ST-Realizer® 1l
USER MANUAL

June 1999

1877

®

Ref: DOC-ST-REALIZER-II

USE IN LIFE SUPPORT DEVICES OR SYSTEMS MUST BE EXPRESSLY AUTHORIZED.

STMicroelectronics PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN
LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF

STMicroelectronics. As used herein:

1. Life support devices or systems are those
which (a) are intended for surgical implant into
the body, or (b) support or sustain life, and whose
failure to perform, when properly used in
accordance with instructions for use provided
with the product, can be reasonably expected to
result in significant injury to the user.

2. A critical component is any component of a life
support device or system whose failure to
perform can reasonably be expected to cause the
failure of the life support device or system, or to
affect its safety or effectiveness.

TABLE OF CONTENTS

1 INSTALLING ST-REALIZER Ilo 1
1.1 What You Need to Install ST-Realizer Il 1
1.2 Installation Procedure 1
1.3 Folders and Sub-folders 2

2 INTRODUCTION AND CONCEPTS 3
2.1 ST-Realizer Application Structures 4
2.2 Programming using Symbols 4
2.3 Inside ST-Realizer Applications 5
2.4 SYMDOIS . .. e 6

2.4.1 State Machine Symbols 6
2.5 SChemes 7
2.5.2 The RoOt SCheme e 7
2.5.3 Subschemes 7
2.6 EVENIS ... 8
2.6.4 Execution Conditions 8
265 EventSymbols 9
2.7 How ST-Realizer Keeps Trackof Time 10
2.8 Connecting your Application to the Target Device 11
2.9 Application Development Steps i 11

3 TUTORIAL . 13

3.1 SettingUp Your Project 13
3.1.1 Creatingthe ProjectFile 13
3.1.2 Choosing a Target Microcontroller 14
3.1.3 Openingthe Main Scheme 16
3.1.4 TheWorksheet Toolbar 16

3.2 Designing and Drawing Schemes i, 17
3.2.5 The State Machine Diagram 18

3.3 Completing the Heating Control Application 26
3.3.6 What differentiates a main scheme from a subscheme? 27
3.3.7 ExternalInputConditions 28
3.3.8 Internal Input Conditions 32
3.3.9 External ACLIONS 33

4

Table of Contents

3.3.10 The Creation of a Subscheme for an Internal Event-Driven Action .. 35

3.3.11 Connecting Hardware Ports and Peripherals 38
3.3.12 EventControl 41
3.3.13 SUMMaAIY .. e e 43
3.4 Analysing and Generating ProgramCode 44
3.4.14 Setting the Compile Options 44
3.4.15 Executing the Analysisand Compile 45
3.4.16 Viewing the Analyse and Compile Report 46
3.5 Simulating and Fine-Tuning Your Application 47
3.5.17 Creating the Simulation Environment File (.sef) 47
3.5.18 Connecting Probes and Adjusters 48
3.5.19 Runningthe Simulator 53
3.6 Nowit'sUpto You! 53
CREATING, OPENING AND SAVING PROJECTS it 55
4.1 ProjectFiles 55
4.2 Creatinga New Project e e 55
4.3 Opening an EXisting Project i 56
4.4 Opening Earlier Realizer Version Projects 56
45 Closing a Project 57
4.6 Saving ProjeCtS e 57
SPECIFYING THE TARGET HARDWAREDEVICE 59
5.1 ST Or ST7 DeVICES . ..ottt e e 59
5.2 Choosing a Target Microcontroller 60
5.2.1 Selecting the Target Microcontroller for a New Project 60
5.2.2 Changing the Target Microcontroller 61
5.3 Hardware Configuration 62
5.3.3 Accessing Hardware Settings Dialog Boxes 62
5.3.4 General Hardware Configuration 63
5.3.5 Memory Configuration 65
5.3.6 Enabling Peripherals 66
CREATING, OPENING, SAVING SCHEMES i 67
6.1 Schemes 67
6.2 Creatinga New Scheme e 67
6.2.1 Openingthe RootScheme 67
6.2.2 Creating Subschemes and other Schemes 68
6.3 Openinga Scheme i e 69
6.4 Saving SChemMES e 69

Table of Contents

7 BUILDING SCHEMES e e e 71
7.1 Schemes and their Components 71
7.2 SYMDOIS . . e 71

7.2.1 Placing and Controlling Symbols 72
7.2.2 Wiring Symbols Together and Connecting Application Inputs/Outputs 78
7.3 Workingin Schemes e 82
7.4 Subschemes, Execution Conditionsand Events 85
7.4.3 Description of ST-RealizerEvents 85
7.4.4 Execution Conditions 89
7.45 EventSymbols 89
7.4.6 Compatibilities Between Types of Events and Certain Symbols 91
7.4.7 Subscheme Operations i, 92
7.5 Table Symbols 99

8 THE MAIN SYMBOL LIBRARY ... e 103
8.1 Inputand Output Symbols 103
8.2 Sequential Symbols e 105
8.3 LOgic Symbols e 107
8.4 Time Related Symbols 116
8.5 Mathematical Symbols 118
8.6 Counter Symbols 120
8.7 Conversion Symbols e 121
8.8 Table Symbols 124
8.9 Power Management e 125
8.10 Constant Symbols 126
8.11 State Machine Symbols 126
8.12 Hierarchical Sheet Symbols 128
8.13 Title Symbols 128

9 ANALYSING AND GENERATING YOUR APPLICATION 129
0.1 OVEIVIBW . .ottt 129
9.2 Changingthe Compile Options 129
9.3 Executing the Analysis and Compile 133
9.4 What to Do if there are Errors Found during Analyse 134
9.5 Viewing and Tracing Generated Messages, 135

9.5.1 Viewing the Analyse and Compile Report 135

br v

Table of Contents

10

11

vi

9.6 Printing REPOMSo 138
SIMULATING YOUR APPLICATION e e 139
10.1 Working with Simulation Environment Files 139
10.1.1 CreatingaNew.sef File 139
10.1.2 Opening an Existing . sef File 141
10.1.3 Savingan.SEFFile 142
10.2 Setting, Adjusting and Viewing InputValues 142
10.2.4 Setting Fixed InputValues i, 143
10.2.5 Setting Variable InputValues 146
10.2.6 Setting Sinusoidal Input Signals 148
10.2.7 Setting Square Wave InputSignals 150
10.3 Monitoring Signals with Probes 151
10.3.8 Viewing Signal Values Numerically 152
10.3.9 Viewing Signal Values Graphically 153
10.3.10 Viewing State Machine States 156
10.4 Selecting Adjusters and Probes 157
10.5Running the Simulator 157
10.5.11 Starting/Stopping the Simulation 158
10.5.12 Setting RUN OptioNs 158
10.6 Recording and Reusing Adjuster and Probe Values 160
10.6.13 Recording Adjuster and Probe Values 161
10.6.14 Reusing AdjusterValues i 162
CREATING YOUROWN SYMBOLot e 165
11,0 OVeIVIEW . oot et e e e e 165
11.2 Running the ST Symbol Editor 165
11.3 Defining a New Subscheme Symbol 166
11.3.1 Adding Your New Subscheme Symboltoa Library 169
11.4 Defining a New User-Defined Symbol 171
11.4.1 Definingthe New Symbol 172
11.4.2 Editingthe New Symbol 176
11.4.3 Adding Pinsto Your Symbol 181
11.4.4 Assigning Attributes to Your Symbol 182
11.4.5 Modifying Existing Attributes 185
11.4.6 Creatingthe MacroHeader 187
11.4.7 Creating the New User-Defined SymbolMacro 187
11.4.8 Writing the Assembly Macro, 188
11.4.9 Adding New User-Defined Symbolstoa Library 191

4

Table of Contents

12 CUSTOMIZING ST-REALIZER e e e 193
12.1 Automatically Saving Your Work and Setting Screen Preference. 194
12.2 Attribute Display Preferences i 195
12.3 Worksheet Layout Preferences i, 196
12,4 Printing OpLtioNS i e e 197
12.5 Symbol Layout Preferences 198
12.6 Customizing Toolbars 199

12.6.1 Adding and Deleting Toolbar Buttons 200
12.6.2 Placing Separators Between Toolbar Buttons 200
12.6.3 Changing the Order of ToolbarButtons 200
12.6.4 Restoring the Default Toolbar 200
12.7 Wire Drawing Options i e 201

Appendix A:Variables and Attributes 203

Al Variable Typesand Rules i 203
Al.l Typelnheritance. 204
AL2 Type Overruling 205

A2 AHbULE TYPES . . o 205
A2.1 Pin Attributes. 206
A2.2 Symbol Attributes 207

Appendix B:Sample Applications 211

B1 Coded Lock Application 211
B1.1 Application Overview i 211
B1.2 Functional Description 212
B1.3 Sequencing Control 212
B1.4 Secret Code Storage inthe EEPROM 214
B1.5 Access Code Entry and Recognition 214

B2 Analog Multiple Key Decoder. i 215
B2.1 Application Overview i 215
B2.2 TheKeyboard.......... e 216
B2.3 Software Generation. 217
B2.4 Possible Improvements. 218

B3 Clock Designo 220
B3.1 Application Overview i 220
B3.2 CurrentTime Counting 220
B3.3 Current Time Setup.t 221
B3.4 AlarmTime Setup. 221
B3.5 Alarmtriggering. 221
B3.6 TiMebase 221

4

vii

Table of Contents

B4

viii

B3.7 CurrentTime Countingo .. 222
B3.8 CurrentTime Setup.t 223
B3.9 AlarmTime Setup. ... 224
Fast Counter Application i, 225
B4.1 The Application. 225
B4.2 Fast Counter ReportFile. 228
B4.3 Generated Code 230
... 237

4

Chapter 1 What You Need to Install ST-Realizer Il

1 INSTALLING ST-REALIZER I

1.1 What You Need to Install ST-Realizer I

You must install ST-Realizer Il on a PC that meets the following requirements:

Table 1 PC Hardware Requirements

Minimum requirements For Optimum Performance
Processor: Intel®80486 Processor: Intel® Pentium-100 MHz
RAM: 8 Mb RAM: 16 Mb
Disk memory: 14 Mb Disk memory: 16 Mb
Monitor: Grey scale VGA Monitor: Super-VGA, 17"
Mouse Mouse

ST-Realizer Il runs under Microsoft® Windows® 95, 98, or NT®.

1.2 Installation Procedure
1 Boot your PC under Windows.
2 Putthe ST-Realizer CD-ROM in your CD-ROM drive.
The CD-ROM'’s autorun function will open the Setup program automatically.
3 Follow the instructions that appear in the pop-up windows.

The Installation program will ask you to specify the folder into which you wish to install ST-
Realizer. The folder you choose will be the root folder. Either accept the default or enter
a new installation folder.

Installation is now complete.

To launch ST-Realizer, click Start 2Programs 2ST-Realizer || >Realizer.

4

1/248

Folders and Sub-folders Chapter 1

1.3 Folders and Sub-folders
The installation process creates the following folders and sub-folders:

<root_folder> which contains the system executable files and DLLs. (The root folder is C: /
Program Fi | es/ ST- Real i zer/ by default.)

<root_folder>\Examples which contains examples of ST-Realizer projects.

<root_folder>\Help, which contains the help files, a readme file and PDF documents about
ST-Realizer.

<root_folder>\Lib, which contains the main symbol library and a number of other libraries.

<root_folder>\TargetHW, which contains the definition files for the ST6 and ST7
microcontrollers supported by ST-Realizer II.

4

2/248

Chapter 2

2 INTRODUCTION AND CONCEPTS

The founding idea behind ST-Realizer was to create an accessible and user-friendly software
package, allowing people at various levels of programming expertise to efficiently design
embedded applications for ST6 and ST7 microcontrollers.

ST-Realizer is an application programming package that allows you to create applications
ready to be loaded into ST6 and ST7 microcontrollers without having any knowledge of
assembler code. To do this, you use symbols that represent programming functions to create
flow diagrams that perform your application functions. While the user is assumed to have a
good understanding of the microcontroller for which he or she wishes to create an application,
care has been taken to create a sufficiently broad spectrum of symbols to cover all of your
application design needs. And should you require a symbol not included in ST-Realizer’'s main
library, you can design your own using the Symbol Editor function.

All ST-Realizer applications are destined for one of the ST6 or ST7 family of microcontrollers.
The scope of the application is necessarily limited by the resources available on the target
device—the microcontroller for which the application has been designed.

It is therefore imperative that you fully understand the specifications of the target
microcontroller before you begin to design your application. Datasheets for those ST6 and
ST7 microcontrollers supported by ST-Realizer are supplied on the ST-Realizer CD-ROM. In
addition, datasheets for ST microcontrollers can be easily obtained from the
STMicroelectronics microcontroller web site:

http://st7.st.com

The remainder of this chapter will describe the basic concepts behind using ST-Realizer, to
help you generate your embedded application programs.

ST-Realizer was developed by ACTUM Solutions expressly for
STMicroelectronics, for use in developing embedded applications for ST6 and
ST7 microcontrollers. In addition to ST-Realizer, ACTUM Solutions provides a
variety of other software products, some of which can be used as a
complement to ST-Realizer to further refine your application. For more
information, please refer to the ACTUM Solutions web site.

I’ICTL{‘I‘I
Solutions

A

http://www.actum.com/

4

3/248

ST-Realizer Application Structures

Chapter 2

2.1 ST-Realizer Application Structures

Perhaps the best place to start describing
ST-Realizer is at the final product—the
generated assembler application that ST-
Realizer will produce for you. It is
important to understand how the final
generated code is structured before you
start designing your application, so that
you are aware of how best to optimize
available resources, such as memory.

There are two main parts to each ST-
Realizer assembler application. The first
part is a series of initialization macros
that are embedding automatically and
that make up the Realizer Operating
System (ROS). The ROS sequentially
initializes the microcontroller, it's 1/O’s,
peripherals and memory, in much the
same way that your PC’s BIOS initializes
the PC hardware as soon as you switch
the power on. The second part of the
code is the part that you create using ST-
Realizer—the application program.

The figure at right shows a flow chart of
the overall structure of the generated
assembler code that ST-Realizer
produces.

2.2 Programming using Symbols

ROS

CReset entry point)

Chip Initialization

I/O Initialization

Peripheral
Initialization

Data memory
Initialization

Applicatio
you createn<

]

Keep track of
elapsed time

Read inputs
Calculate data
Write outputs

Main
Loop

Updating of
Copies and
State Machines

Peripheral IRQs

Interrupt
Subroutines

With ST-Realizer, you create applications by placing and connecting symbols in a scheme.
Each symbol is, in fact, a graphical representation of an assembler macro, usually including
attributes which you can modify to your specific needs.

The symbols included in the ST-Realizer main library represent a variety of coded entities
such as: mathematical, logical, conversion and power management functions, constants,
tables, subschemes/hierarchical sheets, states, input devices, output devices and sequential,

counted or time-related events.

4/248

4

Chapter 2 Inside ST-Realizer Applications

The symbols are made such that you need never write a single line of assembler code to
produce your application—all of the attribute modifications you may need to perform are
accessible through dialog boxes.

2.3 Inside ST-Realizer Applications

An application is built around an ST6 or ST7 microcontroller unit (MCU). The input signal(s)
enter the application from one (or more) of the microcontroller’s pins, ports or peripherals. The
application treats the input signal(s) as you require, and the result is output to one of the
microcontroller’'s pins or ports.

The figure below shows a generalized view of an application. The input signal(s) enter the
application via one of the MCU'’s pins, ports or peripherals, and is taken up by the root (or
main) scheme. The root scheme is the core of the application—the main, sequential loop. If
the application requires any interrupts, you must create a subscheme. (Interrupts cannot
occur in the root scheme.) If you simply wish to section off a very complex part of the
application for aesthetic reasons, you may also create subschemes to contain parts of the
main loop. Subschemes are represented in the root scheme by subscheme symbols, of
which more will be said a little later.

Application

Root Scheme

Subscheme
Symbol

Table
Symbol

]

Input signal Output signal

(from MCU pin, (to MCU pin or
port or port)
peripheral)

oo

Subscheme

Additional inputs from
MCU pins, ports or
peripherals are possible.

4

5/248

Symbols Chapter 2

2.4 Symbols

Using ST-Realizer, you design your application by placing symbols and wiring them together
in schemes.

Each symbol may represent:

 Anoperation, such as converting a physical analog value to a binary value,

« A piece of information related to the behavior of the application, such as a state
transition,

e A system state, or condition,
« An action reflecting a change in the system state or caused by an event such as the
occurrence of a timer interrupt.

Each symbol is associated with an ST6 or ST7 assembler code macro. The wires represent
the flow of data, and are linked to variables and constants. You can modify certain attributes
of symbols and wires, allowing you to customize them for your specific application. For
example, by attaching an attribute of type UINT (unsigned integer) to a wire, you define its
value capacity to that of an unsigned integer (0 to 65536). For more details on attributes see
Appendix A: “Variables and Attributes” on page 203.

2.4.1 State Machine Symbols

Within your root scheme, you may create a state machine, which logically guides the program
between different functional states of your application. Say, for example, you had an
application which performs the following functions:

e Turning a motor on.
e Setting the motor speed.
e Turning the motor off.

In a state machine, you would define a state, using a state symbol, for each functional step
of the application above and, in addition, a state which defines the starting point of the
application—the initial state.

The sequence of state symbols would therefore look like:
e Motor OFF (Initial State).

Motor ON.
e Setting Speed.
Motor OFF.

The transitions between each of these states are controlled by conditions. Condition
symbols act as switches. When a condition is met, the condition symbol is triggered, and the
program can progress to the next state.

The tutorial included in this manual (see Chapter 3 “Tutorial” on page 13) provides an very
good example of how a state machine and state symbols can be used in creating an
application.

6/248 V<72

Chapter 2 Schemes

2.5 Schemes

When using ST-Realizer, you design your application in schemes. A scheme is like a plan on
which you place symbols and draw wires. Each application consists of a set of schemes,
including one root scheme and any number of subschemes. Section 7 on page 71 explains
how to build and modify schemes.

2.5.2 The Root Scheme

The root scheme is the starting point of your application program, and corresponds to the
reset vector of the program.

The root scheme is where you create the main loop of your application. All of the large scale,
sequential functions should be kept here. However, if there are any particularly complicated or
cumbersome actions in your main loop, you may wish to put them into a subscheme to save
space in the root scheme and to make the application easier to follow visually.

2.5.3 Subschemes

Applications can include any number of subschemes which contain further symbols and
wires but are displayed in the root scheme as a single symbol.

There are three reasons to create a subscheme:

e To include complex portions of the main loop, thus saving space in the root scheme and
making it easier to reuse processes. In this case, the subscheme is executed as if it were
a part of the main loop (root scheme).

e To include parts of the application that are event-driven. (Events can never be placed in
the root scheme.) Subschemes can be assigned either a single execution condition,
which will apply to the entire subscheme, or alternatively, can include any number of
event symbols. More will be said about execution conditions and events shortly.

« To save functional parts of your application (analogous to subroutines) that you may wish
to reuse in other applications. Subschemes are saved in their own files (. sch files) and
can be easily copied to other ST-Realizer projects and reused. You may also save
customized subschemes symbols to a library, to be accessible by all projects.
(Subscheme symbols are described below).

Designing a subscheme is no different than designing an ordinary scheme, with one
exception: a subscheme has connections to its root scheme via a subscheme symbol. The
subscheme symbols are named sssp_q, where p indicates the number of inputs you need for
your symbol and q the number of outputs. For example, sss2_1 is a subscheme with two
inputs and one output.

IS72 71248

Events Chapter 2

When you want to use a subscheme, you must therefore first think about its connections: what
inputs does the subscheme need to deliver its output? Once you know this, you can choose
the correct subscheme symbol from the main library. However, subschemes, like the root
scheme, can be modified at any time. Section 7.4 on page 85 describes how to create and
modify subschemes.

2.6 Events

Events are conditional triggers, similar to If..Else statements, that can be applied either to an
entire subscheme, or simply to a sequence of code. Like an If..Else statement, events are
always triggered by an input of some sort. The input may be:

e Aninterrupt, such as a timed or hardware interrupt.
e Aninput value change.

When an event is applied to an entire subscheme, it is called an execution condition—
because it defines the conditions by which the subscheme will be executed.

However, events can also be made to apply to just a sequence of symbols within a
subscheme, using event symbols. These symbols act as switches—if the condition that they
represent is met, the code that follows them can be performed.

There are many types of events, some hardware independent, and others that are hardware
dependent. The full range of events available is detailed in Section 7.4 on page 85.

2.6.4 Execution Conditions

An execution condition can be applied to a subscheme, CReset entry point)
such that the subscheme is only executed when that |
execution condition is met—such as a timed interrupt,
or upon a subscheme input change. Only one execution
condition can be applied to any given subscheme and
when this execution condition is fulfilled, all of the code
within the subscheme is executed.

Initialization

Normal Code
Execution

Subschemes with execution conditions are chiefly used
to contain reasonably complex subroutine functions
that are conditionally performed in addition to the code
in the main programming loop. A

Execution
Condition
met?

The diagram at right shows a schematic example of Subscheme
how a subscheme with execution conditions is used in Code
an application.

Normal Code
Execution

-

4

8/248

Chapter 2 Events

2.6.5 Event Symbols

Event symbols can be included in subschemes to determine when, and which portions of, the
code is executed. Event symbols are always placed in subschemes, because events act as
interrupts, and interrupts may never be placed in the root scheme.

In a certain manner, event symbols act as switches to control when (i.e. under which
conditions) subsequent code is executed.

Event symbols are most usefully used when you wish to include several events that may
control the similar portions of code. However, certain rules apply when placing more than one
event symbol in a single subscheme (refer to Section 7.4.5 on page 89).

The diagram below shows a schematic example of how event symbols can be used to control
how a subscheme is executed.

CReset entry point)

Initialization Subscheme Code

Normal Code

Execution
i Event 1/ ‘
event symbols
Event Zj ‘

symbol sequence C

-1 [} —

Subscheme
Symbol

Normal Code
Execution

L -

In the above example, the subscheme code will be executed as follows:

« If Event 1 is triggered (by the event’s condition being fulfilled):

- Symbol sequence A will be performed with outl = 1.

- Symbol sequence B will be performed with out2 = 0.

- Symbol sequence C will be performed unconditionally—there are no event symbols
connected to this code sequence.

« If Event 2 is triggered:
- Symbol sequence A will be performed with outl = 0.

IS72 9/248

How ST-Realizer Keeps Track of Time Chapter 2

- Symbol sequence B will be performed with out2 = 1.
- Symbol sequence C will be performed unconditionally.

e If neither Event 1 nor Event 2 is triggered, no part of the subscheme code will be
performed.

Note: Even though symbol sequence C is not directly connected to a event symbol, by
virtue of it being in a subscheme with that contains events, it will not be
performed unless one of the events is triggered. The golden rule is that you
cannot mix events with root scheme symbols (meaning those symbols that are
performed as part of the main loop or normal code). When you place symbols
in a subscheme which contains one or more events (either in the form of event
symbols or an execution condition), those symbols cannot be considered as
part of the root scheme.

2.7 How ST-Realizer Keeps Track of Time

ST-Realizer Il differs from its predecessors because the final code that it produces will only
contain timer initialization code if there are time-related symbols or events in the application.

However, if your application includes either time-related symbols or events, ST-Realizer will
generate something called a base clock timer tick in the following manner:

e Every ST6 and ST7 microcontroller has a timer, called Timer 1 (ST6) or Timer A (ST7),
which (if there are either time-related symbols or events in the application) is used as the
base clock to measure out units of time called “timer ticks”. You can choose to set the
value of the timer tick—this is described on page 131.

« All time-related symbols and events are based on timer ticks. This means that one timer
tick is the smallest increment of time that can be distinguished.

e Timer ticks may be used to control the processing time of a main loop cycle. The time
required to perform one main loop cycle is called the Processing Cycle Time. By default,
the processing cycle time is variable. However, you can choose to fix the processing cycle
at a specific number of timer ticks—how to do this is described on page 131.

For example, by default the base clock timer tick is set to 0.01 s (10 milliseconds). This means

that every 10 milliseconds the hardware timer (Timer 1 or Timer A) sends an interrupt to the

program which increments a tick variable. Time-related symbols and events use this tick

variable (either directly or indirectly(l)) to evaluate whether their conditions have been
satisfied, and whether their actions should be executed or not.

1 How different types of time-related events use the value of the tick to evaluate their
conditions is detailed in Section 7.4.3 on page 85. Time-related symbols are described in
detail in Section 8.4 on page 116.

10/248

4

Chapter 2 Connecting your Application to the Target Device

The concept of the base clock timer tick is an important one, because it appears every time we
require a time-related symbol or event. In our tutorial example, we demonstrate how to use
both time-related symbols and timed events. We strongly urge you to take the time to
complete the tutorial—it is a very efficient way to get up to speed in ST-Realizer and the time
you spend doing the tutorial will be saved later by having increased your productivity!

2.8 Connecting your Application to the Target Device

All signal inputs to the application are supplied by one or more of the microcontroller’s input
pins, ports or peripheral control registers. Similarly, the application’s final output must also be
sent to an output pin or a port. In general, each ST6 and ST7 microcontroller has a variety of
digital and analog input/output pins, as well as ports for serial or parallel data. The number of
pins and ports, of course, depends on the microcontroller in question.

However, peripheral support can vary largely, depending on the microcontroller to be used.
Any application design, must obviously bear in mind the resources available on the
microcontroller.

To link inputs and outputs between the application and the microcontroller, you must connect

pins, ports or peripheral control registers to input or output symbols in the application’s
schemes.

Note that peripherals must be enabled before they can be used by the application. Once
enabled, each peripheral used must usually be configured to meet the hardware requirements
of your application—hardware setting dialog boxes are designed for this purpose. These
hardware settings are used by the ROS to initialize the microcontroller properly.

2.9 Application Development Steps

Once you have designed your application using ST-Realizer, you analyse and compile it
using ST-Analyser.

ST-Analyser performs the following tasks:

« Analyses your scheme by creating the netlist, creating cross references, analysing and
generating final code. Providing no fatal errors are encountered, ST-Analyser generates a
non-compiled ST6 or ST7 macro-assembler language (. asm file from the scheme.

» Generates the compiled binary ST6 or ST7 executable file. Depending on whether or not
you included the ROS (see Section 2.3 on page 5 and Section 5.3.4 on page 63), a file
with extension *.hex or *.0bj respectively is generated for ST6, or with extension *.s19 or
*.0obj for ST7. A *.hex (or *.s19) file can be directly loaded into an ST MCU while you
must link a *.obj file with another program.

When the analysing process has been successfully completed, a report file is generated. This
report file gives information about the designation of I/O pins, a list of the variables used by
type and the memory space required by the application.

ﬁ 11/248

Application Development Steps Chapter 2

Once you have compiled your application, you can use ST-Simulator to simulate its behavior,
generate and view input signals, monitor signals that are generated by your application, and
fine-tune it if necessary. You design simulation environments in the same way you design
schemes, except that the design is held in what are called simulation environment files.

To provide you with greater flexibility, you can create or edit your own symbols using ST-
Symbol Editor. You create a symbol by drawing its shape, placing pins that represent the
variables that are input to and output from the process you are defining, then linking it to the
macro it represents.

All the files and definitions that pertain to an application are stored in project files. The
following diagram shows the ST-Realizer application development process.

Drawv the schemes

Test and debug
the code

Load the code
intoan ST
microcontroller

4

12/248

Chapter 3 Tutorial

3 TUTORIAL

The following tutorial is designed to help you fully understand both the principles behind
creating applications using ST-Realizer and how to create applications using ST-Realizer.

In this tutorial, you'll learn how to create an ST microcontroller application.

The application you will create manages a heating control system. The ambient temperature
is periodically measured, filtered and compared with a preset value. When the measured
temperature is lower than the control value, the heating system is started while the pump
speed is adjusted proportionally to the temperature differential. A pilot LED lights up to show
that the heating is on. When the measured temperature exceeds the control value, the heating
system is stopped.

This tutorial application runs in stand-alone mode using an ST72212G2 microcontroller.
However, note that the same application could be applied equally to an ST6 microcontroller,
such as the ST6265, with little modification. The goal of this tutorial is to demonstrate, in a
general manner, how to use ST-Realizer, rather than to supply sample applications for a given
microcontroller.

3.1 Setting Up Your Project

In this part of the tutorial you will:

« Create a new project file for the heating control application.

» Define the ST microcontroller onto which the application will be loaded.

e Learn how to open the scheme in which you'll draw the application.

3.1.1 Creating the Project File

Each application you design is stored in a project. When you create a new project, the first
step is to specify the folder in which you wish to place it. It is recommended that you create a
separate folder for each new project.

ST-Realizer will creates a project.rpf file, that contains project-specific path settings, the
project's scheme names, target hardware information and compiler settings.

Once you've defined your project, you'll be able to open a nhew scheme and start designing
your application.

4

13/248

Tutorial

Chapter 3

1 Click Project=>New in the cascading menu. The Create a New File dialog box opens:

Create a new file ElE3

Savein. | ‘23 Heating Mic=E=
/. \

Click here to move up
one folder level.

Click here to create

\ a new folder.

|

Type the name of your
new project here.

/

File name:; Iheatind

Save

Save az type: IF'ru:iect files [*.rpf) j

Cancel

Create a new folder for your tutorial project called “Heating” by clicking on the new folder

icon shown above.

2 Once you have created your project folder, type the name of the project (“

heati ng”)

in the File name field. ST-Realizer will add the . r pf extension automatically. Click

Save.

You have just created the heati ng. r pf file in which the main settings related to your
project will be recorded at the end of the ST-Realizer session. They will be used the next

time you open the project.

3.1.2 Choosing a Target Microcontroller

The next step is to choose the ST microcontroller on which the application will be loaded. After
you create a new project, a window will open prompting you to select the target hardware. This

application is going to be loaded on an ST72212G2:

14/248

4

Chapter 3 Tutorial

1 Click the Target Hardware folder in the Select Target Hardware window. A
browsable list of target hardware devices will appear in the window shown below.

[Select target hardware |

Mo target hardware selected

E Z5 Target hardware devices
|:| STE &-Bit MCL
=59 5T7 8-Bit MCU
|:| ST7210x 16-Bit Timer, 5P
F-C0 5T7212% Twa 16-Bit Timers, SPI, 501
El B STF"221H a/s0 Eu:unverter SF'I
10k, 256 Bytes Rak

: \@ ST?2213I31 'IE Blt Tlmer 4K RO, 256 Bytes Rakd

- [0 5T7225x A/D Corverter, Two 16-Bit Timers, SPI, 12C

I:l STV« A/D Cornverter, Twao 16-Bit Timers, SPI, SCI

F-C0 5T7233 A/D Corverter, Two 16-Bit Timers, SPI, 5C1, EEPROM

(] I Cancel

2 Find the desired ST microcontroller (ST72212G2) by clicking the device icons in the
list until the name of the chosen device is displayed. Select the ST microcontroller
ST72212G2 by clicking once on it.

3 Click OK to confirm.
You may also double-click the line showing the device.

4 Once you have selected your target hardware, the Project window will open, as
shown below:

B lerarles
F 25 Target hardware
\m} STP2212G2 Two 16-Bit Timers, 8K ROM, 256 Bytes RAM

This window will list all of the components of your project—schemes, libraries and target
hardware. Notice that ST-Realizer has already created an application scheme file called
heating.sch by default. Next, we’'ll learn how to design the application scheme.

ﬁ 15/248

Tutorial Chapter 3

3.1.3 Opening the Main Scheme

Now that you have created your project and specified the target microcontroller, you must
draw the main (or “root”) scheme. This is the sheet on which you design the main part of
your application. The main scheme file has already been created by ST-Realizer, and is called
heat i ng. sch by default.

To open the main scheme:

e In the Project window (shown on page 15), double-click heat i ng. sch, located
under the Schematics folder.

A new blank worksheet opens where you can draw the main (root) scheme of the
application:

¥ ST Realizer [Beta) - heating

File Edit Search ‘iew Project Options Tools Window Help
D@k * mo R el e T N e e an

:!I C:A\Program Files\S T-Realizer\E xamples\H eating\heating. sch [Root)

i] H

(13200000 [5T6285C 4K ROM. 128 byles R,

3.1.4 The Worksheet Toolbar

At the top of the scheme worksheet, you will see a toolbar with a number of icons. How to use
these icons will be described as we work through the tutorial, but a quick summary of their
names and uses is given here.

16/248

4

Chapter 3 Tutorial

LS

2 O
NI
) i
el eb & =
NS PO
% N
o"”@} S {\\Q'% & N ’\Q’é\\}\Q > R
o I I N U N o i S
o . 2’ & D R0 L OO >
& @ R Y} O XL P> O S
&7 O O o 27V LN A V& N
N Q<0 5 QOO J & R
«0\ <<o <<\\ O < \,& q& @Q}. o\>6 @e QQ' & \O eo @V\ \/O <-9A @* & O\> Qo
S a5 D 5258 E e S SO T S
P PP P P I FE R AT 8
el <ol A dC T 18 O T ATET T S A

Note: The step-by-step instructions in this tutorial describe how to operate ST-

Realizer using the default toolbar setup shown above. If, while you are doing this
tutorial, you cannot find a button that is shown in an instruction, refer to
“Customizing Toolbars” on page 199, to find out which menu commands
correspond to that button.

3.2 Designing and Drawing Schemes

For the heating control application, the microcontroller will require the following inputs and
outputs:

2 analog inputs:

- The actual temperature

- The control temperature

1 digital output to one pilot LED to indicate the heating system status,

1 digital output to control the speed of the pump.

In this part of the tutorial, you are going to learn how to create the above application by
drawing graphical schemes. In particular, you will learn:

How to place symbols.

How to edit symbols.

What the principal symbols do, and when to use them.
How to connect the pins.

How to handle events.

The schemes associated with the application include symbols that describe:

A State Machine diagram.

Conditions, that is conditions that are transmitted to the application from external sources
such as temperature records, or that are internally determined, for example when the

ﬁ 17/248

Tutorial Chapter 3

system switches to a specific state.

e Actions, that is actions that are output from the application, such as putting on the pilot
LED, or actions that are internally determined, for example those resulting from a timer
interrupt.

The following section will explain how to draw the heating application using symbols fulfilling
the above roles.

3.2.5 The State Machine Diagram

Each time a condition changes, as a result of the signals received from the microcontroller
input pins, the state machine selects the appropriate state. The state defines the signals that
are sent to the microcontroller output pins.

The overall management of the heating control system is carried out by a simple state
machine with four states: Init, HeatingOFF, HeatingON, and Pump Enabled.

SetupTime, Start, SetPump and Stop conditions trigger state transitions.

A specific action is associated with each state.

The following table summarizes the relationship between events(V) (or inputs), conditions and
actions.

Event® or Input Signal State Transition Action
Internal External Condition New State
Setup Time has SetupTime HeatingOFF Pilot LED OFF
elapsed
Measured Temp. Start HeatingON Pilot LED ON
is lower than

Control Temp.

Measured Temp. Stop HeatingOFF Pilot LED OFF
exceeds Control
Temp.
System switches SetPump PumpEnabled Pump speed
to HeatingON control active
state
Event = Timer No state transition Input acquisition
Interrupt active

1 For more information about Events, please refer to Section 7.4 on page 85.

18/248

4

Chapter 3 Tutorial

When you define the state machine, the first symbol you must place is the initial state.

For the heating control application, the initial state is /nit. This is a holding state that allows
time for the application to measure and filter the actual temperature, before deciding whether
to turn on the heat pump.

3.2.5.1 Placing the Initial State

To place the initial state, Init:

-+

1 Click B

2 The main library dialog box will open, as shown at right:

All of the symbol names are categorized by function. A Input and output
.. . . [# Sequential
complete listing of symbols (organized by functional category = Logic

|»

and name) can be found in Chapter 8 on page 103. H Time related

[+ M athematical
The initial state symbol is called “stateinit”, located under the ElCounter

[Conversion
“State machine” category. # Table

Power management
Find “stateinit” and select it by: & Constant

[# State machine
» double-clicking on it, i Hierarchical sheet

H Title |
or,

e clicking once on it and, without moving the cursor
from the library dialog box, right-click the mouse and select Place.

3 A square box will now appear next to the cursor, indicating the size and position of
the “stateinit” symbol. Move the cursor to where you want to place the symbol, then
click once. It is recommended that you place the symbol towards the top and left of
your scheme.

Note: If you wish to move the symbol after having placed it, just click once next to the
symbol so that a red rectangle appears around the entire symbol, indicating that
it has been selected. Then simply drag and drop it where you wish.

4 A dialog box will open, prompting you to edit the value of the state. In doing so, you

are effectively naming the initial state variable. Type “ I nit” inthe field, then click
OK.
CAUTION: With ST-Realizer, object naming (such as when you assigned the name “Init” to

the initial state symbol above) is case-sensitive. In addition, spaces are inter-
preted as characters. Ensure that all object names are used consistently, other-
wise, errors will result when you compile the application.

4

19/248

Tutorial Chapter 3

You've just placed your first symbol—the initial state, Init. It should look like this:

If it doesn't, select the symbol by clicking next to it, then delete it by pressing the Delete button
on your keyboard, and redo steps 2 to 4 above.

If you find that the symbol is too small, and you want to zoom in on it, click gl then select
the area around your symbol. If you make a mistake, and can no longer see your symbol, click

D to see the whole scheme, then reuse Q to zoom in on your symbol.

Now you are ready to place the first condition—the SetupTime condition—that is activated for
the first time when the start button is pressed. Active conditions are signalled by sending the
value 1—a signal value equal to 0 indicates that the condition is not active.

3.2.5.2 Placing a Condition
To place the Start condition:

1 Inthe main library dialog box, under the category “State machine”, scroll down the
list until you find “ condition” , then double-click it.

2 Move the cursor to where you want to place the symbol (i.e. to the right of the
stateinit symbol as shown in the diagram below), then click.

3 The Edit the value dialog box opens. Type “ Set upTi ne” in the field, then click OK.

>

SetupTime

Your scheme should now look like this:

If it doesn't, select the incorrect symbol by clicking next to it, then delete it by pressing the
Delete button on your keyboard, and redo steps 1 to 3 above.

4

20/248

Chapter 3 Tutorial

You are now going to wire the initial state and the SetupTime condition together. This forms a
logical link between the two symbols. All symbols have pins to which you connect wires.

3.2.5.3 Wiring Symbols

To wire the stateinit and condition symbols together:

. - —I— L
1 Select wiring mode by clicking . The cursor changes to a crosshair, indicating
that it is in wiring mode.

2 Place the cursor next to the right arrow on the right of the stateinit symbol. This is
its output pin. The crosshair snaps onto the pin when it comes into snapping
distance. An x indicates the point to which the crosshair is snapped, as shown in

the following diagram:

SetupTime

3 Click when the crosshair is snapped to the pin. ST-Realizer will now draw a wire that
follows the cursor.

4 Move the cursor to the line on the left of the SetupTime condition symbol. This is its
input pin. Click when the crosshair is snapped onto the condition symbol’s pin.

5 Right-click the mouse or press the ESC key or click L\\‘J ‘ to finish wiring. The two
symbols are now connected by a wire.

Your scheme should now look like this:

N
/

SetupTime

If it doesn't:
1 Select the wire by clicking it.

2 Delete the wire by pressing the Delete button on your keyboard, and redo steps 1 to
6 above.

ﬁ 21/248

Tutorial

Chapter 3

3.2.5.4 Placing the Next State
To place the state, HeatingOFF:

1 Inthe main library dialog box, under the “State machine” category, scroll down the

list until you reach state, then double-click it.

2 Move the cursor to where you want to place the symbol, then click. Place the symbol

to the right of the state symbol, as shown in the diagram below.

3 The Edit the value dialog box opens. Type Heat i hgOFF in the field, then click OK.

4 Now, wire the SetupTime condition to the new state symbol as explained above.

Your scheme should now look like this

> > > HeatingOFF |>
SetupTime

Now design the rest of the state machine diagram, so that it appears as shown in Figure 1.

The following paragraphs contain hints and explanations to help you.

Figure 1 The final state machine diagram.

State Machine Diagram

N S

> 2 >{ HeatingOFF |>- 2
SetupTime u Start

Stop

umpEnable
\ p

HeatingON |>—

SetPump

22/248

4

Chapter 3 Tutorial

3.2.5.5 Designing the Complete State Machine Diagram—Hints and Explanations

Reminder : The application manages a heating control system. The ambient temperature is
periodically measured, filtered and compared with a preset value. When the measured
temperature is lower than the control value the heating system is (re)started while the pump
speed is adjusted proportionally to the temperature differential. A pilot LED lights up to show
that the heating is on. When the measured temperature exceeds the control value, the heating
system is stopped.

When the application is started, the initial state, Init, triggers a counter that allows enough time
for the system to measure and filter the actual temperature value. Once this time has elapsed,
the SetupTime condition is met, and triggers the HeatingOFF state, while simultaneously
evaluating the temperature inputs. If the temperature differential between the actual
temperature and the setpoint temperature is larger than a preset constant, a new condition
called Start is met and a signhal equal to 1 is sent. This signal triggers the transition between
the HeatingOFF state and the HeatingON state, meaning that the heating system is powered
and the pilot LED is switched on. To create the HeatingON state we must place a state
symbol, to which we assign the name value Heati ngON, and then wire it to the Start
condition, as shown in Figure 1.

Now, the pump should operate in such a way that its speed is proportional to the differential
observed between the actual temperature value and a preset temperature value. In order to
do this, the pump must be enabled prior to operation. The system must change to the
PumpEnabled state. A new condition symbol, SetPump, is needed, that will trigger the
transition between the HeatingON state and the PumpEnabled state.

Similarly, another condition, Stop, will ensure the transition between the PumpEnabled state
and the HeatingOFF state.

You can see that the same symbol (“condition”) is to be used four times (the “state” symbol
itself is to be used three times).

When one symbol already exists in a scheme, you can copy it rather than selecting it from the
library. Since you are now going to place the Start condition symbol, you can copy it from the
SetupTime condition symbol:

1 Click just next to the SetupTime condition symbol to select it.
el
2 Click /&

3 Click where you want to place the copy (beside the HeatingOFF state symbol, as
shown in Figure 1).

4

23/248

Tutorial Chapter 3

4 Double-click the name of the symbol. The Edit the value dialog box opens. Type
St art, the name of the new condition, then click OK.

5 For the HeatingON state symbol, select and copy the HeatingOFF state symbol
el

using T . Place it beside the Start condition symbol. Double-click the name of
the symbol and enter the new value Heat i nhgQON, as shown in the diagram.

