3-phase motor driver for CD-ROMs BD6660FV

The BD6660FV is low power consumption CD-ROM spindle driver that uses MOS transistor in the output. To meet the requirements for notebook computers, the thin power package SSOP-B28 is used and a PWM drive with a MOS processor output stage achieves an extremely low power consumption.

Applications

Portable CD-ROMs, DVDs

Features

- 1) Direct PWM drive.
- 2) Built-in power save circuit.
- 3) Built-in current limiter circuit.
- 4) Built-in FG output.
- 5) Built-in Hall biasing.

- 6) Built-in reverse-rotation prevention circuit.
- 7) Built-in short brake.
- 8) Low power consumption with the output MOSFET.
- 9) Built-in brake mode switching circuit.
- 10) Built-in rotation detection pin.

■Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Applid voltage	Vcc	7	V
Applid voltage	Vм	7	V
Power dissipation	Pd	1020*1	mW
Operating temperature	Topr	−20~ +75	°
Storage temperature	Tstg	−55∼+150	°
Output current	Іомах	1000*2	mA

^{*1} When mounted on a 70mm×70mm×1.6mm glass epoxy board. Reduced by 8.16mW for each increase in Ta of 1°C over 25°C.

● Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Limits	Unit
	Vcc	4.5~5.5	V
Operating power supply voltage	V _M	3~6.5	٧
	V_{PUMP}	14	٧

^{*2} Should not exceed Pd or ASO values.

Block diagram

Pin descriptions

Pin No.	Pin name	Functiom				
1	Аз	Output				
2	A 2	Output				
3	A ₁	Output				
4	R _{NF1}	For connection of resistor for output current detection				
5	R _{NF2}	For connection of resistor for output current detection				
6	Vм	Motor power supply				
7	Vcc	Power supply				
8	GND	GND				
9	H ₁ +	Hall signal input				
10	H ₁ -	Hall signal input				
11	H ₂ +	Hall signal input				
12	H ₂ -	Hall signal input				
13	H ₃ +	Hall signal input				
14	H ₃ -	Hall signal input				
15	D-GND	Digital—GND				
16	Vн	Hall bias				
17	Cnf	For connection of capacitor for phase compensation				
18	osc	For connection of capacitor for oscillator				
19	VPUMP	Charge pump output				
20	CP ₁	For connection of capacitor 1 for charge pump				
21	CP ₂	For connection of capacitor 2 for charge pump				
22	MODE1	Brake mode switch				
23	Ecr	Output voltage control reference				
24	Ec	Output voltage control				
25	FG	FG output				
26	PS	Power save				
27	MODE2	FG output switching				
28	FR	Rotation direction sensor				

