputs.

Please refer to the ST7 datasheet for more details.

2.1 COMMUNICATION SPEED

The ST7 I2C peripheral allows a large range of communication speeds. It is able to work in
standard and fast I2C modes.

In master mode the communication speed is given by the Clock Control Register (CCR). An
example is given in Table 1.

Table 1. Example of Possible I2C Communication Speed (fCPU=8 MHz)

Standard Mode Fast Mode

Speed [KHz] 15.5 25.00 50.00 70.00 100.00 167.00 190.00 333.00

CCR [hex] EC 9E 4E 37 26 8E 8C 86

1

I2C COMMUNICATION BETWEEN ST7 AND M24CXX EEPROM

2/11

2.2 START, STOP CONDITION AND ACKNOWLEDGE GENERATION

In master mode, the Start and Stop conditions can be generated setting the START and STOP
bits in the Control Register (CR).

An Acknowledge is sent after an address or a data byte is received when the ACK bit is set in
the Control Register (CR).

3 ST7 / M24CXX I2C COMMUNICATION APPLICATION

3.1 HARDWARE CONFIGURATION

The ST7 / M24Cxx I2C communication application hardware consists of a ST72251 microcon-
troller which communicates with an external M24C08 EEPROM through an I2C bus interface.

Figure 1. ST7 / EEPROM I2C Communications Application

3.2 ST7 I2C PERIPHERAL BASIC DRIVERS

In this chapter all registers refer to the ST7 I2C peripheral (unless otherwise specified).

3.3 INITIALIZE THE I 2C PERIPHERAL

In this application the initialization of the ST7 I2C peripheral is done completely by software
without taking into account the hardware reset status.

First the Control Register (CR) is cleared and the Data (DR) and Status (SR1,SR2) registers
are touched to clear any pending events.

Then, the peripheral is enabled through the Control Register (CR). This action needs to write
twice in the register due to the fact that the Control Register (CR) bits can be set only when the
PE enable bit is already set. To allow the peripheral to acknowledge the received data the
ACK bit of the Control Register (CR) is set.

As the ST24C08 EEPROM is specified with a maximum I2C clock speed at 100-KHz, the ST7
I2C peripheral is set to this speed (CCR=26h) in the application.

ST72251

I2C

VDD

VSS

SCL

5V

2x100Ω

SDA

2x27KΩ M24C08

SCL

SDA

Address=A0hE

3/11

I2C COMMUNICATION BETWEEN ST7 AND M24CXX EEPROM

3.4 INITIATING A COMMUNICATION ON THE I 2C BUS

To initiate an I2C communication, first a start condition has to be generated and then the se-
lected slave address has to be sent, both by the master.

In the ST7 I2C peripheral this action is done by setting the START bit of the Control Register
(CR) followed by the write of the slave address in the Data Register (DR) with the least signif-
icant bit correctly set (0 = transmission, 1 = reception).

3.5 SENDING A DATA BYTE ON THE I 2C BUS

To transmit a new data byte from the ST7 I2C peripheral on the I2C bus, the address or data
byte previously transmitted has to be completed correctly. This previous byte transmission
check is done with a polling waiting loop for the BTF flag of the Status Register 1 (SR1). If
during this delay an error is detected in the Status Registers (SR1,SR2) then the application
goes in an infinite loop (no error management).

When the previous data transmission is over, the application writes the new data byte to be
transmitted in the Data Register (DR).

Note: If the data byte to transmitted is the first one after the slave address, a dummy write in
the Control Register (CR) has to be performed to allow the setting of the BTF bit (see ST7 da-
tasheet for more details). In this application, so this dummy write generates no wrong effect if
it is done systematically, the write is done by setting the PE bit for each data byte transmis-
sion.

3.6 RECEIVING A DATA BYTE ON THE I 2C BUS

To receive a new data byte in the ST7 I2C peripheral from the I2C bus, the data byte to receive
has to be completed correctly. This byte reception check is done with a polling waiting loop for
the BTF flag of the Status Register 1 (SR1). If during this loop an error is detected in the Status
Registers (SR1, SR2) then the application goes in an infinite loop (no error management).

