

HIGH FREQUENCIES DAMPER DIODES

B. RIVET

INTRODUCTION

The trend in new monitors is for ever increasing switching frequencies of the horizontal deflection stage: 64kHz ---> 110kHz.

SGS THOMSON has developed new 1500V Damper diodes (DTV64D-DTV82D-DTV110D) using a new silicon structure and a suitable lifetime reduction process both optimized in order to reduce the peak forward voltage (V_{FP}).

For high switching frequencies, the key parameters optimization of the damper diodes becomes more and more critical. This application note describes these key parameters and the associated power losses.

KEY PARAMETERS OF THE DAMPER DIODE

The key parameters of a damper diode are the peak forward voltage (V_{FP}), the forward voltage (V_{F}) and the recovery time (trr).

Reverse recovery time: trr

The table in fig.1 gives the maximum reverse recovery time for the three high frequency damper diodes.

	trr max I _F =1A - d _{IF} /dt =50 A/μs V _R = 30V - Tj = 25°C
DTV64D	135 ns
DTV82D	125 ns
DTV110D	115 ns

Fig.1: Maximum reverse recovery time of DTV64D, DTV82D and DTV110D.

The application note "CHOICE OF DAMPER DIODE FOR A HORIZONTAL DEFLECTION" explains in detail the very particular mechanism of the switching OFF losses (Poff) in the damper diode. The maximum value of trr has been chosen to be sure that the switching OFF losses in the damper diode will be negligible.

Voltage drop: VF

This parameter fixes the value of the conduction losses (Pcond) in the diode. This losses can be estimated by :

$$Pcond = Vto \frac{lp}{2} \delta = Rd \frac{lp^2}{3} \delta$$

Where:

lp : peak current in the diode

 δ : duty cycle of the conduction time

Vto : Threshold voltage of the damper diode

d: dynamical resistance of the

damper diode

Example: With a DTV64D Vto (typ.) = 0.89VRd $(typ.) = 35m\Omega$

and lp = 6A $\delta = 0.45$

We find

Pcond =1.4W

Peak forward voltage: VFP

This parameter has to be as low as possible in order to reduce switching ON losses in the diode. The peak forward voltage depends mainly on the dlF/dt. (V_{FP} increases with dlF/dt). For this application the d_{IF}/dt is typically equal to $60A/\mu s$.

Fig.2 shows the current and voltage across the diode when it turns on, in the following conditions: lp =6A $d_{IF}/dt = 60A/\mu s$ Tj = 100°C with DTV64D, DTV82D and DTV110D.

AN874/0996 Ed: 2

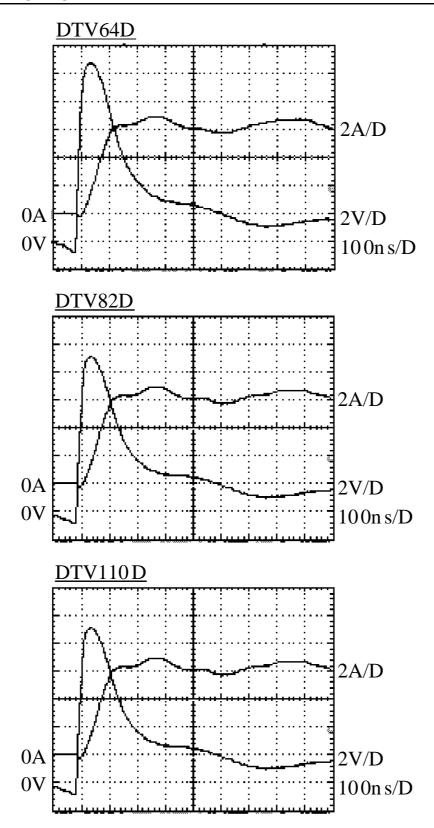


Fig. 2: Oscillograms of VFP for DTV64D, DTV82D, DTV110D with Ip=6A d_{IF}/dt = $60A/\mu s$ Tj = 100°C

The corresponding energy can be calculated by:

$$W_{ON} = \int_{O}^{t_{FR}} v. i dt$$

by using this formula and the switching oscillogram of the DTV64D we find:

$$W_{ON} = 11.3 \mu J$$

Switching ON losses are given by:

 $P_{ON} = Won x F$

Example: With a DTV64D

Ip = 6A dIF/dt = 60A/ μ s Tj = 100°C F = 64kHz

We have

 $W_{ON} = 11.3 \mu J$

and

 $P_{ON} = 0.73W$

Total losses in the damper diode: PT

The reverse losses due to the leakage current are negligible and the switching OFF losses with ST damper diodes are also negligible.

So total losses in the damper diodes are the sum of the conduction losses and the switching ON losses:

$$P_T = P_{ON} + P_{CON}$$

Example: DTV64D Ip = 6A

 $\delta = 0.45$ F = 64kHZ

PT = 2.1W

CONCLUSION

The new damper diodes have been optimized for horizontal deflection circuits working at high frequencies. A new technology has been developed to reduce the peak forward voltage as much as possible. The compromise between trr and VF has been chosen to be sure that switching OFF losses are negligible. SGS THOMSON offers high frequencies damper diodes DTV64D, DTV82D, DTV110D for operation typically at 64, 82 and 110kHz. Obviously each diode can be used for higher frequencies: for example a DTV82D can be used at 110kHz, in this case the total losses will be higher than with a DTV110D.

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1996 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