●Input and output circuits

(1) Power save

(2) Torque amplifier

Fig.2

(3) MODE1

(4) MODE2

Fig.3

Fig.4

(5) Output pin

Fig.5

(6) Hall bias pin

Fig.6

(7) FG output / CP1 output / FR output

Fig.7

(8) CP₂ / V_{PUMP} output

Fig.8

●Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 5V, V_M = 5V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Coniditions
(Overall)						
Circuit current 1	lcc1	_	_	0.4	mA	Standby mode
Circuit current 2	lcc2	_	4.2	_	mA	_
⟨Power save⟩						
ON voltage range	VPSON	_	_	1.0	V	Standby mode
OFF voltage range	VPSOFF	2.5	_	_	V	_
⟨Hall bias⟩			_			
Hall bias voltage	V _{НВ}	_	0.9	1.5	V	I _{HB} =10mA
〈Hall amplifier〉						
Input bias current	Іна	_	0.0	_	μΑ	_
Common phase input voltage	VHAR	1.5	_	4.0	V	_
Minimum input level	Vinh	50	_	_	mV _{P-P}	_
Hall hysteresis level	VHYS	_	20	_	mV	_
⟨Torque command⟩						
Input voltage	Ec, Ecr	0.5		3.3	V	_
Offset voltage (+)	Ecof+	20	50	80	mV	_
Offset voltage (-)	Ecof-	-80	-50	-20	mV	_
Input current	Ecin	-3.0	-1.0	_	μA	Ec=EcR=1.65V
PWM high level control range	Vрwмн	_	Ecr+1	_	V	Ecn=1.65V
PWM low level control range	VPWML	_	EcR-1	_	V	Ecr=1.65V
〈Brake mode switching〉						
ON voltage range	VMODE10N	2.5	_	_	V	Short brake
OFF voltage range	V _{MODE10FF}	_	_	1.0	V	Reverse rotation brake
⟨Output⟩						
Output on resistance	Ron	_	0.7	_	Ω	lo=±600mA
Output limit voltage	VτL	_	0.2	_	V	With R _{NF} =0.33 Ω
⟨OSC oscillator⟩						
Output high level voltage	VHPOSC	_	2.0	_	V	_
Output low level voltage	VLPOSC	_	1.0	_	V	_
Oscillation frequency (reference value)	Fosc	_	100	_	kHz	With C = 470pF
⟨Voltage booster⟩						
Charge pump output voltage	VPUMP	_	10	_	٧	With V _M = V _{CC} = 5V
〈FG output switching〉	⟨FG output switching⟩					
ON voltage range	VMODE2ON	2.5	_	_	٧	Single-phase output
OFF voltage range	V _M ODE2OFF	_	_	1.0	٧	Three-phase composite output

Parameter	Symbol	Min.	Тур.	Max.	Unit	Coniditions
⟨FG output⟩		•				
Output high level voltage	VFGH	4.6	_	_	V	I _{FG} =-100 μA
Output low level voltage	VFGL	_	_	0.4	V	I _{FG} =100 μ A
〈FR output〉						
Output high level voltage	VFRH	4.6	_	_	V	I _{FR} =-100 μ A
Output low level voltage	VFRL	_	_	0.4	V	I _{FR} =100 μ A
⟨CP1 output⟩						
High level saturation voltage	Vср1н	_	0.5	_	V	I _{CP1} =-7mA
Low level saturation voltage	VCP1L	_	0.5	_	V	IcP1=7mA
⟨CP2 output⟩						
High level saturation voltage	V _{CP2H}	_	0.5	_	٧	I _{FR} =-7mA
Low level saturation voltage	V _{CP2L}	_	0.5	_	V	IFR=7mA

Application example

Fig.9

Operation notes

(1) Brake mode (MODE1) logic

The brake mode is switched by MODE1 pin and the operation is shown in Table-1 below.

Table-1

MODE1 Operation

L Reverse rotation brake

H Short brake

(When Ec > Ecs)

(2) MODE2 logic

The FG output is switched by MODE2 pin and the operation is shown in Table-2 below.

Table-2

MODE2 FG output

L 3-phase composite output

H 1-phase output

Fig.10

(3) PWM operation

By the voltage potential difference between Ec and Ecr, the ON duty when switching the low level output transistor changes as shown in Fig. 11 below. (Ecr = 1.65V)

(4) Current limiter operation

When the R_{NF} voltage becomes 0.2V (Typ.), the current limiter circuit activates and limits the PWM ON duty. At this time the output current I_{omax} is limited to:

I_{omax} ≒ approx. 0.2 / R_{NF}

(5) OSC oscillator circuit

By connecting a capacitor to the OSC pin, the charging and discharging of the capacitor generates a triangular wave as that shown in Fig. 12. (C = 470pF and f = 100kHz (Typ.))

Fig.12

(6) Charge pump

The boost voltage (V_{PUMP}) is $V_M + V_{CC}$. Therefore, to prevent ($V_M + V_{CC}$) from increasing much over ratings, set the V_M and V_{CC} voltages.

(7) Timing chart

Fig.13

●External dimensions (Units: mm)