When the data reception is finalized, the application reads the new data byte received in the
Data Register (DR).

Note: if the data byte to receive is the first one after the slave address, a dummy write in the
Control Register (CR) has to be performed to allow the setting of the BTF bit (see ST7 da-
tasheet for more details). In this application, so this dummy write generates no wrong effect if
it is done systematically, the write is done by setting the PE bit for each data byte transmis-
sion.

I2C COMMUNICATION BETWEEN ST7 AND M24CXX EEPROM

4/11

3.7 COMMUNICATE WITH THE I2C EEPROM

The communication protocol between the ST7 and the external M24Cxx EEPROM is given in
Figure 2. For more details, please refer to the ST24C08 datasheet.

Figure 2. I 2C Communication Protocol

The ST7 / M24Cxx communication application is based on two steps:

– a write of an output buffer content (from the ST7 ROM) in the M24Cxx EEPROM

– a read of this written buffer from the M24Cxx EEPROM to the ST7 RAM.

The Figure 3. shows the flowchart of these two steps.

Figure 3. Communication Application Flowchart

ACKSTART EEPROM @ SUB @ ACK DATA 1 ACK DATA 2 ACKDATA N-1 DATA N STOP

ACKSTART EEPROM @ SUB @ ACK DATA 1 ACK DATA N NACK STOPACKSTART EEPROM @

ACK

Write data from ST7 to EEPROM

Read data from EEPROM to ST7

SEND SUB @ DATA

INITIATE TRANSMISSION
(START + SLAVE @)

END OF
BUFFER

yes

no

SEND NEXT BUFFER DATA

SEND SUB @ DATA

INITIATE TRANSMISSION
(START + SLAVE @)

INITIATE RECEPTION
(START + SLAVE @ with LSB set)

LAST DATA
TO RECEIVE

yes

no

RECEIVE NEXT BUFFER DATA

SET THE STOP CONDITION BIT
SET THE STOP CONDITION BIT

CLEAR ACKNOLEDGE BIT

no

yes

Write data from ST7 to EEPROM Read data from EEPROM to ST7

END OF
RECEPTION

5/11

I2C COMMUNICATION BETWEEN ST7 AND M24CXX EEPROM

4 SOFTWARE

The assembly code given below is for guidance only. For the missing label declarations
please refer to the register label description of the datasheet or the ST web software library
(“ST72251.inc” file...).

To adapt this polling software to interrupt management, replace the polling waiting loop by an
interrupt event.

st7/

;********************* (c) 1997 ST Microelectronics *****************************

; PROJECT: ST7 I 2C COMMUNICATION WITH AN EEPROM 24C08 DEMO SYSTEM

; COMPILER: ST7 ASSEMBLY CHAIN

; MODULE: i2c_eepr.asm

; CREATION DATE: 16/03/98

; AUTHOR: 8-Bit Micro Application / STMicroelectronics Rousset

;-*

; THE SOFTWARE INCLUDED IN THIS FILE IS FOR GUIDANCE ONLY. STMicroelectronics

; SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL

; DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM USE OF THIS SOFTWARE.

;-*

; DESCRIPTION: ST7 I 2C single master peripheral software driver for a

; communication between a ST7 and a ST24C08 EEPROM.

; Polling software strategy without error management.

;-*

; MODIFICATIONS:

; 08/07/97 - V1.0 - C Version.

; 16/03/98 - V3.0 - Assembler version.

;**

TITLE “I2C_EEPR.ASM”

MOTOROLA

#INCLUDE “ST72251.inc” ; ST72251 registers and memory mapping file

;**

; Macro definitions

;**

; I 2C CCR possible speeds ~~

#define I2C_SPEED$26 ; 100.00 KHz.

; #define I2C_SPEED$37 ; 70.00 KHz.