6 Create the SetPump condition in the same manner that you created the Start
condition. Note that in the State Machine diagram, the SetPump condition symbol is
in the opposite direction to the Start condition symbol. You can change its direction

using the mirror function, by clicking on it , Or by rotating it to the required

position by clicking twice.
7 For the PumpEnabled state symbol, select and copy the HeatingON state symbol
el

using T . Place it at the bottom of the State Machine diagram. Double-click the
name of the symbol and enter the new value PunpEnabl ed, as shown in the

diagram.
8 For the Stop condition symbol, select the select the SetPump condition symbol,

el
click T to copy it, place the new symbol at the left of the PumpEnabled state
symbol, then enter the value St op.

The next step is to wire the HeatingON state symbol, the three new condition symbols and the
PumpEnabled state symbol. Look at the state machine diagram to see how these are wired
together.

- . I .
In your scheme, make sure wiring mode is selected by clicking and wire the symbols.

Note: Auto wiring and Auto reroute are options available in the
Option=2>>Environment2>Wiring menu path. These options create corners and
reroute wires across the shortest path automatically. If you prefer to connect the
wires another way, you can deactivate them:

1 On the Options menu, select Environment.

2 In the Environment Options dialog box click the Wiring tab.

3 Click the Auto wiring and Auto reroute check boxes. When these are empty,
Auto wiring and Auto reroute are deselected.

4

24/248

Chapter 3 Tutorial

To place a heading in the diagram:

1 Click anywhere in the diagram area with the right mouse button.
A popup menu displays.

2 Select the New/Attribute options
The Create an Attribute dialog box opens.

3 Specify the following options:
TAG = TXT,
Value = “State Machine Diagram” (enter text)
Visibility = Tag checkbox left unchecked

4 Place the heading where you want, by dragging it
5 Click OK.

You've just drawn the state machine, which is part of the main scheme of the heating control
application.

The next section will explain how to draw the rest of the heating control application. Since you
should now be used to placing, editing and wiring symbols, the descriptions that follow will
explain what symbols you will place, with what values and why the symbols are there. They
will not include details on how to place, edit and wire the symbols that are there. Table 2
shows a summary of the editing functions that you can use to create the remaining diagrams.

Table 2 Summary of Editing Functions
To do this: Do this:

Select a symbol Choose the select mode by clicking on the

toolbar.
Keeping the left mouse button pressed, drag a box

around the symbol, or click near the symbol with
the left mouse button.

Move a symbol Select the symbol then drag-and-drop it where you
want to place it.

+*

Copy a symbol Select the symbol. Click i L on the toolbar.

Click where you want to place the copy.

Change the name of a symbol Double-click the name that is currently displayed
with the symbol. The Edit the Value dialog box
opens. Type the new name. Click OK.

4

25/248

Tutorial

Chapter 3

To do this:

Do this:

Delete a symbol

Select the object. Press the Delete key on your
keyboard.

Wire two symbols together

Select the wiring mode by clicking —— -

Place the cursor next to the output pin on the first
symbol. A crosshair snaps onto the pin when it
comes into snapping distance.

Move the cursor to the appropriate pin of the other
symbol. This is an input pin. Click when the
crosshair is snapped onto the symbol’s pin.

The two places where you clicked are now
connected by a wire.

Click the right mouse button or press the ESC key
to finish wiring.

3.3 Completing the Heating Control Application

The State Machine Diagram explained the relationship between the state of the heating
control system and certain conditions. The next step is to link each state with an action, and to
define the rules by which each condition is, or is not, met.

To do this, you need to draw the other parts of the main scheme and subschemes that,
together, make up the heating control application—specifically:

e External Input conditions, that are transmitted to the application from external sources,
such as the measured (actual) temperature. This function will be part of the Main

Scheme.

e Internal input conditions that control the Setup Timer and enable the pump. These

functions will be part of the Main Scheme.

e External actions, that are output from the application, such as putting on the pilot LED, or
controlling the speed of the pump. This function will be part of the Main Scheme.

 An internal event-driven action such as the periodic activation of the temperature
acquisition and filtering process. This function will be part of a subscheme called
filter.sch, which we will learn how to create in Section 3.3.10 on page 35.

26/248

4

Chapter 3 Tutorial

3.3.6 What differentiates a main scheme from a subscheme?

Each diagram (meaning a collection of symbols wired together) in a scheme is analogous to a
sub-routine in a program. The main scheme is, if you will, the conceptual core of your
application. It pays to keep things simple in the main scheme, and to only include diagrams
that represent the large-scale, sequential running of the application.

All of the highly detailed acquisition, filtering and comparison programs are better put into
subschemes so that the application will be easier to de-bug or update later.

There are two good guidelines to keep in mind when deciding when to put something into a
subscheme, rather than in the main scheme:

e Size and complexity of the diagram - the larger and more complex the diagram, the more
reason to put it into a subscheme by itself,

« If the function that the diagram performs runs in parallel to other functions (for example, a
sampling program that periodically reads external inputs continuously), it must be put in
a subscheme.

The entire main scheme of the heating control application is shown below. Only one
subscheme—for the internal event-driven action described above—will be created after we
finish the main scheme.

State Machine Diagram

Internal Input Conditions Switching the Pilot LED On
HeatingONy————)-SetPump HeatingOFF)——] A
»1z ‘ #l HeatinglsON
Timer Initp—o~8 Pilot LED ON
Init, 1Lo Al zp SetupTime

.0
Setup Timer

Controlling the Pump Speed

TYPE=SINT 255

Setpoint| 3
UINT

Xz 1 o
Temperature in 1/10 degrees Celsius B)
HeatingONy—{
A F D @ ARCP
filter.sch PumpEnabled En

Temperature in 1/10 degrees Celsius PumpSpeedControl

B>A
be——|B B=A=C|—

)

External Input Conditions

We have already completed the State Machine Diagram (top left). The remainder of the main
scheme diagrams are described in the following paragraphs.

4

27/248

Tutorial Chapter 3

3.3.7 External Input Conditions

The external input conditions proceed from two inputs:

e The control temperature (“Setpoint” in the diagram shown below).

* The measured temperature (“Temperature” in the diagram shown below).

The above external input conditions are indicated on the input pins on the microcontroller.
Each time an input signal changes, it is processed, and the appropriate condition (Start or
Stop) resulting from the comparison is signalled to the state machine by changing the
condition value to 1. The processing is designed as follows:

TYPE=SINT . yq:
setpoint | A “ % -Diagram cont'd in
UINT Section 3.3.9.2
Temperature in 1/10 degrees Celsius on page 34
Heating ON i, 0/
Temperature A D m 0
Out
UINT filter.sch — 1
Temperature in 1/10 degrees Celsius
External Input Conditions |10 I A BrAE——3Start
B B=A=C}-

Draw the above diagram on your heater main scheme, with the help of the following tables that
describe the symbols you'll place, what they do and the values entered with them.

Don't forget to wire your diagram appropriately.

4

28/248

Chapter 3 Tutorial

3.3.7.1 Symbols

Symbol Functional Category Name Values
A Input and output Symbol: adc There are two occurrences of
Name DI this symbol in the diagram:

Type Comment = As shown in

Comment diagram
Name = SetPoint and
Temperature.
Type = UINT

Description

This is an analog to digital converter input symbol. The NAME value connects it to a hardware port (see
“Connecting Hardware Ports and Peripherals” on page 38). The TYPE value is used to define the
variable type (UBYTE, SBYTE, UINT, SINT or LONG). The two instances have the Type UINT, which is
unsigned integer. The comment value is used in the report file (see “Analysing and Generating Program
Code” on page 44).

Symbol Functional Category Name Values

Mathematical Symbol: sub2 None

Description

This is a two input subtractor, with type inheritance. OUT = IN1 - IN2. It subtracts the actual temperature
from the Control Temperature. For details on type inheritance, see “Type Inheritance” on page 204.

Symbol Functional Category Name Values

Hierarchical Sheet Symbol: sssl1 1 Scheme = Name of the related
subscheme file (filter.sch, in

the example).
scheme

Description

This is a subscheme connection symbol. It represents a process that is contained in a sub-scheme. In
this case, the subscheme has one input (“In”) and one output (“Out”). By using Portin and Portout
symbols within the subscheme the connection is made between the pins of this symbol and the
subscheme. This subscheme is described in Section 3.3.10 on page 35.

4

29/248

Tutorial Chapter 3

Symbol Functional Category Name Values
Logic Symbol: mux1 None.
—a
1 [
—a
CQut—
—1
Description
This is a single-output multiplexer, where an input condition determines whether the output value should
be equal to input O or input 1. For example, when the input condition equals 1, the output value will be
the input value from line 1.

Symbol Functional Category Name Values
Constant Symbol: constw Value =10
110 | There are two instances in this
diagram, one in the ARTimer

subscheme diagram, and
another one in the Filter
subscheme diagram.

Description
This is a word constant value symbol that inputs the value 10.

Symbol Functional Category Name Values
Conversion Symbol: comp None
—h Bed -
—B B=f=C—
— i B=C—
Description

This is a multi purpose comparator. It returns three bit values that depend on the three inputs. B>A =1
when B is greater than A. B=A =C =1 when B is equal to A and C. B < C = 1 when B is smaller than
C. There is one occurrence of this symbol. It indicates the Start condition, when this condition is met, by
outputting 1. This condition is met when the differential between the control temperature and the actual
temperature is greater than 1 degree C. It indicates the Stop condition (output=1 on this pin) when the
differential between the control temperature and the actual temperature is negative.

30/248

4

Chapter 3 Tutorial
Symbol Functional Category Name Values
State machine Symbol: stateout Name = HeatingON

name}— Several additional
occurrences of this symbol
can be found in other main

scheme diagrams.

Description

This is an example of a state output symbol. State output symbols are connected to state symbols by
their names. When the system switches to the specified state, the processing that follow the state output
symbol is performed. In the example, the processing simply consists of enabling the pump.

Functional Category

Name

Values

State machine

Symbol: statein

There are two occurrences of
this symbol in this diagram:
Name = Start

Name = Stop

Another instance of this
symbol can be found in the
Internal Input Condition
diagram.

Description

These are state input symbols, that connect to condition symbols in the state machine that have the
same name. For example, when the bit value 1 is received from the B>A output of the comparator, it
signals the Start condition by outputting the value 1 to the state machine.

3.3.7.2 Wires

Occasionally, you must attach data type attributes to wires to control the outputs. For
example, you must attach attribute TYPE = SINT to the wire connected to the output pin of the
sub2 symbol in order to be able to evaluate both positive and negative temperature
differentials.

To attach a type to a wire, proceed as follows:

1 Click the wire with the left mouse button.

2 Click the right mouse button. i Edit the value

A list box displays, with 3 attributes: Type, Init,
Label.
3 Click Type.

TFE

The Edit the value dialog box opens, with a scrolling
list of data types to choose from.

| 0k I Ear‘u:ell

31/248

br

Tutorial Chapter 3

4 Select the type, SI NT, and click OK.
S| NT, stands for Signed Integer.

3.3.8 Internal Input Conditions
There are two internal input conditions that must be met:

« Enough time must pass to allow temperature values to be acquired and filtered before the
temperature differential is measured. When this has happened, the SetupTime condition
is met.

* Once the HeatingOn state is active, the pump must be enabled prior to being put into
operation by activating the SetPump condition.

The diagram is shown below:

Internal Input Conditions
HeatingON SetPump
Timer
Init>———1 1[| O A 1 zP~———>SetupTime
0.05
Setup Timer
Symbol Functional Category Name Values
Name Time related Symbol: timf _ll_l_?nrr;e =OT(;rEr:er
ime = 0.
—1_1] o Comment = Setup Timer
Time
Comment
Description

This is a simple timer. The output signal is 1 until the time specified has elapsed, and then the output
becomes 0. This symbol allows enough time for the application to acquire and filter temperature values.

Symbol Functional Category Name Values
Logic Symbol: inv None.
— [~y _
A 1 £ This symbol also occurs later
in the application.

Description

This is a multi-type bit-wise inverter. The 0 output from the timer is reverted to 1, triggering the SetupTime
condition

32/248 ﬁ

Chapter 3 Tutorial

3.3.9 External Actions

External actions generate output signals relating to the current state in the state machine. The
output signals are:

e The signal to switch on the Pilot LED.
« A PWM signal generated by the Auto-Reload Timer to control the speed of the pump.

3.3.9.1 Pilot LED Monitoring

As long as the state of the system is HeatingOFF, the Pilot LED should be OFF. The
corresponding diagram is:

Switching the Pilot LED On

HeatingOFF)—— A
» z Al z @ HeatinglsON
Init>——8 Pilot LED ON
Symbol Functional Category Name Values
Logic Symbol: or2 None.

—A

»1z—
—B

Description

This is a two-value binary OR function symbol with type inheritance. If either the HeatingOFF or Init
states are active, the Pilot LED will be remain off. However, if neither of these states is active, the LED
will be ON.

Symbol Functional Category Name Values
Input and output Symbol: digout Only one instance in the
] D:,F'_—l example:
narme Name = HeatinglsON
I:I:Imment Comment = Pilot LED ON
Description

This is a digital output symbol. The name value is used for connecting this symbol to the microcontroller
output ports (see Section 3.3.11 on page 38). The Comment value is used in the report file.

ﬁ 33/248

Tutorial Chapter 3

3.3.9.2 Pump Speed Control

A Pulse Width Modulation (PWM) signal generated on the OCMP1_B output pin (TBOC1LR
Timer B port, for the ST72212G2) ensures pump speed control. For this, the ARCP compare
register is loaded with a value between 0 and 255 that reflects the temperature differential
calculated by comparing actual and control temperature inputs (see the “external input
conditions” diagram above).

The pump speed control diagram in the main scheme is as follows:

Controlling the Pump Speed
Cont'd from Section ————a 255
3.3.7 on page 28 Xz '_/-O
10 —B S
ARCP
PumpEnabIed> En
PumpSpeedControl
Symbol Functional Category Name Values
I Mathematical Symbol: mul None.
Xi—
—B
Description

This is a 2-input multiplier symbol with type inheritance. Z=A*B. Type for A and B can be any type from
UBYTE through LONG. Type for Z is the largest of A or B types. For details on type inheritance, see
“Type Inheritance” on page 204.

Symbol Functional Category Name Values
Mathematical Symbol: limf ValueTop = 255
ValyeTlop
ValueBottom = 0
ValueBottom
Description

This is a fixed-value limiter symbol. The output will not be larger than the top value and not smaller than
the bottom value. Type of O = type of | = any type from UBYTE through LONG.

34/248 V<72

Chapter 3 Tutorial

Symbol Functional Category Name Values
Input and output Symbol: outputlatch | Name = ARCP
— MName _
—En Comment = PumpSpeedControl
Comment
Description

This is an output symbol. The NAME value connects it to a hardware port (see Section 3.3.11 on page
38). Any type from BIT through LONG can be used.

3.3.10 The Creation of a Subscheme for an Internal Event-Driven Action

In Section 3.3.7, we made reference in the main scheme to a subscheme for an internal event-
driven action. This particular action controls the periodic activation of the temperature
acquisition and filtering process and reflects a timed interrupt execution condition—that is,
an event periodically triggered by a timer interrupt. Recall from Section 3.3.6 that all events
that need to be executed in parallel, or independently from, the main scheme, must be placed
in subschemes. In our tutorial application, the subscheme attached to this action (filter.sch)
groups code that executes as an interrupt service routine. This single-input, single-output

subscheme is represented by the sss1 1 symbol , embedded in the main

scheme diagram where the input pin of the symbol corresponds to the input in the subscheme,
and the symbol's output pin corresponds to the output of the subscheme. Of course,
subschemes can have various humbers of inputs and outputs, and can be represented by
symbols of type “sssx_y”, where x = the number of inputs and y = the number of outputs.

To create a subscheme:
1 Double-click on the above symbol in the main scheme diagram.

2 A window (shown below) will appear asking if you wish to create the new
subscheme. Click OK.

Warning [] |

The file C:%Program FilestST-RealizerE ampleztHeating4Filker. zch does not exists!
Do wou want to create ity

A new blank scheme will appear.

ﬁ 35/248

Tutorial

Chapter 3

3.3.10.1 Temperature Acquisition and Filtering

The subsc

heme diagram is as follows:

Temperature Acquisition

In >——d

> Out

Execution conditions:

Timed interrupt 0.01 Sec.

Note: We will learn to create this
box in Section 3.3.12 on page 41.

Symbol

Functional Category

Name

Values

Iabe»—

Hierarchical sheet

Symbol: portin

Label = identifier used to make
the connection between this
subscheme and the parent
scheme. Must be the name of
the input pin in the sss1 1
symbol that can be found in
the main scheme diagram. In
the example, LABEL = “In".

Description

This symbol is used to connect an input pin of a subscheme symbol (“sssx_y”) from the parent scheme
with the corresponding subscheme. This symbol is homologous to the portout symbol which describes

an output pin in a subscheme symbol.

Symbol Functional Category Name Values
. Logic Symbol: loopdel None.
—=l L
Description

In other words the output value of this symbol is the value obtained during the previous polling loop. This
symbol acts as a one-loop delay symbol. Type of z1= type of Z = any type from BIT through LONG.

In the example, this symbol is used 4 times: this means that temperature measurements are performed
5 times, one polling loop after the other. The five temperature values are then averaged to smooth the

effect of temporary variations.

36/248

(574

Tutorial

Chapter 3
Symbol Functional Category Name Values
Mathematical Symbol: add2 None
-)_
4(-?—:":-/\\.
Description

This is a two input adder, with type inheritance. OUT = IN1 + IN2. For details on type inheritance, see
“Type Inheritance” on page 204.

Symbol Functional Category Name Values
Mathematical Symbol: div None.
— 4 () —
[|
]
[|
Description

This is a 2-input divider symbol with type inheritance. Q = A/B, R = A modulo B. Type for A and B can
be any type from UBYTE through LONG. Type for Q and R is the largest of A or B types. For details on
type inheritance, see “Type Inheritance” on page 204.

Symbol Functional Category Name Values
Hierarchical sheet Symbol: portout Label = identifier used to make the
|abe| connection between this
subscheme and the parent
scheme. Must be the name of the

output pin in the sss1_1 symbol
that can be found in the main
scheme diagram. In the example,
LABEL= “Out”.

Description
This symbol is used to connect an output pin of a subscheme symbol (“sssx_y”) from the parent scheme
with the corresponding subscheme. This symbol is homologous to the portin symbol which describes

an input pin in a subscheme symbol.

37/248

4

Tutorial

Chapter 3

3.3.10.2 Leaving a Subscheme

If you are in a subscheme, you can return to the root scheme by either of these actions:

» Click Close in the File option of the main menu, or,

e Click with the right mouse button any blank position in the subscheme.

A popup menu opens with five options.

Select Leave.

You will be returned to the root scheme.

3.3.11 Connecting Hardware Ports and Peripherals

Click here to return [g J
to the root scheme i
e J
Connect
Eroperies...

Once you have finished drawing your application schemes, the next step is to connect the
application inputs and outputs to the ST6 or ST7 microcontroller input and output hardware

ports, or peripherals.

In our heating control application, the input/output symbols are:

Symbol Symbol Name Type Function in Diagram
adc Analog Input | Control temperature acquisition, in
Setpaint A DF- External Input Conditions diagram.
OTHT
Temperature
adc Analog Input | Actual temperature acquisition, in
Temperature A DI External Input Conditions diagram.
OTHT
Temperature
digout Output HeatinglsON, in External Actions
——| 7 | HeatinglsON diagram.
Pilot LED ON
outputlatch Output Loading ARCP Compare Register, in
_é‘RCP External Actions diagram.
—En
PumpSpeedControl
38/248 K’[

Chapter 3 Tutorial

Therefore, there are four input/output symbols, and they need to be connected as shown in
Table 3@, The four input/output symbols represent two types of devices:
e Three ports, namely Setpoint (PC.4), Temperature (PC.5) and HeatinglsON (PB.0).

e One on-chip peripheral, ARCP (Timer B), to be activated in Auto Reload mode with
PWM generation via the TBOC1LR Timer B (Output Compare 1) Register.

Table 3 Application—Microcontroller Connections.
Application Symbol: Microcontroller Pin:
SetPoint (adc) PC.4, 8-bit analog input
Temperature (adc) PC.5, 8-bit analog input
HeatinglsON (digout) PB.0, Push-pull output
ARCP (outputlatch) TBOCLLR Timer B Register

To make these connections, follow the instructions for connecting a port device for the
Setpoint, Temperature and HeatinglsON symbols and the instructions for connecting an on-
chip peripheral for the ARCP symbol.

3.3.11.1 Connecting a port device
You're how going to connect the SetPoint input:

1 Double-click the SetPoint

adc symbol. _
Connect rezource to UBYTE Setpaint
The I/0 Hardware o : ,
wailable rezources: Connected resources:
connections dialog box P, Irput
.. . FE. Input
opens listing the available PL. Irput
. FC.0. & bit analog input
pins for the type of PL.1, 8 hit analog input
. FC.Z. & bit analog input ¥ |
i FC.4, & bit analog input
make: PC.5, 8 hit analog input
You are going to connect <_|
the first adc to PC.4, 8-bit
analog input.
Properties Ok Cancel

1 Pin connections depend upon the application and target microcontroller. For this tutorial
application, and our target microcontroller, ST72212G2, we have specified the necessary pin
connections. In order to correctly create your own application, you will need to be familiar
with the target microcontroller for which it is intended.

39/248

4

Tutorial Chapter 3

2 Inthe Available resources list, double-click the entry PC. 4, 8-bit anal og i nput
and then click OK.

Now connect the Temperature and HeatingIsON inputs in the same way.

When you connect port devices, the dialog boxes automatically display input or output pins
depending on the type of symbol. There is no need for you to configure the ports as input or
output, prior to connecting them.

However, for on-chip peripherals, such as the Timer B on the ST72212G2, you need to
specify some hardware settings before the appropriate resource appears in the dialog box.
For instructions on how to specify these settings, see below.

3.3.11.2 Connecting and Specifying Hardware Settings for an On-Chip Peripheral
To connect the on-chip peripheral, Timer B, proceed as follows:
1 Click the Hardware Settings entry in the Project menu.
or:
Click the Properties button in the I/O Hardware connections dialog box.
2 In the Hardware settings dialog box, click the Timer B tab.

The Timer B dialog box opens.

I 517221262 Hardware settings]|
General T b Ernony T Tirner TT"'“E’BT 5P T Fuorts]
v Enable
Preszale divide I”B vI Rezolution; 1.000 uzec
|nput Capture Output Compare

Capt1 tranzition IHising vI ¥ Erable OCMP1 Levell fi oy =

Capt2 tranzition IFa"ing vI [T Enable DCMPZ Level2 IHigh VI

™ Forced output compare 1 ™ Forced output compare 2
W Initislize Compare register] I 0«0 [One Pulse Mode

W |nitislize Compare register? I 0100 v Pihd

ak | Cancel

3 Atthetop of the Timer B Dialog box, click the Enable box.

This action permits the application use of the Timer B peripheral and allows access to the
interrupts and control registers of the peripheral.

40/248 ﬁ

Chapter 3

Tutorial

4 Set the following parameters:
e Prescaler division = 1/8.

e Input Capture: Captl transition = Rising, Capt2 transition = Falling.

e Output Compare: Click the Enable OCMP1l box and set Levell=Low and

Level 2 = High.

e Click the Initialise Compare registerl box and set the value to 0x0.

» Click the Initialise Compare register2 box and set the value to 0x100.

e Click the PWM box.
5 Click OK to confirm.

The dialog box closes.

The Timer B on-chip peripheral is now enabled as a PWM generating device.
Consequently, a Pulse-Width Modulated signal can be generated on the OCMP1 B output

pin.

6 Now that the deviceis correctly configured, follow the procedure in Section 3.3.11.1
on page 39 and connect the ARCP symbol (outputlatch) to the TBOCILR Timer B

register.

3.3.12 Event Control

The last thing you must do when you create an application is to assign execution conditions to

those events that are represented in subschemes.

Note: Execution conditions cannot be assigned to main (root) schemes—it simply
doesn’t make sense to use the main scheme as an interrupt routine, for
example. In addition, it is best to define execution conditions after having
enabled (see page 40) any necessary microcontroller peripherals, so that these
peripheral functions are available for use.

Execution conditions:

1 Right-click the mouse in any blank position in
the diagram.

A popup menu opens with five options.
2 Select Execution Conditions.

The Execution Conditions dialog box for the
specified target microcontroller (ST72212G2, in
the example) opens. Specifying this target
microcontroller was one of the first tasks you had

br

Click here to
open the
Hardware
Connections
dialog box.

The execution conditions box, shown at the bottom left corner
of the subscheme, (as seen in the Temperature Acquisition
Timed interrupt 0.01 Sec. | Subscheme diagram on page 36) is created as follows:

Mew b

Yigw 3

ave
Execution conditions

Properties...

41/248

Tutorial

Chapter 3

to perform (see Section 3.1.2 on page 14).

This is the device you
have specified at the

beginning. Name of the file where the
subscheme is saved.

[577221262 Execution conditi;

Conditiohal execution of Filter.zch [Sort by conditions

Available conditions: Applied conditions:

Upaon sub zcheme input change
Feriodic |
TimerE Capture 1 intermpt Select the subscheme execution

condition (Timed Interrupt in the
tutorial example).

TirerB Campare 1 interript
TimerB Capture 2 interrupt
TirerB Campare 2 interript
TimerB Owerflow interupt

=
< |

Properties | Ok | Cancel |

3 In the Execution Conditions dialog box (see above),

double-click the Timed Interruptline.

A new dialog box opens for you to specify the time period
between input value acquisitions.

Tirne:

0.01

4 Enter 0.01 (1/100 second) and click OK.
5 Click the OK button in the Execution Conditions

ak I Eancell

dialog box.

6 The Timed Interrupt event is now connected to the subscheme, with a time value of 0.01
seconds. What does this mean? It means that the code described by the Temperature
Acquisition and Filtering subscheme will be executed every 1/100 of a second, after the
main processing loop has been interrupted on a priority basis. The polling of the
temperature capture points and the consolidation of the measured temperatures will thus

be performed every 0.01 seconds.

42/248

4

Chapter 3 Tutorial

3.3.13 Summary

You have now completed the heating control application schemes. You have learned through
doing this:

* How to place and edit symbols.

e What the principal symbols do, and when to use them.

» How to wire symbols together to create a main scheme and a subscheme.

» How to connect application inputs and outputs to target microcontroller pins.

* How to define the execution conditions of a subscheme.

Recall that the main, or root, scheme for the heating control example will look like the
following:

State Machine Diagram

HeatingOFF HeatingON Internal Input Conditions Switching the Pilot LED On
SetupTime
HeatingONy———>SetPump HeatingOF F p——j A
»1z ‘ HeatinglsON
Timer Inity—8 Pilot LED ON
sp N s |y T e >seupTime
~ v ~ Setup Timer
Controlling the Pump Speed
TYPE=SINT R 255
Setpoint D
INT Xz ! °
Temperature in 1/10 degrees Celsius B 0
HeatingONy—
T W @ ARCP
fitor.oh PumpEnabled En
Temperature in 1/10 degrees Celsius PumpSpeedControl
External Input Conditions B-A
L— 18 B-A-C|-

‘
)

The next part of this tutorial will show you how to analyse and generate the code for the
heating control application.

4

43/248

Tutorial Chapter 3

3.4 Analysing and Generating Program Code

In this part of the tutorial you are going to learn how to analyse the schemes you draw and
generate the program code for them.

When you execute the analysis and compile, ST-Realizer analyses your scheme by creating
the netlist, creating cross references, analysing and generating final code. During these
phases the connectivity between symbols, the I/O assignment and variable types are checked
before generating the source code. Providing no fatal errors are encountered, ST-Realizer
generates a non-compiled ST6 or ST7 macro-assembler language (.asm) file from the
scheme, which it then compiles.

When the analysing process has been successfully completed, a report file is generated. This
report file gives information about the designation of I/O pins, a list of the variables used by
type and the memory space required by the application.

3.4.14 Setting the Compile Options

There are a number of compile options that you may set before performing an Analysis of your
application. These options are discussed in detail in Section 9.2 on page 129. However, most
of the default settings are suitable for our tutorial application.

To view or set the compile options:
1 Onthe main menu, click Options, then Project...

The Code Generation dialog box in the Analyse Options
window opens. The default settings are suitable for our
tutorial application. Click OK.

Cptions K=

Eroject...

Ermvironrment...

[Analyse options E2

Code generation I Timing T Code optimization]

¥ Generate source code
IV Irwvake assembler

¥ Generate final hex code

¥ Include project data in source code

Ok Cancel

4

44/248

Chapter 3 Tutorial

3.4.15 Executing the Analysis and Compile Project (R T,

You may execute the ST-Analyser from any of the Mew,
application windows. Open..
On the Project menu, simply click Analyse. The ST Close
Analyser Status window will open and you will see the
Analyse function checking your application step-by-step. Hardware select...
STAnabpser Stotus | Hardware sefings..
Statuz: Mo emars.
Creating Metlist 0k,
Creating Crozs Reference 0k,
Analysing 0k,
[Generating Final Code 0k,
Esecuting Target Compiler 0k,
Creating Report File 0k,

If there are errors:

1 A dialog box will open, showing the status of the compilation, with the number of
errors and warnings. Click OK.

2 A descriptive list of the errors will be shown in the Analyzer messages window at
the bottom of the scheme window. You can view each error by either double-

clicking on its message in the window, or by clicking the previous message G‘-

-+
or next message Ld icons on the toolbar. The area of the scheme where the
error occurs will appear in the scheme window.

:Tﬁ Analyzer messages

Error [11 Input pin_of sumbol statein g not connected o a wire, An input pin must alwavs be connected bo g wire, othenwize the walue of this input pinge not defined.
Errar [509]: A state input Start iz not connected to a net, An input pin st always be connected to a net,

wharning [2): Mat all symbols are analysed, total symbols: 44 analysed symbols: 40

Meszage : 5T Analvser (Beta) results of Mon Apr 12 13:39:40 1999 : 1 Warning and 2 efrors.

3 Correct the errors and re-compile the application by clicking on Analyse under the
Project menu.

IS72 45/248

Tutorial Chapter 3

3.4.16 Viewing the Analyse and Compile Report

Once you have analysed your scheme and compiled your [View Erciect Options Tooks
program code, you can view the report generated by ST-Realizer Froject

during the analysis and compilation process. This report provides

you with useful information such as the input and output Analyser messages
connections you made, and gives an overview of how much Refresh view Cirl+F
memory is used by the application. Irvsisible: attributes

To see the report, on the View menu, click Report. A portion of our application report is shown
below:

ST72212@2 Realizing Unit (V4.00) (c) 1990-98 Actum Sol utions

Report file of project C \Program Files\ST-Realizer\Exanpl es\ Heati ng\ heati ng. r pf
Scheme Versi on : 1.00

Report tinestanp: Wed Apr 14 13:14:40 1999

Anal yze results : No errors

C.\ Program Fi | es\ ST- Real i zer\ Exanpl es\ Heat i ng\ heat i ng. sch
Scheme: C.\ Program Fil es\ ST- Real i zer\ Exanpl es\ Heati ng\Fil ter. sch
Event: Timed interrupt 0.01 Sec.

ST72212G2 (DI L28) connection overvi ew

Pi n Narme Alternative nane Type |I/0 Descri ption
1 RESET (BIT Input), Active | ow
2: OSCi n), GCscillator In
3: OSCout (), GCscillator CQut
4: PB. 7 SS (BIT Input), Not connect ed
5: PB. 6 SCK (BIT Input), Not connect ed
6: PB. 5 M SO (BIT Input), Not connect ed
7: PB. 4 MOSI (BIT Input), Not connect ed
8: PB. 3 OCMP2_A (BIT Input), Not connect ed
9: PB. 2 | CAP2_A (BIT Input), Not connect ed
10: PB. 1 OCMP1_A (BIT Input), Not connect ed
11: PB. 0 Heat i ngl sON (BIT CQutput), Push- pul | out put
12: PC. 5 Tenperature (UBYTE I nput), 8 bit anal og I nput
13: PC. 4 Set poi nt (UBYTE | nput), 8 bit anal og input
14: PC. 3 | CAP2_B (BIT Input), Used by the application
15: PC. 2 CLKOUT (BIT Input), Not connect ed
16: PC. 1 OCWP1_B (BIT Input), Used by the application
17: PC. 0 | CAP1_B (BIT Input), Used by the application
18: PA. 7 (BIT Input), Not connect ed
19: PA. 6 (BIT Input), Not connect ed
20: PA. 5 (BIT Input), Not connect ed
21: PA. 4 (BIT Input), Not connect ed
22: PA. 3 (BIT Input), Not connect ed
23: PA. 2 (BIT Input), Not connect ed
24: PA. 1 (BIT Input), Not connect ed
25: PA. O (BIT Input), Not connect ed
26: TEST (), Test node pin
27: Vss (), Ground
28 vdd (), Power Supply

The next, and final part of this tutorial will to describe how to simulate and fine-tune your
application using ST-Simulator.

4

46/248

Chapter 3 Tutorial

3.5 Simulating and Fine-Tuning Your Application

Once you have designed and analysed your application, you can use ST-Simulator to
simulate its behavior, generate and view input signals, monitor signals that are generated by
your application, and fine-tune it if necessary. In this part of the tutorial, you're going to:

Create a simulation environment file, which defines the environment in which you'll
simulate your application.

Add adjusters to your simulation environment file, which enable you to generate and view
the signals that are input to your application.

Add probes to your simulation environment file, which enable you to view the signals that
are generated by your application.

Run the simulation.

3.5.17 Creating the Simulation Environment File (.sef)

The first step in simulating your application is to create its simulation file. Simulation files are
based on the application schemes and the target device, and are created in ST-Simulator.

To create the heating control simulation environment file:

1 Make surethat the heating control application

4

Il incow Help
aimulator

Symbaol Editor Cirl+F11

is open.

On the Tools menu, click Simulator.

The ST-Simulator window opens.

On the File menu, click New-=>Simulation
environment.

The Create a New File dialog box opens, letting you assign a name for the new simulation
environment.

Type the name of the .sef file: heat i ng. sef . Click Save.

471248

Tutorial Chapter 3

Create a new file HE

Save jn; |E Heating j ﬁl E =
Main.sef

File name: Save I
Save az hupe: IEnvirnnments [*.zef] j Cancel |

You've now created the simulation environment file for the heating control application.

A pin level drawing of the ST72212G2 chip appears as shown
at right. Note that where the pins have been connected to
application input/output functions, the pin nhames have been
replaced by the function names.

RESET

05Cin

If you double-click on the pin level drawing, you will open a
copy of your root scheme diagram as another window. You
can also open subschemes by double-clicking on the
subscheme symbols.

You can use both the pin level drawing and the scheme
diagrams to help you run the simulation—both views are useful
in evaluating whether your application is running as you wish.

Temperaturs ICAP1_B

To see all views at once, under the Window menu, select
Tile.

Setpoint OChP1_B

ICAPZ_B CLEOUT

3.5.18 Connecting Probes and Adjusters

You are now going to connect probes and adjusters to your scheme, so that you can adjust
input values to the application and view output values. This enables you to experiment with
and fine-tune your application. There are four types of adjusters and three types of probe
available, and these are described in detail in Sections 10.2 and 10.3, respectively.

Connecting an Adjuster

In our application, recall that there are two temperature inputs: a Setpoint temperature, which
is the desired temperature for the system, and the Actual temperature, which is read and

48/248 ﬁ

Chapter 3 Tutorial

filtered by a temperature probe. In our simulation environment, we need to adjust both of these
temperatures in order to test how our application responds.

In order to control these temperatures, we use a Numeric Adjuster, which allows us to input
and adjust the values we wish.

The first adjuster you are going to connect is
an adjuster placed on the pin level drawing
that will simulate the setpoint temperature
that is input to the application. To do this,
you will need to place a digital numeric
adjuster on the Setpoint pin:

1 Click the Setpoint pin on the pin level
drawing.

Setpoint

2 Click [0zl . o
BEEE <<|<|>|>>

3 Click where you want the Numeric
Adjuster to appear. You may decrease
the size of the adjuster by right-
clicking on it, and selecting Decrease
size.

4 Enter the temperature value 0.

At the pin level, temperature values are expressed in Volts, rather than in °C. A simple
conversion formula links the two quantities:.

Toey LLO
(%) _
555 (bv= T(V)

Therefore, 0 °C =0 V.

5 Now, connect a humeric adjuster to the Temperature pin in the same manner, also
setting the value to 0.

A list of temperatures in °C and their corresponding values in Volts is shown in Table 4.

Table 4 A list of temperature values in °C and their corresponding values in Volts.
Setpoint Temperature (Setpoint pin) Actual Temperature (Temperature pin)
°C \% °C \%
0 0 0 0
18 3.53 12 2.35
18 3.53 15 2.94
18 3.53 17 3.33
18 3.53 20 3.92

4

49/248

Tutorial Chapter 3

Connecting a Probe

In addition to adjusters, which fix input values, we also need to connect probes, to view output
values. In this application, we will use all three types of probe to evaluate the response of our
application:

During our simulation, it would be helpful to know whether the heat pump is running or not.
Recall that we included a Pilot LED that would turn on when the heating came on. By
connecting a Numeric Probe (which lets you view the value of the output in the Binary,
Decimal, Hexadecimal and Octal number bases) to the HeatinglsON pin, we can view whether
the LED is ON (voltage = 5.0 V) or OFF (voltage = 0.0 V).

To connect the numeric probe, proceed as follows:

1 Select the output pin called HeatingIsON.
2 Click |X2] .

3 Click where you want the Numeric Probe to appear (i.e. close to HeatingIsON).

In addition to seeing if the heat pump is running or not, we would also like to see its power
rating. In our application, recall that the pump’s power is directly proportional to the (positive)
temperature differential between the actual temperature and the setpoint temperature.

To view the input power to the heat pump, we can attach an Oscilloscope Probe, which
allows you view the value of the output as a graph.

1 Select the Timer B output pin (called OCMP1_B).

2 Select the Oscilloscope Probe by clicking on the toolbar.

3 Place the probe where you
wish it to appear.

Your pin level diagram should —
now look something like the

diagram at right.

Temperature

Once the Oscilloscope Probe is -

placed, you need to set the variable

display range as 0 to 5 and the ikl U
display time to 0.001 s, meaning -

that the Y-axis on the graph
displayed in the oscillator probe will
start at 0 V and end at 5 V, and the
X-axis (Time) will start at 0 s and

end at 0.001 s(b):

4

50/248

Chapter 3 Tutorial

1 Double click the Oscillator probe once it is placed.

The Change Oscilloscope Probe dialog box opens:

= Change oscilloscope probe |

Az aCkPF1_B Charnnel 2

Top | 5.000 |

B attarm | 0.000 |

Time

Beqin at | 000000 o000 - hkemm:sz.me

End at | OoOn-n0 o010 - hbemm:ss.me

Mode Trigger j

Trigger an a Rising edge j when the value equals | 0000
[Nelete | SiED Cancel |

In the Y-axis Bottom field, enter O.

In the Y-axis Top field, enter 5.

In the Begin at field, enter00. 00. 00.0000.
In the End after field, enter 00; 00: 00: 0010.
Select the Mode value Trigger.

Select Trigger on a Rising edge.

Click OK.

o N o o A~ W DN

Now go to the view of the root scheme by selecting heat i ng. sch under the Window menu.

To see what the signal values are in the various connection wires, you should place Numeric
Probes in the main scheme diagram.

1 For a complete description of oscilloscope parameters and how to control them, please refer
to Section 10.3.9 on page 153.

ﬁ 51/248

Tutorial Chapter 3

Since the heart of the heating control application is the state machine, it is useful to check that
each input condition has the required effect on the state machine, and that the state machine
takes the appropriate actions. To see what the current active state is, you can place State
Machine Probes (probes that show the state machine’s condition) in the main scheme
diagram.

To probes in the root scheme:

1 Click on the connection wire you wish. Note that State Machine Probes can only be
connected to the initial state symbol in the State Machine Diagram.

2 Click to connect a Numeric Probe, or %’ to connect the State Machine

Probe.
3 Click where you want the Probe to appear.

For example, you may wish to place Numeric Probes and a State Machine Probe in the
main scheme diagram as follows:

PPN
{P—— .-
_ S —
Hﬂ.iwrr s I[h . Y .

=5 4

You may also add additional probes to the subscheme filter. sch as desired, to better
understand how the application is working.

Now you have placed your adjusters and probes, you can simulate your application, adjust the
values input to it, and view the values generated by it.

4

52/248

Chapter 3 Tutorial

3.5.19 Running the Simulator

You are now ready to run the simulator, and see how it reacts when you change the values
input to it.

Click } to run the simulation.

As you can see, the oscilloscope starts generating its signal. To simulate the behavior of the
heating control system, change any value in the analog numeric adjusters placed after the adc
pins. This causes the value of the pilot LED probe to be changed, and the shape of the
oscillator signal to display discrete levels.

Try adjusting the input values of the Setpoint and Temperature pins by clicking the <, >, <<,
>>, buttons on the analog humeric adjusters. The < and > buttons decrease and increase the
values by 1 respectively, and the << and >> buttons decrease and increase the values by 10
respectively. Table 4, on page 49, shows a list of suggested values designed to allow you to
view how the application reacts by starting or stopping the heat pump, depending on the

difference between the Setpoint and Actual temperatures.(l)

When you want to stop running the simulator, click . To run again the simulator click

P . Note that before re-running the simulator, you can initialize it, by clicking: H‘

3.6 Now it’'s Up to You!

You've now completed the tutorial. In this tutorial you learned the three major steps involved in
creating your own application using ST-Realizer:

* How to draw the application.
* How to analyse your scheme and compile your application code.
« How to simulate your application.

Furthermore, you learned what most of the ST-Realizer symbols do, and how and where to
place them. You are now ready to start developing your own bug-free applications for the ST6
or ST7 families of microcontrollers using ST-Realizer. If you want to look at more examples,
refer to Appendix B:“Sample Applications” on page 211.

1 Simulator time does not necessarily elapse at the same rate as real time (the time on your
watch). The simulator time is generally slower than real time, depending on the hardware
characteristics of the PC you are running ST-Analyser on. For this reason, in our application
example (see Section 3.3.10 on page 35), we specified a periodic sampling every
0.01 seconds so that our simulation would not be too slow. If you find that the simulation
takes too long to respond to changes in input values, you may need to change the periodic
sampling time.

