AlGaAs laser diodes RLD-78MV

The RLD-78MV is the world's first mass-produced laser diodes to be mass produced by molecular beam epitaxy. Low-noise is achieved through self-pulsation. This laser diode is ideal for use in video disc players.

●Applications Video disc players (VD) (LD)

Features

- 1) Low noise.
- 2) Low astigmatism.
- Noise is independent of optical feedback.
- Signal-to-noise ratio guaranteed over entire operating temperature range.
- 5) High-precision, compact package.

External dimensions (Units: mm)

●Absolute maximum ratings (Tc = 25°C)

Parameter		Symbol	Limits	Unit
Output		Po	5	mW
Reverse voltage	Laser	VR	2	V
	PIN photodiode	VR (PIN)	30	V
Operating temperature		Topr	-10~ + 60	°C
Storage temperature		Tstg	-40~+85	°C

Laser diodes RLD-78MV

●Electrical and optical characteristics (Tc = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	
Threshold current	Ith	_	45	60	mA	_	
Operating current	lop	_	55	70	mA	Po=3mW	
Operating voltage	Vop	_	1.9	2.3	٧	Po=3mW	
Differential efficiency	η	0.1	0.25	0.6	mW / mA	2mW I(3mW)—I(1mW)	
Monitor current	lm	0.1	0.2	0.6	mA	Po=3mW,VR(PIN)=15V	
Parallel divergence angle	<i>θ</i> // *	8	11	15	deg		
Perpendicular divergence angle	<i>θ</i> ⊥*	20	37	45	deg	Po=3mW	
Parallel deviation angle	Δθ"	_	_	±2	deg		
Perpendicular deviation angle	Δθ⊥	_	_	±з	deg		
Emission point accuracy	ΔX ΔΥ ΔΖ	_	_	±80	μm	_	
Peak emission wavelength	λ	770	785	810	nm	Po=3mW	
Signal-to-noise ratio	S/N	60	_	_	dB	f=10kHz, Δf=10kHz	

^{*} θ // and θ \perp are defined as the angle within which the intensity is 50% of the peak value.

Electrical and optical characteristic curves

Fig. 1 Optical output vs. operating current

Fig. 2 Dependence of threshold current on temperature

Fig. 3 Far field pattern

Laser diodes RLD-78MV

Fig. 4 Dependence of wavelength on temperature

Fig. 5 Dependence of emission spectrum on optical output

Fig. 6 Monitor current vs. optical output

Fig. 7 Temperature dependence of noise

Fig. 8 Dependence of noise on optical feedback