; #define I2C_SPEED$4E ; 50.00 KHz.

; #define I2C_SPEED$9E ; 25.00 KHz.

; #define I2C_SPEED$EC ; 15.75 KHz.

; #define I2C_SPEED$86 ; 333.00 KHz.

; #define I2C_SPEED$8C ; 190.00 KHz.

; #define I2C_SPEED$8E ; 167.00 KHz.

I2C COMMUNICATION BETWEEN ST7 AND M24CXX EEPROM

6/11

; I 2C CR Bit definitions ~~~

#define PE 5 ; Peripheral enable.

#define ENGC 4 ; Enable general call.

#define START 3 ; Start condition generation.

#define ACK 2 ; Acknowledge level.

#define STOP 1 ; Stop condition generation.

#define ITE 0 ; Interrupt enable.

; I 2C SR1 Bit definitions ~~

#define SR2F 7 ; Status register 2 flag.

#define ADD10 6 ; 10 bit master addressing mode.

#define TRA 5 ; Transmitter / receiver.

#define BUSY 4 ; Bus busy (between start and stop condition.

#define BTF 3 ; Byte transfer finished.

#define ADSL 2 ; Addressed as slave.

#define MSL 1 ; Master / slave.

#define SB 0 ; Start bit generated (master mode).

; I 2C SR2 Bit definitions ~~

#define AF 4 ; Acknowledge failure.

#define STOPF 3 ; Stop detection flag (slave mode).

#define ARLO 2 ; Arbitration lost.

#define BERR 1 ; Bus error.

#define GCAL 0 ; General call (slave mode).

; I 2C register initial values ~~

; Control register: I 2C CR --- --- PE ENGC START ACK STOP ITE

#define CR_INIT_VALUE $24 ; 0 0 1 0 0 1 0 0

;**

; RAM SEGMENT

;**

BYTES ; following addresses are 8 bit length

segment byte at 80-FF ’ram0’

.buff_in DS.B 8 ; Input buffer to read the external EEPROM

.buff_out DS.B 8 ; Output buffer to write the external EEPROM

;**

; ROM SEGMENT

;**

WORDS

segment ’rom’

.buff_data DC.B 0,1,2,3,4,5,6,7 ; Constant data value buffer.

7/11

I2C COMMUNICATION BETWEEN ST7 AND M24CXX EEPROM

; ************************************

; * SUB-ROUTINES LIBRARY SECTION*

; ************************************

; ---

; ROUTINE NAME: I2Cm_Init

; INPUT/OUTPUT: None.

; DESCRIPTION: I 2C peripheral initialisation routine.

; COMMENTS: Contains inline assembler instructions in C like mode!

; ---

.I2Cm_Init

CLR I2CCR ;Force reset status of the control register.

LD A,#I2C_SPEED ;Set the selected I 2C-bus speed.

LD I2CCCR,A

TNZ I2CDR ;Touch registers to remove pending interrupt.

TNZ I2CSR1

TNZ I2CSR2

LD A,#CR_INIT_VALUE ;Set initial control register value.

LD I2CCR,A

LD I2CCR,A ;Write 2 times: PE=1 then other flag setting.

RET

; ---

; ROUTINE NAME: I2Cm_Start

; INPUT/OUTPUT: None.

; DESCRIPTION: Generates I 2C-Bus Start Condition.

; ---

.I2Cm_Start

BSET I2CCR,#START ; Generate start condition.

.StwaitBTJF I2CSR1,#SB,Stwait ; Wait for the Start bit generation (EV5).

RET

; ---

; ROUTINE NAME: I2Cm_Stop

; INPUT/OUTPUT: None.

; DESCRIPTION: Generates I 2C-Bus Stop Condition.

; ---

.I2Cm_Stop

BSET I2CCR,#STOP ; Generate stop condition.

RET

; ---

; ROUTINE NAME: I2Cm_SetAddr

; INPUT/OUTPUT: External I 2C device address / None.