4

53/248

Tutorial

Chapter 3

54/248

4

Chapter 4 Project Files

4 CREATING, OPENING AND SAVING PROJECTS

4.1 Project Files

Each application you design is stored in a project. It is recommended that each project have
its own folder. ST-Realizer stores all schemes and subschemes associated with the
application in the project folder.

Once your have created and specified your project folder, ST-Realizer will create a
project.rpf file, that contains project-specific path settings, the project’'s scheme names,
target hardware information and compiler settings. The project.rpf file is in ASCII text format.

4.2 Creating a New Project
To create a new project:
1 Click Project>New in the cascading menu.

The Create a New File dialog box opens. If you haven't done so already, you may create
a new folder for your project by clicking on the new folder icon shown.

Create a new file Kl E3

Save in: IaHeatir‘lg j | EF' i §|
/. \

\ Click here to create
a new folder.

Click here to move up |
one folder level. J

/

File name: Iheatind Save

Type the name of your
new project here.

Save as lype: IF"ru:ie::t files [*.rpf) ﬂ Cancel

2 Browse to the folder that you'll create your project in, and specify the name of the
project file. An . r pf extension will be applied automatically. Click Save.

55/248

4

Opening an Existing Project Chapter 4

4.3 Opening an Existing Project

Note: Only one project may be open at a time.

To open a project:
1 Click Project>Open. (Files with the . r pf extension are displayed automatically.)

or, ~u
Click File=>Open or E . (You must specify the . r pf extension).

The Open a File dialog box opens:

Open a file
Loak in: Ia Heating
hieating. rpf
File: narme: I Open
Files of twpe: IP[DiECt files [*.rpf] j Caricel

2 Browseto the folder containing your project file, and either select it or type its name
(. rpf extension) in the File name field.

3 Click Open.

4.4 Opening Earlier Realizer Version Projects

The Open a file dialog box shown above can be used to open .ini project files from earlier
versions of ST-Realizer. Both.ini projects and .rpf projects are fully compatible.

When opening projects from earlier versions, be aware that these projects still use the target
hardware from these earlier versions. Simply reselect the target hardware (see Chapter 5 on
page 59) once you have opened the earlier version project.

4

56/248

Chapter 4 Closing a Project

4.5 Closing a Project
To close a project:

Click File=>Close or Project>Close.

4.6 Saving Projects

Once you have defined your project, you should save it so that all of the configuration
information you have updated is kept as a part of the .rpf file.

« If you try to close a modified project, you will be prompted to save it.
« Otherwise, to save a project, under the File menu, select Save.

« If you wish to save your project to another filename (for example, create a back-up copy of
the project), under the File menu, select Save As, and type the name of the file that you
wish to save the project to.

N ', Tip: If you save your project to a different folder, all of the schemes and subschemes

i

— associated with the project will also be saved to the new folder.

R

4

57/248

Saving Projects

Chapter 4

58/248

4

Chapter 5 ST6 or ST7 Devices

5 SPECIFYING THE TARGET HARDWARE DEVICE

5.1 ST6 or ST7 Devices

Once you have created a new project, the next step is to define the ST6 or ST7 device type
that the application will be loaded into. This will attach the hardware configuration of the ST6
or ST7 device (such as pinout and memory capacity) to the scheme that will describe your
application.

This hardware data assures that the application is tailored to the target ST6 or ST7 device.

Note for ST6 users:

ST-Realizer does not support any RAM or ROM paging, except for static pages. Because of
this, the ROM size is limited to 4 kilobytes and the RAM size to 128 bytes.

The Max. ROM and Max. RAM values determine the maximum size of the ST-Realizer
application.

The I/O pins determine the number of input and output symbols that can be used in the ST-
Realizer application.

The EEPROM values determine how much EEPROM can be used by the symbols from the
MAINPER.LIB symbol library. This symbol library contains symbols that use the EEPROM
space to store their values.

4

59/248

Choosing a Target Microcontroller

Chapter 5

5.2 Choosing a Target Microcontroller

5.2.1 Selecting the Target Microcontroller for a New Project

When you create a hew project, just after creating your project.rpf file, you will be prompted to
specify the target hardware for your project.

1 Click the Target Hardware folder in the Select Target Hardware window. A
browsable list of target hardware devices will appear in the window shown below.

[Select target hardware |

Current; STF2212G2 Two 16-Bit Timers, 8K ROk, 256 Evtes Rk

E Z5 Target hardware devices
#-1 5T 8-BitMCU
=53 5T7 8-Bit MCU
F-C30 STF210% 16-Bit Timer, 5P

B STF"221H &/0 Converter, SPI

I:l ST7212% Twa 16-Bit Timers, SPI, SCI

2G2 Two 16-Bit Timers
\m} 5T?2213G1 16-Bit Timer, 4k ROM, 256 Bytes Rak

gk, ROM, 256 Bytes RAM

- [0 5T7225x A/D Corverter, Two 16-Bit Timers, SPI, 12C
-1 5T7231x A/D Converter, Twa 16-Bit Timers, 5P, 501
w0 5T7233 A/D Converter, Two 16-Bit Timers, SPI, 5CI, EEPROM

(] I Cancel

2 Find the target ST microcontroller by clicking the device icons in the list until the

name of the chosen device is displayed. Select the target device by clicking once on

it.
Click OK to confirm.
You may also double-click the line showing the device.

Once you have selected your
target hardware, the Project
Viewer will open, similar to T heating sch

that shown at right: 25 Libraries
El £3 Target hardware

EH Project: heating

g ST72212G2 Two 16-Bit Timers, SK ROM, 256 Eytes RAM

60/248

4

Chapter 5 Choosing a Target Microcontroller

5.2.2 Changing the Target Microcontroller

Once you have specified a target hardware device for a project, the configuration and a

connection® information for that device is stored in the .rpf file for the project. If you change
the target hardware device of a previously existing project, the new target hardware device
information is also added to the .rpf, without losing the previously specified device information.

To change the target hardware device for an existing project, follow these steps:

1 Open the Project whose target microcontroller you

—— : -
wish to modify. M@ Options Tools Wir

2 Click Hardware Select... on the Project menu, or
double-click the target hardware device in the
Project Viewer.

3 The Select target hardware dialog box will open,

showing the target hardware device previously Hardwar e settings...

selected. Simply browse to the new target

hardware device desired. Click once to select it. Analyse F11
Erint

Current: ST72212G2 Twa 16-Bit Timers, 8K, REOM, 256 Bytes Rak

[=5 Target hardware devices
[:l STE S-BitMCU
=-E3 5T7 &-Bit MCU
-0 ST7210: 16-Bit Timer, SPI
f-C0 ST7212% Two 16-Bit Timers, SP1. 5CI

[+
- S ST?221:¢ A0 Eonverter SF'I

G2 2, 8K ROM, 256 Bytes RaM
\,ﬁ‘ ST?221 3G1 15 B|t TII‘I‘IEI 4k , 256 Bytes RaM

-0 5T7225% &/0 Corwerter, Two 16-Bit Timers, SPI 120

-0 5T723% &/0 Corwerter, Two 16-Bit Timers, SPI, 5C1

-0 5T7233 47D Corwerter, Two 16-Bit Timers, SPI, 5C1, EEPROM

ak I Cahicel

4 Click OK to confirm.

You may also double-click the line showing the microcontroller. Note that the name of the
current microcontroller is displayed on top of the dialog box.

1. If you add a new target hardware device to a pre-existing project, you may have to update the
hardware connections by reconnecting I/O symbols to the appropriate hardware ports and
peripherals. For more information, refer to “Connecting Input/Output Symbols to
Microcontroller Pins, Ports and Peripherals” on page 80.

4

61/248

Hardware Configuration Chapter 5

5.3 Hardware Configuration

5.3.3 Accessing Hardware Settings Dialog Boxes

Follow these steps:

1 Click Hardware Settings. on the Project menu.
The Hardware Settings dialog box for the specified target microcontroller opens.

This dialog box shows a number of tabs that direct you to the following hardware
configuration daughter dialog boxes:

General tab, for

configuring general hardware options.

Memory tab, for setting hardware memory options.

A tab corresponding to each of the target microcontroller's on-chip peripherals,
allowing peripheral settings to be customized. For example, the ST72212G2
microcontroller hardware settings dialog box, shown below, has four peripheral setting
tabs corresponding to each of its four on-chip peripherals: Timer A, Timer B, SPI and

Ports.

B 517221262 Hardware settings]|

Frequency [Hz)

¥ Generate a

Inzude files

W Use the watchdog

Azzembler optionz |.|i

I 16000000 [Slow mode enable

complete Realizer Operating System [FOS]

|E:'\F‘rngram FileshS T-Riealizer\libhat7221 2.inc:C:\Progr = |

0k, Cancel

2 Click the appropriate tab.

Note:

62/248

There are two circumstances in which you may want to modify the settings in
these windows: (a) when you build a new scheme, and (b) when you want to re-
compile an existing scheme in order to customize how the program will operate
when loaded into the microcontroller. In the first case you specify new settings,
(or keep default settings); in the second case, you modify existing settings.

(572

Chapter 5 Hardware Configuration

5.3.4 General Hardware Configuration

This is the first tab in the dialog box.

Note: Option bytes are not supported.

From the General tab, you can specify:

1 The oscillator frequency of the microcontroller.

Note: This frequency is the external frequency. The ST7 uses a internal frequency
which is half the external frequency (Fi, = Fgy/2).

2 Whether or not the Watchdog function is enabled.

The Watchdog function is a peripheral included on each ST6 and ST7 microcontroller.
Enabling the Watchdog initializes it and instructs ST-Realizer to refresh the Watchdog
regularly. For more information on the Watchdog function, please refer to your
microcontroller’'s datasheet.

3 Whether or not you want the ROS to be disabled.

The Realizer Operating System (ROS) is made up of macros or pieces of code that
perform background tasks that must be added to an ST-Realizer application for it to be
complete and ready to load into an ST device. In a certain sense, the ROS is similar the
BIOS of your PC—ROS macros encompass such operations as chip initialization, 1/0
initialization, timer initialization and data memory initialization, that are essential to the
running of your application.

Note: Refer to Chapter 2, “Introduction and Concepts” on page 3, for an overview of
the running of an ST-Realizer program.

Alternatively, you can disable the inclusion of the standard ROS macros, and generate
your own code to perform the ROS tasks instead. The tasks which you must provide
macros for are described below.

To disable the ROS:

e Click the Complete ROS check box. ROS is disabled when the check box is
empty (unchecked).

* Click OK.

If you disable the ROS, you must use an external program to perform the following
functions:

» Call the following subroutines that are created by ST-Realizer:

172 63/248

Hardware Configuration Chapter 5

Portinit, which initializes the 1/0O ports according to the ST-Realizer application.
Ramlnit, which initializes the RAM allocated by the ST-Realizer application.
Reallnit, which initializes the ST-Realizer application.

RealMain, which executes the ST-Realizer application.

The Portinit, Raminit and Reallnit must be executed once and the RealMain
subroutine must be executed continuously.

Perform all the interrupt management.

Fill in the input variables that are used by ST-Realizer application and copy the output
variables of the ST-Realizer application to the data registers of the 1/O ports.

The input variables are:

Apxd

where x is the port name A, B or C, and d is the pin number 0. . 7. This is a set of
variables generated as the result of the A/D conversion. These variables are already
allocated with the size of one byte.

RTI CK

This is the one-byte timer tick variable. This must be filled with the number of ticks
during the last execution of the RealMain subroutine.

The output variables are of the form:

BUDRX

where x is the port name A, B or C and each variable is one byte in length. Their
contents must be copied to the data registers of the appropriate port.

4 Include files for user-defined macros.

If the scheme you are analysing and compiling includes a symbol that you created
yourself, you must include the macro or macros linked to the symbol before analysing the
scheme. For details on how to create your own symbols see “Creating Your Own Symbol”
on page 165.

To

include the macros linked to user-defined symbols:

In the Include files field, enter the name and full path to the macro files linked to your
symbols. To include more than one macro file, separate each path and file name with
a semi-colon (}).

Click OK.

5 Assembler options.

Normally, you will not need to alter the default assembler options.

64/248

4

Chapter 5 Hardware Configuration

5.3.5 Memory Configuration

The second Hardware Settings dialog box tab is entitled Memory. In this tab, shown below,
you can configure the target microcontroller's memory configuration options, such as:

e The start and end of ROM (corresponding to the beginning of your application code).
e The start and end of RAM (corresponding to the beginning of your application variables).

e The start and end of EEPROM (if this memory type is included in your target
microcontroller).

To set or update one

of these parameters: |
1 Type anew General T Memary T Timner & T Timer B T S T Paorts]

value or

overtype its RAM S

current value. Begin [0081 [0
2 Click OK. End [0x0173 [GwrroF

To reset the values
to standard device
settings, click Reset.

Rezet (] Cancel

Notes: 1. The default values found in these fields do not correspond to those reported
in the microcontroller's datasheet because ST-Realizer reserves a portion of the
available RAM memory for its own use. For example, for ST7 devices, ST-
Realizer uses 12 bytes of RAM memory.

2. If the values in these fields are changed, there will be an impact on the
application’s variables and on the generation of the code.

4

65/248

Hardware Configuration Chapter 5

5.3.6 Enabling Peripherals

Each peripheral belonging to the target microcontroller has an associated tab in the Hardware
settings window. If you wish to use one or more of the peripherals in your application, you
must enable the peripheral, which allows it to be initialized and configured. To do this:

1 Click the appropriate tab to open the dialog box that describes the peripheral to be
configured.

The peripherals available vary depending on the target microcontroller device.
2 Check the Enable box at the top of the peripheral’s dialog box.

The peripheral is now enabled and may be configured (using the rest of the options in the
dialog box) as you wish.

For details on the peripherals available, and their configuration options, refer to the
Microcontroller data book. See also Chapter 8, “The Main Symbol Library” on page 103.

4

66/248

Chapter 6 Schemes

6 CREATING, OPENING, SAVING SCHEMES

6.1 Schemes

Once you have created or opened the project on which you want to work, you must create or
open a scheme. A scheme is the sheet on which you design your application. When you have
finished working on a scheme, remember to save your work.

You can export schemes in the Windows metafile (WMF) format, so that you can import them
into drawing or word processing packages.

This section describes how to create a new scheme, open an existing scheme, and save your
work.

6.2 Creating a New Scheme

When you create a hew project, an empty root scheme is created by default, taking the same
name as the project. For example, if you created a new project called “Heating.rpf”, the root
scheme called heating.sch will be created by default.

Lofre] heating. sch

25 Libraries
El 53 Target hardware
gl §TT2212G2 automatically created by |gap4

ST-Realizer for each new

A default root scheme is

project.

|/ Tip: If you wish to change the root scheme, right-click on the scheme in the
— — schematics folder, and select Change root schematic. You will then
be prompted to select (by browsing) the new scheme which will
become the new root scheme for the project.

o

6.2.1 Opening the Root Scheme

The root (or “main”) scheme is the sheet on which you design the main part of your
application and is created by ST-Realizer when you create a hew project.

To open the root scheme:

 In the Project Viewer (shown above), double-click the root scheme (for example,
heat i ng. sch, as shown above) located under the Schematics folder.

172 67/248

Creating a New Scheme Chapter 6

A new blank worksheet opens where you can draw the root scheme of the application:

¥ ST Realizer [Beta) - heating [y [_[&]x]
File Edit Search ‘iew Project Options Tools Window Help

Ol E® = A2 i 98 O K F e ¢t | QA EI] 12

:!I C:A\Program Files\S T-Realizer\E xamples\H eating\heating. sch [Root)

i] H

(13200000 [5T6285C 4K ROM. 128 byles R,

6.2.2 Creating Subschemes and other Schemes

1 Click E

You may also click the File>New>Scheme.
The Create a New File dialog box opens.

2 Browse to your project folder and specify the name of the scheme file (. sch
extension).

3 Click Save.
A new, blank scheme opens.

|/ Tip: A new subscheme will not appear under the Schematics list in the Project
= — Viewer until it has been connected to the project and the project has been
Analysed. To connect a subscheme to a project, there must be a symbol in
somewhere in the root scheme or in another subscheme which is connected to
the new subscheme (refer to “Connecting a subscheme to a symbol in the root
scheme” on page 92). If the new scheme is not a subscheme, it can only be

connected to the project if it is declared as the root scheme.

oW

68/248

4

Chapter 6 Opening a Scheme

6.3 Opening a Scheme

1 Click & .

You may also click File=>Open.

The Open a File dialog box opens.
2 Enter the path of your project, and specify the scheme name (. sch extension).

3 Click Open.

A |/ Tip: To open a scheme you’ve used recently, click its name at the bottom of the File

—

— — menu.

o

6.4 Saving Schemes

To save the scheme that is currently active, click u .

To save all the schemes that are open, click Save all in the File menu.
To save a scheme under a new name;:
1 Click Save asin the File menu.

2 Specify the new name of the scheme file (. sch extension).

3 Click Save.

Note: You can also set up ST-Realizer to save your work automatically at a specified
interval. See “Automatically Saving Your Work and Setting Screen Preference.”
on page 194 for further details.

!, Tip: Subschemes will not be appear in the Project Viewer until you have performed

— — an Analyse of the project. A saved .sch scheme file will be placed in the root
directory of the project, but you will have to open it manually if does not appear
in the Project Viewer.

o

4

69/248

Saving Schemes

Chapter 6

70/248

4

Chapter 7 Schemes and their Components

7 BUILDING SCHEMES

7.1 Schemes and their Components

A scheme is a collection of symbols connected to one another via lines named “wires”. Each
symbol has input and output pins that allow them to be wired to other symbols. The symbols,
pins and wires in a scheme can be assigned attributes to precisely define their configuration
and behavior.

Schemes are at the heart of ST-Realizer. By designing schemes, you are in fact creating your
application code.

In each application you create, you must have a root (or “main”) scheme . Thisis the scheme
which contains the main body of your application—the core of the program which controls the
sequential running of the application.

In addition to the root scheme, most applications also include subschemes that represent
specific processing in your application. Subschemes usually contain those actions which must
be performed in addition (and sometimes conditionally) to the actions in the root scheme. In
particular, subschemes may be connected to events, such as timer interrupts, periodic events,
hardware (external) input changes and peripheral operation. Subschemes can also be used to
mask more complex operations, so that they do not “clutter” the root scheme.

7.2 Symbols

Symbols are the basic building blocks used to create an application with ST-Realizer. In
essence, each symbol is a graphical representation of a portion of assembler code, usually
representing a function or a short subroutine. Symbols can represent many coded entities
such as: mathematical, logical, conversion and power management functions, constants,
tables, subschemes/hierarchical sheets, states, input devices, output devices and sequential,
counted or time-related events. The main symbol library in ST-Realizer (see Chapter 8 on
page 103) encompasses all of the main functions required in assembler code, and should you
need a very specialized symbol for your application, there is a symbol editor function that
allows you to modify an existing symbol, or create an entirely new symbol, and save it to the
library.

Most symbols in ST-Realizer's main library have attributes which you must specify. These
attributes allow you to specify many parameters, such as:

e Giving the symbol an application-specific name in order to identify it elsewhere in the
scheme.

e Assigning the input or output data type.

» Specifying a time period in a time-related symbol.

4

71/248

Symbols Chapter 7

The above list is by no means exhaustive. The modifiable attributes depend on the type of
symbol. In Chapter 8 on page 103, you will find a complete list of all of the symbols in the ST-
Realizer main library, complete with the modifiable attribute values available for each one.

Earlier, we mentioned that each symbol is in fact a graphical representation of a portion of
assembler code called a macro. Later, in Chapter 11 on page 165, we will take a closer look
at customizing symbols using the Symbol Editor, and at the assembler macros that define
each symbol.

The remainder of this chapter will concentrate on how to manipulate symbols and their
attributes, and how to wire together symbols to create an application scheme.

Note: With ST-Realizer, object naming is case-sensitive. In addition, spaces are
interpreted as characters. Ensure that all object names are used consistently,
otherwise, errors will result when you compile the application.

7.2.1 Placing and Controlling Symbols

Placing a symbol in Symbols can be placed in a scheme in two
the SCheme WayS: # Input and output

1 Insert a new symbol (one that does not i Sequential
. i # Logic
already exist in the open scheme) by % Time related

choosing it from the main library: # Mathematical

i Counter
| Click rl-ﬂ . Conversion
Table

|»

Power management

The main.lib (and mainper.lib if it [Constant

exists for the target microcontroller) & State machine

dialog box(es) open. The symbols |5\ ererchicalsheet
are, by default, ordered by functional

category (Hierarchical View).
However, you can view the library of symbols alphabetically by
right-clicking in the library dialog box and selecting Alphabetical
View.

You may also open any library via the File=»Open menu
sequence, by specifying the appropriate <fil enane>. i b file.
ST-Realizer has with a number of symbol libraries in the
<root _folder>\Lib directory, including a some that are
microcontroller-specific.

-

4

72/248

Chapter 7 Symbols
A ‘ / Tip: The most commonly-used symbols are grouped in two libraries:
— — main.lib, for symbols that use values to be stored in RAM, and mainper.lib, for

o symbols that use values to be stored in permanent, non-volatile storage.

. When you build a scheme, you use a set of symbols that are copied from these
libraries. The list of the symbols actually selected constitutes the local library
attached to the scheme.

Note that when you copy a scheme, you also copy the attached local library.

ii Double-click the name of the symbol you wish to place or select
the symbol by clicking once on it, right-click the mouse without
moving it from the library dialog box, and select Place

iii A square box will appear next to the cursor, indicating the size
and position of the symbol you have chosen. Move the cursor to
where you want to place the symbol, then click once.

2 Make a copy of a symbol that already exists in the open scheme

(symbol from the local library):

heating. zch
i Click =qF . Y |
Eﬂ 2332 Hod Flace |
A dialog box (having the name of the EE:&HDH Irif |
open scheme in the title) opens. It |constw Delete
contains a list of all the symbols used ﬂgﬂt‘t [oeke|
in that scheme. :rwf Refresh

ii Select the symbol you want to place. r'nn:n
Click Place. FD“E”‘

You may also double-click the name | autputiatch
in the list. ssel_1

shate

i Drag and drop the ghost box |statein
associated with the symbol down to 1tatemnt
the new location of the symbol.

You can obtain information about the symbol by clicking Info, prior to

placing it.

|/ Tip: The local library attached to a scheme can be saved for further use. For

oW

Selecting a Symbol,
Wire or Group of

Objects

572

example, to enrich the set of symbols available for another scheme.
To do this, click the Save as option in the File menu, and specify a .lib file type,
keeping the original name of the scheme.

As with any drawing package, before you can modify an object or a
group of objects you must first select them.

To selectitems, you must be in selection mode (the cursor isin the form
of an arrow). This is the default mode. However, if you need to activate

73/248

Symbols Chapter 7

selection mode:

* Click %

An object is selected when it is outlined by a red box. You may select
one or more objects as follows:

 Select one object by clicking it.
Take care not to click a symbol attribute as this will open the dialog
box for the attribute.

« Select a group of objects by dragging a box around them.
Put the cursor at one corner of the area you wish to select. Keeping
the left mouse button pressed, move the cursor diagonally across
the area you want to select until the whole area is outlined by a red
box.
When you release the mouse, you will see that each individual
object found in the area you outlined has been selected.

 Select multiple objects by pressing SHIFT while
simultaneously clicking each object one by one.
Each item you select is surrounded by a red box, indicating that it
is selected.

 To select all segments of a connected wire, double-click one
segment of the wire.

Copying a Symbol You can copy a symbol in two ways:.
1 Right-click the symbol to be copied. A popup E'_:'tate g

menu will open. Select Copy shape. '"':'r

Drag and drop the ghost box of the symbol Liapy grage
where you want to place it. You will be Stributes,
prompted to specify new attribute values for ﬁwfurmatinn...

the symbol. Edit

!, Tip: The choices shown on the popup menu can vary depending on the type of

— — symbol. For example, for Constant type symbols, a Value option is also
displayed, or for symbols connected to microcontroller output pins, such as
digout, a Connect option will be shown.

o

2 Select the symbol to be copied.
Click " =t |-
i

Drag and drop the ghost box of the symbol where you want to place
it. Note that attribute values are also copied.

To copy a symbol to the clipboard, click .

4

74/248

Chapter 7

Symbols

Copying a Group of
Symbols

Pasting an Object
from the Clipboard

Moving a Symbol or
Group of Objects

Deleting a Symbol
or Group of
Symbols

Changing a
Symbol’s Attributes

4

You may copy either a group of symbols or a scheme (portion or
entirety). Note that you will also copy all other objects in the group, such
as wires.

1 Select the group of symbols to be copied.
2 Click &} | in the toolbar.
{F

3 Place the ghost box where you wish to place the copied objects.
To copy a group of symbols to the clipboard, select

the group then click with the right mouse button. Lo
i i Duplicate
The pop-up menu shown at right will appear. Select
Co Eotate *
py. .
To copy the selection to the scheme page choose Mimor
Duplicate.

Click , then drag and drop the ghost box down to the new
location of

the symbol.

To move a symbol or a group of objects:
« Select the symbol or group of objects.

* Place the cursor on the selected group and drag and drop the
ghost box with the four-headed arrow pointer to the new
location of the symbol.
Note that the wire connections attached to a symbol are moved with the
symbol.

Select the symbol or the group of symbols. Click ﬁ or press the
Del key.

Note that you delete also all other objects in the group, such as wires.
To delete a symbol and place it in the clipboard, select the symbol and
click

v

Symbols can have a variety of attributes that

depend on the symbol type. When you place a B'_:'tate '
symbol on a scheme from the symbol library, you il
Copy shape

are prompted to specify these attributes.
However, they can be changed at any point. Aftributes...
To do this: Connect .
* Right-click the symbol. Edit...
A popup menu opens.

75/248

Symbols Chapter 7
*Click Attributes.
YT g—— | The Select an Attribute dialog
box opens.
CODE Shof «Double click the line of the
WalueT op=255 .
Y " attribute you want to change.
An Edit the Value dialog box
opens.
MARE
IM_I,Iname
ak. Cancel] I Cancel |
The field label in this dialog box (NAME, in the example) depends on
the value to be changed for the specified attribute.
» Enter the new value, then click OK.
!, Tip: To change the value of the Constant symbols f?D - or |0 [, you

R

Changing the
Symbol Attribute
Preference Settings

76/248

may also click the Value entry in the popup menu that is specific to this type of
symbol. The same Edit the value dialog box opens.

You may also change the manner in which an

attribute is displayed on a symbol:

« Right-click the attribute field in the

symbol of interest.
A popup menu opens.

» Select Properties...

Botate

Tag..

Yalue..,

Paoint of Effect
Froperies...

4

Chapter 7

Symbols

Mirroring a Symbol
or Group of
Symbols

Rotating a Symbol
or Group of
Symbols

572

The following dialog box opens:

[Change properties E3 |

Color | Tag
Size I 20 rm.m. IEDmment vI

Alignment Walue

Horizontal I Left - I PurnpSpeedContral
q

Yertical I Cemter ™ I
Direction I Mamal = I

Wizibility
[Tag [¥alue

-
o

Cancel |

» Change the preference settings to the desired values.
Select the appropriate Alignment and Direction settings in the
corresponding drop-down lists.
To change the color of the text, click Edit and select the new color
from the displayed palette.
To have tag nhame and value displayed on the scheme check the
appropriate box.

* Click OK to confirm the changes you have made in the
preference settings.

Select the symbol(s), then click I

You may also use the Mirror option in the popup menu associated with
the symbol (right-click the symbol).

To mirror a group of symbols, select the group then

EDDJF t click with the right mouse button.
Duplicate) .
ot » | 7\ POPUPMenu displays. Choose Mirror .
b irrar

Select the symbol(s) you wish to rotate, then click (:} .

The selected symbol will be rotated by 90° counterclockwise.
You may also use the Rotate option in the popup menu associated with

77/248

Symbols Chapter 7

the symbol (clicking the symbol with the right mouse button).
To rotate a group of symbols, select the group then

E':'F'ﬁf click with the right mouse button.
Duplicate A popup menu displays. Choose Rotate.
Botate »
Mirror
Viewing Symbol Select the symbol about which you want to view information.
Information
Click i

An information box opens.
When you have finished viewing the symbol information, click OK.

7.2.2 Wiring Symbols Together and Connecting Application Inputs/Outputs

Almost all symbols have at least one input and one output pin to which you connect wires (the
only exceptions are some subscheme symbols). Wiring two symbols together creates the data
flow between them. By default, the input pin(s) are to the left of the symbol and the output
pin(s) to the right.

This section describes how to wire symbols together, control the attributes of wires and how to
connect external application inputs and outputs to the appropriate target microcontroller ports
or peripherals.

Drawing Wires To wire two symbols together:

between Symbols « Select wiring mode by clicking
The cursor changes to a crosshair, indicating that it is in wiring
mode.

« Place the cursor on the pin of the first symbol, where you want
the wire to start.
The crosshair shaps onto the pin when it comes into snapping
distance. An x indicates the point to which the crosshair is snapped.

« Click when the crosshair is shapped to the pin of the first
symbol, where you wish the wire to start.
ST-Realizer will now draw a wire that follows the cursor.

!, Tips: If you want to define your own wire corners, click twice where you want each
— — corner to be.

R

» Move the cursor to the pin of the second symbol, where you

781248 V<72

Chapter 7

Symbols

Using Automatic
Wiring:

Copying a Wire

Pasting a Wire from
the Clipboard

Moving a Wire

Deleting a Wire

Mirroring a Wire

572

wish the wire to end.

« Click when the crosshair is snapped onto the appropriate
point.
The two places where you clicked are now connected by a wire.
« Right-click the mouse or press the ESC key or click ['\\b ‘
finish wiring.
The two symbols are now connected by a wire.

You may also let ST-Realizer draw wires for you.
Automatic wiring simplifies the task of wiring symbols together by:

- Automatically choosing the shortest path between the two symbols
to be connected (Auto wiring), and creating corners where required.

- Automatically rerouting wires when a symbol is moved (Auto
rerouting).

Both these options are enabled by default.
For details see “Wire Drawing Options” on page 201

Select the wire to be copied.

Click ¥ |

Drag and drop the ghost box of the wire where you want to place it.
Note that attribute values are also copied.

To copy a wire to the clipboard, click .

Click , then drag and drop the ghost box down to the new
location of the wire.

Select the wire, click once on it, and drag and drop the ghost box with
the four-neaded arrow pointer down to the new location of the wire.

Select the wire or the group of wires. Click ﬁ or press the Del key.

Note that you delete also all other objects in the group, such as
symbols.

To delete a wire and place it in the clipboard, select the symbol and

click & .

Select the wire, then click TF{F .

79/248

Symbols

Chapter 7

Rotating a Wire

Changing a Wire's
Attributes

Connecting Input/
Output Symbols to
Microcontroller
Pins, Ports and
Peripherals

Note:

80/248

Select the wire, then click C;, .

The selected wire is rotated by 90° counterclockwise.

Click the wire with the right mouse button.

Tvpe...
A popup menu opens: i
Click the name of the attribute you want to change. Laléz.u.el
An Edit the Value dialog box opens: A

Enter the new value, then click
[E dit the value OK.

LABEL
IMyIabel

k. I Cancel

Application input and output symbols must be connected to the ST6 or
ST7 microcontroller input and output pins, ports or peripheral control
registers in order for the application to function.

Application Input and Output symbols are:
adc: A~ digin:
Name name
Type comment
digout: input:

comment
comment

inputlatch: Name output:

En
UEYTE comment
Comment

outputlatch: Mame event

En event |[name é -
Comment

comment
eventenable

E NAMEZ
Comment

4

Chapter 7 Symbols

To connect these symbols to a target

i ; . Botate 3
microcontroller port or peripheral: .
« Right-click or double-click the 1/0 Mirror
symbol. Copy shape
This popup menu opens: e

* Click Connect.
The I/O Hardware Connections window for
the target microcontroller opens. The
resources available in this window vary
depending on the target microcontroller.

« Select the appropriate device pin.

i ST72212G2 1/0 Hardware connections E3

Connect resource to UBYTE Setpoint

Connect...

Edit...

Axailable rezources; Connected resources;

P, Input

FE. Input

PLC. Input

PC.0, 8 bit analog input

PC.1. 8 bit analog input

PC.2, 8 bit analog input r |
PC.3. 8 bit analog input

PC.4, 8 bit analog input
PC.5, 8 bit analog input

Properties (] Cancel

« Click the right arrow or double click the selected device pin
name. Click OK.

NV Tips: To have connections for the device sorted in pin order, check the Sort by
— — resource box.
If the peripheral register or bit that you wish to connect does not appear in the
list at the left side of the window, click on the Properties button. This will open
the Hardware settings dialog box, and allow you to enable the peripheral that
you desire to use. When you return to the Hardware connections dialog box,
the registers or bits of the peripheral you just enabled should now be included
in the list.

oW

172 81/248

Working in Schemes Chapter 7

7.3 Working in Schemes

This section describes general functions and utilities available when you are working in a
scheme, such as:

* How to use the viewing options.

* Viewing hidden attributes.

e How to print schemes.

* How to add a title or comment to a scheme.

Using the Zoom-In Click , then click the blank area in the scheme worksheet.
View
You may also click the Zoom in entry in the View cascading menu you
obtain by clicking the blank area in the scheme worksheet.

Note: Zooming in magnifies the view by 200%.

Zoomingin ona Click ‘ then select the area of the scheme you want to zoom in on.
Selected Area

Using the Zoom- Click , then click the blank area in the scheme worksheet.
Out

You may also click the Zoom out entry in the View cascading menu
you obtain by clicking the blank area in the scheme worksheet.

Note: Zooming out reduces the magnification by 50%.

Using the Full Click .

Screen View

You may also click the Full view entry in the View cascading menu you
obtain by right-clicking any blank area in the scheme worksheet.

Redefining the View Click || then click where you want the new centre to be on the
Center of your scheme.
Scheme

You may also click the Pan entry in the View cascading menu you
obtain by clicking the blank area in the scheme worksheet.

4

82/248

Chapter 7

Working in Schemes

Printing the
Currently Active
Scheme

Qi

Printing all Project
Schemes

Viewing Hidden
Attributes

4

Click the File-Print sequence in the main menu bar. Continue the
normal printing dialog and click OK when ready.

» Set Up the Printer

On the File menu, click Printer setup .

The standard Windows Print Setup dialog box opens. Refer to your
Windows documentation for further information.

Click OK when you have finished setting up your printer.

* Choose a Printer Font

On the File menu, click Printer setup , next click Properties and the

Font tab.

For best results, use the True-Type fonts that come standard with the your

Windows environment.

Click Project and select Print in the

drop-down menu:

Continue the normal printing dialog

and click OK when ready.

These attributes are
not visible by default
when you design an
application, since they
only refer to parts of
the symbol itself. ST-
Realizer enables you

to view hidden
attributes:
Click the Invisible

attributes entry in the
View cascading menu

Froject

[l
Open...
Close

Options Tools Wi

Hardware select...
Hardware settings...

Analyse F11

When the shapes and pins that make up a symbol are created,
attributes can be assigned to them to define additional characteristics.

RI=

|

l"..."l | B2y

Leawe
Connect

Eroperties. .

£00rm in
Zootmn ot
Full wigw
Eefrash wview

Fan

Irvisible aftributes

83/248

Working in Schemes Chapter 7

you obtain by clicking the blank area in the scheme worksheet.

When the Invisible attributes option is selected, all attributes are
visible.

Placing aTitleinthe 1 Right-click any blank area in the scheme.
Scheme A popup menu appears.
2 Select the New/Attribute options.
The Create attribute dialog box opens.

[Create attribute E3 |

Cilor - Editl Tag
Size m .. T =

Alignment Yalue

Harizantal I Center j ;I
Wertical I Center ™ I

Diirection I Mamal = I

Visibilty & _>|_I

W Tag v Walue

3 Specify the following options:
e TAG = TXT
 Enter the title text in the Value edit box.

» Under Visibility, there are two options. If you wish only the title
text that you typed to appear, select Value only. If you wish the
attribute tag to appear as well (in this case “TXT = title text”),
select both Tag and Value.

4 You may specify color, size or alignment values for the title.
5 Place the heading by dragging it where you want and click OK.

84/248

4

Chapter 7 Subschemes, Execution Conditions and Events

7.4 Subschemes, Execution Conditions and Events

Subschemes are exactly what their name implies—additional schemes that are subservient to
the root scheme. Their appearance is similar to the root scheme, in that they also contain
symbols and wires. However, subschemes exist apart from the root scheme, and are only
executed when called upon via a subscheme symbol in the root scheme.

As previously discussed, there are three reasons to create a subscheme:

e To include complex portions of the main loop, thus saving space in the root scheme and
making it easier to reuse processes. In this case, the subscheme is executed as if it were
a part of the main loop.

e To include parts of the application that are event-driven. (Events can never be placed in
the root scheme.) Subschemes can be assigned either a single execution condition,
which will apply to the entire subscheme, or alternatively, can include any number of event
symbols. More will be said about execution conditions and events shortly.

« To save functional parts of your application (analogous to subroutines) that you may wish
to reuse in other applications. Subschemes are saved in their own files (. sch files) and
can be easily copied to other ST-Realizer projects and reused. You may also save
customized subschemes symbols to a library, to be accessible by all projects.
(Subscheme symbols are described below).

Designing a subscheme is no different than designing an ordinary scheme, with one
exception—a subscheme has connections to its root scheme via a subscheme symbol. The
subscheme symbols are named sssp_q, where p indicates the number of inputs you need for
your symbol and q the number of outputs. For example, sss2_1 is a subscheme with two
inputs and one output.

When you want to use a subscheme, you must therefore first think about its connections: what
inputs does the subscheme need to deliver its output. Once you know this, you can choose the
correct subscheme symbol from the main library.

Subschemes not linked to events (either by definition of execution conditions or the inclusion
of event symbols) are basically annexes to the root scheme, and therefore, the same rules
that apply to root schemes must apply to them.

However, those subschemes to which execution conditions are attached, or in which event
symbols are embedded, are special cases, and the rest of this section is dedicated to
describing how to configure subschemes with execution conditions or event symbols.

7.4.3 Description of ST-Realizer Events

Events are a general concept (described in Section 2.6 on page 8), and allow for the
conditional execution of code within an application. As outlined above, if an event is applied to

172 85/248

Subschemes, Execution Conditions and Events

Chapter 7

an entire subscheme, it is called an execution condition; if it is applied to only a portion of code
within a subscheme, the event takes the form of an event symbol.

The following paragraphs give a list of the principle types of events—those that are hardware-
independent, meaning that they are available on all microcontrollers—and those that are
hardware-dependent, meaning that they make use of peripherals that are only available on
certain microcontrollers.

Events that are independent of the target hardware device:

Upon subscheme input change

Code contained in a subscheme is executed each
time one of the input signals coming from the
parent scheme has changed. This is similar to an
If..Else switch in standard programming
algorithms.

The diagram at right shows a schematic flow
diagram of an application with a subscheme
having this type of event (either as an execution
condition or an event symbol).

86/248

(}?esetentry point:>

Initialization

_R

Normal Code
Execution

Subscheme
input(s)
changed??

Y

Subscheme
Code

H_

Normal Code
Execution

—<_|

4

Chapter 7 Subschemes, Execution Conditions and Events

e Periodic Events
A periodic event, or execution condition,
acts at the level of the main loop. Inclusion
of a periodic event causes a counter based
on the number of base clock timer ticks
elapsed in previous main loop cycles to B

(Reset entry point)

Initialization

measure a certain period of time. Normal Code
Execution

(Therefore, the period specified must always
be a whole number multiple of the timer
tick's value).

|
Once the period of time specified has A|
elapsed, the subscheme or periodic code | Elapsed?
part will be executed and the periodic |
|
|
|

counter will be reset.

Optimized part (Periodic Optimization)

A periodic event or execution condition is Periodic
Code Part/

analogous to an If..Else statement, where

.) o Subscheme
the If condition is whether a specified L < |
number of ticks have been counted at the I NormalCode 1
beginning of each main loop cycle. Execution
For example, at the beginning of each main - | TIMER
loop cycle, the number of timer ticks elapsed IRQ

during the previous main loop cycle is
written to a variable called “rtick’™®. In other
words, during the execution of main loop
cycle n, the value of rtick is equal to the
number of ticks elapsed in main loop cycle
n-1. Because periodic events and execution conditions add together rtick values to count
elapsed time, they are relatively imprecise timing methods and should not be used when
the application requires a very precisely timed event to take place.

Update timer
datastructures

For example, imagine that the you wish to define an event period equal to 5 timer ticks.
Say that during the first main loop cycle, the number of timer ticks elapsed is equal to 2.
The value of rtick for the duration of the second main loop cycle will therefore be equal to
2. However, during the second main loop cycle, because of other events or interrupts, the
execution time is longer, and 4 timer ticks elapse. The value of rtick will be 4 for the

1. A more detailed look at how the variable “rtick” is related to the timer tick is provided on
page 131.

172 87/248

Subschemes, Execution Conditions and Events Chapter 7

duration of the 3rd main loop cycle, so that when the periodic event is evaluated, it adds
together the values of rtick that it has received for all completed main loop cycles, and
arrives at a total of 2 + 4 = 6 timer ticks. Evaluation of elapsed time in periodic events is
always performed using an “equal to or greater than” condition. Therefore, the event will
take place during the 3rd main loop cycle. However, there will be an imprecision of at
least 1 timer tick in this particular case, because the specified period was 5 timer ticks and
the actual elapsed time was 6 timer ticks at the beginning of the 3rd main loop cycle.

e Timed interrupts

(Reset entry point)

Timed interrupts are a very precise method
of timing an event, because a timed interrupt
is executed independently of the main loop Initialization
of the application, and measures time

directly from the base clock timer tick. >

Normal Code
While periodic events count the cumulative Execution

value of elapsed timer ticks at the beginning |
of each main loop cycle, timed interrupts
count each elapsed timer tick as it occurs.
This means that as soon as a specified

amount of time (i.e. a specified number of Update timer
datastructures

< TIMER
IRQ

timer ticks) has elapsed, the interrupt is
immediately executed.

In other words, a timed interrupt is triggered
directly from the hardware clock (for
example, Timer 1 or Timer A) measuring out
the timer ticks, rather from the evaluation of
main loop variables (such as rtick) which
count the number of timer ticks elapsed in Timed Interrupt
the previous main loop cycle. code part

Time
Elapsed?

Therefore, no matter what the main loop is -
doing, when the specified time has elapsed,
the main loop is interrupted and the timed
interrupt code or subscheme is performed
immediately.

CReturn from Interrupt)

4

88/248

Chapter 7 Subschemes, Execution Conditions and Events

Event that are hardware-dependent are:
e Peripheral interrupts

These are interrupts that occur when a specified peripheral has signalled the application
in some way.