; DESCRIPTION: Generates Start-bit and transmits the address byte.

; COMMENTS: Transfer sequence = START, EV5, ADD, ACK...

; ---

.I2Cm_SetAddr ; IN: A=i2c_addr / OUT: None

CALL I2Cm_Start ; Generates a start condition.

LD I2CDR,A ; Write address to be transmitted.

RET

I2C COMMUNICATION BETWEEN ST7 AND M24CXX EEPROM

8/11

; ---

; ROUTINE NAME: I2Cm_TxData

; INPUT/OUTPUT: data byte to be transferred / None.

; DESCRIPTION: Transmits a data byte.

; COMMENTS: Transfer sequence = DATA, ACK, EV8...

; ---

.I2Cm_TxData; IN: A=i2c_data /OUT: None

LD Y,I2CSR2 ; Check the communication error status.

.Txerr JRNE Txerr ; Communication error check: infinite loop.

BSET I2CCR,#PE ; Touch the control register to pass “EV6”.

BTJF I2CSR1,#BTF,I2Cm_TxData ; Wait BTF (“EV8”).

.Tx LD I2CDR,A ; Write data byte to be transmitted.

RET

; ---

; ROUTINE NAME: I2Cm_RxData

; INPUT/OUTPUT: Last byte to receive flag (active high) / Received data byte.

; DESCRIPTION: Receive a data byte.

; COMMENTS: Transfer sequence = DATA, ACK, EV7...

; ---

.I2Cm_RxData ; IN: A=last / OUT: A=Data

LD Y,I2CSR2 ; Check the communication error status.

.Rxerr JRNE Rxerr ; Communication error check: infinite loop.

BSET I2CCR,#PE ;Touch the control register to pass “EV6”.

BTJF I2CSR1,#BTF,I2Cm_RxData ; Wait BTF (“EV7”).

TNZ A ; Check if it is the last byte to receive.

JREQ Rx

CALL I2Cm_Stop ; End of communication: stop condition generation.

.Rx LD A,I2CDR ; Read data byte received.

RET

; ---

; ROUTINE NAME: I2Cm_Tx

; INPUT/OUTPUT: I2c dest @, sub @, Nb data byte to transmit / None.

; DESCRIPTION: Transmit output data buffer via I 2C.

; COMMENTS: Low significant bytes first.

; ---

.I2Cm_Tx ; IN: Y=sub_add, X=nb, A=dest_add / OUT: None.

CALL I2Cm_SetAddr ; Slave address selection on I 2C bus.

LD A, Y

CALL I2Cm_TxData ; Send sub-address through I 2C bus.

.TxcontDEC X ; X reg contains the number of data byte to transmit.

JRMI Txend ; End of output data buffer reached.

LD A, (buff_out,X) ; Next output buffer data byte selected.

CALL I2Cm_TxData ; Send data byte through I 2C bus.

JRA Txcont

.Txend JRA I2Cm_Stop ; Communication End: stop generation and return.

9/11

I2C COMMUNICATION BETWEEN ST7 AND M24CXX EEPROM

; ---

; ROUTINE NAME: I2Cm_Rx

; INPUT/OUTPUT: Buffer @, sub @, Nb data byte to receive, I2c dest @ / None.

; DESCRIPTION: Receive in data buffer via I 2C.

; COMMENTS: Low significant bytes first.

; ---

.I2Cm_Rx ; IN: Y=sub_add, X=nb, A=dest_add / OUT: None.

PUSH A ; Store the dest_add in stack.

CALL I2Cm_SetAddr ; Slave address selection on I 2C bus.

LD A, Y

CALL I2Cm_TxData ; Send sub-address through I 2C bus.

POP A ; Restore the dest_add in stack.

OR A,#$01 ; Force the LSB device address to be 1 (read mode).

CALL I2Cm_SetAddr ; Slave address selection on I 2C bus.

.RxcontCLR A ; Not yet the end of the communication.

DEC X ; X reg contains the number of data byte to receive.

JRMI Rxend ; End of input data buffer reached.

JRNE Rxb

BRES I2CCR,#ACK ; Non acknowledge after last reception.

LD A,#$01 ; End communication request.

.Rxb CALL I2Cm_RxData ; Receive data byte from I 2C bus.

LD (buff_in,X),A ; Next input buffer data byte stored.

JRA Rxcont

.Rxend BSET I2CCR,#ACK ; Acknowledge after reception and return.

RET

; *****************************

; * MAIN-ROUTINES SECTION*

; *****************************

.main

; Input buffer initialization ~~~

LD X,#7

.InibufCLR (buff_in,X)

DEC X

JRPL Inibuf

; Copy Constant data buffer in buff_out ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LD X,#7

.CpybufLD A,(buff_data,X)

LD (buff_out,X),A

DEC X

JRPL Cpybuf

; Init I 2C peripheral ~~~

CALL I2Cm_Init

I2C COMMUNICATION BETWEEN ST7 AND M24CXX EEPROM

10/11

; Write data from buff_out to the EEPROM ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

LD A,#$A0 ; EEPROM address parameter setting.

LD X,#8 ; Number of byte to write in the EEPROM.

LD Y,#$50 ; EEPROM internal data address.

CALL I2Cm_Tx ; IN: Y=sub_add, X=nb, A=dest_add / OUT: None.

; Waiting loop ~~~

CLR A

.WtloopJREQ Wtloop ; To exit from this loop: break point and set A<>0:

;first click on the Z flag; then change A value and

; press enter.

; Read data from the EEPROM to the buff_in~~~

LD A,#$A0 ; EEPROM address parameter setting.

LD X,#8 ; Number of byte to write in the EEPROM.

LD Y,#$50 ; EEPROM internal data address.

CALL I2Cm_Rx ; IN: Y=sub_add, X=nb, A=dest_add / OUT: None.

; ~~~

.end JRA end ; Infinite main loop.

; ~~

; **

; * INTERRUPT SUB-ROUTINES LIBRARY SECTION*

; **

.dummy_rt iret ; Empty subroutine. Go back to main (iret instruction)

.i2c_rt iret ; I 2C Interrupt

segment ’vectit’

DC.W dummy_rt ;FFE0-FFE1h location

DC.W dummy_rt ;FFE2-FFE3h location

i2c_it: DC.W dummy_rt ;FFE4-FFE5h location

DC.W i2c_rt ;FFE6-FFE7h location

DC.W dummy_rt ;FFE8-FFE9h location

DC.W dummy_rt ;FFEA-FFEBh location

DC.W dummy_rt ;FFEC-FFEDh location

timb_it: DC.W dummy_rt ;FFEE-FFEFh location

DC.W dummy_rt ;FFF0-FFF1h location

tima_it DC.W dummy_rt ;FFF2-FFF3h location

spi_it: DC.W dummy_rt ;FFF4-FFF5h location

DC.W dummy_rt ;FFF6-FFF7h location

io_bc_it: DC.W dummy_rt ;FFF8-FFF9h location

io_a_it: DC.W dummy_rt ;FFFA-FFFBh location

softit: DC.W dummy_rt ;FFFC-FFFDh location

reset: DC.W main ;FFFE-FFFFh location

END

;********* (c) 1997 STMicroelectronics ********************* END OF FILE ****

11/11

I2C COMMUNICATION BETWEEN ST7 AND M24CXX EEPROM

THE PRESENT NOTE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS WITH INFORMATION
REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME. AS A RESULT, STMICROELECTRONICS
SHALL NOT BE HELD LIABLE FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO
ANY CLAIMS ARISING FROM THE CONTENT OF SUCH A NOTE AND/OR THE USE MADE BY CUSTOMERS OF
THE INFORMATION CONTAINED HEREIN IN CONNEXION WITH THEIR PRODUCTS.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

 1999 STMicroelectronics - All Rights Reserved.

Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -

Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http:/ /www.st.com