An example would be an SCI peripheral, which uses an RS232 protocol transmission. If
you specify an SCI interrupt, the interrupt would occur (independent of the main loop)
when the end of the transmission has occurred.

7.4.4 Execution Conditions

Execution conditions can be applied to subschemes, such that the subscheme is only
executed when certain conditions are met—such as a timed interrupt, or upon a subscheme
input change.

Subschemes with execution conditions allow you to perform tasks in addition to the main loop,
if the execution condition is met. In this way, subschemes with execution conditions are
analogous to subroutine operations.

While a root scheme runs in a constant loop from the time the application starts to when it
stops, subschemes are only performed when specified by the execution conditions.

There are a variety of execution conditions that one can assign to a subscheme, and these
can vary depending on the target microcontroller for which the application is designed, and
furthermore, upon which of the microcontroller’s peripheral have been enabled for use by the
application.

7.4.5 Event Symbols

Event symbols are analogous to execution conditions, but while execution conditions apply to
an entire subscheme, an event symbol is placed within a scheme, and acts to trigger only
certain portions of the subscheme. When the conditions necessary to trigger an event symbol
are met, the event symbol outputs a binary value of “1”. When the event symbol’s conditions
are not met (i.e. the event is not triggered), the event symbol outputs a binary value of “0”.
However, if none of the event symbols in a subscheme are triggered, the subscheme is
effectively invisible to the rest of the program and no code within it is executed.

Event symbols are assigned in much the same way as execution conditions—all of the same
options are available. However, because more than one event symbol can be included in a
single subscheme, they can be used as a means of imposing a range of conditions on the
same, or similar sequences of code. Because of this functionality, event symbols were
conceived more as a means of controlling hardware-dependent interrupts, than as an all-
purpose condition trigger.

172 89/248

Subschemes, Execution Conditions and Events Chapter 7

(}2eseterﬁry point:>

Initialization Subscheme Code

-

Normal Code

Execution
i Eventt;;
event symbols
Eventi;;

' symbol sequence C :

-1 H

Subscheme
Symbol

Normal Code
Execution

S

If we revisit the flow chart shown in Section 2.6.5, we can see how different event symbols can
be incorporated in the same subscheme, and how they influence how (and under which
conditions) the code in the subscheme is executed.

In this schematic example, we have placed a subscheme symbol in the midst of our normal
code loop (i.e. the root scheme) that references a subscheme containing two event symbols.

If neither of the conditions defined by the event symbols are met, the subscheme is ignored.
However, if either or both of the events are triggered (meaning that their conditions are met),
then the code in the subscheme executed in the following manner:

« If Event 1 is triggered (by the event’s condition being met):

- Symbol sequence A will be performed with output signal equal to “1” (out = 1). In other
words, the symbol sequentially following the Event 1 symbol will have the binary value
“1" as its input signal, and the rest of code sequence A will be executed in accordance.

- Symbol sequence B will be performed with output signal equal to “0” (out2 = 0). In other
words, the symbol sequentially following the Event 2 symbol will have the binary value
“0” as its input signal, and the rest of code sequence B will be executed in accordance.

- Symbol sequence C will be performed unconditionally (there are no event symbols
connected to this code sequence).

90/248

4

Chapter 7 Subschemes, Execution Conditions and Events

« If Event 2 is triggered:
- Symbol sequence A will be performed with outl = 0.
- Symbol sequence B will be performed with out2 = 1.
- Symbol sequence C will be performed unconditionally.

e If neither Event 1 nor Event 2 is triggered, no part of the subscheme code will be
performed.

7.4.6 Compatibilities Between Types of Events and Certain Symbols

There are certain rules concerning which types of events can be placed together in the same
subscheme, because some types of events have priority over others, and furthermore, some
types of events are incompatible when placed together in the same subscheme.

Event types that may be placed together in the same subscheme:
e Any number of peripheral interrupts. When these interrupts occur simultaneously, the
program will give priority to the peripheral in accordance with the IRQ settings.

« A timed interrupt and any number of peripheral interrupts. Once again, execution priority
is given in accordance to IRQ settings.

« Periodic events and upon subscheme input change events may be placed together in the
same subscheme. Execution priority has less importance, because neither of these
events are independent of the main loop (i.e. each event is triggered by a value that is
augmented incrementally with the base clock timer tick). If both events occur
simultaneously, the event symbol closest to the upper left-hand corner of the subscheme
will be treated first.

Event types that may never be placed together in the same subscheme:
e More than one timed interrupt.

e A periodic event and a timed interrupt.

« A periodic event and a peripheral interrupt.

e An “upon subscheme input change” event and a timed interrupt.

« An “upon subscheme input change” event and a peripheral interrupt.

Note: If any of the above event types are placed separate event symbols in the same
subscheme, an error message will result when you run ST-Analyser.

Compatibilities between Events and Time-Related Symbols

» Periodic events and time-related symbols are completely compatible, because they both
count elapsed time in an identical manner.

172 91/248

Subschemes, Execution Conditions and Events

Chapter 7

7.4.7 Subscheme Operations

In the remainder of this section, we will describe how to create a subscheme and assign
execution conditions to it.

Creating a
Subscheme

Connecting a
subschemeto a
symbol in the root
scheme

92/248

You can create your subscheme just a you would create a new scheme
(refer to Section 6.2.2 on page 68). Once you have opened the new

scheme window, design your subscheme with these guidelines in

mind:

- Place the symbols that represent the function the subscheme is

supposed to execute.

- Place as many portin and portout symbols as necessary. These
symbols are used to establish the links (in and out) between the root

scheme and the embedded subscheme.

- Make sure that the names for the portin and portout symbols are
the same in the root scheme and in the subscheme.

- Input ports are normally to the left, and output ports to the right, of the

symbol.

- Choose a name for your scheme and save it. A .sch file is created

with the name you specified.

Once your subscheme has been
drawn:

» Open the root scheme.
*Click =ff.
i

The Main.lib list dialog box opens.

Select the sss-type symbol you
want to place. You will select the
sssp_q symbol that has p portin
symbols and g portout symbols in
the future subscheme.

* Click Place.

|
P)

r
T

bz lib
Input and output
Sequential
Logic
Time related
M athematical
Counter
Conversion
Table
Power management
Constant
State machine
Hierarchical sheet
Title

*When prompted to enter the “SCHEME”
attribute, type the name of the subscheme
(without the .sch extension).
The subscheme is now inserted in the root scheme: double-clicking
the symbol in the root scheme causes the subscheme to open.

- The sssp_g symbol will be placed in the root scheme.
For example, the sss2_1 symbol is shown at left

(572

Chapter 7

Subschemes, Execution Conditions and Events

N/ Tip:

oW

Opening a
Subscheme

Assigning an
Execution
Condition to a
Subscheme

4

You may always add subscheme symbols to the root scheme even before you
have created the subschemes themselves. For example, you could place the
subscheme symbol, name it (using the same name you intend to give the
subscheme file). Then, to create the subscheme, all you need to do is double-
click the subscheme symbol. A warning message will display:

waning M|

The file C:hrealv3Heatinghzzname zch dogz niot existsl
Do you want to create it?

| we |

Click Yes. A new scheme window will be opened and you can begin drawing
your subscheme.

To open a subscheme whilst in the root scheme:
» Double-click its symbol in the scheme.
To open a subscheme from the Project Viewer :

* Click on the name of the subscheme under the Schematics
folder.

To assign an execution condition to a subscheme, you must be in the
subscheme.

* In any blank area of the subscheme,

right-click the mouse to bring up the New V
following popup menu: W 5
» Select Execution conditions.
Leave

The Execution conditions dialog box for . 5
the current target microcontroller opens Execution canditions
(ST72212G2 in the example shown below).

It shows the list of events that can occur
during the main loop execution and cause a
specific action to be performed, namely the execution of the code
generated by the subscheme.

This list depends on the target microcontroller and also which
peripherals on the microcontroller have been enabled. For this
reason, it is important to enable all of the peripherals that your
application needs to function (see “Connecting Input/Output
Symbols to Microcontroller Pins, Ports and Peripherals” on page 80)
before you define the execution conditions in any subschemes.

Broperties...

93/248

Subschemes, Execution Conditions and Events Chapter 7

Placing and
Configuring an
Event Symbol in a
Subscheme

94/248

[577221262 Execution conditions E2
Conditiohal execution of Filker.zch [Sort by conditions
Available conditions: Applied conditions:

Upaon sub zcheme input change
Feriodic

TimerB Capture 1 interrupt
TirerB Campare 1 interript
TimerB Capture 2 interrupt ¥ |
TirerB Campare 2 interript
TimerB Owerflow interupt
< |

Properties | Ok | Cancel |

In the example, the microcontroller ST72212G2 has had one of its
peripherals, Timer B, enabled. The resulting choice of execution
conditions are:

Each time there is a subscheme input change.

Periodically, by specifying a fixed time between each consecutive
execution.

According to a timed interrupt.

According either one of five Timer B interrupts (these are only
available because the Timer B peripheral has been enabled).

By placing an Event symbol in the subscheme, the execution of the
entire subscheme, or part of it, can be triggered by an event determined
by a specific symbol within the subscheme.

« Place the event symbol in the appropriate location in the
subscheme.

* You will be prompted to provide values for the attributes
Comment and Name.
The Name attribute will identify the event in the subscheme. In the
example shown below, the value of the Name attribute is
“My_Event”.

» Wire the event symbol to the rest of the subscheme diagram.

4

Chapter 7 Subschemes, Execution Conditions and Events

* Right-click the symbol area.

A popup menu opens: Eiotate »
» Select Connect. bdirror
The Events dialog box for the current Copy shape

target microcontroller opens (ST72212G2 in
the example).

It shows the list of events that can occur
during the main loop execution and cause a
specific action to be performed, namely the
execution of the code in the subscheme that follows the event
symbol.

This list depends on the target device.

B ST72212G2 Events x|

Connect event to My Ewvent ™ Sort by event

Aftributes. ..

Connect...

Edit...

Ay ailable events: Connected events:

IJpon sub scheme input change Filker.zch = Timed interrupt 0.01 Sec.
Periodic My Event = Upan sub scheme input chi
Timed interrupt

TimerB Capture 1 interupt
TimerB Compare 1 interrupt
TimerB Capture 2 interupt
TimerB Campare 2 interrapt
TimerB Ovwerflow intermipt

| | ol

Propertiez | k. Cancel |

In the example (ST72212G2), the event “Upon subscheme input
change” has been associated with the event “My_Event”.

Configuring a Select Upon subscheme input change in the left window pane and
Subscheme Input click the right arrow (or double-click the line).
Change Event Click OK.

4

95/248

Subschemes, Execution Conditions and Events

Chapter 7

Configuring a
Periodic Event

Note:

oW

Configuring a
Timed Interrupt
Event

Qi

Configuring an NMI
Interrupt Event
(ST6 devices only)

96/248

Select Periodic in the left window pane and click the right arrow (or
double-click the line).

A new dialog box opens, for you to
specify the frequency of the code
execution (for example, specify
0.01 s if you want the code to be
executed once every one-hundredth
of a second). Click OK.

Click OK in the events dialog box.

= Enter the time in seconds [E4

Tirne:
0.01

Ok I Canu:ell

Remember that the time specified in a periodic event should be a multiple of the
base clock timer tick value. To change the value of a timer tick, refer to
page 131.

Don’t use periodic events for time-sensitive subschemes where high precision
is required. Because the execution of the code is not interrupt-driven, in some
instances the precision of the timing may be unacceptable. Periodic events are
best used to measure long periods of time where precision is less important.

Select Timed Interrupt in the left
window pane and click the right
arrow (or double-click the line).

A new dialog box opens, for you to
specify the time interval between two
consecutive timer interrupts.

Click OK.
Click OK in the events dialog box.

= Enter the time in seconds [E4

Tirne:
0.01

Ok I Canu:ell

Timed interrupts are a very precise means of timing events and can be applied
to short delays.

The execution of the code generated by the subscheme is triggered by
the occurrence of a non-maskable software interrupt.

Select NMI Interrupt in the left window pane and click the right arrow
(or double-click the line).

Click OK.

4

Chapter 7

Subschemes, Execution Conditions and Events

Configuring an
Input Interrupt
Event

Configuringa Timer
Overflow Event

Configuring Other
Peripheral-
Dependent Events

Disconnecting a
Subscheme from its
Execution
Conditions

4

The code generated by the subscheme is executed when an interrupt
occurs on an input line.

Select the appropriate input Interrupt in the left window pane and click
the right arrow (or double-click the line).

Click OK.

The code generated by the subscheme is executed when a timer
overflow occurs.

Select the appropriate line in the left window pane and click the right
arrow (or double-click the line).

Click OK.

The code generated by the subscheme is executed upon the
occurrence of an event interrupt specific to the peripheral (for example,
end of SPI data transfer, ARTimer Compare interrupt, etc.). Note that
the peripheral must be enabled (refer to Section 5.3.6 on page 66)
before these specific interrupts will appear in the Execution Conditions
or Events dialog boxes.

Select the appropriate line in the left window pane and click the right
arrow (or double-click the line).

Click OK.

If you wish to remove the execution conditions from a subscheme,
perform the following:

* In any blank area of the subscheme,

right-click the mouse to bring up the New /

following popup menu: et ,
» Select Execution Conditions.

The Execution conditions dialog box for Leave

the current target microcontroller opens. Execution conditions

It shows, at the right side of the window, a ,

list of the applied conditions that have __ Fropetes.

been attached to the subscheme.
Note that more than one condition can have been specified.

» Select the event to be removed.
« Click the left arrow.
« Click OK.

97/248

Subschemes, Execution Conditions and Events Chapter 7
Returning to the Click the subscheme area out of any symbol ,
Root Scheme from with the right mouse button. =

a Subscheme: A popup menu opens: Yiew v

98/248

Select Leave.

Ly

roperies. .

4

Chapter 7 Table Symbols

7.5 Table Symbols

There are two types of data tables that you can include in your scheme as a way of converting
or treating data: lookup tables and index tables. Both of these table symbols are found in the
main library, under the “Table” functional category.

Lookup tables convert input values to output values by matching their values in the table. If the
input value is not found in the table, a default output value is assigned. An example of a lookup

table is:

Input value Output value
def 0
10 82
15 128
30 67
35 48

According to the above table, when the input value is 10, the table symbol will output the value
82. When the input value is not equal to either 10, 15, 30 or 35, the output value will be equal
to 0.

Index tables are single column tables of output values only, however, each consecutive value
has a different indice. For example, the first value in the table would correspond to the default
value, the second value would have indice = “0”, the third to indice “1”, etc. This allows values
to be output sequentially, such as would be the case if you had a loop where at each iteration,

the output value changes. An example of an index table is:

Output value
0
45
96
132
145

According to the above example, if the input value was “2”, the index table symbol would
output “132".

Tables can store values in the Binary, Decimal, Hexadecimal and Octal formats.

The first line in a table defines the default output value (def). This is the value that is output if
the input value is out of the range defined by the table.

172 99/248

Table Symbols

Chapter 7

Once you have placed a table, you can either import data from an ASCII text file or enter the
data directly into the table. The following diagram shows the format of ASCII files—note that

commas are used to separate table entries:

ASCII File Contents:

Table Values

aah

10h ,14h
20h ,30h
40h ,100h

irpLIt oLtpLt
def a3
0 10 14
1 20 an
2 41 100

ST-Realizer stores table data in ASCII text files that have the extension . TAB.

Inserting a Table

The Index and Lookup table symbols are named
Symbol indextable and lookuptable and are stored in the

main library under the Table functional category.

Changingtabledata Double-click inside the table symbol.
format The Table editor dialog box opens.

Lok LIP

— Q]

SINT

tahle

Select the format you want to use from the drop-down list in the Radix
combo box.

Click OK.

Editing table data

Double-click inside the table symbol.

The Table editor dialog box opens. (The figure below shows the
lookup table used as an example on the previous page.)

[Table editor E3

Fiadix

input

output

o
iy

0

10

82

15

128

wif raf = =

30

B/

35

4

|mport.... | Ok I Cancel

100/248

(572

Chapter 7

Table Symbols

Importing files Into
tables

Note:

4

Double-click the cell whose value you want to change.

To insert a new row, click where you want to insert the row then press
the Insert key on your keyboard. For more rows, press Insert again.

Click OK.

Note that the Table editor dialog box shows an area for the graphical
representation of the table. X-axis is the input (or index) axis, Y-axis is
the output axis. The smallest Y value is on the bottom border, the
highest Y value is on the top border, the first value is on the left border,
the last value is on the right border.

Double-click just next to the table.
The Table editor dialog box opens.
Click the Import button.

The Import file dialog box opens.

In the Directories box, double-click the folder holding the file you want
to import.

The ASCII file you wish to import must be in the format shown on the previous
page—i.e. table entries must be separated by commas.

In the list below the File name: field, double-click the file you want to
import.
Click OK.

101/248

Table Symbols

Chapter 7

102/248

4

Chapter 8 Input and Output Symbols

8 THE MAIN SYMBOL LIBRARY

This chapter contains a listing of the symbols available in the main library (main.lib). Some of
them may be also included in the “persistent” (non volatile) library (mainper.lib) (these are
mentioned in the corresponding explanation column, where applicable).

The main symbol library is divided into the following functional categories: Input and output,
Sequential, Logic, Time related, Mathematical, Counter, Conversion, Table, Power
management, Constant, State machine, Hierarchical sheet and Title.

Each of these functional categories, and the symbols they contain are explained in the
following sections.

8.1 Input and Output Symbols

These symbols provide input and output links between the application you create and the
target microcontroller’s pins, ports and peripherals. It is important to remember to connect
each of the symbols from this category to resources on the target hardware device. Refer to
“Connecting Input/Output Symbols to Microcontroller Pins, Ports and Peripherals” on page 80
for instructions on how to do this.

Symbol Symbol Name Description

Analog-to-Digital Converter Symbol. The NAME
- attribute is used for connecting this symbol to a hardware

A port. For this, double-click the symbol. The TYPE attribute

ADC D adc is used to define the variable type (UBYTE, SBYTE, UINT,
UBYTE SINT, LONG, or WORD). The COMMENT attribute is used
Comment in the report file.

Digital Input Symbol. The NAME attribute is used for
connecting this symbol to a hardware port. For this,

e digin double-click the symbol. The COMMENT attribute is used
naime .)
in the report file.
comment Type = BIT
Digital Output Symbol. The NAME attribute is used for
connecting this symbol to a hardware port. For this,
| E:,?_j name digout double-click the symbol. The COMMENT attribute is used
in the report file.
comment Type = BIT

103/248

4

Input and Output Symbols

Chapter 8

Symbol

Symbol Name

Description

Event Symbol. Can be used only in a subscheme to
cause the symbols that follow it in the subscheme code
flow to be executed when the associated event occurs.

event__nameé - event
Output type = EVENT
comment
Event With Enable Symbol. Can be used only in
subschemes to connect an event to the scheme it is in,
e NAMEf— thus causing an event-driven execution of the scheme.
Comment E type = Boolean. When TRUE it enables the execution of

eventenable

the event-driven subscheme.
OutDigital representation of the event (type = Event).

CountEvent name, the user is prompted for the symbolic
name (Count). The connection is made to a micro
controller event/interrupt and is invisible.

Remarks:None

Input Symbol. The NAME attribute is used for connecting
this symbol to a hardware port. For this, double-click the

comment

EJaBr"‘T'—?'E input symbol. The TYPE attribute is used to define the variable
type (BIT, UBYTE, SBYTE, UINT, SINT or LONG). The
comment COMMENT attribute is used in the report file.
Inputlatch Symbol. The input value (name) is loaded
when the enable input (En) is TRUE. You are prompted for
name the symbolic name and the type of input. The TYPE
—En —) attribute is used to define the variable type (BIT, UBYTE,
UBYTE inputlatch SBYTE, UINT, SINT or LONG). The COMMENT attribute
comment is used in the report file.
En type = boolean
In type = Any type (BIT..LONG)
Output Symbol. The NAME attribute is used for
connecting this symbol to a hardware port. For this,
_@ output double-click the symbol. The TYPE attribute is used to

define the variable type (BIT, UBYTE, SBYTE, UINT, SINT
or LONG). The COMMENT attribute is used in the report
file.

104/248

4

Chapter 8 Sequential Symbols
Symbol Symbol Name Description
Outputlatch Symbol. The output value (Name) is
transferred to the hardware port when the enable input
—name (En) is TRUE. You are prompted for the symbolic name
—En and the type of the physical output. The TYPE attribute is
comment outputlatch used to define the variable type (BIT, UBYTE, SBYTE,

UINT, SINT or LONG). The COMMENT attribute is used in
the report file.

En type = boolean
Out type = Any type (BIT..LONG)

8.2 Sequential Symbols

Sequential symbols allow you to sequence inputs and outputs. They are a means of
sequencing signals in the main loop of the application, without introducing an interrupt.

Symbol

Symbol Name

Description

uuuuuu I.'fh'lE“T'E

microdelf

Micro Delay Fixed Symbol. Delays the main loop for a
fixed time. This symbol is meant for short and time-critical
operations, and does not use the base clock timer tick,
thereby leaving Timer 1 (ST6) or Timer A (ST7) free for
other uses.

En type = Boolean. When En is true (= 1) the fixed delay
will become active.

Out type = Boolean. The output is a copy of the En input.
This output is used for linking the sequential symbols.
ValueTime = The time, entered in microseconds, of the
fixed delay/wait.

Note: When the fixed delay is started, all normal execution
process are halted. Only the interrupts are still active. The
watchdog, if applicable, is not reloaded.

4

105/248

Sequential Symbols

Chapter 8

Symbol Symbol Name

Description

—En Sut— microdelv

......... dse

Micro Delay Variable Symbol. Delays the complete
process for a user defined time. This symbol is meant for
short and time-critical operations.

En type = Boolean. When true the fixed delay will become
active.

Time type = Word. Defines the time to wait. The Time
input, together with the TimeBase, will determine the time
to wait.

Out type = Boolean. A copy of the En input. This output is
used for linking the sequential symbols.

TimeBase = The timebase, entered in microseconds. This
time base is used a the timebase for the Time input.
Note: When the variable delay is started, all normal

execution process are halted. Only the interrupts are still
active. The watchdog, if applicable, is not reloaded.

Mame —
—en | Outl— inputsequence

TPE
Comment

Sequential Input Symbol. Converts, if enabled, a physical
input to a binary value. This symbol is meant for time critical
operations.

Name = Physical input. The user is prompted for the
symbolic name (In) and the input type. The connection is
made to a physical micro controller pin or register and is
invisible.

En type = Boolean. When true the physical input is read.

Out type = Boolean. A copy of the En input. This output is
used for linking the sequential symbols.

Note: When the input sequence is enabled, the physical
input is read immediately. .

—HAKME outputsequence

—En O Out—

Comment

Sequential Output Symbol. Converts, if enabled, a binary
value to a physical output. This symbol is meant for time
critical operations.

Name = Physical output (type = All). The user is prompted
for the symbolic name (Ol). The connection is made to a
physical micro controller pin and is invisible.

En type = Boolean. When true the physical output is
written.

Out type = Boolean. A copy of the En input. This output is
used for linking the sequential symbols.

Note: When the output sequence is enabled, the physical
output is written immediately.

106/248

4

Chapter 8

Logic Symbols

Symbol

Symbol Name

Description

—hyal MHAME

—En W Cut—

Comment

waitsequence

Sequential Wait Symbol. Reads a physical input and
waits until it equals a pre-defined value. This symbol is
meant for short and time critical operations.

Name = Physical input (type = All). The user is prompted
for the symbolic name (In). The input type equals the Val
input type. The connection is made to a physical micro
controller pin or register and is invisible.

Val = The comparison value.

En type = Boolean. When true the physical input is
continuously read until the physical value equals the Val
input.

Out type = Boolean. A copy of the En input. This output is
used for linking sequential symbols.

Note: When the wait sequence is started, all normal
execution process are halted. The physical input is read
continuously until it equals the Val input. Only the interrupts
are still active. The watchdog is re-loaded.

8.3 Logic Symbols

Logic symbols perform logical functions essential to most programs. With these functions, you
can control a program’s path, and depending on whether the logical condition is satisfied or
not, divert the application into different subschemes or subdiagrams.

Symbol

Symbol Name

Description

%

and2

Two-value binary AND function symbol with type
inheritance.

Z=AANDB

A type = Any type (BIT..LONG)
B type = Any type (BIT..LONG)
Z type = The largest A or B type

Note: ANDing a BIT-type value and a WORD-type value is
not allowed.

|
o

and3

Three-value binary AND function symbol, only
applicable to BIT-type values.

Z=A AND B AND C

4

107/248

Logic Symbols

Chapter 8

W
o
“H-
e

|

Symbol Symbol Name Description

Four-value binary AND function symbol, only applicable
to BIT-type values.

—A Z=A AND B AND C AND D

_E'&E i and4

—C

—D
Six-value binary AND function symbol, only applicable
to BIT-type values.

-4 Z=A AND B AND C AND D AND E AND F

—B

—E&z - andé

—
Eight-value binary AND function symbol, only applicable
to BIT-type values.

— Z=A AND B AND C AND D AND E AND F AND G AND H

—C

—D&E - ands

—E

—F

—G

—H
Change Detection Symbol. An output pulse is generated
when the input value changes.

change

IN type = Any type (BIT..LONG)
OUT type = BIT

108/248

4

Chapter 8

Logic Symbols

dff
pdff

Symbol Symbol Name Description
D Element Symbol. D flip-flop symbol with multiple-type
data input. D input is clocked in on a rising edge on the C
—D 0 input.

D input type = Any type (BIT..LONG)
C input type = BIT
Q, Q output types = same as D

When in the persistent (non volatile) library this symbol
(named pdff) shows an “M” in its design.

dff-clr

D Element with Clear Symbol. D flip-flop symbol with
multiple-type data and clear input. D input is clocked in on
arising edge on the C input. The D flip-flop is cleared when
Clr is high.

D input type = Any type (BIT..LONG)
C input type = BIT
Q, Q output types = same as D

dlatch

D Latch Symbol with multiple-type data input. D input is
clocked in when C input is high.

D input type = Any type (BIT..LONG)
C input type = BIT
Q, Q output types = same as D

xor

Two-value binary Exclusive OR function symbol with
type inheritance.

Z=AXORB

A type = Any type (BIT..LONG)
B type = Any type (BIT..LONG)
Z type = The largest A or B type

Note: XORing a BIT-type value and a WORD-type value is
not allowed.

init

Initial Loop Symbol. Output TRUE only during the first
pulse after reset.

Out type = BIT

4

109/248

Logic Symbols Chapter 8
Symbol Symbol Name Description
Multi-type binary Inverter Symbol.
Z=NOTA
inv A type = Any type (BIT..LONG
— 4 1 = yp y type ()
Z type = A type
Jk Flip-flop Symbol. Values are:
a k J K Q Q
—= |k 0 X X Q1 Q1
= ! 0 0 Q1 Q1
— .
oA ! 1 0 1 0
jkff ! 0 1 0 1
! 1 1 toggl e
Where:
I = rising edge
X = don’t care
Q 1 = previous value
One-loop Delay Symbol. The output is the previous value
of the current input.
-1 loopdel In type = Any type (BIT..LONG)
—=s L _
Out type = In type
One-selection Input Multiplexer Symbol. If the 0/1
selection input value is 0, Out takes the input O value.
—los Otherwise Out takes input 1 value.
— 0/1 type = BIT
_a mux1 0, 1 type = Any type (BIT..LONG)
Out type = The largest 0 or 1 type
Qut—
—1
110/248 [yl

Chapter 8

Logic Symbols

Symbol

Symbol Name

Description

Two-selection Input Multiplexer Symbol. Values taken

by Out are shown in the following table:
] D} 0 Sel bit 0 Sel bit 1 out
—1Jd 3 0 0 | nput 0 val ue
1 [1 0 I nput 1 val ue
1y mux2 0 1 I nput 2 val ue
1 1 I nput 3 val ue
— 1 Out—
15 Sel 0/1 type = BIT
0, 1, 2, 3type = Any type (BIT..LONG)
— 3 Out type = The largest 0, 1, 2, or 3 type
Two-value binary NOT AND function symbol with type
inheritance.
— A Z = NOT(A AND B)
A type = Any type (BIT..LONG
7P nand?2 yp y type ()
B type = Any type (BIT..LONG)
] B Z type = The largest A or B type
Note: NANDing a BIT-type value and a WORD-type value
is not allowed.
Three-value binary NOT AND function symbol, only
applicable to BIT-type values.
_ﬁ Z= NOT (A AND B AND C)
] B&Zl nand3
Four-value binary NOT AND function symbol, only
applicable to BIT-type values.
— A Z=NOT(A AND B AND C AND D)
| [
B&Z nand4
— D

4

111/248

Logic Symbols Chapter 8
Symbol Symbol Name Description
Six-value binary NOT AND function symbol, only
A applicable to BIT-type values.
Z=NOT(A AND B AND C AND D AND E AND F)
—E
— [
C&Z nand6
—D
—F
Eight-value binary NOT AND function symbol, only
—Ia applicable to BIT-type values.
Z=NOT(A AND B AND C AND D AND E AND F AND G
—E AND H)
—
| ™.
D&Z nand8
—E
—F
— =
—H
Two-value binary NOT OR function symbol with type
inheritance.
— A Z = NOT(A OR B)
}}1 7. o012 A type = Any type (BIT..LONG)
B type = Any type (BIT..LONG)
—E Z type = The largest A or B type
Note: NORing a BIT-type value and a WORD-type value is
not allowed.
112/248 [yl

Chapter 8

Logic Symbols

Symbol Symbol Name Description
Three-value binary NOT OR function symbol, only
applicable to BIT-type values.
— A Z=NOT (AOR B OR C)
—F }}122.. nor3
—C
Four-value binary NOT OR function symbol, only
A applicable to BIT-type values.
] Z=NOT(AORBORCORD)
— .
}}‘IZ nor4
—C
— D
Six-value binary NOT OR function symbol, only
A applicable to BIT-type values.
T Z=NOT(A OR B OR C OR D OR E OR F)
—E
— e
C })’IZ nore
—D
—E
—F

4

113/248

Logic Symbols

Chapter 8

Symbol

Symbol Name

Description

Eight-value binary NOT OR function symbol, only
applicable to BIT-type values.

Z=NOT(AORBORCORDOREORFORGORH)

A
B
-
| e
D }}12 nor8
—E
—F
— =
—H
Two-value binary OR function symbol with type
inheritance.
—A Z=AORB
))1 . oro A type = Any type (BIT..LONG)
B type = Any type (BIT..LONG)
—B Z type = The largest A or B type
Note: ORing a BIT-type value and a WORD-type value is
not allowed.
Three-value binary OR function symbol, only applicable
to BIT-type values.
— A Z=AORBORC
= })/I 7l or3
—
Four-value binary OR function symbol, only applicable
A to BIT-type values.
] Z=AORB OR COR D
T B }}12 T or4
—C
— D
114/248 [yl

Chapter 8

Logic Symbols

Symbol

Symbol Name

Description

}>‘|Z

mom oy e

or6

Six-value binary OR function symbol, only applicable to
BIT-type values.

Z=AORBORCORDOREORF

T o nmoo @ >
A
™

or8

Eight-value binary OR function symbol, only applicable
to BIT-type values.

Z=AORBORCORDOREORFORGORH

edge

Rising Edge Detector Symbol. A rising edge on input
causes an output pulse to be generated.

In type = BIT
Out type = BIT

srff
psrff

Set/reset Flip-flop Symbol.

A high level on S causes output Q to be set to 1 (Q = 0)
A high level on R causes output Q to be setto 0 (Q = 1)
All types = BIT

When in the persistent (non volatile) library this symbol
(named psrff) shows an “M” in its design

4

115/248

Time Related Symbols

Chapter 8

8.4 Time Related Symbols

Time related symbols perform functions where the concept of time is required. This range from
requiring a delay period, or a timed operation, to providing an oscillating signal. These
symbols can be used in the main loop and will run off of the default microcontroller timer. They

do not interrupt the main loop.

Time-related symbols use the timer tick to evaluate whether their conditions in exactly the
same way that periodic events do—refer to page 87 for a description of how periodic events

evaluate time.

Symbol Symbol Name Description
Delay Fixed Symbol. An ON or OFF input bit is delayed a
specified fixed time. The TIME attribute format is:
— T T 0k dd: hh: mm ss. xxx
delf where:
dd is the number of days, hh is the number of hours, mmis
the number of minutes, ss is the number of seconds and
XXX is a fraction of a second.
I and O types = BIT
Delay Fixed Off Symbol. An OFF input bit is delayed a
specified fixed time. The TIME value format is:
dd: hh: mm ss. xxx
—= 0T O
delfoff where: _ _
dd is the number of days, hh is the number of hours, mmis
the number of minutes, ss is the number of seconds and
xxX is a fraction of a second.
I and O types = BIT
Delay Fixed On Symbol. An ON input bit is delayed a
specified fixed time. The TIME value format is:
—I T 00— dd: hh: mm ss. xxx
where:
delfon]))
dd is the number of days, hh is the number of hours, nmis
the number of minutes, ss is the number of seconds and
XXX is a fraction of a second.
I and O types = BIT
Delay Variable Symbol. An ON or OFF input bit is delayed
a variable time. The Time input defines the number of clock
—= | -|-|_| TOF delv ticks for the delay (default= 10 ms).
. Time type = WORD
— Time yp
I and O types = BIT
116/248 [yl

Chapter 8

Time Related Symbols

Symbol

Symbol Name

Description

= O—T O

Delay Variable Off Symbol. An OFF input bit is delayed a
variable time. The Time input defines the number of clock

u - delvoff ticks for the delay (default= 10 ms).
— Tirne Time type = WORD
I and O types = BIT
Delay Variable On Symbol. An ON input bit is delayed a
variable time. The Time input defines the number of clock
L T|—| 0 ok delvon ticks for the delay (default= 10 ms).
) Time type = WORD
- ime I and O types = BIT
Fixed Time Oscillator Symbol. The TIME attribute format
name is:
T1T 1 dd: hh: nm ss. xxx
time O where:
comment oscf dd is the number of days, hh is the number of hours, mmis
the number of minutes, ss is the number of seconds and
XXX is a fraction of a second.
Note that the frequency in Hz is = 1/(2*TIME)
O type =BIT
Variable Time Oscillator Symbol. The Time input defines
narme the number of clock ticks (default= 10 ms).
T 1 oscv Note that the frequency in Hz is = 1/(2*TIME)
— Time O TIME type = WORD
comment O type =BIT
Fixed Timer Symbol. Arising edge on the input pin causes
Name a pulse to be generated. The TIME attribute format is:
—1 1 | o dd: hh: mm ss. xxx
(;rgrnnement timf where:

dd is the number of days, hh is the number of hours, mmis
the number of minutes, ss is the number of seconds and
XXX is a fraction of a second.

I, O type = BIT

4

117/248

Mathematical Symbols

Chapter 8

— Tima
comment

L %O—

timv

Symbol Symbol Name Description
Variable Timer Symbol. A rising edge on the input pin
name causes a pulse to be generated. The Time input defines the

number of clock ticks for the pulse (default= 10 ms).
Time type = WORD
I, O type = BIT

8.5 Mathematical Symbols

These symbols perform mathematical functions such as adding, subtracting, multiplying,
dividing, integrating and differentiating, so that you may treat and transform your application’s

signals.

Symbol

Symbol Name

Description

D=
e
‘-__r-#'

add2

Two-value Add Symbol with type inheritance.
OUT =IN1+IN2

IN1 type = WORD

IN 2 type = WORD

OUT type = The largest IN1 or IN2 type

(A +BYZ —

average

Average Symbol. Takes average of IN1 and IN2.
OUT = (IN1 + IN2)/2

IN1 type = WORD

IN 2 type = WORD

OUT type = The largest IN1 or IN2 type

—n

DIFF outl-

differential

Differential Symbol. Takes derivative of input (In) with
respect to time. K is a constant input value.

Out(t)= 2/3*(In(t)-In(t-dt))/dt+1/3*Out(t-dt)
K=2/(3*dt)
Type = depends on input type

div

Divider Symbol.

Q=A/B

R = A%B

A, B type = WORD

Q, Rtype = The largest A or B type

118/248

4

Chapter 8

Mathematical Symbols

Symbol Symbol Name Description
Integral Function Symbol.
i Out(t) = Out(t-dt) + In(t)*dt
i K= 1/dt
INT Ot integral _
Type = depends on input type
— K
Fixed Limiter Symbol. Output value is not larger than the
Val top value, and not smaller than the bottom value.
alielop . | type = WORD
=l OF—— 'm O type = | type
ValueBottom
Variable Limiter Symbol. Output value is not larger than
175 the top value, and not smaller than the bottom value.
b TOP type = WORD
—n — limv BOTTOM type = WORD
In type = WORD
— Eottom O type = In type
Multiplier Symbol.
Z=A*B
— A A, B type = WORD
7 — mul Z type = The largest A or B type
— B
Fixed Scaler Symbol. G = Gain. O = Offset.
Output = Input*Gain + Offset
> 2 _
| FG+0 Output value type = | type
05

4

119/248

Counter Symbols

Chapter 8

Symbol Symbol Name Description
Variable Scaler Symbol. G = Gain. O = Offset.
| Output = Input*Gain + Offset

| type = WORD

o rFe+0k scalerv Output value type = | type

— 0
Two-value Subtractor Symbol with type inheritance.
OUT =IN1 - IN2
IN1 type = WORD

sub2

IN 2 type = WORD
OUT type = The largest IN1 or IN2 type

8.6 Counter Symbols

Counter symbols let you count the iterations of either a fixed or variable signal.

Symbol Symbol Name Description
Counter symbol with fixed initial value.
A rising edge on the Up input pin causes the counter to be
" incremented by one.
A rising edge on the Dn input pin causes the counter to be
—=1n decremented by one.
5o vall- :e?lt%hollevel on the Clr input pin causes the counter to be
countf . . .
— Iy Frrob A rising edge on the Pr input pin causes the counter to be
pcountf loaded with the specified value (via the value dialog box).
—pFr 70 When the counter output value Val reaches 0 the Zero
2SINT output value = 1.
a3 Up, Dn, Clr, Pr and Zero types = BIT
Val type = WORD
When in the persistent (non volatile) library this symbol
(named pcountf) shows an “M” in its design
120/248 172

Chapter 8 Conversion Symbols
Symbol Symbol Name Description
Counter symbol with variable initial value.
A rising edge on the Up input pin causes the counter to be
.y incremented by one.
F A rising edge on the Dn input pin causes the counter to be
—=0n Wl decremented by one.
— CIr Zero A high level on the Clr input pin causes the counter to be
setto 0.
= Flr countv L. . .
A rising edge on the Pr input pin causes the counter to be
— Pval pcountv loaded with the Pval input value.
SINT When the counter output value Val reaches 0 the Zero
output value = 1.

Up, Dn, Clr, Pr and Zero types = BIT
Val and Pval types = WORD

When in the persistent (non volatile) library this symbol
(named pcountv) shows an “M” in its design

8.7 Conversion Symbols

Conversions symbols allow you to convert between different data types within the application.

Symbol

Symbol Name

Description

— EO
— E1
— B2
— B3 W
—E4
—E&
—EE
— EBY¥
YLIBY'TE

bpack

8-bit to 1-byte Packer Symbol. Enables you to construct
a byte out of eight bits.

BO to B7 type = BIT
W type = WORD

4

121/248

Conversion Symbols

Chapter 8

Symbol Symbol Name Description
1-byte to 8-bit Unpacker Symbol. Enables you to unpack
a byte into eight (or less) bits.
E? — W type = WORD
oo BO to B7 type = BIT
—w B2— bunpack
B4 —
BE —
BE —
BY —
Multi-purpose Comparator Symbol.
if B>A, the B>A output takes bit value =1
I B e if B=A=C, the B=A=C output takes bit value =1
comp if B<C, the B<C output takes bit value =1
PR A, B, C types = WORD
— i B=C —
output types = BIT
Type conversion symbol that enables you convert a BIT
type to a WORD type or a WORD type to a BIT type.
— 9BIT — convert IN type = BIT..LONG
OUT type = BIT..LONG
Shift register symbol.
narme If Clr = 1, the shift register is cleared
d e If D/U = 0, the shift direction is down
If D/U = 1, the shift direction is up
- DU Cr A rising edge on Cin causes the In input value to be loaded
—= 7N Ot = shift into the shift register.
. A rising edge on Shift triggers the shift operation in the shift
— In pshift)
register.
—=Shift The C output is the last bit shifted out (carry).
SIMT ClIr, D/U, Cin, Shift, C type = BIT
comment In, Out type = Any type (BIT..LONG)
When in the persistent (non volatile) library this symbol
(named pshift) shows an “M” in its design
122/248 172

Chapter 8

Conversion Symbols

Symbol Symbol Name Description
Word Merge Symbol. Symbol used to build a word out of
a high byte and a low byte.
—H All types = WORD
WY wmerge
—L
INT
Word Pack Symbol. Symbol used to pack sixteen bits into
one word.
—En
—E1
— Ez
—Ea
— B
—E3
— B
i M wpack
— B3
— B3
— B0
— BE11
— E12
— E12
— Bla
— E15
UINT
Word Split Symbol. Symbol used to split an input word
into a high byte and a low byte.
EYTE All types = WORD
wsplit
— W
L
_LIEYTE

4

123/248

Table Symbols

Chapter 8

Symbol Symbol Name Description
Word Unpack Symbol. Symbol used to unpack a word into
sixteen bits.

Bl —
Bl —
B2 —
El—
Fad —
ES—
BE—
TP I wunpack
B —
pal
B0 —
B11—
E12—
B11—
Eld —
El1a—

8.8 Table Symbols

Table symbols allow input values to be converted to output values according to a table of
correspondence which you either input directly, or import from an ASCII file.

Note: Take care to choose the data input type (I type) carefully as some types use
more of the microcontroller's available RAM than others.
Symbol Symbol Name Description
Index table Symbol. The input value is used as an index
INDEX in the table. The table is stored as an ASCII file defined by
the TABLE attribute. Each table begins with a default value
— | Qi _ that is used when the input value is out of range. To create
indextable or change a table, double-click the symbol.
SINT
tab] | type = WORD
apie Q(I) type = Any type (BIT..LONG)
See also: pitable (persistent index table)
Lookup Table Symbol. The input value is the search
T argument to find the output value. The table is stored as an
ASCII file defined by the TABLE attribute. Each table
— Q“]‘ - begins with a default value thatis used when the input value
lookuptable is out of range. To create or change a table, double-click the
SINT symbol.
tahle | type = WORD
Q(I) type = Any type (BIT..LONG)
124/248 [yl

Chapter 8 Power Management
Symbol Symbol Name Description

Ramtable Symbol. Converts the input to a non-linear
output value, found within the table. The inputis used as an

—Dats index to address the constant value from the table. You can

ramtable change the table by clocking in the Data input at the

—In Ot - (volatile RAM) position pointed to by the In input.
Data, In type = WORD

—= Clock BlockSizelnUnits = size of the table.

SINT

— Data M
—In Cut —
—1= Clock

ST

pitable
(persistent library
only)

Index table symbol for a table stored in persistent (non
volatile) memory. The input value is used as an index in the
table. You can change the table by clocking in the Data
input at the position pointed to by the In input.

Data, In type = WORD

Q(l) type = Any type (BIT..LONG)

See also: indextable

8.9 Power Management

Power management symbols allow you to control the power consumption of the
microcontroller by changing between normal, slow, stopped and wait modes.

Symbol Symbol Name Description
slow Slow mode symbol. Sets the microcontroller clock
frequency lower. Refer to your target microcontroller’s
datasheet for information on controlling its clock frequency
@ settings.
stop Stop mode symbol. Sets the microcontroller to standby.

Requires a reset or external interrupt to wake up the
microcontroller.

125/248

Constant Symbols

Chapter 8

Symbol

Symbol Name

Description

wait

Wait mode symbol. Sets the microcontroller to sleep
mode. The microcontroller can be woken up by any
interrupt.

8.10 Constant Symbols

Constant symbols are useful when you

need to compare a signal value to a fixed value.

Symbol

Symbol Name

Description

Constant bit symbol. Values 0 and 1 are allowed.
OUT type = BIT

Y0 —

r?o | constb
Constant word symbol. The value can be specified in the
range -2147483648 to 2147483647.
constw Values can be in decimal, binary, hexidecimal or octal

types. The value is a decimal value by default.
OUT type = WORD (determined by the value specified)

8.11 State Machine Symbols

State machine symbols are used to create state machines for the application. State machine
symbols define and control the progression of, the various states of your application.

Symbol Symbol Name Description
Initial state symbol in a state machine. Every state
machine must have one and only one stateinit symbol.
stateinit This symbol can only be connected to condition or state
- pstateinit symbols.
When in the persistent (non volatile) library this symbol
(named pstateinit) shows an “M” in its design .
126/248 [yl

Chapter 8

State Machine Symbols

Symbol

Symbol Name

Description

state

State symbol used within a state machine. Can be used in
conjunction with a stateout symbol within a scheme. See
also stateout. The state symbol can only be connected to
condition, state or stateinit symbols within a state
machine.

condition

Condition function symbol for state machines.This
symbol can only be connected to state or stateinit symbols
in state machines.The NAME attribute is used to make a
connection with a statein symbol in schemes. See also
state.

statein

State input symbol. This symbol connects a BIT variable
to a condition symbol within a state machine. The
connection is performed by assigning the condition and
statein symbols the same name.

In type = BIT

stateout

State output symbol. This symbol extracts a state from a
state machine and converts it to a BIT variable. The
connection is performed by assigning the state and
stateout symbols the same name. See also state.

Out type = BIT

4

127/248

Hierarchical Sheet Symbols

Chapter 8

8.12 Hierarchical Sheet Symbols

Hierarchical sheet symbols are used to represents subschemes and their inputs and outputs.

Symbol

Symbol Name

Description

Iabeb>—

portin

Portin Symbol. This symbol is used to connect the
subscheme symbol pins from the parent scheme with the
subscheme nets. The LABEL attribute is used to make the
connection between the subscheme symbol pin and this
symbol.

—> label

portout

Portout Symbol. This symbol is used to connect the
subscheme symbol pins from the parent scheme with the
subscheme nets. The LABEL attribute is used to make the
connection between the subscheme symbol pin and this
symbol.

—In2
filename

SSSX_Y

Subscheme symbol, with x input pins and y output pins.
The symbol column shows an example of a subscheme
with 2 input pins and 1 output pin. The SCHEME attribute
defines the filename of the subscheme. portin and portout
symbols are used to make the connection between the
actual subscheme and the pins of the subscheme symbol.
Several types of subscheme symbols are available in the
main library:

sss0_1,sssl1 0,sss1 1,sssl _2,sss2_1, sss2_2.

8.13 Title Symbols

The title symbol is used to enter information about the scheme you are working on, for

archiving purposes.

Symbol

Symbol Name Description

Title block used for archiving

purposes. There are numerous

Ere;:eim?lbm: - 5:;: 5 fields that you can enter values
Company. 7 fitle for to record mforr_natlon about
Address: 7 the scheme, the circumstances
City: ? of its creation and the project.
Country: 7
Initial Date: - |Page: 1 |Df:

128/248 172

Chapter 9 Overview

9 ANALYSING AND GENERATING YOUR APPLICATION

9.1 Overview

ST-Analyser is a built-in tool that analyses your application for errors and converts it into either
ST6 or ST7 code, depending on the target microcontroller. If any errors are encountered
during the analysis and code generation, online information is provided to help you locate the
error and take corrective action.

When you execute the analysis and compile, ST-Analyser analyses the current project by
creating the netlist and cross references, then analysing and generating the final code. During
this process, all project schemes are checked for connections between symbols, 1/O
assignments and variable types, before generating the source code. Providing no fatal errors
are encountered, ST-Realizer generates a non-compiled ST macro-assembler language
(.asm) file from the scheme.

ST-Analyser then generates the binary ST code. This process runs the STMicroelectronics ST
assembler. Depending on whether or not you included the ROS (see Section 2.3 on page 5
and Section 5.3.4 on page 63), a file with extension *.hex or *.0bj respectively is generated for
ST6, or with extension *.s19 or *.obj for ST7. A *.hex (or *.s19) file can be directly loaded into
an ST MCU while you must link a *.obj file with another program.

When the analysis process has been successfully completed, a report file is generated. This
report file gives information about the designation of I/O pins, a list of the variables used by
type and the memory space required by the application.

If any messages are generated during the analysis and compile, you can view them and trace
them back to their origin.

ST-Realizer includes hardware-specific characteristics, which you must configure prior to
analyzing and compiling your code. They cover general hardware, memory, and peripheral
information. See Section 5.3 on page 62 for further details.

9.2 Changing the Compile Options

Before you analyse and compile schemes using ST-Realizer, you can set the following
compilation options:

e Whether or not you want to generate source code.
« Whether or not you want to invoke the assembler.
« Whether or not you want to generate final hex code.

e Whether or not you want to include project data (this can be useful for version control).

Whether or not you want to generate code that uses a constant sampling time (you must

172 129/248

Changing the Compile Options Chapter 9

choose this option if your scheme includes the mathematical symbols: integral and
differential). If you choose this option, the duration of the main loop is constant.

 The frequency of the base clock (tick) for the timer symbols. By default this is 0.01
seconds (10 milliseconds).

To generate, in a single run, executable code that can be embedded in an ST device, you
must use the default settings.

Each ST device needs its own assembler and target compiler to create the final executable
file. These elements are standard components of the ST-Realizer system.

To view or set the compile options:
1 Onthe main menu, click Options, then Project...

The Analyse options dialog box opens, with tabs for you to

Cptions K= .
select daughter dialog boxes.

Eroject...

Ermvironrment...

2 The Code Generation dialog box is the first of the tabs.

It you deselect the
Generate source code (e generation || Timing | Coe opfmeaion |

option, the Invoke

assembler and Generate ¥ Generate source code

final hex code options will ¥ Irvoke assembler

a|so be dese|ected’ as ¥ Generate final hex code

these are suboptions of the
code generation process.
They control, respectively,
the generation of your
application in ST6 or ST7
assembler code (the
creation of the . asmfile), ok | Cancel |
and the creation a binary
(hex) version of the code (a
. hex, . obj or. s19 file, depending on the microcontroller as described on page 129).

¥ Include project data in source code

4

130/248

Chapter 9

Changing the Compile Options

N/ Tip:

—

The final option in

Note that you must generate the assembler version before you can produce the
binary (hex) code. The first three options must be selected in order to produce
the binary (hex) code you need to load your application into your microcontroller
using a programming tool.

the Code generation dialog box is to include project data in the source

code. If this option is enabled, the Analyse report will record how many times Analyse has
been performed, which is useful in keeping track of different project versions.

Once you have s

elected the options you wish, click OK.

3 The second tab opens the Timing dialog box.

B Analyse options

=]|

Code generation T

Timing i| Code optimisation]

Realizer uses timer

To enzure that the

Fenerate a timer tick after ||:|_|:||:|'| IEC,

uze a fived proceszing cycle time.

[Fixed processing cycle time

One procezsing cypcle must be finizhed in I 1 timer tickz

tick fior timing.

proceszzing hime of a project iz always the zame

] | Cancel |

Every ST6 or ST

7 microcontroller has a timer, called Timer 1 (ST6) or Timer A (ST7),

which (if there are either time-related symbols or events in the application) is used as the
base clock to measure out units of time called “timer ticks”. Timer ticks are the smallest

increment of time
the “timer tick” or

that a timer can count. In this dialog box, you may choose the value for
base clock unit used in the application.

The minimum value that you can enter for the timer tick depends on the target hardware

device. The table

4

below summarizes the minimum and maximum values for the timer tick

131/248

Changing the Compile Options Chapter 9

for each family of microcontroller.

ST6 (8 MHz crystal) ST7 (16 MHz crystal)
Minimum
Timer Tick 100 ps 75 s
Maximum 48 000 pis 60 000 s
Timer Tick H H

Timer ticks may also be used to count the number of main loop cycles. The time it takes to
perform a main loop cycle is called the Processing Cycle Time. By default, the
processing cycle time is variable, with the shortest (fastest) possible processing cycle
time being 1 timer tick. However, in this dialog box, you can choose to fix the processing
cycle at a specific number of timer ticks of your choosing, by selecting Fixed processing
cycle time, and then specifying the number of timer ticks that you wish to correspond to a
single processing cycle.

Note: Timer ticks (and the code needed to generate them) are ONLY created if you
use either time-related symbols, or events that require a timer, in your
application. Otherwise, the processing cycle time will be variable.

If your application uses any symbols or events that require the measurement of time (the
timer symbol, for example) the default timer (Timer 1 or Timer A) will be used to measure
that time using timer ticks. In addition, all time-related symbols or events (such as a
periodic event) that are based on the timer tick, can also be controlled using the default
timer. However, if you require a further timer that will NOT be based on the timer tick (as
is the case, for example, when you wish to generate a pulse width modulated (PWM)
signal), you will have to enable one of the peripheral timers on the microcontroller (if it
exists—make certain that the microcontroller you have chosen can provide all of the
peripherals you require).

To give an example of how the timer tick is used, imagine that you decide that you set the
value of the timer tick at 0.01 seconds. When you start running your application, the
default timer (Timer 1 or Timer A) will count out the number of ticks (each tick being equal
to 0.01 s). At the beginning of the second main loop cycle, the total number of timer ticks
that have elapsed during the first main loop cycle is recorded (i.e. the number of elapsed
timer ticks is written to a variable called “rtick”). This recorded value is used to evaluate all

1. Some time-related events use the timer tick differently to evaluate elapsed time more
precisely. For more information, refer to “Timed interrupts” on page 88.

4

132/248

Chapter 9 Executing the Analysis and Compile

second main loop cycle. Simultaneously, the timer resets and begins counting the number
of ticks that elapse during the running of the second main loop cycle. At the beginning of
the third main loop cycle, the number of timer ticks that have elapsed during the running
of the second main loop cycle is recorded, and this recorded value is used during the
execution of the third main loop cycle.

If you choose to fix the processing cycle time, the number of timer ticks elapsed during
each main loop cycle remains constant.

!, Tip: Please note that there is one golden rule when it comes to timers—the quantity

i

— — of time that you are measuring (either using a timer symbol or a periodic event)

must be substantially greater than one tick. Because these time-related
functions are based on the timer tick, they cannot measure times less than the
value of one tick. Furthermore, the closer the value of the measured time period
is to the value of one tick, the more inaccurate the timer function will be (refer to
“Periodic Events” on page 87 for details on why this is).

Once you have entered the Timer options you wish, click OK.
The last tab opens the Optimisations dialog box.

The options in this dialog box are not currently available in this version of ST-Realizer II.
However they are implemented in Realizer Gold which can be obtained from Actum
Solutions.

9.3 Executing the Analysis and Compile

When you execute the analysis and compile, ST-Realizer performs the following tasks:

Creates a netlist of all the schemes in the project.

Creates the cross references between all schemes in the project.
Analyses the logical functionality of the schemes for consistency.
Generates the ST code.

Transfers the ST code to the assembler for the chosen target hardware. This assembler
generates the final executable code that is transferred into the target ST.

Scans the map file and generates a report file.

You may execute the ST-Analyser from any of the project windows.

4

133/248

What to Do if there are Errors Found during Analyse

Chapter 9

e In the Project menu, simply click Analyse. The ST
Analyser Status window will open and you will see
the Analyse function checking your application step-

by-step.

ST Analyser Status |

Status: Ma ermars.

Creating Metlist 0k,
Creating Cross Reference]
Analyzing 0K
[Generating Final Code 0k,
Esecuting Target Compiler 0k,
Creating Report File 0k,

SOl Options Tools

[se...

Open...
Close

il

Hardware select...
Hardware seftings...

Frint

« When the analyse process has finished successfully (with no errors), click OK at the

bottom of the ST Analyser Status window.

A new window will appear on your screen, entitled Analyser messages. It will simply

report the date and time and that “no errors” were found.

9.4 What to Do if there are Errors Found during Analyse

1 Iferrors are found, the ST Analyser Status window will show a “fail” message and give the

number of errors found. Click OK.

2 A descriptive list of the errors will be shown in the Analyser messages window which then
opens at the bottom of the scheme window. You can view each error by either double-

clicking on its message in the window, or by clicking the previous message G‘- or next

134/248

4

Chapter 9 Viewing and Tracing Generated Messages

-+
message Ld icons on the toolbar. The area of the scheme where the error occurs will

appear in the scheme window.

EH Analyser messages

Erar 1L Input pin of symbal statein iz not connected to a wire, An input pin must alwavs be connected ba a wire, othenwize the valye of thig input pins not defined,
Error [B09]: A state input Start is not connected to a net. An input pin must always be connected to a net.

Wwiarning (2] Mot all symbuols are analpsed, total spmbols: 44 analyzed symbols 40

Meszage : 5T Analyzer [Beta) results of Mon Apr 12 13:39:40 1939 : 1 Warning and 2 efors.

3 Correct the errors and re-compile the application by clicking on Analyse under the Project
menu.

9.5 Viewing and Tracing Generated Messages

The information in the Analyser messages window is saved after you run ST-Analyser and
can be displayed at any time:

G Yiew Project Options Tools
1 Click , Praoject

Eepart
or:

Analyzer me

Select Analyser messages in the View menu: Fiefesh view Bifhar
| Fwreitle attrbutes

The Analyser messages window for the last analysis opens.

2 Double-click any displayed message to view its origin.

9.5.1 Viewing the Analyse and Compile Report

Once you have analysed your scheme and compiled your [View Erciect Options Tooks
program code, you can view the report generated by ST-Realizer | Project

during the analysis and compilation process. This report provides
you with useful information such as the input and output Analyzer messages
connections you made, and gives an overview of how much
memory is used by the application.

Refresh wiew Chrl+F
Invigible attributes

To see the report, on the View menu, click Report. An example of
an application report is shown on the following pages.

135/248

4

Viewing and Tracing Generated Messages Chapter 9

ST72212@& Realizing Unit (V4.00) (c) 1990-98 Actum Sol utions

Report file of project C \Program Fil es\ST-Realizer\Exanpl es\ Heati ng\ heati ng. r pf
Scheme Versi on : 1.00

Report tinestanp : Wed Apr 14 13:14:40 1999

Anal yze results : No errors

C. \Program Fi | es\ ST-Real i zer\ Exanpl es\ Heat i ng\ heati ng. sch
Schene: C.\Program Fil es\ ST- Real i zer\ Exanpl es\ Heating\Filter.sch
Event: Tined interrupt 0.01 Sec.

ST72212& (DI L28) connection overvi ew

Pin Nane Alternative nane Type |I/0O Descri ption
1: RESET (BIT Input), Active | ow
2: OSCin (), Gscillator In
3: OSCout (), Gscil l ator CQut
4. PB.7 SS (BIT Input), Not connect ed
5: PB.6 SCK (BIT Input), Not connect ed
6: PB.5 M SO (BIT Input), Not connect ed
7: PB.4 MOSI (BIT Input), Not connect ed
8: PB.3 OCMP2_A (BIT Input), Not connect ed
9: PB. 2 | CAP2_A (BIT Input), Not connect ed
10: PB.1 OCMP1_A (BIT Input), Not connect ed
11 PB.0 Heatingl sON (BIT CQutput), Push- pul | out put
12 PC.5 Tenperature (UBYTE | nput), 8 bit anal og input
13 PC. 4 Setpoint (UBYTE | nput), 8 bit anal og input
14 PC.3 I CAP2_B (BIT Input), Used by the application
15 PC.2 CLKOUT (BIT Input), Not connect ed
16 PC.1 OCw1l_B (BIT Input), Used by the application
17 PC.0 ICAP1L B (BIT Input), Used by the application
18 PA. 7 (BIT Input), Not connect ed
19 PA. 6 (BIT Input), Not connect ed
20 PA. 5 (BIT Input), Not connect ed
21 PA. 4 (BIT Input), Not connect ed
22 PA. 3 (BIT Input), Not connect ed
23 PA. 2 (BIT Input), Not connect ed
24 PA. 1 (BIT Input), Not connect ed
25 PA. 0 (BIT Input), Not connect ed
26 TEST (), Test nmode pin
27 Vss (), Ground
28 vdd (), Power Supply
Har dwar e connecti ons:
Synbol i ¢ name H W naneDescri pti on Conmment

Pilot LED ON
Tenperature in 1/10 degrees Cel sius
Tenperature (in 1/10 degrees Cel sius

HeatinglsON PB.0O Push-pul | out put
Set poi nt PC.4 8 bit anal og i nput
Tenperature PC.5 8 bit anal og i nput

136/248

4

Chapter 9 Viewing and Tracing Generated Messages

Regi st er connecti ons:

Symbol i ¢ nanme H W nanmeDescri pti on | Comment
ARCP TBOCLLRTi mer B out put conpare 1 |ow re| PunpSpeedControl

Li st of all used peripherals:

TI MERB settings:

Prescal er value = 1/2

Qutput level 1 = Low

Qutput level 2 = High

Captl transition = Rising

Capt2 transition = Falling

Qut put Conpare 1 = Enabl ed

Qut put Conpare 2 = Disabl ed

Forced Qut put Conpare 1 = Disabled
Forced Qut put Conpare 2 = Disabl ed
Initialise conpare register 1 = 000H
Initialise conpare register 2 = 100H
PWM = Enabl ed

One Pul se Mbde = Di sabl ed

Vari abl e overvi ew

Total used bits . 13
Total used events
Total used unsigned bytes 7

Total used signed bytes

Total used unsigned integers : 18
Total used signed integers 3
Total used | ongs

Menory overvi ew.

Total used RAM . 63 byte (0080H, 0081H >00BEH)
Total used ROM : 892 byte (EOOOH->E37BH) of FFDFH
Note: Note that if you add up the RAM memory used in the variable overview and

compare it with the value shown in the memory overview, there is a disparity.
This is because the Total RAM includes memory for internal variables used by
ST-Realizer.

137/248

4

Printing Reports

Chapter 9

9.6 Printing Reports

To print a report:

1 Display the report.

2 Select File2Print in the main menu bar.

3 Continue the normal printing dialog and click OK when ready.

138/248

4

Chapter 10 Working with Simulation Environment Files

10 SIMULATING YOUR APPLICATION

Once you have designed and analysed your application, you can use ST-Simulator to
simulate its behavior, generate and view input signals, monitor signals that are generated by
your application, and fine-tune it if necessary. The principal tasks involved in simulating an
application are:

e Creating a simulation environment file, which defines the environment in which you'l
simulate your application.

e Adding adjusters to your simulation environment file, which enable you to view and control
the value of the input signals to your application.

« Adding probes to your simulation environment file, which enable you to view the signals
that are generated by your application.

e Running the simulation.

You can also record the values generated by adjusters and read by probes while a simulation
is being run. ST-Realizer records this information in Log files. This information can be useful
for viewing the exact adjuster and probe values at any given time during the simulation.

This section explains how to perform these tasks.

10.1 Working with Simulation Environment Files

Each project you want to simulate must have its own simulation environment (. sef) file
before it can be simulated. A simulation environment file contains copies of the project
schemes with adjusters and probes added where required. You can save and reuse
simulation environment files as you can do with any other type of file.

10.1.1 Creating a New . sef File

The first step in simulating your application is to create an associated simulation file.
Simulation files are based on schemes, and are created by ST-Simulator.

To create a new simulation environment file:
1 If you are in ST-Realizer, make sure that the project you wish to simulate is open.

2 Click Simulator on the ST-Realizer Tools
menu.

Il incow Help

Sirmulator

ST-Simulator will open in a separate window.

Symbaol Editor Cirl+F11

4

139/248

Working with Simulation Environment Files

Chapter 10

3

In ST-Simulator, select the
File menu and click New.

Meswr

Open... Cirl+0

Simulation environment...

Text..

In the cascading menu that Clase
appears, select Simulation Sene s
environment. CHVE G5

by == |

Eritit (5t
Frinter setup...

Exit Alt+F4

The Create a file dialog
box opens, letting you

Create a new file HE

specify the name of your = 2avein | 3 Heating

new simulation Mair. sef
environment (. sef) file.

File name:

Save I

Save az hupe: IEnvirnnments [*.zef]

j Cancel |

Type the name of the .sef file, (heating.sef, for example).

A pin level drawing of the target microcontroller appears
(such as shown at right). Note that where the pins have
been connected to application input/output functions, the
pin hames have been replaced by the function names.

If you double-click on the pin level drawing, you will
open a copy of your root scheme diagram as another
window. You can also open subschemes by double-
clicking on the subscheme symbols.

You can use both the pin level drawing and the scheme
diagrams to help you run the simulation—both views are
useful in evaluating whether your application is running as
you wish.

To see all views at once, under the Window menu,
select Tile.

140/248

ICAP1_B

OCMP1_B

CLEQUT

4

Chapter 10 Working with Simulation Environment Files

You've now created a new simulation environment file for your application. Don't forget to save
your work (see Section 10.1.3 below).

10.1.2 Opening an Existing . sef File

1 If you are already running ST-Realizer, open the IRREl Window Help
Simulator Window by clicking on Simulator on the g - N

Sirmulator

ST-Realizer Tools menu. Symbol Editor Cirl+F11

!, Tip: You can access ST-Simulator directly from Windows by selecting

i

= — Start->Programs 2ST-Realizer II->Simulator.

R

2 Onceyou are in ST-Simulator, select the File menu and click Open.

The Open simulation environment dialog box opens:

Open a file EE3 |

Look in: IaHeating j | Efil BhD EE

heating. sef
M ain. zef

File name: |.| Open
Filez of type: IEnvimnments [*.zef] j Cancel

3 In the list, double-click the name of the . sef file (for example main.sef), then click
Open.

All of the simulation views contained in the . sef file will open (for example, the pin-level
drawing of the target microcontroller, and/or the project schemes). You are free to run or

modify the simulation at will.

141/248

4

Setting, Adjusting and Viewing Input Values Chapter 10

10.1.3 Saving an .SEF File

You should save the modifications you made on a . sef file at regular intervals and, of course,
once you have finished all your work on the file. You may also make a duplicate of an existing
. sef file, under a different filename, if you wish to have several different simulation versions.

To save an . sef file:

* On the File menu, click Save.

To make a duplicate of an existing . sef file:
1 Onthe File menu, click Save as.
The Save file as dialog box opens.
2 Browse to the folder in which you want to create the duplicate file.

3 Typethe new file name in the File namefield, then click OK.

Note: You may save your file as a .WMF (Windows Meta File)-type file. This will
enable you to export the drawing to any word processing or publishing project
file that accepts this format.

10.2 Setting, Adjusting and Viewing Input Values

When you simulate an application, you can set, adjust and view the values input to the
application. This enables you to experiment with and fine-tune your application.

To be able to set, adjust and view input values and types, you connect adjusters to the
appropriate pins and wires in the pin-level and scheme views of your application. ST-Realizer
lets you set four types of adjusters:

« Numeric Adjusters, which display and let you adjust variable values numerically, in
binary, decimal, hexadecimal or octal format

e Sine Wave Adjusters, which generate and let you define analog sine wave signals. They
let you adjust the wave depth and frequency.

e Sqguare Wave Adjusters, which generate and let you define analog square wave signals.
They let you adjust the wave depth, frequency, and duty cycle. The duty cycle is the
percentage of the period in which the signal is at its top value.

e Time Table Adjusters, which let you adjust the value of a variable at specified time
intervals.

4

142/248

Chapter 10 Setting, Adjusting and Viewing Input Values

The following paragraphs describe how to attach adjusters to pins and wires, and how to set
the appropriate input values.

Note: 1. You can only attach one adjuster to each pin or wire.
2. Clicking any object in the schematic causes information on this object to be
displayed in the status bar.

Changing Adjuster or Probe Attributes
If you right-click any type of adjuster or probe (probes are described in Inerease size
Section 10.3 on page 151), a popup menu will open that looks similar to Decrease size
that at right:

Properties. ..

From this menu you may increase or decrease the size of the adjuster by
selecting Increase size or Decrease size.

10.2.4 Setting Fixed Input Values

To set a fixed analog or binary input value, you must attach a Numeric Adjuster to the
appropriate input pin or wire. Numeric Adjusters let you set the value input by the pin or wire
to which it is attached, as well as change the number base that the value is displayed in.

To attach a Numeric Adjuster to a pin or wire:

1 Select the pin or wire to which you want to attach the Numeric Adjuster by clicking
on it.
The pin or wire you choose should be an input pin or wire. For example, select the pins on
the pin-level drawing that you have attached to input symbols in your scheme (refer to
“Connecting Input/Output Symbols to Microcontroller Pins, Ports and Peripherals” on
page 80).

Note: A numeric adjuster has the same type as the pin or wire it is attached to.

0]
2 Click .

4

143/248

Setting, Adjusting and Viewing Input Values Chapter 10

3 Click where you want the Numeric
Adjuster to appear.

The adjuster is now placed in your
scheme and connected to the pin or wire
you selected. In the example at right, we
see that the numeric adjuster has been
connected to the pin called “Setpoint”,
which is also the name of the input

Setpoint

symbol. Note that the numeric adjuster _

shows the name of the pin whose input L<1 <[> [>
the adjuster controls.

OChiP1_B

4 Setthe value input to the pin or wire.

If the pin or wire input is analog, you can change its value BB Change numerie S

by either:

e Clicking the displayed value in the Numeric Adjuster Change the valus
and entering a new value in the Change numeric m
value dialog box, shown at right.

e Clicking the <<, <, > or >> buttons on the Numeric 1] 8 I Cancel |
Adjuster:

Numeric Adjuster Button Action

Decreases the input value by the fast step increment value (see

=< below).

< Decreases the input value by the step increment (see below).

> Increases the input value by the step increment.

>> Increases the input value by the fast step increment value.

e If the pin or wire input is binary, you can change its value by clicking the displayed
value in the Numeric Adjuster icon. The value toggles between 0 and 1.

N/ Tip: You may also open the Change numeric value dialog

— — . . Walue...
— — box to change the value of the numeric adjuster (as +akE
L shown above), by right-clicking the adjuster and Increaze zize
) selecting Value from the popup menu at right. Decrease size
Properties. ..

1441248 V<72

Chapter 10 Setting, Adjusting and Viewing Input Values

If you select the Properties option in the popup menu, a large dialog box will open, entitled
Change numeric adjuster. From this dialog box, you can several numeric adjuster options,
described in Table 5.

B Change numeric adjuster |
Fiadix I Decimal j
WYalue |]
Step | 1
Step fast | 10
W Estended

Cancel |

Table 5 Changing Numeric Adjuster Options

Option Action

Change the number base in which the value is set | Select the appropriate button in the Radix box.
and displayed.

Change the current value of the attached pin or wire. | Enter the new value in the Value field.

Change the increment value of the < and > buttons. | Enter the new value in the Step field.

Change the increment value of the << and >> Enter the new value in the Step fast field.
buttons
Hide or display the <, >, << and >> buttons. Click the Extended check box. When this box is

checked, the buttons are displayed.

4

145/248

Setting, Adjusting and Viewing Input Values Chapter 10

10.2.5 Setting Variable Input Values

To set variable analog or binary input values, attach a Time Table Adjuster to the appropriate
input pin or wire. The Time Table Adjuster lets you set an input value that changes at specified
time periods. Once you have placed a Time Table Adjuster, you can either import data from an
ASCII text file or enter the data directly into the Time Table Adjuster. The following diagram
shows the format of Time Table Adjuster-compatible ASCII files:

ASCII File Contents: Table Values:

5,100 .

25000.150 bime oukpLt

' 1] (0:00;00.0000 1]

600000,75
1 00:00; 00,0005 100
2 00:00:07.5000 1580
3 00:07:00.0000 sl

You can store decimal, binary, hexadecimal or octal information in Time Table Adjusters.
To attach a Time Table Adjuster to a pin or wire:

1 Select the pin or wire to which you want to connect the adjuster by clicking on it.

2 Click

3 Click where you want the adjuster
to appear.

The adjuster is now placed in your ;
scheme and connected to the pin or wire MISD
you selected. In the example at right, we MOs!

see that the time table adjuster has been OChPZ
connected to the pin called “Setpoint”, ICAP2_A
which is also the name of the input OCMPI_A
symbol. Note that the time table adjuster Heatinglz 0N

shows the name of the pin whose input s S
the adjuster controls. Setpo OCMP1_B

ICAPZ_B CLEOUT

146/248

4

Chapter 10 Setting, Adjusting and Viewing Input Values

4 To set the table of values to be input to the pin or wire:
» Double-click the time table adjuster,

|ncreaze size
or, 1 :
Decrease zize

* Right-click the time table adjuster, and select Properties in the _
popup menu. Properties...

The Change time table adjuster dialog box opens, showing a table with one row, and two
columns—the first for the time, and the second for the input value. From this dialog box,
you can either import them from an ASCII file or enter the table values directly (see Table
6 for instructions).

[Change time table adjuster |
timne: output |
1] (0 00 00,0000 0.000

Impart.. | (] I Cancel

Table 6 Entering and Editing Time Table Values

Double-click the entry you want to change, then edit its

To change the value of a table cell value in the Change value dialog box.

Press the Insert key on your keyboard, then enter the

To Insert a new table row of cells. .
new time and value.

Import values from an existing file. Click Import, and choose the file you want to import.

Note: The smallest possible time interval between two entries in the table is 0.0001
seconds. However, make certain that the smallest possible interval that you
enter is superior to the value of the base clock timer tick (refer to page 131).

4

1471248

Setting, Adjusting and Viewing Input Values Chapter 10

A ‘ / Tip: Note, in the example shown below, that in addition to being able to view the
— — table of values at left, you can also see a graphical representation of the time-
output values in the right-hand area of the dialog box. When you select one of
the values in the table, the point in the graph corresponding to the value pair to

which the selected value belongs, will turn red.

B Change time table adjuster |

fime: oLtput |

1] (0 00 00,0000 1]

1 (0 00 00,0000 1]

2 (0 00 Qo 000 0

3 (0; 00 02,0000 10

4 (000040000 1]

5 (0: 00: 06, 0000 20 .
E R

[mpat... |] 4 I Cancel

10.2.6 Setting Sinusoidal Input Signals

If you wish to the input signal to vary sinusoidally, you must attach a Sine Wave Adjuster to
the appropriate input pin or wire. Sine Wave Adjusters let you set the signal amplitude and
frequency that is input to the pin or wire.

Note: You can only attach Sine Wave Adjusters to wires or pins with analog input.

To attach a Sine Wave Adjuster to a pin or wire:

1 Select the pin or wire to which you want to connect the adjuster by clicking on it.

4

148/248

Chapter 10 Setting, Adjusting and Viewing Input Values

2 Click A -
3 Click where you want the adjuster 08 Cout
to appear.

The adjuster is now placed in your
scheme and connected to the pin or wire
you selected. In the example at right, we
see that the sine wave adjuster has
been connected to the pin called
“Setpoint”, which is also the name of the HEMF1_A

input symbol. Note that the sine wave 1

adjuster shows the name of the pin \ UDpEEde LA
whose input the adjuster controls. g Setpoint DEMPT_E

ICAPZ_B CLEQUT

4 Set the signal amplitude and
frequency by:
e Double-clicking the adjuster,

or, Increaze size

e Right-clicking on the adjuster and selecting Properties Decreaze size
from the popup menu (shown at right). Fropetics..

The Change sine wave adjuster dialog box opens:

B Change sine wave adjuster |
Bottom | 0
Top | 5535
Frequency 1.000000 © Hz.
Cancel |
1S77 149/248

Setting, Adjusting and Viewing Input Values Chapter 10

5 Fillin the values that will define the amplitude and frequency of the sine wave input:

» To set the bottom range of the wave amplitude, edit the value in the Bottom field
» To set the top range of the wave amplitude, edit the value in the Top field.
» To set the wave frequency, edit the value in the Frequency field.

6 Click OK.

10.2.7 Setting Square Wave Input Signals

To set a square wave input signal, you must attach a Square Wave Adjuster to the
appropriate input pin or wire. Square Wave Adjusters let you set the signal amplitude, duty
cycle and frequency.

To attach a Square Wave Adjuster to a pin or wire:

1 Select the pin or wire to which you want to connect the adjuster by clicking on it.

2 Click L

3 Click where you want the adjuster to
appear.

RESET

The adjuster is now placed in your
scheme and connected to the pin or wire
you selected. In the example at right, we
see that the square wave adjuster has
been connected to the pin called
“Setpoint”, which is also the name of the
input symbol. Note that the square wave
adjuster shows the name of the pin

whose input the adjuster controls. = B Heating|sON
4 Set the signal amplitude, duty cycle | T ICAP1_B
and frequency by: = Setpoirt OCMPT_B
» Double-clicking the adjuster, ICapz_B
or, _
Increaze size
e Right-clicking on the adjuster and selecting Properties Decreaze size

from the popup menu (shown at right). Properties

4

150/248

Chapter 10 Monitoring Signals with Probes

The Change square wave adjuster dialog box opens:

[Change square wave adjuster |

B aottom | i
Top | ERE35
Frequency 1.000000 He.

Dty cocle I BO.000000 %

Cancel |

5 To set the bottom range of the wave amplitude, edit the value in the Bottom field

To set the top range of the wave amplitude, edit the value in the Top field.
To set the wave frequency, edit the value in the Frequency field.

To set the duty cycle, that is the percentage of time that the signal is at its top value, edit
the value in the Duty cycle field.

6 Click OK.

10.3 Monitoring Signals with Probes

When you simulate an application, you can monitor the signals it generates using probes. This
enables you to experiment with and fine-tune your application.

You connect probes to any wire, pin or symbol whose signals or states you want to monitor.
ST-Realizer lets you connect four types of probes:

« Numeric Probes, which let you view the current signal value of the pin or wire in the
Binary, Decimal, Hexadecimal and Octal number bases.

e Oscilloscope Probes, which let you view the signal value of the pin or wire as a graph.

» State Machine Probes, that let you view the value (i.e. current state) of the initial state
symbol in a state machine.

The following paragraphs describe how to use probes.

172 151/248

Monitoring Signals with Probes Chapter 10

10.3.8 Viewing Signal Values Numerically

To view signal values in numeric form, you must attach a Numeric Probe to the appropriate
wire or symbol. Numeric Probes let you view the current value of the wire or symbol’s signal,
in the Binary, Decimal, Hexadecimal or Octal number bases. While the simulation is running,
the value that Numeric Probe displays will vary with the changing signal in the wire or symbol.

To attach a Numeric Probe:

1 Select the pin or wire to which you want to connect the probe by clicking on it.

10]
2 Click

3 Click where you want the probe to appear.

The probe is now placed in your pin-level drawing or scheme and connected to the pin or
wire that you selected.

In the example below, we see that the numeric probe has been connected to the a wire in a
scheme. Because this wire is an input to a symbol and the symbol pin to which it is connected
is called “ARCP”, this is also the name of the signal that the numeric probe is measuring.
Because of this, the numeric probe also displays the signal name, “ARCP”.

o

— Y 255 |
o |ﬁ

Caontrolling the Fump Speed

ARCP

PumpEnabIe-:I>——En
FumpSpeedContral

To select the displayed number base: :
Increaze size

1 Double-click the probe, or right-click the probe and select Decrease size
Properties from the popup menu (shown at right). Properties...
152/248 177

Chapter 10 Monitoring Signals with Probes

The Change numeric probe dialog box opens:

B Change numeric probe |

Radiz Decimal j

Hexadecimal
Oital

0k, I Cancel

2 Select the appropriate number base from the drop-down list, and click OK.

10.3.9 Viewing Signal Values Graphically

To view variable values in graphic form, you must attach an Oscilloscope Probe to the
appropriate pin or wire. Oscilloscope Probes let you view the value of the pin or wire as a
graph. You can also adjust the top and bottom levels of the Y-axis of the displayed graph, and
the time scale within which the value is displayed.

To attach an Oscilloscope Probe:

1 Select the pin or wire to which you want to attach the probe by clicking on it

2 Click

3 Click where you want the probe to appear.

The probe is now placed in your pin-level drawing or scheme and connected to the pin or
wire that you selected.

153/248

4

Monitoring Signals with Probes

Chapter 10

In the example at right, we see that the
oscilloscope probe has been connected
to the an output pin, called OCMP1_B,

RESET

O5Cin

05 Cout

in the pin-level drawing. Note that the
oscilloscope probe also shows the
name of the pin whose output signal the
probe is monitoring.

OChP1 B

HeatinglsOM

Temperaturs ICAP1_B

OcmPi1_B

To change the Y-axis, time scale, and time mode of the displayed

graph:

1 Double-click the probe, or right-click the probe and select
Properties from the popup menu (shown at right).
The Change oscilloscope probe dialog box will open. From this dialog box, you can set
options that will control the way in which the signal is displayed. Table 7 explains the
various options available in the dialog box.

[Change ozcilloscope probe |

Increaze size
Decrease zize

Properties. ..

-amiz OCKP1_B Channel 2

Top [5.000 [

Bottom 0000 —

Timne

Begin at 00:00:00.0000 hbk:mm: z2.ms

End at 00:00:00.0010 hbk:mm: sz ms

Mode I Trigger - I

Trigaer on a IHising edge vI when the value equals | 0.a0o
[elete | Sinam Cancel |

4

154/248

Chapter 10

Monitoring Signals with Probes

Table 7

Adjusting the Oscilloscope Probe Output

To change the maximum displayed
Y-axis value:

Enter the new top Y-axis value in the Top field.

To change the minimum displayed
Y-axis value:

Enter the new bottom Y-axis value in the Bottom field.

To change the time at which the
signal display will start (i.e. the
beginning of the X-axis):

Enter the new time in the Begin at field.

To change the time at which the
signal display will end (i.e. the end
of the

X-axis):

Enter the new time in the End at field.

To set the display mode:

The Oscilloscope can display in three modes:

« Single scan mode - The signal is displayed from the
Begin at X-value until the End at X-value, and then the
display picture is frozen.

» Trigger mode - The signalis continuously displayed such
that each time a rising edge, falling edge or a specified
value is detected by the probe, the displayed signal
restarts at the graph’s origin.

* Wrap around mode - The signal is continuously
displayed such that once the X value (time) equals the
End at value (or multiple of), the displayed signal restarts
at the graph’s origin.

To add another signal to the second
channel:

Right-click on the
oscilloscope probe in the
simulation view. A popup
menu will appear as at right.
Select Add/Replace
channel 2, and select a
second signal (either a wire
or a pin) for the second
channel.

The oscilloscope probe will now display two signals—one
from each channel.

Add/Replace channel 2

Increaze zize
Decreaze size

Irfarmatio. .
Froperties...

4

155/248

Monitoring Signals with Probes Chapter 10

10.3.10 Viewing State Machine States

You can view the states of a state machine by attaching a State Machine Probe to the initial
state machine symbol. You can choose to see either the current state only or the current state
and a set number of previous states.

To attach a State Machine Probe to a state machine:

1 Select the initial state symbol to which you want to attach the probe by clicking on
it.

Note: You may only attach State Machine probes to initial state symbols in scheme-
views of the simulation. State Machine probes cannot be connected to pins,
wires or any symbol other than stateinit.

2 Click %) .

3 Click where you want the probe to appear.

The probe is now placed in the scheme and
connected to the state machine you selected.

In the example shown at right, the state machine e
. .. . SetupTime
probe is connected to a stateinit symbol in a state
machine diagram. The symbol name is called Init, |
hence the name of the probe is also Init. The value of |
the probe corresponds to the value of the state which
is currently active (in our example, the active state is
called HeatingOFF).
. . . . Heatin OFFJ

To enable/disable the state history list and set its [g
length:
1 Double-click the probe, or right-click the probe Increase siss

and select Properties from the popup menu (shown at right). 'QE,:,EE,SE -

Properties. ..

4

156/248

Chapter 10 Selecting Adjusters and Probes

The Change state machine probe dialog box opens:

B Change state machine probe |

[T Show a history list of I 5 items

Cancel |

To change the length of the history list, enter a new length in the Show a history list of
field.

2 Click OK.

10.4 Selecting Adjusters and Probes

Instead of using the buttons in the tool bar, you
may select any adjuster or probe via the Object
menu. Just click Adjuster, or Probe, and select Adjuster + IEERITGTET=

the appropriate object. Probe ¥ Sinewave..

(Wla]]=le@ Simulate Options Windo

SQuare wawve...

Tirme takle...

10.5 Running the Simulator

When you run the simulator, the adjusters you placed generate the input values, your
application performs its processing, and where appropriate, the results are displayed by the
probes you placed.

While the simulator is running, the simulation time is displayed in the status bar at the bottom
of the screen.

4

157/248

Running the Simulator Chapter 10

10.5.11 Starting/Stopping the Simulation

You can initialize, start, or stop the simulation process and proceed to the recording or
displaying of information about this process:

If you have already run the simulator, and you want to initialize
it to its original state:

Click m , Or:

In the Simulate menu; IGUIESCEE Ootions Windc

To initialize the simulator: click Initialize:
Initialise Cil+F11
Start F11
Bause =1l

Becord Ctrl+F12

Information

To run the simulator: Click P , or:
In the Simulate menu; click Start.

To temporarily stop your Click]| or:

simulation:
In the Simulate menu; click Pause.
1 Open a .log file (see “Recording and Reusing Adjuster and
Probe Values” on page 160)
2 Under the Simulate menu, click Record, or
To record simulation information: click ®

3 The red circle changes to a red square:

To display information about the Under the Simulate menu, click Information.
current simulation session:

10.5.12 Setting Run Options
Before you run your simulation, you should consider which run options you want to set.
The run options are:

e Whether you want to run the simulation continuously, for a set number of loops, or for a
set time period.

158/248 V<72

Chapter 10

Running the Simulator

When continuous simulation is chosen, you stop the application when you want. Periodic
adjusters such as square wave adjusters and sine wave adjusters are particularly

al

dapted to this mode.

When a set number of loops is chosen, you can execute one loop at a time. Note that in
this case a loop time is the time needed to execute all the macro-instructions and not the

tick which is the time base used by ST-Realizer.

» Whether you want to use your PC's clock or the microcontroller clock for the simulation.
Note that if you use the PC's clock, the sampling time is the end of the execution loop. The
corresponding absolute time is recalculated using the PC's clock. This mode is much
faster to run since the number of sampled points is lower, however the lower sampling

frequency causes a loss of precision.

To set these options:

1 Onthe Options menu, click Simulate.

The Simulating daughter dialog box opens:

= Simulate oplions

Qthi ons el

Simulate...

Ermvsironment...

]|

Simulation mode IPi” level j
Running made IEDntinunus j
Timing rode I Target time j

¥ Enable accurate simulation

Enabling thiz option will result in a more accurate, but slower, pin level simulation

] Cancel

4

159/248

Recording and Reusing Adjuster and Probe Values Chapter 10

Table 8 Changing the Simulating options

To change the Simulation mode:

There are two simulation modes available:

* Pinlevel - This is the default setting. A pin-level drawing of
the simulation will be available, as well as all of the
application schemes.

« Functional - Only the scheme-views of the application will
be available.

To change the Running mode:

There are three running modes available:

e Continuous - The simulation will run continuously until you
stop or pause manually.

« Limited loops - You can enter the number of loops
(processing cycles) you wish the simulation to run for in the
Stop after field.

« Limited time - You can run the simulation for a specific
period of time by entering the amount of time in the Stop
after field.

To change the Timing mode:

There are two timing mode options:

« Use targettime - This option uses the microcontroller clock
to time the simulation.

» Use hosttime - This option uses the PC’s clock to time the
simulation.

Note: If you choose to use the microcontroller clock for the simulation, the simulation
time is controlled by the ST device, and a scaling effect takes place due to the
simulation process. This means that, for instance, the PC may need 10 seconds
to represent, say, 100 ms in the simulated application environment. This is the
most accurate way of simulating the ST device. If you choose to use your PC
clock for the simulation, a time of 10 seconds will take 10 seconds. This mode
is less accurate than the target time mode.

10.6 Recording and Reusing Adjuster and Probe Values

You can record the values generated by adjusters and read by probes while a simulation is
being run. ST-Realizer records this information in Log files. This information can be useful for
viewing the exact adjuster and probe values at any given time during the simulation. You can
view log file information by opening the log file in any word processor application.

160/248

4

Chapter 10 Recording and Reusing Adjuster and Probe Values

The format of log files is as follows:

These are the adjuster and probe names.

Time,Start,Voltage,Current,MaxCurrent,Charge time,Ready,BusyHigh,High,BusyLow,Low,Ready,Oscillator
5,1,9,10,100,0,Ready,0,0,0,0,0,0

9,1,9,10,100,0,High,0,1,0,1,0,0
15,1,9,10,100,0 ,Low,1,0,0,1,0,0

22.,1,9,10,100,3000 ,Low,0,1,1,0,0,0 These are the adjuster
and probe values that were
112,1,9,10,100,2999 ,Low,0,1,1,0,0,50 .
read each time a value
209,1,9,10,100,2998 ,Low,0,1,1,0,0,49 changed.

306,1,9,10,100,2997 ,Low,0,1,1,0,0,48

You can also reuse recorded adjuster values in subsequent simulations in order to recreate
identical conditions.

10.6.13 Recording Adjuster and Probe Values

1 Before running the simulation whose values you want to record, on the Options
menu click Simulate.

The Simulate Options dialog box opens.

2 Click the Logging tab.

4

161/248

Recording and Reusing Adjuster and Probe Values Chapter 10

The Logging daughter dialog box opens.

i Simulate options %] I
Simulating | Ll:ugging]

Enter a log file | Browse |

[V Start logging with an empty file after an iitialisation

Select a log file

[T Play back the log

Look jr: I 4 Heating

File name: Im_l,lnamel Open

Filez of bype: I Lag files [*.1ag) j Cancel

3 Type the name of the log file you want to create in the “start logging...” box, or
browse through the appropriate folder.

4 Click Open.
5 Run your simulation. The log file will be recorded while your simulation is running.
6 Once you have finished recording simulation information, close the log file by

clicking u

10.6.14 Reusing Adjuster Values

Once you have recorded a log file, you can reuse the recorded adjuster values in subsequent
simulations:

In the Simulate Options dialog box:
1 Click the Logging tab.

The Logging daughter dialog box opens as shown on page 161.

162/248

4

Chapter 10 Recording and Reusing Adjuster and Probe Values

2 Type the name of the log file you want to create in the “play back...” box, or browse
through the appropriate folder.

3 Click Open.

4 Run your simulation. The adjuster values recorded in the log file are input to your
simulation while it is running. Note that you can also manually change adjuster
values.

5 Once you have finished recording simulation information, close the log file by

clicking u

4

163/248

Recording and Reusing Adjuster and Probe Values

Chapter 10

164/248

4

Chapter 11 Overview

11 CREATING YOUR OWN SYMBOL

11.1 Overview

You create or edit your own symbols using ST-Symbol Editor. Creating a symbol involves the
following tasks:

e Creating a symbol shape.
« Placing pins that represent the variables that are input to and output from your symbol.
« Linking your symbol to the macro(s) it represents.

Once you've finished creating your symbol, you can create a customized library containing all
the symbols that you used in a project, including symbols that you created yourself.

The creation of new symbols falls into two categories:

e The creation of new subscheme symbols. These are the symbols that represent
subschemes in the root scheme. A number of subscheme symbols are included in the
main library, but you may find that you need to create your own because you require a
different number of input and output pins that available in those symbols provided.

e« The creation of new user-defined symbols. This is a means by which you can design
your own symbol to perform a customized function. Note that creation of a new user-
defined symbol requires a sound understanding of how to program in assembler
code as it will be necessary to write the macros which define how your symbols
work.

The creation of both of these types of symbols is described in this chapter. In both cases, you
use the ST-Symbol Editor to create your symbol.

Note: The ST-Realizer online help system includes a tutorial which leads you through
the steps of creating an example symbol and its macros.

11.2 Running the ST Symbol Editor

To run ST-Symbol Editor from the ST-Realizer window:

1 Make sure you have a scheme loaded in the ST- Il indow Help
Realizer window

Sirmulatar F1z
=ymbol Editar Cirl+F11

2 Onthe Tools menu, click Symbol Editor

or:

4

165/248

Defining a New Subscheme Symbol Chapter 11

Click the scheme area out of any symbol
with the right mouse button and select the
New =Symbol... menu sequence. Wi

Aftribute.

The ST-Symbol Editor window opens. Ell:unne:t

It automatically shows the symbol editor’s tool
bar and the Select the Symbol properties
dialog box:

Propetties...

You can now define either a new subscheme symbol or a new user-defined symbol.

11.3 Defining a New Subscheme Symbol

Subscheme symbols are, effectively, single-symbol representations of an entire subscheme,
that can be used to reference a subscheme from within another scheme. Some subscheme
symbols have already been defined in the ST-Realizer library, but you may find that you need
to create a subscheme with, say 3 inputs and only one output. We will use this example to help
explain how to easily create a new subscheme symbol.

1 Open the Symbol Editor.

= Select the symbol properties |
Symbal name: |3333_1

—Select a symbaol;

* Sub scheme symbal
= User defined symbal

—Select a shape:

* Fectangle
™ Circle

MHumber of input ping: | 3
MHumber of output ping: | 1

< Bachk | Mest > Cancel

2 Give the new subscheme symbol a name.

An “sssx_y” type name is recommended, to be consistent with standard subscheme
names that can be found in the main symbol library. An “sssx_y” subscheme has x
inputs and y outputs.

166/248 172

Chapter 11 Defining a New Subscheme Symbol

3 Click the “Sub scheme symbol” radio button.
4 Select the shape you which to assign to the symbol.

The shape of the symbol can be either rectangular or circular.

Note: The shape of the symbol represents, but does not affect, the process that is
behind it. Symbol shapes should not cross the square box in the ST-Symbol
Editor window (this represents the physical limits of the symbol).

5 Specify the number of input and output pins.

R | / Tip: All of the above options can be modified later, using the Symbol Editor.

a0

6 Click the Next button.

A new dialog box opens where you specify labels for the subscheme input pins.

[Select the input pin properties |

Fin 1: Label: IIn'I
Fin 2: Label: IIn2
Fin 3: Label: IIn3

¢ Back Mest >

Click Next when you've finished.

167/248

4

Defining a New Subscheme Symbol Chapter 11

A new dialog box opens where you specify labels for the subscheme output pins.

[Select the output pin properties

Click Next when you've finished.
The Generate the symbol dialog box opens.

B Generate the symbol

Click Finish to generate the new symbol.

168/248

4

Chapter 11 Defining a New Subscheme Symbol

The new subscheme symbol is automatically added to the local
symbol library for the project in which you are working. To save
_|n1 OUﬂ | the symbol in a library accessible to all projects, follow the
instructions in Section 11.3.1.

In2 5583 1 ot
To place it in your scheme, click [17 as explained on

—Ih3 -

page 73.

custom.sch In our example at left, the new subscheme symbol has 3 input

pins and one output pin. The associated subscheme is named

“custom.sch”, however, you may choose to leave this attribute field non-specific (by leaving
the “?” placed by default, for example).

11.3.1 Adding Your New Subscheme Symbol to a Library

In order to use your new subscheme symbol (or symbols, if you have created more than one)
in any ST-Realizer project, you must save it to a library file located in the <root
f ol der >\ Li b folder. To do this:

1 Open the project where you have created the new subscheme symbol(s). Open the
scheme where the new subscheme symbol is.

=+{f
2 Openthelocal symbol library by clicking [l .

3 Create a new blank scheme in the project by selecting FileNew>Scheme. Call it
any name you wish (for example, temporary.sch).

4 Using the local symbol library, select and place the new subscheme symbol(s) that
you wish to save to a library in the blank scheme.

5 Now you must edit the new subscheme symbol(s).

Right-click the new subscheme symbol and select Edit from the popup menu. The

symbol editor will open. Double click on the subscheme filename attribute at the

bottom of the symbol (i.e. in the above example, we gave the value “custom.sch” to

this attribute, but by default it is left as a “?").

At this point you have to make a choice, depending on how you wish the default

usage of the symbol to be:

« If you wish to leave the subscheme file generic, leave the “?” in the field. Every time
you use the symbol in the future, you will have to remember to fill in this attribute value,
specifying the filename of the subscheme (and it’s path if it is not located in the project

folder). Alternatively, if you double-click the symbol (once placed in a project scheme),
you will be prompted to create a new subscheme.

4

169/248

Defining a New Subscheme Symbol Chapter 11

e If you always wish your new subscheme symbol to reference the same subscheme
file, enter the name of the subscheme file (for example, custom.sch) in this attribute
field with its correct path (i.e. the project folder in which the subscheme file will occur).

Note: Remember that if you enter a filename in this attribute field, the path by default

will be the path of the project in which you created/edited the subscheme
symbol.

To be able to access a particular subscheme from any project, we recommend that
you copy the subscheme file you have specified (for example, custom.sch) to the
<root folder>\Lib folder and, using the symbol editor, in the filename attribute
field enter path and filename of the subscheme as follows:

<root fol der>\Lib\fi/l/enane.sch. For example, in order to use the
subscheme custom.sch in any project, we would place a copy of custom.sch in
<root folder>\Lib and using the symbol editor, enter

<root f ol der>\Li b\ cust om sch in the subscheme filename attribute field.

Note: The exact <r oot f ol der> path depends on where you installed ST-Realizer

on your PC. By default, this path is C:\\Program Files\ST-Realizer\Lib\...

Exit the Symbol Editor, saving your changes.

Repeat the above steps for each new symbol you have included in the scheme.

6 While in the subscheme you created in Step 3 (i.e. temporary.sch), select
File>Save as.. from the main menu and save the file as a library file ((lib
extension) in the library folder (<root fol der>\Lib). Give the new library a
suitable name—for example, my_synbol s. | i b. Your new subscheme symbols will
be stored in this library file, accessible to all projects.

N ‘ / Tip: When you save a scheme as a library, you will copy all of the symbols in that

— — scheme to the library. Therefore, to save only new subscheme symbols you
o have created to a library, they need to be in a scheme by themselves.

7 Exit, without saving , the project in which you have created and modified you new

subscheme symbols. (If you save the project, all of the modifications you made to
your new subscheme symbols to apply to the project you performed them in.)

Now, each time you wish to use your subscheme symbol(s) in a new project, simply open the
library file you created and select and place the symbols as you would normally do from any
other symbol library.

170/248

4

Chapter 11 Defining a New User-Defined Symbol

11.4 Defining a New User-Defined Symbol

You can use the symbol editor to create your own symbol, using the User-Defined symbol
option.

Note: Defining a new user-defined symbol will require programming ability in the
assembler language.

There are four steps in creating a new user-defined symbol:

e The definition of the graphic aspect of the symbol, including assigning the required
number of input and output pins, naming these pins and assigning pin data types and
attributes.

« Editing the new symbol to further refine its appearance.

e« The creation of an assembler macro header—essentially the declaration line of the
assembler code behind the symbol.

« Finally, writing the assembler macros that define the symbol’s function.

The above steps are general, and it is clear that detailed instruction on how to create a new
user-defined symbol will vary depending of the symbol function. It is not within the scope of
this document to give instruction on how to write assembler code, so in the steps that follow,
we will explain, using an example, how to define a new symbol.

The example we will show here is a stepper symbol—a symbol whose function will be to
increase an input value by a fixed increment upon detection of a second signal input signal.
The stepper symbol will output both the incremented value and its complement.

171/248

4

Defining a New User-Defined Symbol Chapter 11

11.4.1 Defining the New Symbol
1 Open the Symbol Editor.

= Select the symbol properties |

Sermbol name: |Stepper

— Select a symbal;

™ Sub scheme symbal
% |Jzer defined symbal

— Select a shape:

* Rectangle
™ Circle

Murnber af input pins: | 2
Murnber af output pin: | 2

< Bamk | M et = Cancel

2 Givethe new symbol a name.

In our example, above, we have named our new symbol “Stepper”.
3 Click the “user-defined symbol” radio button.
4 Select the shape you which to assign to the symbol.

The shape of the symbol can be either rectangular or circular. For our example, we will
choose a rectangle shape.

Note: The shape of the symbol represents, but does not affect, the process that is
behind it. Symbol shapes should not cross the square box in the ST-Symbol
Editor window (this represents the physical limits of the symbol).

5 Specify the number of input and output pins.

For the stepper symbol, we require two inputs (one for the initial value to be incremented
and one for the clock that will control the frequency of the incremental steps), and two
outputs (one for the incremented value and the second for the complement of the
incremented value).

172/248 172

Chapter 11 Defining a New User-Defined Symbol

A |/ Tip: All of the above options can be modified later, using the Symbol Editor.

—

a0\

6 Click the Next button.
7 A new dialog box opens for you to specify the input pin data types:

= Select the input pin properties

There are a number of data types to choose from: BIT, UBYTE, SBYTE, UINT, SINT,
LONG and WORD. In addition, you can specify a sub-type—either Input or Clock Input.

173/248

4

Defining a New User-Defined Symbol Chapter 11

For a pin transmitti.ng this value Choose this data type:
range:

Oor1l Bit (BIT)
0to 255 Unsigned byte (UBYTE)
-128to 127. Signed byte (SBYTE)
0 to 65535. Unsigned int (UINT)
-32768 to 32767. Signed int (SINT)
-2147483648 to 2147483647. Long (LONG)
Any values except BIT-type values Word (WORD)
Any No type

For a detailed description of data types and attributes, refer to Appendix A: “Variables and
Attributes” on page 203.

For our example, we will assign the following properties:
e Forinput pin 1, label = “Data” and type = WORD/Input.
e Forinput pin 2, label = “Clock” and type = BIT/Clock Input.

Click Next.

8 A dialog box opens for
you to specify the Iy i

output pin data types.

Choose data types for Pin 3: label: |3 Twpe: Jgi7 = |Output =l
each of the output pins. Fin 4 label: M35 Tvee: [piT =] [

In our example, the data
type we wish to assign
(Max1) doesn't appear in
the pull-down menu,
which only contains the
most common data types.

For the time being,

assign any data type,

for example:

» For output pin 3, < Back Mest » Cancel
label = “S” and
type = BIT/Output.

« For output pin 4, label = “NS” and type = BIT/Output.

We will modify the data types on page 178, once the symbol has been created. Click
Next.

1741248 172

Chapter 11 Defining a New User-Defined Symbol

9 A new dialog box opens to prompt you for the code properties of the new symbol.

B Select the code properties |

ICODE macro name: |i5tepper

CODE macro name: IStepper
OCODE macro narme: |

¢ Back, | Hewut > | Cancel

Use this dialog box to link your symbol to the macro(s) it represents.

You can link three macros to a symbol, each with a different execution time:

* Atinitialization.

» As part of the main loop.

e Atthe end of the main loop.

Macros that are linked to ST-Realizer symbols must have headings that are in a specific
format:

To link a macro that’s executed at initialization:

* In the ICODE macro name field, enter i<macroname> where <macroname> is the
name of the macro. For our example, the ICODE macro name is “iStepper”.

To link a macro that’s executed as part of the main loop:

« In the CODE macro name field, enter <macroname> where <macroname> is the
name of the macro. For our example, the CODE macro name is “Stepper”.

To link a macro that’s executed at the end of the main loop:

* In the OCODE macro name field, enter o<macroname> where <macroname> is the
name of the macro. For our example, we do not wish to generate an OCODE macro.

Note: Recall that names in ST-Realizer are case-sensitive.

Click Next to continue.

172 175/248

Defining a New User-Defined Symbol Chapter 11

10 The Generate the symbol dialog box opens. Click Finish to confirm.

B Generate the symbol |

Creating uzer defined symbal Stepper
Wiith 2 input pins
Wfith 2 autput ping

Click Finish to generate the symbol

< Back Finizh

The new symbol will appear in the scheme, similarly to our
example symbol shown at left. We can see our two 2 input
Data S pins and two output pins.
The next step is to edit the symbol in order to give the pins
Clock NS i o give the p
names that are more descriptive, to change the pin data
types if necessary, and to add some graphical detail to
better distinguish the symbol.

| —
[

[N
ES

11.4.2 Editing the New Symbol

Once you have generated the new symbol, it will appear as above in a symbol editor window
that is called by the name of the new symbol. In this environment, you can further edit the
visual appearance of the symbol, and refine its attributes.

4

176/248

Chapter 11

Defining a New User-Defined Symbol

11.4.2.1 Accessing Editing options from the Symbol Editor window:

* In the scheme, right-click the symbol you wish to edit.

The symbol editor popup menu will appear as at right,
allowing a number of options. Most of these options also
appear in a toolbar which floats in the symbol editor window.

The figure below shows how you can use either the popup
menu or the toolbar to edit the symbol.

Hew b

= k

Edit dezign notes...
Create heading

Sprbol editor bools

B e 5 =&
& nn \m}\|

...to edit description,
create heading...

...to define a new attribute

Rectangle...
Edit u:Ie!ign nates... Arc...
Create heading

11.4.2.2 Editing pin attributes:
1 Select the pin whose attributes you wish to modify.
2 Right-click the mouse with the pin selected.

A popup menu will appear as below.

Rotate r

Twpe...
#..
Label...

Properties. ..

4

... to define a new pin

...to draw a rectangle,
an ellipse...

1771248

Defining a New User-Defined Symbol Chapter 11

3 Select Properties from the popup menu.

A Change properties dialog box, like the one shown below, will open.

[Change properties Ed |
| Fiputfoutpt IDUmUt vI

Type

Label |5
MHumber |3

Color - E dit |

ak I Cancel |

In our example, we will change the pin 4 (“S”) data type to MAXL1 (this option takes the
data type of input pin 1. (The data types available in the cascading menu are the most
widely used, but they not the only data types available. For a complete list of data types,
refer to Appendix A: “Variables and Attributes” on page 203.)

Perform the same operation to the NS pin (pin 4), setting
the data type to Max1 as well. 1 Data S

[

When finished, your symbol should now look as pictured 5
at right, =>Clock NS

11.4.2.3 Adding graphical detail to symbols

ES

You can add simple graphics to symbols to help identify them. Basic drawing functions are
available from the popup menu or from the symbol editor toolbar (refer to page 177).
To draw an ellipse (or a circle):

1 Click @l on the symbol editor toolbar, or select New 2Arc in the popup menu.

2 Click once where you want the centre of the ellipse to be.

3 Move the cursor in any direction. An ellipse shape appears that is based on the
relationship between where you clicked and the current cursor position.

4

178/248

Chapter 11 Defining a New User-Defined Symbol

A |/ Tip: Note that the position of your cursor, in x and y coordinates, appears in the

—

— — status bar at the bottom left of the symbol editor window, whenever you are in
drawing mode.

a0\

4 Click when the ellipse is the size and shape you desire.

The ellipse is now drawn. The status bar displays the ellipse’s measurements.

To draw a rectangle:
1 Click :Il in the symbol editor toolbar, or select New=>Rectangle in the popup
menu.

2 Click where you wish to place the top left corner of the rectangle.

3 Move the cursor downwards and to the right. Click when the rectangle is the size
and shape you desire.

The rectangle is now drawn. The status bar displays the rectangle’s measurements.

To draw lines:

1 Click [—] in the main toolbar.

2 Click where you want the line to start.

3 Click where you want the line to end. You can continue drawing connected lines by
placing the cursor where you want the next line to end then clicking.

4 Right-click when you want to stop drawing connected lines.

Note: When you draw the cursor automatically snaps to an invisible grid. If you want
to change the spacing between the gridlines, on the Options-Environment
menu, click the Symbol tab, then specify the appropriate grid value.

Changing graphic properties:
1 Select the graphical object you wish to modify by clicking once on it.

2 Right-click the mouse. A popup menu appears with one options: Properties. Select
it.

179/248

4

Defining a New User-Defined Symbol Chapter 11

3 A dialog box entitled Change properties opens.

B Change properties % |

wfidth 21 M. .

Height |1 1 M. .

Start at ||:|_|:| deqrees
End at ||:|_|:| deqrees

Line thickness |00 M. .

Colar - Edit I

.......

k. Cancel |

In this dialog box, you can change the dimensions of the graphic, the angle (if the graphic
is a line), the line thickness and color, and finally, you can choose to fill the graphic.

In our Stepper example, we are going to add a small

graphic to help identify the symbol: 1 3
* In the symbol editor window, select |)| from the —Data o S
symbol editor toolbar, or select New=>Arc in the 2 > 4
popup menu. —Clock NS—
e Using the ellipse drawing tool, draw the footsteps as
shown.

» Using Change properties dialog box, fill the four ellipses that make up the footsteps.

11.4.2.4 Symbol Information

To change the text that describes the symbol (when you click the = 1 button) select Edit
design notes in the popup menu and enter the description you wish in the dialog box.

180/248

4

Chapter 11

Defining a New User-Defined Symbol

11.4.3 Adding Pins to Your Symbol

[x|

The pins you place
on your symbol
represent the
variables that are
input to and output
from the symbol
you are defining.

To place a pin:

1 Click ILI:’; in
the symbol
editor toolbar,
or select
New-=>Pin in
the popup
menu.

Input/output o - I
Tupe Input
Clock, input
Label
MNumber |5
Color - Edit I

o |

The Create a pin dialog box opens.

2 The pin number is automatically generated and displayed in the Number field. This
is reflected in the structure of the arguments for the assembly macros. The pin
number sets the sequence of parameters.

3 Inthe Label field, enter a label for the pin. This corresponds to the variable name.

4 In the Input/output field, select the type of pin you want to place:

Pin Type Description

Input Normal input pin.

Clock input Input pin that can distinguish between a rising edge, a falling edge and a
plateau, by storing the previous input value and comparing it to the present
input value.

Output Normal output pin. There can only be one output pin on a net.

Passive output

Passive output pin. An example of a passive output is a state. There can be
more than one passive output pin on a net.

4

181/248

Defining a New User-Defined Symbol Chapter 11

5 Inthe Type field, select the capacity of the pin you want to place:

For a pin transmitting

this value range: Choose this data type:

Oorl Bit (BIT)

0 to 255 Unsigned byte (UBYTE)
-128 to 127. Signed byte (SBYTE)

0 to 65535. Unsigned int (UINT)
-32768 to 32767. Signed int (SINT)
-2147483648 to Long (LONG)
2147483647,

Any values except BIT- | Word (WORD)
type values

Any No type

6 If you want to change the pin color, click the Color box, then choose a new color
from the palette.

7 Click OK.

8 A rectangle now appears, representing the position of the pin. Note that it starts at
the left side of the symbol boundary.

If you want it to start at another side of the symbol boundary, click @ Each time
you click this button the pin moves anti-clockwise to the next boundary.

9 Move the cursor to the point of your symbol to which you want to connect the pin,
then click to place the pin.

11.4.4 Assigning Attributes to Your Symbol

Attributes allow you to attach extra characteristics to symbols. For example, attaching an
attribute of type DEVICE to a pin extends the macro that is linked with the symbol with
additional information. The available attribute types are listed in Appendix A: “Variables and
Attributes” on page 203.

4

182/248

Chapter 11 Defining a New User-Defined Symbol

To assign an attribute:

1

~

Click @’ in the symbol editor toolbar, or select New 3Attribute popup menu.

The Create attribute dialog box opens.

I Create attribute |

Cilar - Eu:IitI Tag
Size [Tzd mm 5T -

Alignment Walue

Harizontal | Center j Step Yalue :I

Werhical IEenter TI
Dhrection INDrmaI TI

Yiziblity ll k I

Ok I Cancel |

[Tag V¥ Walue

In the Tag field, select an attribute tag from the drop-down list.

For example, for our Stepper symbol, we'd like to add some text. Select the TXT tag from
the cascading menu.

In the Value field, enter the tag value.
For our Stepper symbol, we'd like to enter the text “Step Value”.

If you want the tag or the value to be hidden, click the appropriate check box in the
Visibility box.

When the boxes are checked, the tag or values are visible. Hidden tags and values can
be made visible by choosing View-=Invisible attributes from the main menu.

For our Stepper symbol, we only wish to view the text, and therefore only check the Value
box.

To change the attribute color, click the Color field and choose a new color.
To change the attribute size, edit the value in the Size field.

If you want to change the vertical and horizontal alignment, select the Alignment
type from in the Vertical and Horizontal drop-down lists.

172 183/248

Defining a New User-Defined Symbol Chapter 11

8 Click OK when you have finished defining the attribute.

9 The cursor becomes a ghost box indicating the size of the attribute. Position the
cursor over the part of the symbol to which you want to attach the attribute and click
once. Click again to return to normal editing mode.

|/ Tip: Note that the attachment point—the item to which the attribute is attached—

— appears as red spot in the symbol.

oW

Our Stepper symbol should now appear as at right.

1 g 3

—Data o

2 o 4

—€lock NS—
Step Value

Our Stepper symbol still lacks an essential attribute: the value of the amount to increment
the data input signal - the Step Value. For the moment, we have only added text to the
symbol—this has no impact on the actual function of the symbol. To add provide a
numerical step value to the macro, we need create another attribute:

e Click @’ in the symbol editor toolbar, or select New>Attribute popup menu.

The Create attribute dialog box opens.

[Create attribute E3 |

Color - Editl Tag
Size I 2.0 m.rm. I\-’.-’-‘-.LLIE VI

Alignment Yalue
Harizantal I Center j 3 ;I
Wertical I Center ™ I

Diirection I Mamal = I

Visibilty & _>|_I

ak I Cancel |

r T a_r_i: v Walue

* Inthe Tag drop-down list, select Value.

4

184/248

Chapter 11 Defining

a New User-Defined Symbol

Under Visibility, check the Value box only.
Click OK when you have finished defining the attribute.

In the Value field, type “?1". This is the default value for the attribute.

The cursor becomes a ghost box indicating the

size of the attribute. Position the cursor just 1 S§
beside the text “Step Value” and click once. Click | Data o
again to return to normal editing mode. 2 o 4
i =Elock NS—
Our Stepper symbol should now appear as at right. Step Value 71

11.4.5 Modifying Existing Attributes

You can change the properties of an attribute you have already created while still in the

symbol editor:

1 Select the attribute by clicking on it.

For example, in our Stepper example, we would like to remove the pin numbers. Select

the pin number “1” by clicking on it.

TN - L

Rotate

Tag..

Walue. ..

Fuaint of Effect
Properties. ..

ock

Step Value

83

B

NS

?1

2 Right-click the mouse. A popup menu appears, as shown above. Select Properties.

4

185/248

Defining a New User-Defined Symbol Chapter 11

A Change properties dialog box appears.

[® Change properties Ed |

Cilor - Editl Tag
Size | 1.6 m.m. |1¢ vI

Alignment Yalue
Harizantal I Right j 1 ;I
Wertical I Baottam ™ I

Diirection I Mamal = I
"izibility LI

[Tag v Walue

Under Visibility, uncheck the Value box. Click OK.

The pin number will disappear from the symbol.

S,

In a similar manner, make all of the pin numbers —Data
disappear from the symbol. Our stepper symbol will now .”’

appear as at right. 1€lock NS-
Step Value 1

N | / Tip: You can make attributes invisible, as

@ we just did for the pin numbers, but they are still present in the symbol. To view
invisible attributes, select View2Invisible attributes from the main menu or

from the popup menu.

a

Note: You may also change existing symbol attributes directly from the ST-Realizer
worksheet where your scheme has been loaded. See “Changing a Symbol’s
Attributes” on page 75.

Recall from page 171 that there are four steps to complete the creation of a new user-defined
symbol. We have now completed the first two steps in the creation of our Stepper symbol:

e The definition of the graphic aspect of the symbol, including assigning the required
number of input and output pins, naming these pins and assigning pin data types and
attributes.

« Editing the new symbol to further refine its appearance.

4

186/248

Chapter 11 Defining a New User-Defined Symbol

The next step is to create a macro header for the symbol, and then write, in assembler, the
macros that will define how the symbol functions.

11.4.6 Creating the Macro Header

In the symbol editor popup menu, select Create

I 3
heading. =

The macro header for the new symbol is copied to the Yiew g

clipboard.

For our example symbol, Stepper, we generated two
macro headers—iStepper and Stepper. iStepper looks
like:

B R R R R
’

i st epper wobww macro Dat a, t Dat a, Cl ock, nCl ock, t C ock, pCl ock, pnC ock, pt C ock, S, tS, NS, t NS, c5

Description: Initialize Wrd STEPPER

B R R
’

In the iStepper macro, the “wbbww” after the “istepper” is a listing of the inputs and outputs—
word (the Data input pin), clock input bit (the Clock input pin) and the two output pins (S and
NS) are both word types because they were programmed to take the maximum valued input
pin type (i.e. the word type). (See Naming Macro Instructions below for more information on
the abbreviations used for data types.)

Once the macro header has been copied to the clipboard, create a new ASCII text file (using
an ASCII text editor) and paste the macro header into the text file.

11.4.7 Creating the New User-Defined Symbol Macro

Once the macro header has been pasted into an ASCII text file, the next step is to write the
rest of the macro for the new symbol. Writing macros requires a knowledge of the assembler
programming language, and it is now within the scope of this document to instruct the user
how to write assembler code. We will simply give some general guidelines to follow, and show
how the assembler macro for the our example symbol, Stepper, was created.

General Rules

When you create your own macros for inclusion in ST-Realizer applications, you must follow
the rules described below.

e Symbols using multi-type pins require two macros: one for the BIT type and one for the
WORD type. Symbols only using BIT type pins require one macro call.

e The macro instructions are written in assembly language using any plain ASCII text editor.
Remember to save the ASCII file as a . nac file (for ST6) or as an . i nc file (for ST7). For

172 187/248

Defining a New User-Defined Symbol Chapter 11

example, we could save our Stepper symbol as st epper. i nc.

Naming Macro Instructions
The names of macro instructions are a concatenation of the following:

* The attribute value.

e The type of the input/output variable ranked by the pin number.
The type of the input output variable uses the following convention:
w for a WORD type
b for a BIT type
bb for a BIT clock input
ww for a WORD clock input

For example, a symbol that has two input pins, one which is BIT type and the other
WORD type, and one output pin of WORD type and with the attribute CODE=Stepper,
has the macro name: Stepperbww.

Parameters

The macro name is followed by the macro parameters. A parameter set is used for each
variable according to the signal type and function.

BIT type input and output pins have the parameters: variable name, bit number, variable type,
where bit number is the position of the bit within a byte.

WORD type input and output pins have the parameters: variable name, variable type.

BIT type clock input pins have three parameters for the current clock variable: variable, bit
number, variable type and three parameters for the previous clock variable: variable, bit
number, variable type.

WORD type clock input pins have two parameters for the current clock variable: variable
name, variable type and two parameters for the previous clock variable: variable name,
variable type, where current and previous refer to the loop.

The parameter sets are ranked by the pin number.

11.4.8 Writing the Assembly Macro

Macro headers are created as requested on page 175. For our Stepper symbol, we requested
an initialization macro header, called iStepper, and a main code macro header, simply called
Stepper. These macro headers enumerate the parameter list for each portion of the code:

« for the initialization portion of the code, the parameter list is: Data, tData, Clock, nClock,
tClock, pClock, pnClock, ptClock, S, tS, NS, tNS and c5.

188/248 172

Chapter 11 Defining a New User-Defined Symbol

« for the main portion of the code, the parameter list is: Data, tData,Clock, nClock, tClock,
pClock, pnClock, ptClock, S, tS, NS, tNS and c5.

The final macro calls (i.e the contents of the ASCII file st epper . i nc) will look like this:

B R R R

i st epper wobww macro Dat a, t Dat a, Cl ock, nCl ock, t C ock, pd ock, pnd ock, pt G ock, S,tS, NS, t NS, c5

Description: Initialize Wrd STEPPER

;**
i st epwbbww macro Data, t Dat a, Cl ock, nd ock, t d ock, pC ock, pnCl ock, pt C ock, S, tS, NS, t NS, c5
#if {t NS}
Id A #OFFH
#if {{tNS eq TUBYTE} or {tNS eq TSBYTE}}
Id NS, A
#endi f
#if {{tNS eq TUNT} or {tNS eq TSI NT}}
Id NS, A
Id {NS+1}, A
#endi f
#if {tNS eq TLONG
Id NS, A
Id {NS+1}, A
Id {NS+2}, A
Id {NS+3},A
#endi f
#endi f
mend

B R R R

st epperwbbww nacro Data, t Dat a, C ock, nCl ock, t d ock, pCl ock, pnCl ock, pt d ock, S, tS, NS, t NS, c5

Descri ption: WORD stepper

’
’
’
’
’
’
B R R R
’

st epwbbww macr o Dat a, t Dat a, d ock, nCl ock, t C ock, pCl ock, pnCl ock, pt C ock, S,tS, NS, t NS, c5
I ocal Iabnr

;test rising edge on the d ock input
bittjf d ock, nCl ock, E& abnr
bittjt pd ock, pnC ock, E& abnr

;addition of 2 bytes
#if {tS}
#i f {tData eq TCONST}
Id A #{l ow {Dat a}}
#endi f
#i f {{tData eq TUBYTE} or {tData eq TSBYTE}}
Id A Data
#endi f
#if {{tData eq TU NT} or {tData eq TSINT}}
Id A {Data+1}
#endi f
#if {tData eq TLONG
Id A {Data+3}
#endi f

;#if {tin2 eq TOONST}
add A #{low {c5}}
s #endi f
#endi f

#if {{tS eq TUBYTE} or {tS eq TSBYTE}}
Id S A

#endi f

#f {{tS eq TUNT} or {tS eq TSINT}}

172 189/248

Defining a New User-Defined Symbol

Chapter 11

Id {S+1},A
#endi f
#if {tS eq TLONG
Id {S+3},A
#endi f

#if {{tS eq TUNT} or {tS eq TSINT} or {tS eq TLONG}
#if {tData eq TCONST}
Id A #{l ow {{Data} shr 8}}
#endi f
#if {tData eq TUBYTE}
clr A
#endi f
#i f {tData eq TSBYTE}
clr A
push CC
bittjf Data, 7, A& abnr
cpl A
A&l abnr
pop CC
#endi f
#if {{tData eq TU NT} or {tData eq TSI NT}}
Id A Data
#endi f
#if {tData eq TLONG
Id A {Data+2}
#endi f

;#if {tin2 eq TCONST}
adc A #{low {{c5} shr 8}}
s #endi f
#endi f

#if {{tS eq TUNT} or {tS eq TSINT}}
Id S, A

#endi f

#if {tS eq TLONG
Id {S+2},A

#endi f

#if {tS eq TLONG

#i f {tData eq TCOONST}
Id A #{l ow {{Data} shr 16}}

#endi f

#if {{tData eq TUBYTE} or {tData eq TUI NT}}
clr A

#endi f

#if {{tData eq TSBYTE} or {tData eq TSI NT}}
clr A
push CC
bittjf Data, 7, D& abnr
cpl A

D&l abnr :

pop CC

#endi f

#if {tData eq TLONG
Id A {Data+1}

#endi f

s#if {tin2 eq TCONST}
adc A #{low {{c5} shr 16}}
s #endi f

Id {S+1}, A

f {tData eq TCONST}
Id A #{l ow {{Data} shr 24}}

#endi f

#i f {{tData eq TUBYTE} or {tData eq TUI NT}}
clr A

190/248

4

Chapter 11 Defining a New User-Defined Symbol

#endi f
#if {{tData eq TSBYTE} or {tData eq TSI NT}}
clr A
push CC
bittjf Data, 7, G& abnr
cpl A

G&l abnr

pop CC

#endi f

#if {tData eq TLONG
Id A Data

#endi f

;#if {tin2 eq TCONST}
adc A #{low {{c5} shr 24}}
s #endi f

Id S, A

#endi f
#if {t NS}

copyww S, t S, NS, t NS
comv NS, t NS

#endi f

E&l abnr

mend

11.4.9 Adding New User-Defined Symbols to a Library

You can save your new user-defined symbol to a library by following these steps:

1 In any ASCII text editor, open the library file to which you wish to save your new
symbol.
For example, if you wish to save your symbol to the main library, open
<root folder>\Lib\st72/ib. mac (the ST6 main symbol library) or <root
folder>\Lib\st72/ib.inc (the ST7 main symbol library).
If you wish to save the symbol to a new library, create a new ASCII file in the
<root folder>\Lib folder and call it an appropriate name, such as
my_synbol s. mac (for ST6) or my_synbol s. i nc (for ST7).

2 Copy and paste the new symbol’s ASCII macro (i.e. the contents of the ASCII macro
file you created on page 187) either to your newly created library file, or to the end of
the main library file above.

3 Save the library file.

Note: It is always wise to save your new symbol macros and any modified or created

libraries to a back-up folder, or on a floppy disk. In the event that you need to
reinstall ST-Realizer, the root folder will be overwritten, and all of your
customized symbol libraries will be replaced by the ST-Realizer default libraries.

4 Next, save the symbol graphic by copying and pasting the new symbol graphic from

within the scheme where you created it to a new, blank scheme. From this new

172 191/248

Defining a New User-Defined Symbol Chapter 11

scheme containing the new symbol, select File>Save as.. fil enane.|1i b where
fil enaneis the name of the symbol (for example, stepper).

N/ Tip: When you save a scheme as a library, you will copy all of the symbols in that

_

— — scheme to the library. Therefore, to save only the new user-defined symbol to
the library, it needs to be in a scheme by itself.

oW

Each time you wish to use the symbols that you have created, from within the project where
you are working, perform the following:

1 Select Project2Hardware settings.

2 In the Hardware settings dialog box, in the Include file field, ensure that the library
that you saved your symbol to appears in the list of files:
e <root folder>\Lib\st72lib.mac (for ST6) or <root fol der>\Lib\st72lib.inc
(for ST7) if you saved your symbol to a main library.

e« <root folder>Lib\filenane. mac (for ST6) or <root fol der>Lib\filenane.inc
(for ST7) where fil enane is the name of the new symbol library you created above.

4

192/248

Chapter 12

12 CUSTOMIZING ST-REALIZER

A number of ST-Realizer features can be customized to suit your way of working. These
include:

e Automatic work saving

* Screen preferences

» Worksheet layout preferences

e Printing options

e Symbol layout preferences

e Wire drawing options

« Attribute display preferences

* Toolbar contents

To customize these features, proceed as follows:

1 Select Options=>Environment from the main menu bar.

The Environment Options dialog box opens showing a number of tabs that direct you to
the following daughter dialog boxes:

 Advanced

o Attribute
 Page

e Print

e Symbol
e Toolbar
e Wiring

4

193/248

Automatically Saving Your Work and Setting Screen Preference. Chapter 12

12.1 Automatically Saving Your Work and Setting Screen Preference.

ST-Realizer can back up and save your work automatically. This option can be chosen in the
daughter dialog box accessed by clicking the Advanced tab:

= Environment options |
Advanced T Attribute T Page T Print T Symbal T Toolbar T WArikig]

W take backup on zave

W Awto backup every I 10 min.

Selechionbox calor - E dit |
Ghostbox colar - E dit |

] I Cancel I

1 Select the backup options that you wish.
To create a backup file every time you save your work:
» Check the Make backup on save check box by clicking it.

This creates a copy of the file before your latest changes are saved. If a backup file
already exists, the new backup file overwrites it.

To create a backup file at regular intervals:

 Check the Auto backup every check box by clicking it, and enter an interval (in
minutes) in the text box. If you want to change this, overtype the displayed value.

This causes a copy of the file to be saved periodically.
2 Set/Change the screen preferences.

To change the Ghost box or Selection box colors:
» Click the appropriate Edit button and select the new color from the displayed palette.

3 Click Ok when you have finished.

4

194/248

Chapter 12 Attribute Display Preferences

12.2 Attribute Display Preferences
In this tab, you can change the default settings for the display of attributes on the worksheet.
1 Inthe Environment Options dialog box, click the Attribute tab.

The Attribute dialog box opens.

= Environment oplions E3 |

idvanced T.&ttnhuter Page T Fririt T Symbial T Toolbar T "wiiritg]

Colar E dit |
Size | 20 .

Alignment

Huornzontal I Center ™ I
-

Wertical I Certer I

Ok, I Cancel I

2 To change the attribute label color, click the Edit button and select the new color
from the displayed palette.

3 To change the attribute label font Size, overtype the appropriate value in the text
box.

4 To change the attribute Alignment, select a new value from the appropriate drop-
down list.

5 Click OK when you have finished.

4

195/248

Worksheet Layout Preferences

Chapter 12

12.3 Worksheet Layout Preferences

In this dialog box, you can change the size and orientation of your scheme worksheet. These

characteristics are visible on screen and when you print a scheme.
1 Inthe Environment Options dialog box, click the Page tab.
The Page dialog box opens.

= Environment options

Advanced T Attribute TF‘ager Prirt T Sumbal T Taolbar T Wiring]

Onentation

I Landzcape ™ I

Size A =

Gnd I 1.0 o

ok |

Cancel

2 To change the worksheet orientation, select the appropriate option

Orientation drop-down list.

in the

3 To change the worksheet size, select a new size from the Size drop-down list.

4 To change the grid distance overtype the appropriate value in the Grid box.

5 Click OK when you have finished.

196/248

4

Chapter 12 Printing Options

12.4 Printing Options
In this dialog box, you can change the margins and the font of your printed scheme page.
These characteristics are visible on screen and when you print a scheme.
1 Inthe Environment Options dialog box, click the Print tab.
The Print dialog box opens.

B Environment options |

Advanced T Attribute T Fage T Pririt I Syrmbol T Toolbar T Wfiring]

b arging in ..

Left | 0
Right m
Top | 20

Bottom m

Fontface: &rial pointzize: 8

Select font. .. |

OF. I Cancel |

2 To change the margins, overtype the values in the appropriate boxes.

3 To change the font, click the Select font... button, and select the new font from the
list.

4 Click OK when you have finished.

4

197/248

Symbol Layout Preferences Chapter 12

12.5 Symbol Layout Preferences
In this dialog box, you can change the way symbols are displayed on the worksheet.
1 In the Environment Options dialog box, click the Symbol tab.

The Symbol dialog box opens.

B Environment options |
Advanced T Attribute T Page T Frirt T Symbol T Toolbar T Wiring]

Shape color - Editl
Grid | 1.0 m.m.

To eaze the creation of your own zpmbole Bealizer can create
the macra heading for you.

W ilse the pin names in the macro heading

1] I Cancel I

2 To change the color of symbols, click the Edit button and select the new color from
the displayed palette.

3 To change the grid distance within symbols, overtype the appropriate value in the
Grid box.

Each symbol you create is normally linked to one or more macros. These macros have
headings with a specific format. For details, see “Naming Macro Instructions” on
page 188.

4 To allow pin names to be used in macro headings click the corresponding check
box.

5 Click OK when you have finished.

198/248

4

Chapter 12 Customizing Toolbars

12.6 Customizing Toolbars

Toolbar buttons provide you with quick access to frequently-used commands. Most of the ST-
Realizer commands have their own, predefined buttons. You can change the ST-Realizer
toolbars by:

» Adding or deleting toolbar buttons.
* Placing separators between toolbar buttons.
« Changing the order of toolbar buttons.

« Restoring the default toolbar.

Note: Note that the changes you make to the toolbar are not implemented until you
open a scheme.

The following paragraphs describe how to perform these tasks.
1 In the Environment Options dialog box, click the Toolbar tab.

The Toolbar dialog box opens. The Available buttons box lists the toolbar buttons that
are available but are not currently being used. The Active buttons box lists the toolbar
buttons that are currently being used.

B Environment options |

Advanced T Attribute T Page T Fririt T Sumbal TTDnIharr Wiring]

Sevailable buttons: Active buttons:

p | File Mew -
File Open
File Save
£- | Separator ---
Edit Cut
Edit Copy
Edit Faste
Edit Delete
Separatar -
Select & Wire Group
Separatar -
Analyse Results ll

Previnns Mezzane

Analpze Go
Simulate Go

Up I Du:uwnl Separator I

Drefault |)4 | Cancel |

199/248

4

Customizing Toolbars Chapter 12

12.6.1 Adding and Deleting Toolbar Buttons

1 To add a button to the toolbar:

* In the Active buttons box, select the button to the left of which you wish to add the
new button.

* Inthe Available buttons box, click the name of the button you want to add, then

click .

2 To delete a button from the toolbar, click its name in the Active buttons box,

then click .

3 Click OK.

12.6.2 Placing Separators Between Toolbar Buttons

You can place separators between toolbar buttons, so that you can group the buttons as you
like. For example, you could group the edit functions: Cut, Copy and Paste buttons. Placing a
separator widens the space between two buttons.

To place a separator:

1 In the Active buttons box, click the button to the left of which you want to place a
separator.

2 Click the Separator button, then click OK.

12.6.3 Changing the Order of Toolbar Buttons
1 In the Active buttons box, click the button you want to move

2 Click Up to move the button one place to the left, or Down to move the button one
place to the right.

3 Repeat step 3 until the button is in the required position.

4 Click OK when you have finished ordering the buttons.

12.6.4 Restoring the Default Toolbar
1 Click Default.
2 Click OK.

4

200/248

Chapter 12 Wire Drawing Options

12.7 Wire Drawing Options

You can change wire characteristics and snapping distances.

1 In the Environment Options dialog box, click the Wiring tab.
The Wiring dialog box opens.

B Environment options |
Advanced T Attribute T Page T Frint T Symbol T Toolbar T "Wiring]

¥ Shap to object at I 1.0 m.m.
WV Auto wire

Stop auto wiring after | 10 =ec.

‘e colar - Edit I
Junction calar - E dit I

ok I Cancel |

2 To change the snapping distance, click the corresponding check box and overtype
the appropriate value in the text box.

3 To enable the auto wiring and/or auto reroute features, click the appropriate check
box.

» With Auto wiring, ST-Realizer draws the wires by automatically choosing the shortest
path between the symbols to be connected, creating corners where required.

* With Auto reroute, ST-Realizer automatically reroutes wires when a symbol is moved.

4 To change the color of wires or junctions, click the appropriate Edit button and
select the new color from the displayed palette.

5 Click OK when you have finished.

201/248

4

Wire Drawing Options

Chapter 12

202/248

4

Appendix A: Variables and Attributes Variable Types and Rules

APPENDIX A: VARIABLES AND ATTRIBUTES

This appendix provides you with quick access to the type of information you'll need when you
create ST-Realizer applications. This information includes:

« Alist of the type of variables you can define, and the rules that apply to variables.

« Alist of the attributes you can place on symbols and wires.

Al Variable Types and Rules

ST-Realizer lets you define the following data types:

Table A1 Data Types

Name Range Data type Nulr;;l?eesr of
BIT 0,1 Boolean Bit
UBYTE 0...255 Unsigned byte 1
SBYTE -128...+127 Signed byte 1
UINT 0...65535 Unsigned integer 2
SINT -32768...32767 Signed integer 2
LONG -2147483648.. .2147483647 Signed long 4
WORD Represents any type, except BIT Any, except Boolean 1 through 4

Most of the symbols included with ST-Realizer support multiple-type pins. This means that
any variable types can be assigned to these pins. For example, the AND2 symbol can be used
as an AND or either two BIT or two UINT variables.

ST-Realizer handles multiple type variables in two groups:
* The BIT variables.
e The UBYTE .. LONG (=WORD) variables.

You cannot mix these variable groups, for example, an AND2 symbol cannot be used to
perform an AND on a BIT and a UBYTE variable.

Note that the type WORD covers any data type other than BIT.

4

203/248

Variable Types and Rules Appendix A: Variables and Attributes

To define a variable type, you attach an attribute with the Tag TYPE and the name of the
variable type in the Value field.

Note: A LONG variable uses 4 bytes in RAM, while a UINT or SINT variable uses 2
bytes and an UBYTE uses 1 byte. To save RAM space, it is therefore
recommended that you use the LONG variable range only when needed.

Al.1 Type Inheritance

Multiple-type pins support type inheritance: this means that the output pin type is the same as
the greatest of the input pin types.

The following picture shows how type is inherited by the AND2 symbol.

Note that, if the expected result is outside the expected range, you must set the appropriate
type for the output pin by placing a TYPE= attribute on that pin. For example, if a multiplication
is performed between the values 124 and 245, which are both UBYTE type variables, the final
result will be 30380, which is a SINT type variable. Thus the SINT type must be attributed to
the output wire.

Note: Operations between BIT and WORD variables are not allowed.

4

204/248

Appendix A: Variables and Attributes Attribute Types

Al.2 Type Overruling

You can overrule type inheritance rules. By placing an attribute with the Tag TYPE on the
output wire, you can set the output of a symbol to a specific variable type.

This feature can be useful when you use the MUL symbol to multiply two values. When you
multiply two SINT variables an overflow may occur: 2000 * 1500 becomes -14656 instead of
the expected 3000000. By putting a TYPE=LONG attribute on the output wire of the MUL
symbol, this overflow is prevented (the value 3000000 can easily fit into a LONG variable). For
example:

Another example of type overruling is where the DIV symbol (divide) is used to divide two
SINT variables. This results in a value that fits onto an SBYTE variable. By using the TYPE=
attribute a smaller variable type can be defined, generating more efficient and faster code:

A2 Attribute Types

The following tables list the types of attribute that you can place on pins and symbols, and
describe the available values and meanings.

ﬁ 205/248

Attribute Types

Appendix A: Variables and Attributes

A2.1 Pin Attributes

Tag Description

Pin numbering: # = 0..x

Specifies the parameter sequence.
TYPE Specifies the variable type of a pin. The following table lists the available

values for TYPE tags and their ranges:
Value Range
EVENT 0,1
BIT 0,1
UBYTE 0..255
SBYTE -128 .. 127
UINT 0 .. 65535
SINT -32768 .. 32767
LONG -2147483648 .. 2147483647
WORD = any type except BIT
When one of these values is specified, the connecting wire must be of the
same type.
For input pins the attribute: TYPE = WORD is available. This allows type
UBYTE .. LONG to be connected to the pin.
For output pins a combination of input pins can be used to define the output
type:
MAX a,b,c,...: a,b,c,.. are pin numbers.
MIN a,b,c,...
The MAX value returns the largest of the input pin types and the MIN value
return the smallest.
For example, MAX1 will return the type of input pin 1. MAX12, will return the
largest of the input pin types of pins 1 and 2.
Non volatile allocation: ALLOCATION = "FIXED" . Allocates a non volatile
variable with the same variable type as the pin.
Local variables:
ALLOCATE =x
X’ extra variables are added, the variable type of the pin is used.

206/248 IS74

Appendix A: Variables and Attributes Attribute Types

A2.2 Symbol Attributes

Tag

Description

ALLOCATEBLOCK IN

Defines the memory space (RAM or EEPROM).

ALLOCATION

By adding the ALLOCATION = FIXED attribute to an output pin, ST-analyser
will allocate a non-volatile variable (usually a EEPROM variable) to it. This
variable is added to the macro parameter list after the list of parameters of that
particular pin. This enables you to make your own non-volatile symbol.

BLOCK SIZE IN UNITS

Defines the size of the block in units (variables).

CODE Defines a macro that is executed inside the main execution loop. Enter the
macro name in the Value field.

COMMENT The value of this attribute is used in the report file.

COUNT PIN See “DEVICE”

DEVICE DEVICE attributes apply to macros associated with some particular symbols.

They are automatically specified when you select the symbol. They extend the
macro definition with additional information added in the macro argument list
after the pin and value attribute parameters.

The available DEVICE values are:

DEVICE = INPUT, which extends the macro argument list with the input port
parameters. In this case the attribute NAME must be used to associate a
hardware port. Examples: input, inputlatch symbols.

DEVICE = INPUTREG, is used to enable a hardware connection to an Input
register.

DEVICE = INPUTALL, is used to enable a hardware connection to any
hardware resource.

DEVICE = OUTPUT, which extends the macro argument list with the output
port parameters. In this case the attribute NAME must be used to associate
a hardware port. Examples: output, outputlatch symbols.

DEVICE = OUTPUTREG, is used to enable a hardware connection to an
output register.

DEVICE = OUTPUTALL, is used to enable a hardware connection to any
hardware resource..

4

207/248

Attribute Types

Appendix A: Variables and Attributes

Tag

Description

DEVICE (cont’d)

DEVICE = TIMER, which extends the macro argument list with a time value,
atime variable and a system tick variable. The time value is optional (attribute
“TIME = 2:00.00"). The type of the time variable is determined by the constant
time value or the attribute “TIMEPIN = x”, where x is an input pin number. The
TIMER attribute results in the following macro call extensions:

If the TIME = attribute exists:
time, Ttime,timer, Ttimer,tick, Ttick
If the TIMEPIN = attribute exists:
timer, Ttimer,tick, Ttick
Examples: timf, timv symbols.
DEVICE = MICROSEGC, is used to create a micro second delay, using
timebase with the attribute TIMEBASE = x .

DEVICE = COUNTER, which extends the macro argument list with an
additional variable and its type. This variable is used as an internal variable
(the counter value). The type of the internal variable is defined by the
“COUNTPIN = x” attribute, where x = a pin number. Examples: countf,
countv symbols.

DEVICE = SHIFT, which extends the macro argument list with an additional
variable and its type. This variable is used as an internal variable (the shift
value). The type of the internal variable is defined by the “SHIFTPIN = x”
attribute, where x = a pin number. Example: shift symbol.

ICODE Defines a macro that is executed once, before the main program loop is
executed, to initialise the symbol’s properties. Enter the macro name
preceded by i in the Value field.

LABEL Used to link two wires by means of a name or to name an object.

NAME See “DEVICE”

OCODE Defines a macro that is executed at the end of the execution loop. Enter the
macro name preceded by o in the Value field.

SCHEME Subscheme attribute; specifies the name of the file (*.sch) associated with the
subscheme

SHIFT PIN See “DEVICE”

TABLE Extends the macro parameter list with a reference to a ROM table, the number
of records in the ROM table and the default value of the table:
table,nrOfrecs,defval
The tag TABLETYPE can also be used with the value INDEX or LOOKUP, to
generate an indexed table or a lookup table respectively.

The “TABLE =" attribute defines the filename of the table.
208/248 K’[

Appendix A: Variables

and Attributes Attribute Types

Tag Description

TIME See “DEVICE”

TIME PIN See “DEVICE”

TXT Specifies ASCII data to be entered as plain text.

UNIT TYPE Type of a variable, from BIT through WORD, and also MIN and MAX.

VALUEXXXX The values of attributes with the tag: VALUE, are added after the pin
parameters.
VALUEX = x , is used to create a constant.

FAMILY FAMILY="ST623" , used to identify hardware specific symbols. This string is

compared with the device string when there is a partial compare the symbol is
excepted by the analyzer.

4

209/248

Attribute Types

Appendix A: Variables and Attributes

210/248

4

Appendix B: Sample Applications Coded Lock Application

APPENDIX B: SAMPLE APPLICATIONS

Bl Coded Lock Application

Applications generally include more and more security features. These aim to insure data
confidentiality, access control or identify users. Non-volatile memory is usually required to
store the identification or secret code. With the embedded EEPROM provided on the ST6 or
ST7 MCU, one-chip solutions can be developed with the associated cost and density
advantages.

The following example shows a coded lock system that was developed using ST-Realizer.

B1.1 Application Overview

This application manages a coded lock for a door. A secret code is loaded into the lock system
to allow the door to be unlocked only if that code is entered. When loaded, the secret code is
stored in the non-volatile memory (EEPROM) embedded in the ST6 or ST7 MCU. This
ensures that the data is retained, even after a voltage cut-off, and insures security.

The application includes the following features:
e Secret code recording (3 digits).

« Recognition of entered access codes.

» Door lock control.

All the described functions of the system are managed in the final application under software
control by the MCU.

Only the core of the application, the secret code storage in EEPROM and the code
recognition, are described as a generic base for various applications. Any type of user
interface, such as keyboard, IR or RF could be used, while the output signal can activate any
kind of circuit. For this example, it is assumed that the user interface provides the following 4
inputs:

» Digit reception flag

e Digit value (0..9)

e Change secret code
* Lock the door

The digits used for the code are received serially, and are announced by the activation of a
flag.

4

211/248

Coded Lock Application

Appendix B: Sample Applications

B1.2 Functional Description

Figure B1 below shows the application block diagram. Note that the application is restricted
to its core: operation sequencing, the secret code storage in the EEPROM and the code

recognition.

Figure B1 Coded Door Lock Block Diagram

Lock the door

Change secret code - Sequencing

g Digit reception flag d Control
I}
o) |
£ v
@
2]
S5
g I EEPROM
i

Digit value v

-

Code
- Recognition L -

to door
locking
system

B1.3 Sequencing Control

The most important feature of this application is the sequencing control of all its operations.
Two main items must be considered: the transition between the different working modes (Door
locked, Access code entry, Door unlocked and Secret code entry) and the management of the
serial flow of the numeric values received from the user interface.

The transition between the working modes is managed by a state machine, which manages

four states:

» Door locked

e Code recognition
» Door unlocked

e Secret code entry

212/248

4

Appendix B: Sample Applications Coded Lock Application

Figure B2 Sequencing Control State Machine

Wrong Code

u Coor locked
one digit received

Code
recagnition

Lack

Right Code

oor unlocke

Last digit

Change Code

The conditional occurrences are generated through either the user interface (Lock, Change
secret code), or some functional sub-blocks of the application (One digit received, Right code,
Wrong code, Last digit). For example, the occurrence of the condition One digit received in the
Door locked state initiates the process code recognition.

The management of the serial flow of the digits entered (0..9) is carried out using a received
digits counter (Figure B3). This stores the 1st, 2nd and 3rd digits received (in the case of a 3-
digit code), in associated memory locations. When the 3rd digit is received, the counter is
reset. In addition, the reception flags of the 1st digit and 3rd digit are used in the state-machine
to initiate the code recognition and conclude the Secret code entry respectively.

Figure B3 Management of Digit Reception

1st_Digit

One digit received

B B=A=C—
COUNTER
Digit Reception Flag —C B<C —

Up B_
P F

2nd_Digit

Dn Val ——= —A BrA—
@—L Clr Zero—

B B=A=C
—=Pr]

L—C B<C —
UBYTE

_ 3rd_Digit

m

B=A=C

Last digit

init=0 type=bit
1Z z

4

213/248

Coded Lock Application Appendix B: Sample Applications

B1.4 Secret Code Storage in the EEPROM

ST-Realizer enables the EEPROM non-volatile memory to be managed as a standard bi-
stable component: R/S Latch, D Latch, Shift Register or Counter.

Each EEPROM location is identified by a specific D Latch component providing the non-
volatility feature. This component, provided within the ST-Realizer library, has the advantage
of being multitype. This means the same symbol can be used whatever the input type: Bit,
Byte, Word, Integer or Signed variable.

The data input comes directly from the interface as the digit value, in one byte. The number of
D Latches must be equal to the number of digits used for the secret code, thatis 3. There is a
specific clock for each of the 3 D Latches, controlled by the sequencing control module. Data
can be written (Clock activated) to a D Latch only if the active mode is Secret code entry, and
if the received bit corresponds to this location (Figure B4). The clock is generated through an
AND function between the Secret code entry mode and the ranking of the received digit. This
ranking is issued by the counter used for serial flow reception.

Figure B4 Digit Storage in EEPROM

Digit Value To 2nd and 3rd EEPROM storage
Secret Code. P MQ_
Entry Q-
1st_Digit B&Z @
EEPROM

B1.5 Access Code Entry and Recognition

The digits are received serially, as in the Secret code entry mode, and stored in Volatile
Memory locations (RAM). The RAM locations are described with standard D Latch symbols.
The input/output of this component are exactly the same as for the non-volatile components
allowing a clear analogy between the functional description of the two modules. The data input
channel is the same while the clocks are logically validated, except if the Secret code entry
mode is activated (Figure B5).

Figure B5 Digit Management for Code Recoghnition

Digit Value To 2nd and 3rd digit stage

Secret Code.] 0 MQ_

Entry = A BRA L .
_B&Z C op 6 p-a-c Digit Recognition
EEPROM ’—Ec BeC i —
I
R
1st_Digit &: i
¢ RAM

Code recognition is performed by a one-to-one comparison between the values stored in
EEPROM and RAM.

214/248 V<72

Appendix B: Sample Applications Analog Multiple Key Decoder

B2 Analog Multiple Key Decoder

One of the main uses of the ST on-chip Analog to Digital Converter (ADC) is to decode keys
through one I/O port pin. The keys are connected to the converter input using a resistive
voltage divider. This method is useful, since it only requires one /O pin, whereas a traditional
matrix keyboard requires a high number of I/O pins.

B2.1 Application Overview

The basic circuit of the decoder consists of a pull-up resistor connected to the ADC input, with
the first key directly switching to ground. The following keys are then connected in sequence
to the ADC input through serial resistors. The combination of the pull-up resistor, the serial
resistors and the pressed key form a resistive voltage divider (Figure B6).

Figure B6 Analog Keyboard Resistor Key Matrix

SV

ST6 D
NI KA
DU D B

When a key is pressed, the voltage at the ADC input is given by the activated voltage divider,
generating a different voltage at the ADC input for each key that is pressed. If the top key is
pressed, the voltage measured is zero while the default voltage at the ADC input (if no key is
pressed) is Vdd.

LT

ADC IN[

This analog voltage is converted by the ADC and the digital output value is used to determine
which switch is closed. If more than one key is pressed at the same time, the key detected is
the key in the chain closest to the ADC input. This allows the keys in the keyboard to be
prioritized (Figure B7).

215/248

4

Analog Multiple Key Decoder Appendix B: Sample Applications

Figure B7 Multiple Key Press

2V

ST6 HRP

L R1 R2 R3 /7
ADC IN[J L * L * * 7/

o

P\A[so S1 P\A[sz S3

Depending on the identified key, a direct signal activation can be achieved or a selective jump
in the program flow can be performed.

B2.2 The Keyboard

The serial resistors are selected in order to give an equal distribution of voltage between Vdd
(No key pressed) and Vss (Last key pressed) for each switch combination, in order to give the
best noise margin between keys. For n keys, the resistor values should be selected so that the
voltage for the second key from top is Vdd/n, for the 3rd 2vdd/n, for the 4th 3Vdd/n and for the
nth (n-1)Vdd/n.

The maximum number of keys is limited by the precision of the resistors that provide a voltage
value for each key pressed, within a margin of error either side of the theoretical value.

For a 10-key system, the values (in Ohms) given in Table B2 are used for the resistor network.
Taking into account +/- 2% resistors, the voltage values and conversion results given in Table
B3 can be obtained. Vmin is obtained when the serial resistors are at their minimum value and
the pull-up resistor Rp is at its maximum value. Vmax is obtained when the serial resistors are
at their maximum value while the pull-up resistor Rp is at its minimum value.

Table B2 Used Resistors
Rp R1 R2 R3 R4 R5 R6 R7 R8 R9
10000 1100 1300 1800 2400 3300 5100 8200 16000 51000

Table B3 Voltage at the ADC input and 8-bit conversion result (5V supply)

Active key vmin Vmax Conversion
result
KeyO 0.00 0.00 0-0
216/248 ﬁ

Appendix B: Sample Applications Analog Multiple Key Decoder

Keyl 0.48 0.51 24-26
Key2 0.94 1.00 48-51
Key3 1.44 1.52 73-78
Key4 1.94 2.04 99-104
Key5 2.44 2.54 124-129
Key6 2.95 3.05 151-156
Key7 3.45 3.54 179-180
Key8 3.95 4.02 202-205
Key9 4.48 4.52 229-230

The condition no key pressed corresponds to a result of 255.

B2.3 Software Generation

The functional description of the application includes:

e The analog input through an ADC to read the value issued by the voltage dividers.

e Key recognition.

» Transfer of the result to other functional blocks, or conditional jumps in a state machine.

The recognition of the pressed key is achieved by comparing the digitized analog value with
the range limits defined in Table B3. However, these ranges [0-0], [24-26] up to [229,230] are
not contiguous, thus two comparisons (upper limit and lower limit) are required to check that a
value is within a range. This means that more ROM and RAM is used with an higher execution
time. Thus some extended ranges with common limits are defined as shown in Table B4.

Table B4 Recognition ranges
Key pressed Recognition ranges
Key0 0-12
Keyl 12-37
Key2 37-62
Key3 62-88
Key4 88-114
Key5 114-140
Key6 140-165
Key7 165-190
Key8 190-217
Key9 217-244
None 244-255

4

217/248

Analog Multiple Key Decoder Appendix B: Sample Applications

A range limit value is never reached (see Table B3), therefore no ambiguous situation can
occur.

The key pressed can then be recognized with numeric comparators and some logical gates,
as shown in the Figure B8. The output signals generated Key 0,.., Key 9, None are logical
signals, and can therefore be used both as input signals to other functions or as conditions in
a state machine.

Figure B8 Key Recognition by Analog Value Evaluation

Key 0

—C B<C
B B=A=C —

12 A B=A A
Ij & Key 1
z
Ing D —iC B=C B

- B=A=C |
7w BrA A
From the voltage divider Ij i n&Z Key2
B B-A-C— -
E L BeA
Analog value entry Key recognition

B2.4 Possible Improvements

The inputs A and C of the comparators are interpreted as variables to which fixed values are
assigned: the range limits. Even though this does not have any importance for the application
process itself, it must be taken into account in some cases. Some RAM locations, usually
dedicated to variable storage, are used to store these constant values. This reduces the RAM
space available for the surrounding application (Data processing, I/O control etc.).

This can be improved by creating a specific comparison symbol where the reference values
are defined as constant. Thus the limit values are stored in the ROM and not in the RAM
space.

While doing this, it is also possible to fine tune the symbol function for the application. The new
symbol is defined as follows:

The variable input value is compared to 2 reference values Bot, Top attached to the symbol
instance, providing 3 output:

* |Input > Top
* Bot <= Input <=Top
* |nput < Bot

Only 5 comparators and one RAM location are used by the digitized representation of the
voltage value, instead of 11 in the previous case (input value plus 10 border values).

218/248 ﬁ

Appendix B: Sample Applications Analog Multiple Key Decoder

The symbol customisation feature provided by the ST-Realizer environment thus enables a

more simple graphical description to be created (only 5 comparators) while optimizing the
memory requirements (Figure B9).

Figure B9 System Optimization Using Customized Components

Bot=12

In < Bot Key 0
——InIn<=Bot<=Top Key 1
In > Top L Ia
'"F Ton=37 Key 2
<) B&z
Bot=62 r
From the voltage divider In <Bot—
L linin<=Bot<=Top Key 3
In=Top—
Top=88
Analog value entry Key recognition

4

219/248

Clock Design Appendix B: Sample Applications

B3 Clock Design

MCU solutions are often used as clocks owing to the onboard timer and all the task
management possibilities offered by the MCU embedded resources. This approach enables
single-chip solutions to be developed that are extremely useful in applications such as small
home appliances.

The following paragraphs show an example clock design, that includes an alarm feature, that
was developed using ST-Realizer.

B3.1 Application Overview

The clock system provides the following features:
e Current time counting

« Alarm triggering at a defined time

e Current time setup

e Alarm time setup

The time values are represented in the HH:MM format, but the described concept can easily
be extended to representation in seconds. By using this HH:MM format, the time value is
represented by a pair of integer variables ranging between [0 to 59] for the minutes and [0 to
23] for the hours.

The user interface consists of 4 keys: TIME SETUP, ALARM SETUP, HOURS and MINUTES.
With these 4 keys, both the current time and the alarm time can be adjusted:

 When the key TIME SETUP is activated, the Hours (Resp. Minutes) variable of the current
time is increased each time the key HOURS (Resp. MINUTES) is activated.

« When key ALARM SETUP is activated, the Hours (Resp. Minutes) variable of the Alarm
time is increased each time the key HOURS (Resp. MINUTES) is activated.

All time variables are reset to 00 when they reach the maximum value (23 for the hours and 59
for the minutes).

B3.2 Current Time Counting

The system uses a timebase generated by the clock of the embedded timer on the ST6 or ST7
MCU. This timebase can be configured (the default value is 10 ms). It is used to trigger three
chained modulo-n counters (Unit Counter):

* One for seconds (n = 60).
e One for minutes (n = 60).

e One for hours (n = 24).

4

220/248

Appendix B: Sample Applications Clock Design

When any of these Unit Counters reach their maximum value, a clock is issued to increment
the Unit counter of the next stage.

B3.3 Current Time Setup

The current time value is modified by incrementation of the counters used for the current time
counting. This is achieved by duplicating the clock input of the appropriate counter in the
current time counting block. In practice, two different additional clocks are needed, one for
minute incrementation and one for hour incrementation. Each of these additional clocks is
controlled by the combination of the keys: TIME SETUP, HOURS and MINUTES.

B3.4 Alarm Time Setup

This process is similar to current time setup. Two counters are used, one for minutes, and for
hours. The contents of these counters can only be modified by pressing the keys ALARM
SETUP, HOURS and MINUTES once.

B3.5 Alarm triggering

An alarm process is launched when the current time is equal to the predefined alarm time. The
occurrence is enabled by a double comparison: Hours equal, Minutes equal

Figure B10 Application Block Diagram

TIMEBASE |
2 Hour, Min Setup Current 2
TIME SETUP — Time
Computing
ALARM SETUP —— USER ||
COMPARISON
HOURS —— INTERFACH

2 Hour, Min Alarm Setup| Alarm 2

MINUTES —] Time

Setup

B3.6 Timebase

The timebase is described using the Oscillator component of the ST-Realizer library. Any
“real-time” value can be defined for the period. For this application, the 1Hz timebase is
defined as an oscillating square wave with half a period (level High duration) of 00:00:00.50 in
the HH:MM:SS.xx format (Figure B11).

ﬁ 221/248

Clock Design Appendix B: Sample Applications

ST-Realizer uses the embedded Timer of the ST6 or ST7 MCU as the timebase, and
generates by software any periodic variable.

Figure B11 Timebase Description

1 Hz Timebase

S

00:00:00.50

B3.7 Current Time Counting

Each of the 3 chained Modulo-N counters presents:

e Aninput clock issued from the previous stage (timebase for the 1st stage).

e An output clock to activate the following stage.

« A byte-wise output with the current counted value (Second, Minute or Hour).
« An optional clock for the incremental set-up process.

Any content change can only be performed during an input clock transition from 0 to 1. Thus
the reset phase when the counter reaches its maximum value has to be anticipated. For
example, the Hours Modulo-24 counter is reset if the two following conditions occur: contents
equal 23 and input clock transition. In parallel, the resulting Reset signal is issued as output
clock to increment the next stage as shown in Figure B12 in the case of a Modulo 5 counter.

Figure B12 Clock synchronism principle

CLKin

|
Value —1—f—'—’741—|

| |
| | | | | |
| | | | F| | |
CLKout | | | | | |
[[[[[[

Each Modulo-N block is based on a Counter component provided within the ST-Realizer
standard library. This symbol presents the advantage of generating a numeric variable as

222/248 ﬁ

Appendix B: Sample Applications

Clock Design

output. This means that any numeric or arithmetic operation can be directly performed on that
variable without modifying its binary representation. The detection of the maximum value is
achieved with a comparator symbol.

The comparator output is entered into the feedback loop at the falling edge of the input clock.
This avoids any parasitic Reset during the High level of the input clock, when the comparator
output switches to High level. In parallel, the counter incrementation is prevented by forcing
the Up input of the counter to Low level.

Finally, each Unit Counter is represented in the ST-Realizer environment as shown in the

Figure B13.

Figure B13 Unit Counter Description

CKin 3-SHn

A1z

init=0 type=bit

—B

Up

[0 —Lor

Cir
11—

Pr

-,

N»—

A B=A —
al B B=A=C
Zero— I—C B=C —

UBYTE

> CKout

Figure B14 Current Time Counter Waveforms

=g C'_M

CLKin —i

e

|
A=B=C

|
Val N_1><
_ 1
|
|

Pr

B3.8 Current Time Setup

The incrementation clock (Up input of the symbol) is duplicated through an OR gate with an
external clock, Setup signal, for Hour or Minute setup. Any activation on this clock increments
the content of the counter by 1 (Figure B15).

br

223/248

Clock Design Appendix B: Sample Applications

Figure B15 Current Time Setup with a Duplicated Clock

Setu p>>~‘
.y N>>—

A » z—|

&: B Up . ln peal
|) B @— Dn Val B B=A=C —
:I CKin> CHin J|': I CIr Zero — I—C B<C —
= A Init /\’ - - Pr 0

&Z UBYTE
| init=0_type=hit B

Q D

=0 C- _M

——3>CKout

B3.9 Alarm Time Setup

As for the Current Time setup, the Alarm Time setup is achieved by incrementation of two
Modulo-N counters, one for minutes and one for hours. Each of them has its own input clock,
controlled by the combination of the keys ALARM SETUP, HOURS and MINUTES.

A feedback loop is still needed to reset the counter when the maximum value is reached, but
its implementation can be more simple than in the Current Time counting blocks. A precise
synchronism is not mandatory, and a basic solution can be used (Figure B16).

Figure B16 Alarm Time Setup

COUNTER

Min Setup Up —A Bl
—=Dn Yal B B=A=C
Clr Zero — —-—C B<C —
0 Pr 0
UBYTE > Min Alarm

>>Hour Alarm

UBYTE

@ Pr 0

Clr Zero— —A BrA—
—=Dn Val B=A=C

Hour Setup> Up TC B<C —
COUNTER

m

4

224/248

Appendix B: Sample Applications Fast Counter Application

B4 Fast Counter Application

B4.1 The Application

The following description of an application is added to this appendix to illustrate the new
features that come with ST-Realizer Il. The application is a pulse counting device used to
measure the frequency of a digital signal. It uses the interrupt sensitive inputs of an ST6260
microcontroller. It will filter the measured frequency so that a readable value is obtained. It
converts these values into viewable data and then drives a 4-digit 7-segment LED-display.
Figure B17 shows the basic block diagram symbols that represent the subschemes. The next
diagrams show the 4 sub schemes in detail. Parts of these sub schemes are used in the first
part of this application note. Please note that they are all made using ST-Realizer Il. In Section
B4.2, the Realizer Report File (FASTCNT. RPF) is shown. It informs the designer what
resources are used in which way. In addition, the code generated by Realizer is shown, with
some comments added for your convenience.

Figure B17 Overview of the Fast Counter Application

Main scheme: The overviewy.

Caunar Fikar- Limi, Caman, U reply
In [T R 11
u} In Gd;—f D 2
i "l
il 1]
Inpul.%=h Lal=hsch cameed, sch dispkry zch

The SL(JijCheme shown in Figure B18 calculates the moving average over 4 samples every 3
seconds.

Figure B18 Fast Counter: Input section

Input section: Measuring the frequency

Caunlar

{uumﬁl Up
: eOn il oo ¥}
con —F -

CiIr Tara—

UL [@_J_ZTLT i rc -

€ lacting valug ina D-1f 2

4

225/248

Fast Counter Application

Appendix B: Sample Applications

Figure B19 Fast Counter: Filter and Limit section

Frocessing section: Filter and limit the measured value

Execution conditions;
Feriodic 3 Sec.

In'% [EZ z - C[T z *! E[Z z

—E A

e

o

The subscheme shown in Figure B19 counts under interrupt. The counter value is latched
every second. The edge detection symbol is needed to de-assert the Clr input during the high-

time of the oscillator.

The subscheme shown in Figure B20 converts the integer value into 4 bytes that carry the
data for the 7-segment displays. It is executed only when the input changes.

Figure B20 Fast Counter: Conversion section

Convert section: Creating the information for each digit.

Execution conditions:
Upon sub scheme input change

I n o TIRE-LBVTE 1 o0 0wt
- e
oo e & Lo TVPE-UBNTE Ceegmidnf, g Sr Oz
= OETE [
¢ pl TYPEUBTER 1 TYPE-UBYTE Tsagmuanf ool S0
- = OETE [
T e G TVPE-UBVTE L1 T s Ol
OETTE
r-32gm Jab

The subscheme shown in Figure B21 takes care of the multiplexing of 4 7-segment displays.
It runs under interrupt control, every 10 milliseconds.

226/248

4

Appendix B: Sample Applications

Fast Counter Application

Figure B21 Fast Counter: Display section

Display section: Driving the display in multiplexed mode.

Dights— I
wlz-
E
, [
Digitl l—.'i'.
}}12— ¢ B magmen,
T
1 i L)
ol Bl e
Ini) E2— |— ¢ I=-sagman,
In2 1 O W ED
I 2 gl —[F] preagmen
Int. 3 Ba—— | "
- Lﬁ l=-zagma
B?!——II_— L_.ql’_-l -zagman.
L$ bt zegman.

B

verp———— B o
Db@—nm:
nia@—niamcmd]

Dig

Execution conditions;

Timed interrupt 0.03 Sec.

4

227/248

Fast Counter Application

Appendix B: Sample Applications

B4.2 Fast Counter Report File

Here is the Report File generated for the sample application discussed in this section.

ST6260 Realizing Unit (V4.00) (c) 1990-99 Actum Sol utions

Report file of
Real i zer\ Exanpl es\

Schene Version :1.04

Report timestanp :

Anal yze results : No errors

project C \Program Fil es\ ST-
astcnt\ FastCnt . r pf

Tue May 18 14:06:28 1999

C.:\Program Fi | es\ ST- Real i zer\ Exanpl es\ Fast cnt\ Fastcnt. sch

Schere: C:\Program Fil es\ ST- Real i zer\ Exanpl es\ Fastcnt\ Lat ch. sch
Event: Periodic 3 Sec.

Schene: C.\Program Fil es\ ST- Real i zer\ Exanpl es\ Fast cnt\ | nput. sch
Event: Count=PB.2 interrupt

Schere: C:\Program Fi |l es\ ST- Real i zer\ Exanpl es\ Fast cnt\ convert. sch
Event: Upon sub schene input change

Schene: C:\Program Fil es\ ST- Real i zer\ Exanpl es\ Fast cnt\ di spl ay. sch
Event: Tined interrupt 0.03 Sec.

ST6260 (DI L20) connection overvi ew.

Pin Nane Alternative nane Type 1/0 Description
1 PB.O Digit 0 (Isd) (BIT Qutput), 20 mA sink open drain output
2 PB.1 Digit 1 (BIT Qutput), 20 mA sink open drain output
3 TEST (), Test/ program
4: PB.2 Count (BIT Input), i nterrupt
5. PB.3 (BIT Input), Not connected
6: PB.6 Digit 2 (BIT Qutput), 20 mA sink open drain output
7 PB.7 Digit 3 (nsd) (BIT Qutput), 20 mA sink open drain output
8 PA.0 a-segment (BIT Qutput), 5 mA sink open drain output
9: vdd (), Power supply
10: Vss (), Power supply
11: PA. 1 b-segnent (BIT CQutput), 5 mA sink open drain output
12: PA.2 c-segnent (BIT CQutput), 5 mA sink open drain output
13: PA. 3 d-segnent (BIT CQutput), 5 mA sink open drain output
14: OsCin (), Gsci | | at or
15: OSCout (), Gscil | ator
16: RESET (BIT Input), Active | ow
17: NM (BIT Input), Non Maskabl e Interrupt
18: PC. 4 f-segment (BIT CQutput), 5 mA sink open drain output
19: PC 3 g-segnment (BIT CQutput), 5 mA sink open drain output
20: PC. 2 e-segnent (BIT CQutput), 5 mA sink open drain output
228/248 I’I

Appendix B: Sample Applications

Fast Counter Application

Har dwar e connecti ons:

Synbol i ¢ name H W nane
Digit 0 (Isd) PB. 0
Digit 1 PB. 1
Digit 2 PB. 6
Digit 3 (nmsd) PB. 7
a- segnent PA. O
b- segnent PA. 1
c- segnent PA. 2
d- segnent PA. 3
e- segnent PC. 2
f - segment PC. 4
g- segnent PC. 3

Vari abl e overvi ew:

Total used
Total used
Total used
Total used
Total used
Total used
Total used

bits

events

unsi gned byt es
si gned bytes

unsi gned i ntegers

signed integers
| ongs

Menory overvi ew.

Total used
Total used

Not e: The pins that are not connected are defined as digita

The timer pin is configured as an output.

4

RAM
ROM

Description

20 mA sink open
20 mA sink open
20 mA sink open
20 mA sink open

5 mA sink open
5 mA sink open
5 mA sink open
5 mA sink open
5 mA sink open
5 mA sink open
5 mA sink open
23

5

20

0

19

0

0

73 byte (000H >03FH, 085H >08CH)

drain
drain
drain
drain

dr ai
dr ai
dr ai
dr ai
dr ai
dr ai
dr ai

5 5 53 5 35 5

out put
out put
out put
out put
out put
out put
out put
out put
out put
out put
out put

1714 byte (0080H >0732H) of OF9DH

i nput with pull-up

229/248

Fast Counter Application Appendix B: Sample Applications

B4.3 Generated Code

Code generated for the sample application discussed in this section.

ST Realizer (Beta 3) (V4.00) : generated ST6260 Code

File : C\Program Fil es\ ST- Real i zer\ Exanpl es\ Fastcnt\ Fastcnt. asm
Schene Version : 1.04

Dat e : Tue May 18 14:06: 27 1999

Used variables : 52

Used functions : 100

. VERS " ST6260"
. ROVBI ZE 4
. DP_ON

.LIST O

. I NPUT "Fastcnt.inc"

.INPUT "C:\Program Fil es\ ST-Real i zer\ | i b\ ST6260. i nc"
.INPUT "C:\Program Fil es\ ST-Real i zer\Ii b\st62lib. mac"
.INPUT "C:\Program Fil es\ ST-Real i zer\ | i b\ st 62xx. mac"
.INPUT "C:\Program Fi |l es\ ST-Real i zer\ | i b\ st 62eepr. mac"
.LIST 1

. ORG 00080H
RROVST:

.ASCl Z "Fastcnt"
.ASCl Zz "1. 04"
Reset :
LDl 1 OR | OR_MASK
LDI HWDR, OFFH

LDl DRBR, 010H
LDl EECTL, O0O0H

Perlnit:
; initialize PORTB events

; Enabl e i nterrupt on PORTB. 2
Portlnit:
LDl DDRA, 00FH
; LDl ORA, 000H
LDl DRA, OOFH
LDI BUDRA, O0FH
LDl DDRB, 0C3H
LDl ORB, 004H
LDl DRB, 0C3H
LDl BUDRB, 0C3H
LDl DDRC, 01CH
; LDl ORC, 000H
LDl DRC, 01CH

230/248

4

Appendix B: Sample Applications Fast Counter Application

LDl BUDRC, 01CH

Rtcinit:
LDl PSC, 015H
LDl TCR, OCFH
LDl TSCR, 06DH
CLR TICK
LDl 1OR (I OR_MASK | 010H)
RETI

Ram ni t:

LD A0

LDl X, O00H

LDl Y, 62
Ram ni t 1:

LD (X), A

I NC X

DEC Y

JRNZ Ram nit1l

iconstw vin7, 2,4
iconstb v2n4,5,1,0
i dl tchwbww v2n10, 4,v2n11,2,1,y2n9,4,0,0
i constw v3n20, 2, 10
i constw v3nl9, 2, 100
i constw v3nl8, 4, 1000
JP ElI S03011

| S03011:

.BYTE O0OOH

.BYTE O7EH

.BYTE O001H

.BYTE O030H

.BYTE O002H

.BYTE 06DH

.BYTE O0O03H

.BYTE O079H

.BYTE 004H

.BYTE O033H

.BYTE O0O05H

.BYTE O05BH

.BYTE O006H

.BYTE O1FH

El S03011:

Real Mai n:
Rt c:
LDl 1OR, | OR_MASK
LD A TI CK
CLR TI CK
LDl 1OR (I OR_MASK | 010H)
LD RTICK, A
RTI MEND:

LD A, RTI CK

ﬁ 231/248

Fast Counter Application

Appendix B: Sample Applications

JRNZ | RTC0003

JP RTCSKI P
| RTC0003:
; Decrenent 16 bit tiners

JRS 7, 037H, RTC0003

sub2ww 037H, 4, RTI CK, 2, 037H, 4
RTC0003:

RTCSKI P:

Rl NPEND:

; moved to TIMERL interrupt: CALL SUB0002
LDl 1 OR | OR_MASK
copyww y2n9, 4,vOn5, 4
LDl 1OR (I OR_MASK | 010H)

; moved to PORTB interrupt: CALL SUB0002
; check for tinme-out

JRR 7, ATO0001, _UNI 0000

LDl AT00001+0, 1

LDl AT00001+1, 43

CALL SUB0001
_UNI 0000:

;I nput change detection on vOn7
LD A, vOn7+0
CP A, pvOn7+0
JRZ _UNI 0001
JP EXEC0003

_UNI 0001:

LD A vOn7+1
CP A, pvOn7+1
JRZ _UNI 0002
JP EXEC0003

_UNI 0002:

JP NOEX0003

EXEC0003:

CALL SuUB0003

NOEX0003:

; Disable interrupts for
LDl 1 OR, I OR_MASK
copyww vOnll, 2, x4n5, 2
copyww vOn8, 2, x4n2, 2
copyww vOnl0, 2, x4n4, 2
copyww vOn9, 2, x4n3, 2

par anet er passing

; Enable interrupts
LDl 1OR (I OR_MASK | 010H)
; noved to TIMERL interrupt: CALL SUB0004

ROUTPEND:

232/248

4

Appendix B: Sample Applications

Fast Counter Application

copyww vOn7, 4, pvOn7, 4
LDl 1 OR | OR_MASK

LD A, BUDRA

LD DRA, A

LD A, BUDRB

LD DRB, A

LD A, BUDRC

LD DRC, A

LDl 1OR (I OR_MASK | 010H)
LDl HWDR, OFFH

JP Real Main

SUB0O001:

| oopdel ww vOn5, 4, svin2, 4,v1n0, 4
| oopdel ww v1n0, 4, pv1in0, 4,v1nl, 4
| oopdel ww v1nl, 4, pvinl, 4,v1n5, 4
add2www vOnb5, 4,v1n0, 4,v1n3, 4
add2ww vi1n3, 4,v1inl, 4,vlin4, 4
add2ww vin4, 4,v1n5, 4,v1nG, 4

di vwww v1n6, 4,v1n7,2,v1n9,4,0,0
l'i mfww ving, 4, vOn7, 4, 0, 9999
copyww vOn5, 4,svlin2, 4
copyww v1n0, 4, pvln0O, 4
copyww vinl, 4, pvlinl, 4

ret

SUB0002:

i nterrupt driven sub routine

oscfb v2n13,0, 1, 49, 100, T02006, 2

edgebbb v2n13,0, 1, pv2n13,1,1,v2nll, 2,1

| oopdel bbb v2n11, 2, 1, pv2nll, 3,1,v2n3,4,1
eventb v2nl2,6,1

count f bbbbbbbwb
v2nl2, 6,1, pv2nl2,7,1,v2n4,5, 1, pv2n4,0,1,v2n3, 4,1,v2n4,5,1, pv2n4, 0, 1, v2nlo0, 4,
0, 0,0, 0, CT02000, 4

dl t chwbww v2n10, 4,v2nl11,2,1,y2n9,4,0,0
copybb v2n13,0, 1, pv2nl13,1,1

copybb v2nl1, 2,1, pv2nll, 3,1

copybb v2n4,5,1, pv2n4,0,1

ret ;

SUB0003:

end of

di vwww vOn7, 4, v3nls8, 4, v3nl6, 2, v3nlo0, 4
di vwww v3n10, 4, v3nl9, 2,v3n27, 2,v3nl2, 2
di vwww v3nl2, 2, v3n20, 2, v3n26, 2, v3n2l, 2
i ndt abwwv v3n21, 2, vOnll, 2, S03011, 14,0

i ndt abww v3n26, 2, vOn10, 2, S03011, 14,0

i ndt abww v3n27, 2, vOn9, 2, S03011, 14,0

i ndt abww v3nl6, 2, vOn8, 2, S03011, 14,0

ret

SUB0004:

interrupt driven sub routine

interrupt driven sub routine

stat eoutb v4n22,1,1,st0,2,2
stat eoutb v4n21,2,1,st0,2,3

or 2bbb v4n21, 2,1, v4n22,1,1,v4nl, 3,1

stat eoutb v4nl19,4,1,st0,2,1

br

233/248

Fast Counter Application Appendix B: Sample Applications

or 2bbb v4n19, 4, 1, v4n21, 2, 1,v4n0, 5, 1
mux2bbwwww v4no0, 5, 1, v4nl, 3, 1, x4n2, 2, Xx4n3, 2, x4n4, 2, x4n5, 2, v4n6, 2
bunpackwbbbbbbbb

v4ne, 2, 0,0, 0,v4n43, 6,1, v4n4d7,7,1,v4n42,0, 1, v4n4l, 1, 1, v4nd4, 2, 1, v4n45, 3, 1, van

46,4, 1
di goutb v4n46, 4, 1, BUDRC, 3, 1
di goutb v4n45, 3, 1, BUDRC, 4, 1
di goutb v4n44, 2,1, BUDRC, 2, 1
di goutb v4n42, 0, 1, BUDRA, 2,1
di goutb v4n47,7,1, BUDRA 1, 1
di goutb v4n43, 6, 1, BUDRA, 0, 1
di goutb v4n4l, 1, 1, BUDRA 3,1
stateoutb v4nl2,5,1,st0,2,0
di goutb v4nl2,5,1, BUDRB, 0, 1
stateoutb v4nl3,6,1,st0,2,1
di goutb v4nl3,6,1,BUDRB, 1,1
stateoutb v4nl4,7,1,st0,2,2
di goutb v4nl4, 7,1, BUDRB, 6, 1
stateoutb v4nl5,0,1,st0,2,3
di goutb v4nl5,0,1, BUDRB, 7, 1
statemnit st0,2,0
statemnit st0,2,1
statemnit st0, 2,2
statemnit st0, 2,3
statemnit st0,2,-1
stateinit st0,2,0
state st0,2,0,1
stateend st0, 2,0
stateinit st0,2,1
state st0,2,1,2
stateend stO0, 2,1
stateinit stO0,2,2
state stO0,2,2,3
stateend stO0, 2,2
stateinit stO0,2,3
state st0,2,3,0
stateend stO0, 2,3
statenend stO, 2, 4
LD A, BUDRA
LD DRA, A
LD A, BUDRB
LD DRB, A
LD A, BUDRC
LD DRC, A
ret ; end of interrupt driven sub routine

.| FC NDF Rtci nt
Rt ci nt :
LDl TSCR, 000H
LDl PSC, 015H
LDl TCR, OCFH
LDl TSCR, 06DH
I NC TI CK

; Create normal stack push

234/248

4

Appendix B: Sample Applications Fast Counter Application

LD STACKA, A
LD A X

LD STACKX, A
LD AY

LD STACKY, A
LD AV

LD STACKV, A
LD AW

LD STACKW A
LD A REQD
LD STACKO, A

; Decrenment interrupt tiners
JRS 7, T02006, TML_0004
decw T02006, 2
JRR 7, T0O2006, TML_0004
CALL SuUB0002
TML_0004:

; Decrenment prioritized tiners
decw AT00004, 2
JRR 7, ATO0004, TML_0005
CALL SUB0004
copyww 2, TCONST, AT00004, 2
TML_0005:

; Create normal stack pop
LD A, STACKO
LD REQD, A
LD A, STACKW
LD WA
LD A, STACKV
LD V, A
LD A, STACKY
LD Y
LD A
LD X, A
A
I

; PORTA, PORTB interrupt service routine
. | FC NDF PORTAI nt
PORTAI nt :

; Create nornmal stack push
LD STACKA, A
LD A X
LD STACKX, A
LD A'Y
LD STACKY, A
LD AV
LD STACKV, A

ﬁ 235/248

Fast Counter Application Appendix B: Sample Applications

LD AW

LD STACKW A

LD A, REQD

LD STACKO, A

SET 6,v2nl2

CALL SUB0002
RES 6, v2nl2

; Create normal stack pop
LD A, STACKO
LD REQD, A
LD A, STACKW
LD WA
LD A, STACKV
LD V, A
LD A, STACKY
LD
LD
LD
LD
RETI
. ENDC

, A
, STACKX
, A

>XxX>r<

, STACKA

RROVEND:

. ORG OFFEH
JP Reset

. ORG OF9EH
JP Reset

. ORG OFFOH
JP Rtcint

. ORG OFFCH
NOP
RETI

. ORG OFF6H
JP PORTAI nt

. ORG OFF4H
NOP
RETI

. ORG OFF2H

NOP
RETI

236/248

4

Symbols
#attribute ..., 206
asmifile 129
hexfile 11, 129
ANEFIlES ., 56
dOg file o 160
Objfile 11, 129
TPl 55
S1OFile ., 11, 129
SChfile oo, 67
sef files
Creating.....ccccoeveiee e 139
OPENING.....oiviitieiece e 141
SAVING oo 142
WMFFile L 67,142
A
ACTUM solutions
internet address.........ccooeveevece e, 3
adc symbol..........ccociviii 80
AdJUSTEIS ... 142
NUMETIC....coviiiiiiiiice e 143
attachingcccccvveviviiiiiniin e, 143
(o] 0]110] o =TSRRI 145
setting values........cccoeeeeveviiineenenenn, 144
SINE WAVEoooviiiiiiecece et 148
o] F= Tox [o [148
SQUAIE WAVEoeevveeieiirecreecreeveeeie v 150
o] F= Tox [o [150
setting values........cccoeeeeeeiiniieenennnn, 150
timetable ..o 146
o] F= Tox [o [146
setting values.......ccccoeeveveniiineenenenn, 146
values
recording.........cccevvvvvivieieiieinnns 139, 160
FEUSING .oevveveeeieeeeveveieii e 139, 160
ALLOCATEBLOCKIN attribute 207
ALLOCATION attribute.........cccccovvveecreennene 207
Analog-to-digital symbol..................ccce....e. 80
Analyse
EXECULION......cviii i 133
what to do if there are errors............. 134
Analyse and compile report....................... 135

572

Analyse error messages...........ccocovreennen. 134
viewing and tracingcccccooveenen. 135
Analysing and generating your
applicationcccceevveeiiicinin 129
Application development steps................... 11
Applications
INtroduction t0ccoovvveve i 5
simulation Ofcccccovvviiiiiiee 139
Structure ofcoceveeii e 4
Apxd variable
Variables
ADPXA .o 64
Arguments for macros..........cccccecvvrenne, 188
Attaching numeric adjusters to pins......... 143

Attribute preference settings for symbols. 76
Attributes

B e 206
ALLOCATEBLOCKIN..........cccverrrnen. 207
ALLOCATIONovietievereeece e, 207
attaching to symbols............c..ccccoven. 182
BLOCKSIZEINUNITS........cocovriene. 207
CODE ..o 207
COMMENTooviiiiiiee e 207
DEVICEcooiieeee et 207
ICODE......cooiiieeiee e 208
LABEL ..ot 208
NAME ...ttt 208
OCODE.....coi it 208
SCHEMEco oot 208
TABLE. ... 208
TIME ... 209
TXT e 209
TYPE ..ot 206
UNITTYPE. ..., 209
VALUE ...t 209
viewing hidden............cccc oo, 83
Automatic Wiringc.cceeeeieiecie e, 79
B

Backup file
Creatingcccoveeveeie e, 194

Base Clock
changing the timer tick value 131
BIT e 203
2371248

INDEX

BLOCKSIZEINUNITS attribute 207
BUDRX variable
Variables
BUDRX ...oiiiiiiiiie vt 64
Buttons in toolbar.............cccoooeveiiiieieinne 199
C
Changing table data format 100
Changing the Target Microcontroller.......... 61
Clock input piN.......cooeiiiiie e 181
CODE attribute...........cccocvvivveiiirieireiie e 207
Code generation
example of ..., 230
OPLIONS ..o 130
SIFUCTUNE .o 4
Colors of bOXESccoevviiiiiiicc e 194
COMMENT attributec.cccccooevvvireiiene. 207
Compiling
changing optionscccccceeeveinnn. 129
EXECULION....coviiiiieiee e 133
Configuring eventsccccoeeeveiieiieciene, 95
Connecting
Application to Target Device
iINtroductioncccuvvveiieiiieiee s 11
/O symbols........ccccoovevviiiiiiiccc e, 80
Constant symbol
changing value............cccoccooeeeiiiinenen, 76
Creating
A NEW ProjeCT.....cccviviiiiiiiie e, 55
backup file......cccooiiiiii, 194
MACTOS .. .ceiviieieree ettt 187
guidelines.......cccovvvviiiiiieee 187
NEW SChEMESccvvviveiie e 67
PrOJECTS....cviiiiieiciece e 55
simulation environment file................. 139
your own symbol............cccoeeeevieinnnn. 165
Customization of ST-Realizer 193
D
Default CloCK ... 10
Description of ST-Realizer Events 85
DEVICE attributeccoooviviiiiiieene 207
digin symbol..........cccooeoviviii e, 80
238/248

Digital input symbol..............ccccooiviiniiennnn, 80
digout symbol.........cccccoviiiiiiiiic e 80
Displaying simulation information............. 158
Drawings
EXPOIING ...voiviiivicie e, 142
in symbol shapescccoocoieinn, 178
E
Earlier versions of Realizer
opening projects from...........ccccoeoeevnnen. 56
Editing table dataccccooeveiiiviicie 100
EEPROM ... 65
Environment options..........c.cccoceeveeeiiieenn 193
Error messages.......cocceevccvvvvvieeccees v 129
eventenable symbol..............ccoccviiiiiie, 80
EVENLS ..o 85
configuring........ccococeeviiieciicie e 95
description of ..o, 85
input interrupt.........cccoceveivieeecieeeee. 97
INtroduction tOccoovvreve i 8
introduction to event symbols............... 9
introduction to execution conditions 8
NMI signalccccoevveiiiiiiiiece e 96
PEriodiCcoviviiiiiie e, 87, 95
peripheral interrupts........c.ccoccovveeveennnen. 89
peripheral-specifiC...........cccooevivviinn. 97
scheduled ... 87
subscheme input change..................... 95
SYMDBOL.....coiiiiiic e 80
SYMDbOIS......ccoiiviiiie e, 9, 85, 89
target-dependent............c.ccocoeveiiiieennns 96
timed iNnterruptS.......ccocoeve e 88
upon subscheme input change 86
Execution Conditions...........ccccccocvnvervennnne. 8, 85
Exporting drawingsccccccoeeeveenicivieinean. 142
F
Files
ASIM i 129
REX oo 11, 129
TN e 56
[0Q i, 160
ODJ e, 11,129

TOF e 55
S19 11, 129
SCNL.ci e 67
ST e 139
WIMT e 67, 142
importing into tables................c.cce..... 101
[OQ. et 139
ST macro-assembler language......... 129
Folders
created by ST-Realizer..........ccc.cocevun. 2
Fonts for printer ..., 83
G
Generated code (example).........ccccceuenene 230
Generated report file (example)................ 228
Ghost boX COIOrS.......cooovviiiiic e 194
H
Hardware (see Target Hardware)
heating control system tutorial 13
I
ICODE attributecococovveiieiiiiie e 208
Importing files into tablesc..c........ 101
Initialising the simulation 158
Input
interrupt (event)cccooeeeeveiiieecne. 97
PNt 181
simulated values...........ccccoceccvrinnnee. 142
SYMDBOIS ..., 80
variables used by ST-Realizer............ 64
inputlatch symbol.............ccooveiiiiiiiecn, 80
Installation
folders createdccooveevviiieincciiine, 2
L
LABEL attribute..........ccccoocvvieiieiiiiie e 208
Libraries

adding new subscheme symbol to... 169
adding new user-defined symbol to. 191

placing a symbol from 73
SYMDBOL.....ooiiiiiic e 73
10g fil€ v, 139
LONG ... 203
M
Macro fileS ..o 64
Macro parameters..........ccoccevveveeneereeienenn. 188
MACTOS ..ot 208
ArguUMENtS ...ooveeieeeece e 188
Creatingccoveeveeveeiece e, 187
NAMING ..ot 188
Main symbol library............ccccocoviiiiinnnnnn 103
main.lib library..........c.ccooooviiiiiiiii 73
mainper.lib library..........cccccooeviiiiiinci. 73
Memory Configuration...............ccececoveieennnn. 65
Memory configuration...............cccoeeeveieennnn, 62
Monitoring
simulated signals...........c.cccccoevviinenn 151
MUltitype PiNS.....c.cocecvveiiiieciice e 203
N
NAME attributeccooeviiicee 208
Naming Macrosccccceeeeeieeeecieieecie e 188
NMI signal (event).........cccccooeviiviiviecieiecnnnn, 96
Non-volatile variables.............cccccoevenene. 207
Numeric adjusters.........coceevveviiiiiieecie e, 143
O
OCODE attributeccooeeveiieiciieee 208
Opening
PrOJECES ..ottt 56
SChemes ... 69
simulation environment file................ 141
OptimIsationScccccvveeveiviiieccce e, 133
Oscilloscope probes.......cccooevveiicvienneannn, 153
Output
PIN e 181
SYMDBOIS......ooiiiic e 80
Output symbol...........ccoeeeiiiiiiiicc e, 80
outputlatch symbol............ccccocoeiiiiiicinen, 80
239/248

INDEX

P
Page preferences........cccccvevvcviiie e 196
Parameters for macros..........c.cc.ccoeeeevennnne 188
Passive output pin..........cccceveiiiiiiie e, 181
Periodic (event).........ccccoovviieiiiie e, 95
Peripherals
enabling........ccocecvviviii 66
SEttNGS ..o 62
PiNtype oo 206
Pins
MUILIEYPE ..o, 203
Placing symbols in a scheme.................... 72
portin symbol
portout symbolccccccoeiiiiiiein. 92
Portlnit subroutinecccoccooviiiiiiiecns 64
Preference settings
symbol attributesccceceiiiiennen, 76
Preferences
PAGES ..ot 196
PriNtiNG.......ccoeiiiiieceecee e 197
SCIEEN ...ttt 194
SYMDBOIS ..., 198
toolbar........coooeieiiii 199
Printer
FONES oo 83
SEttiNG UP c.voeviieicce e 83
Printing preferences...........coccooeviiiiiecnnnn, 197
Probes
NUMETIC...cviieeece e 152
0SCilloSCOPe ..o, 153
attachingcccccvveviiiineninin e, 153
changing properties of 154
simulation..........cccccoooeveiiiie e 151
state machine..........cccoovev i, 156
state machine probes, attaching....... 156
values
recording.......cccovvvevevvveievenenieenn, 139
(T LS o 139
values, recordingccocoeeeevveieennnne. 160
values, reusing........cceeeevveeeeiiece e, 160
Processing Cycle
controlling the time of 131
Project filesccocovviiiiic 12
240/248

ClOSING ..o 57
creating NeW.......cccoovveeeie e, 55
OPENING .ottt 56
opening projects from earlier
versions of Realizer.............. 56
SAVING c..oviiiiiie et 57
R
RAM ..ot 65
Raminit subroutine..............ccocccooivviciiiecnnnn, 64
Reallnit subroutine.............cccoecoviiiiiiecnnnn, 64
Realizer Operating Systemc..ccc.c..... 63
RealMain subroutine.............ccccocoeiiniinnnn, 64
Recording
adjuster valuescccceeeveennnne. 139, 160
probe valuescccceceeveennnnnn. 139, 160
simulation information 158
Report
analyse and compile............c..cccove.. 135
file (example) ..o 228
printing of ..o, 138
Requirements
hardware.........c..cccooveieiiiiicicccce e, 1
SOftWArEoooveiiicec e, 1
Reusing
adjuster valuescccceeeveennnne. 139, 160
probe valuesccccceceeveennnnnn. 139, 160
ROM .o 65
Root scheme
iNtroduction tOccccveviiieiicce e, 7
rOOt_dir€CLOrYccccoviiiiiviece e, 2
ROS . 63
RTICK variable
Variables
RTICK . e 64
Running the simulation 158
S
Saving
PrOJECES ..oviiiiciiececiecte e 57
SChEMES ..o 69
simulation environment file................ 142
SBYTE oot 203

Scheduled (event)ccccovvviiiiiiicieceee, 87
SCHEME attributeccocovvieieireiiene, 208
SChEMES ..o 7
analysing......cccoceeeiiviiiecece e, 129
Creating.....ccccoveve e, 67
creating subschemes.............ccccccenee. 68
INtroduction t0........cccceevveiiie i 7
OPENING....coiiiitiicie et 69
placing symbols...........ccccceeiiiiiiecnnenne. 72
placing titles inccccoceeveeeiiiiecne. 84
PriNtiNG......ccooi i 83
rOOt SCNEME.....cviiii e 7
SAVING oo 69
simulating........cccccceeiiieicecce 139
SUDSChEMESoovieiiie e 7
VIEWING OPLIONSc.ccveveccieie e 82
WOFKING iN.cviiiiiicccc e 82
Screen Preferencescccocvveevviviiiecnne, 194
Setting
numeric adjuster options.................. 145
numeric adjuster values 144
square wave adjuster values............. 150
time table adjuster values.................. 146
UP PHNEET v 83
Simulated signals
MONITOIING ..coviviicicie e 151
VIEWING .o 151
Simulating your application....................... 139
Simulation
AdJUSEEIS....ooiiie e 142
displaying information....................... 158
environment file
Creatingueeeeeeeeieieee e ee e eeeeeaes 139
OPENING ceveveeeeieieeee e 141
- 1V T SR 142
iNItialisingcooveveiiiieccece e, 158
INPUL Valuescoeevvieiieciecccei 142
Probes......cccoiiiiiiic 151
recordingccoovevviieciie e 158
recording and reusing adjuster
and probe values................. 160
recording information.......................... 158
FUN OPLIONScooiiviiiecicececce e 158
FUNNING et 158
starting and stoppingcccceveevenee. 158

572

Sine wave adjusterscocceeeviiiiiineenn, 148
SINT e 203
Software requirements............cccceeeeeeieieennnn, 1
Specifying the Target Hardware Device ... 59
Square wave adjustersccccoeeeeveeeennnn, 150
SSSP_q SYMDBOl ..o, 92
STO oot 59
ST6 users
[10] (=38 (0 SR 59
ST 59
ST-ANAIYSEr ..o, 129
€IT0r MESSAJES ...oovevevvieee e e 129
State history list.........cccccoeviiviiiiiiiecie 157
State machine............ccocoveviiiici s 156
State machine probes
attachingccccee e, 156
Steps in application development 11
STMicroelectronics
internet address.........ccccocevveiviiiie e 3
Stopping the simulation................cc.ccoc...... 158
ST-Realizer
application Structurescccceveeeennen, 4
SUDIOULINES ... 64
ST-SIMUIAtOr.......cco e 139
running the ..o, 157
Subscheme input change (event) 95
Subschemes ..., 7, 85, 92
assigning execution conditions to 93
connecting to root schemes................ 92
Creatingocoveveeie e 68, 92
disconnecting execution conditions
FrOM oo 97
INtroduction tOccoovvreve i 7
[€AVING.....cviiiieiicecee e 98
OPENING .ottt 93
placing event symbolin 94
SYMDBOIS......ooiiiic e 92
defining NeWc.cevvvvviiiiiieieieeee, 166
Symbol editor.........ccccceeiiiiiiciice e, 165
adding graphics........ccccccvvveviciiennenn, 178
adding pins to a symbol.................... 181
assigning attributesl...............c............ 182
changing graphic properties.............. 179
editing new symbols.............c..cccnen 176
editing pin attributesccccove 177
241/248

INDEX

editing symbol information................. 180
generating macro headers................. 175
modifying attributes................c..coo..... 185
OPENING.....oiviitieiece e 165
Symbol librariesccccovviiiiiiic, 73
Symbol preferences.........ccccocevviiiiieinnne. 198
Symbols
AAC ..o 80, 103
=10 [U 118
Analog-to-digital.............ccccoveveiiiiiinn, 80
ANAZ ..o 107
ANA3 ..o 107
ANA4 .. 108
ANAG ..o 108
ANA8 ... 108
attaching attributes............c..cccoeeevenn. 182
attributes
L= To 111 o PSP 75
AVETAJE ..o 118
bpack.......cccoooiviii 121
bunpack.........coocoviiiiiii, 122
change.......cccoiiiiiiiii, 108
(o70] 1 1 o USSP 122
CONAItION ... 127
connecting to target hardware device 80
CONSEANT......coieiiieie e 126
CONSED ..o 126
CONSEW ..o 126
(o10] 0171 £=1 o] o TSR 121
(o10] 01V o PR 122
COUNEET v 120
countf, pcountfcc.ooeiiiinin. 120
COUNLV, PCOUNEV....oovviieiriiiiie e 121
creating your OWNc.ccceveevrieniennnnn. 165

defining a new subscheme symbol .. 166
defining new user-defined symbols..171

deleting......ccccoeveiiiee 75
Aelf oo, 116
delfoff.....oiii e, 116
delfon ..o, 116
AelV. e 116
AEIVO oo, 117
delVoff ..., 117
dff, pdff oo, 109
Aff-Clr e, 109
242/248

differentialccccooeveeiiiieiee, 118
Aigin ..o, 80, 103
digout.....c.coooiiiiiie e, 80, 103
AIV e 118
(o] F=1 (o4 o 1R 109
drawing shapes in.........ccccccceevecneenn 178
€AJE. oo 115
BVENL....c i, 80, 104
eventenablecocoeieiieeiienn, 80, 104
hierarchical sheet..........cc.ccoovvvveennne. 128
indextablec.cocov e 124
information

L= To 1] o 180

VIEWING wevvviiivis e s e ee e eae e 78
INPUL ..o 80, 104
input and output...........ccccoveeeciieeenen, 103
inputlatchccccoeiii, 80, 104
INPUISEQUENCEc.eocvveievieiecvieee e, 106
integralcoooeeiiiecece e, 119
INtroduction tOcccoovveeecciecve e, 6
INV e 110
JKEF e, 110
M o 119
MV e 119
[OQIC .o, 107
lookuptable.........c.cccvviiiiiiicie, 124
loopdel ..o, 110
main symbol library............ccccceeen. 103
mathematicalcccoccovveevecviecn, 118
microdelf ... 105
MiCrodelVoovveevieeee e 106
MIFTOMING ..vvciviecec e 77
MOVING .vooviiiiiiece et 75
MU e 119
MUXL ..o 110
IMUXZ ..o 111
NANA2 ..o 111
=TT I U 111
NANA4 ... 111
NANAGccoooeveieeiee e 112
NANABccooeveieeiee e 112
0] 2 PR 112
(0] £C PR 113
NOMA L 113
(0] (< TR 113

NOI8...ooiiiie e 114
OF2 et e 114
Lo] £ TSR 114
0] PP 114
(o] £ TSR 115
(o] ¢ TSR 115
OSCf i, 117
OSCV .ottt ettt 117
OUIPUL....ceeeci e 80
OULPUL ... 80, 104
outputlatchcocooeviiii 80
OUtPULSEQUENCE ... 106
persistent library symbols 103
pitable ... 125
placing in a schemec..cccoene. 72
POIIN e, 92,128
POMOUL ..o 92,128
power managementc.c.ccoveenenn. 125
programming With..............ccccoee e, 4
ramtable (volatile RAM).................... 125
FOtatingcocoeeveiei e 77
Scalert.....ccocoviiiiii e, 119
SCAlBIV ..o 120
sequentialccoeeeiiiiiiie e, 105
shift, pshift..........cccccoeiviiii, 122
SIOW ..o, 125
SHE, PSIf e, 115
S1SES] o o [URORSURO 92
SSSX_Y . ttetiiieaeetiitiene et 128
State v 127
state machine..........c.ccccoeeeiecen 6, 126
StateiN.....ccooececece e, 127
stateinit, pstateinit................cccccceveennin. 126
StAtEOUL.....ee i 127
Y (0] o IR 125
SUD2 . 120
table ..., 124
table symbolscccoccoviiiiiiiiiiinn, 99
time related..........cccocoveiiieiicic, 116
M e, 117
UMV 118
ttle e, 128
user-definedcccccoeeeeiiiiicn e, 64
WAL 126
WaItSEQUENCEccveecveeeecieeeecee e 107

572

WIFING oo 78
wiring together ..., 78
WIMEIGE ..ottt 123
WPACK ..ottt 123
WSPIIt o, 123
WUNPACK. ..., 124
XOK ettt 109
T
TABLE attributeccoooeoviiiiieice e 208
Table symbols
changing data format......................... 100
editing data.............cccoooeeiiiecieiec 100
importing data files into..................... 101
INSEIING ..ooviiiiec e, 100
Tables
data format
Changingvevenieiniiiiiei e 100
editing data incocoeeieceiccnn 100
importing files.........cccccooeviiviiiiecnn, 101
10 = S 99, 208
IOOKUP ..o, 99, 208
ROM ..o 208
Target Hardware
changing the ..., 61
configuring thecccccocoveviieeccee. 62
requUIremMeNtScccoevevvveieiie e 1
SEHINGS .o 62
specifying device.........c.cccoeveivineennn, 59

Target Microcontroller
(see Target Hardware)

Target-dependent eventscccccccvenee. 96
TIME attributeccooov i 209
Time table adjusters.........cccocoeveeiiecnenn, 146
Timer ticks
changing the value of 131
INtroduction t0ccoovvviveiiie e 10
TIMING coeiieeiece e 10
OPLIONS ..veoiie e 131
Toolbar buttons..........cccccooeviiieicics 199
TULOTIAl ... 13
TXT attribute ..o 209
Type
inheritance (variables)........................ 204
243/248

Of @ PN 206
overruling (variables)c.ccccve.e. 205
TYPE attribute ... 206
U
UBYTE. ..ot 203
UINT oo 203
UNITTYPE attributecocoooviiiiiiiene 209
V
VALUE attributeccooov v 209
Value of a constant symbol 76
Variables
BIT e 203
LONG ..o 203
non-volatile ..o 207
SBYTE. ..ot 203
SINT e 203
type inheritanceccoecoveeeene. 204
type overrulingcccoeoveviiiiiiecne. 205
UBYTE ..o 203
UINT oo 203
WORD ...ttt 203
244/248

View
hidden attributes...........c..cocoeevivieeinnne 83
Viewing
simulated signals...........c.ccoccoeveinene 151
symbol information..............ccccoceeveennnn. 78
W
Wires
changing attributescccccoee v, 80
COPYING...ooiiiiiiieiiiee et 79
deleting ...coocoveveei e 79
Arawing ...ccccoeeeeeiiiecccece e 78
MIFTOMING ..vvciviecec e 79
MOVING oo 79
PASHNG ...oooviiiiec e 79
FOtatiNg ...ooveiiecece e 80
Wiring
symbols together...........c..coccoeivinienn, 78
automaticallycccoeeeeeiiiiiiiiiiiienenn, 79
WORD ...t 203
Z
ZOOM VIEW ..ottt 82

4

INDEX

4

245/248

SALES OFFICES

EUROPE

DENMARK

2730 HERLEV

Herlev Torv, 4

Tel.: (45-44) 94.85.33
Telefax: (45-44) 948694

FINLAND

LOHJA SF-08150
Ratakatu, 26

Tel.: (358-19) 32821
Telefax.: (358-19) 3155.66

FRANCE

94253 GENTILLY Cedex

7 - avenue Gallieni - BP. 93
Tel.: (33-1) 47.40.75.75
Telefax: (33-1) 47.40.79.10

67000 STRASBOURG

20, Place des Halles

Tel.: (33-3) 88.75.50.66
Telefax: (33-3) 88.22.29.32

GERMANY

D-85630 GRASBRUNN
Bretonischer Ring 4
Postfach 1122

Tel.: (49-89) 460060
Telefax: (49-89) 4605454

D-30916 ISERNHAGEN
Ernst-Grote-Strasse 23A
Tel. (49-511) 9027513
Telefax: (49-511) 90275555

D-90491 NURNBERG 20
Erlenstegenstrasse, 72
Tel.: (49-911) 959840
Telefax: (49-911) 9598499
D-70499 STUTTGART 31
Mittlerer Pfad 2-4

Tel.: (49-711) 13968-0
Telefax: (49-711) 8661427

ITALY

20090 ASSAGO (MI)

V.le Milanofiori - Strada 4 - Palazzo A/4/A
Tel.: (39-2) 57546.1 (10 linee)

Telefax: (39-2) 8250449

40033 CASALECCHIO DI RENO (BO)
Via R. Fucini, 12

Tel.: (39-51) 591914

Telefax: (39-51) 591305

00161 ROMA

Via A. Torlonia, 15

Tel.: (39-6) 44251142

Telefax: (39-6) 85354438

NETHERLANDS

5652 AR EINDHOVEN
Meerenakkerweg 1

Tel.: (31-40) 2509600
Telefax: (31-40) 2528835

POLAND

WARSAW 00517

Ul. Marszalkowska 82
Tel.(0048-22) 622 0561
Telefax: (0048-22) 623 6437

SPAIN

E-08004 BARCELONA

Calle Gran Via Corts Catalanes, 322
6th Floor, 2th Door

Tel.: (34-3) 4251800

Telefax: (34-3) 4253674

E-28027 MADRID

Calle Albacete, 5

Tel. (34-1) 4051615

Telefax: (34-1) 4031134

SWEDEN

S-16421 KISTA
Borgarfjordsgatan, 13 - Box 1094
Tel.: (46-8) 7936920

Telefax: (46-8) 7504950

SWITZERLAND

1215 GENEVA 15

Route de Pré-Bois, 20
Tel.: (41-22) 9292929
Telefax: (41-22) 9292900

UNITED KINGDOM and EIRE

MARLOW, BUCKS
Planar House, Parkway
Globe Park

Tel.: (44-1628) 890800
Telefax: (44-1628) 890391

Internet Address http://www.st.com (Home Page)

Product Support http://www.st.com/stonline/products/support/index.htm

SALES OFFICES

AMERICAS

BRAZIL

05413 SAO PAULO

R. Henrigue Schaumann 286-CJ33
Tel.: (55-11) 883-5455

Telefax : (55-11) 282-2367

CANADA

NEPEAN ONTARIO K2H 9C4
301 Moodie Drive Suite 307
Tel.: (613) 829-9944

Telefax : (613) 829-8996

US.A.

NORTH & SOUTH AMERICAN MARKETING
HEADQUARTERS

55 Old Bedford Road

Lincoln, MA 01773

Tel.: (617) 259-0300

Telefax : (617) 259-4421

ALABAMA

Huntsville - Tel.: (205) 895-9544
Fax : (205) 895-9114

ARIZONA

Phoenix - Tel.: (602) 485-6201
Fax: (602) 485-6330

CALIFORNIA

Agoura Hills Tel. (818) 865-6850
Fax: (818) 865-6861

Santa Ana Tel. (714) 957-6018
Fax: (714) 957-3281

San Jose Tel.: (408) 452-8585

Fax: (408) 452-1549
Scotts Valley Tel.: (408) 439-2950
Fax: (408) 439-2969

COLORADO

Longmont Tel.: (303) 772-9729
Fax: (303) 772-0790

FLORIDA

Boca Raton Tel.: (561) 997-7233
Fax: (561) 997-7554

GEORGIA

Norcross Tel.: (770) 449-4610
Fax: (770) 449-4609

ILLINOIS

Schaumburg Tel.: (847) 517-1890
Fax: (847) 517-1899

INDIANA

Kokomo Tel.: (317) 455-3500
Fax: (317) 455-3400

Indianapolis ~ Tel.: (317) 575-5520
Fax: (317) 575-8211

MICHIGAN

Livonia Tel.: (313) 953-1700
Fax: (313) 462-4071

MINNESOTA

Mineapolis Tel.: (612) 835-3500

Fax: (612) 835-3555

NORTH CAROLINA
Cary Tel.: (919) 469-1311
Fax: (919) 469-4515

NEW JERSEY

Voorhees Tel.: (609) 772-6222

Fax: (609) 772-6037

Basking Ridge Tel.: (908) 766-7401
Fax: (908) 766-7738

NEW YORK

Poughkeepsie Tel.: (914) 896-2926
Fax: (914) 897-3734

OREGON
Lake Oswego - Tel.: (503) 635-7635
Fax: (503) 635-7677

TENNESSEE

Knoxuville - Tel.: (615) 524-6239
Fax: (615) 524-6247

TEXAS

Carrollton - Tel.: (972) 466-8844
Fax: (972) 466-8130

Houston - Tel.: (281) 376-9939

Fax: (281) 376-9948
FOR RF AND MICROWAVE POWER TRAN-
SISTORS CONTACT THE FOLLOWING
REGIONAL OFFICE IN THE U.S.A.

PENNSYLVANIA
Montgomeryville - Tel.: (215) 361-6400
Fax: (215) 361-1293

ASIA /| PACIFIC

AUSTRALIA

DINGLEY VIC 3172
Suite 6, Business Centre
14 Garden Boulevard
Tel.: (61-3) 9558 3399
Telefax: (61-3) 9558 3377

NSW 2220 HURTSVILLE
Suite 3, Level 7, Otis House
43 Bridge Street

Tel.: (61-2) 9580-3811
Telefax: (61-2) 9580-6440

CHINA (Liaison Offices)

BEIJING

Beijing No. 5

14 Wu Lu Tong Road

De Sheng Men Wai

Tel.: (86-10) 202 4378
Telefax: (86-10) 202 4378

SHANGAI 200233

108-10 Astronartics Building
222 Cao Xi Road

Tel.: (86-21) 6472-5415
Telefax: (86-21) 6472-6814

SHENZHEN 518001

52, Tao Hua Road

Futian Free Trade Zone
SHENZHEN 518048

Tel.: (86-755) 359-0950
Telefax: (86-755) 359-1155

WANCHAI

22nd Floor - Hopewell centre
183 Queen’s Road East,
Tel.: (852) 2861 5700
Telefax: (852) 2865 5000

INDIA (Liaison Offices)

BANGALORE 560052
Diners Business Service
26 Cunningham Road
Tel.: (91-80) 267 272
Telefax: (91-80) 261 133

NOIDA 201301

Liaison Office

Plot N. 2 & 3, Sector 16A
Institutional Area

Distt Ghaziabad UP

Tel.: (91-11) 853 0965/8
Telefax: (91-11) 855 6957

MALAYSIA

46000 PETALING JAYA, SELANGOR
Level 12-Std.D

PJ Tower (A)

AMCORP Trade Centre

No 18, Jalan Persiaran Barat

Off Jalan Timur

Tel.:(60-3) 758 1189

Telefax: (60-3) 758 1179

PENANG 10400

Unit 9-A, Lower Level 5
Hotel Equatorial

1 Jalan Bukit Jambul
Tel.: (60-4) 642 8291
Telefax (60-4) 642 8284

KOREA

SEOUL

19th FI Kang Nam Building
1321-1 Seocho-dong Seocho-ku
Seoul

Tel.: (82-2) 3489-0114
Telefax:(82-2) 588-9030

TAE-GU 701-023

18th Floor Youngman Tower
111 Shinchun-3 Dong, Dong-Ku
Tel.: (82-53) 756-9583
Telefax:(82-53) 756-4463

SINGAPORE

SINGAPORE 2056

28 Ang Mo Kio - Industrial Park 2
Tel.: (65) 482 1411

Telefax: (65) 482 0240

TAIWAN

TAIPEI 106

20th Floor, #207

Tun Hua South Road, Section 2
Tel.: (886-2) 2378-8088
Telefax: (886-2) 2378-9188

THAILAND

BANGKOK 10110

Unit # 1315

54 Asoke Road
Sukhumvit 21

Tel. : (66-2) 260 7870
Telefax : (66-2) 260 7871

JAPAN

TOKYO 108

5 F Nisseki - Takanawa Blg. 2-18-10
Takanawa Minato-Ku

Tel.: (81-3) 3280-4120

Telefax: (81-3) 3280-4131

OSAKA 532

Shin-Osaka Second Mori Bldg..
3-5-36 Miyahara Yodogawa-Ku

Tel. (81-6) 397-4130

Telefax: (81-6) 397-4131

4

THE EUROPEAN QUALITY

AWARD
WINNER ‘97

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written
approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
intel® isau.s. registered trademark of Intel Corporation.
Microsoft®, windows® and Windows NT® are U.S. registered trademarks of Microsoft Corporation.
[J1999 STMicroelectronics - All Rights Reserved.
Printed in France

Purchase of 12C Components by STMicroelectronics conveys a license under the Philips I°C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the 12C Standard Specification as defined by Philips.

STMicroelectronics Group of Companies
Australia - Brazil - Canada - China - France - Germany - ltaly - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -
Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

Recycled and chlorine free paper

