6V / 330mW single-channel power amplifier BA546 The BA546 is a monolithic power amplifier designed for use in portable radios, tape recorders and interphones. With a 6V power supply voltage, it has a rated output of 330mW into an 8Ω load (THD = 10%), and a maximum output of 550mW. It comes in a compact 9-pin SIP package with no heatsink fins. #### Applications Portable radios, cassette recorders, and interphones. #### Features - 1) High output. POUT = 330mW (Vcc = 6V and an 8Ω load (THD = 10%)). See Fig. 2. - 2) Good low voltage characteristics. Begins operating at less than 2V (see Fig. 1). - 9-pin SIP package; around the same size as a preamplifier. - 4) Pin compatible with the Rohm BA526 and BA527 power ICs. Choose to suit your application. - 5) Low current dissipation (4.8mA Typ.). #### Block diagram # Internal circuit configuration # ●Absolute maximum ratings (Ta = 25°C) | Parameter | Symbol | Limits | Unit | |-----------------------|--------|---------------------|------| | Power supply voltage | Vcc | 12 | ٧ | | Power dissipation | Pd | 950* | mW | | Operating temperature | Topr | -30 ∼+75 | °C | | Storage temperature | Tstg | -40~+125 | °C | ^{*} Reduced by 9.5mW for each increase in Ta of 1°C over 25°C. # • Electrical characteristics (unless otherwise noted, Ta = 25C, Vcc = 6V, R_L = 8 Ω and f = 1kHz) | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | Measurement circuit | |---------------------------|-----------------|------|------|------|-------------------|------------------------------------|---------------------| | Quiescent current | la | _ | 4.8 | 7 | mA | V _{IN} =0V _{rms} | Fig.10 | | Closed loop voltage gain | Gvc | 47 | 50 | 53 | dB | R _{NF} =68 Ω | Fig.10 | | Rated output | Роит | 250 | 330 | _ | mW | THD=10% | Fig.10 | | Total harmonic distortion | THD | _ | 1.1 | 2.5 | % | Po=100mW | Fig.10 | | Output noise voltage | V _{NO} | _ | 1.0 | 2.5 | mV _{rms} | R ₀ =10kΩ | Fig.10 | | Input resistance | Rin | _ | 25 | _ | kΩ | _ | Fig.10 | #### Measurement circuit Fig. 1 # Attached components (see Fig. 1) # C1: input coupling capacitor The recommended value is $10\mu F$. This capacitor and R_{IN} determine the bass cutoff frequency f_{LC1} for the input stage according to the following formula: $$f_{LC1} = \frac{1}{2\pi C_1 R_{IN}} [Hz]$$ If the capacitance value of C_1 is too small, the signal source reactance will increase, and cause the noise to increase and f_{LC1} will become higher. Conversely, if it is too large, the startup time after power is applied will be longer, and if the potentiometer is adjusted while the capacitor is charging, the charging current will flow through the slider current, and cause noise. C₂: DC cutoff resistor for the feedback circuit The recommended value is 47μF. This capacitor and R_{NF} determine feedback circuit bass cutoff frequency f_{LC2}. f_{LC2} is given by the following formula: $$f_{LC2} = \frac{1}{2\pi C_2 R_{NF}} \left[Hz \right]$$ Fig. 7 illustrates how changing C_2 varies the bass characteristics. C₃: ripple filter capacitor The recommended value is $47\mu F$. ### C4: Phase compensation capacitor This capacitor determines the treble cutoff frequency fhc. fhc is given by the following formula: $$f_{HC} = \frac{4000}{C4 [pF]} [kHz]$$ (however, $G_{VC} = 50dB$) If Gvc is not 50dB, fHc doubles for each decrease in Gvc of 6dB. Fig. 7 illustrates how changing C₄ varies the treble characteristics. # C₅: ripple filter and pre-driver bypass capacitor The recommended value is 100μF. If this capacitor is made too small, the ripple rejection and power output will deteriorate. C₆: Output coupling capacitor The recommended value is 470µF. # C₇: Power supply filter capacitor Determine based on the amount of power supply ripple and the regulation. Audio ICs BA546 #### ●Circuit construction (See Fig. 2) #### (1) Voltage amplification stage This circuit is comprised of a differential amplifier (Q_1 and Q_4), a constant current source (Q_5), and an active load (Q_2 and Q_3). This active load is the input to the pre-driver (via Q_8 and Q_9). #### (2) Pre-driver The pre-driver is an earthed-emitter amplifier with transistors Q_{θ} and Q_{θ} forming a Darlington PNP transistor. The Q_{θ} collector load is the input impedance looking from the base of Q_{14} and the constant-current load due to Q_{12} . #### (3) Idling loop The idling loop is the Q_{13} , Q_{10} , Q_{11} and Q_{14} loop. The V_{BE} of Q_{13} is subtracted from the V_F of Q_{10} and Q_{11} and is biased by Q_{14} . # (4) Power stage The power stage is a quasi-complementary circuit made up of a Darlington PNP transistor (Q_{13} and Q_{15}), and an NPN transistor (Q_{14}). (5) The AC gain is determined by the ratio between R_6 (24k Ω) and R_{NF} connected to pin 7. The formula is as follows: $$G_{VC} = 20\log \frac{24k\Omega}{R_{NF}}$$ [dB] Variation of Gvc and THD with RNF is shown in Fig. 12. Fig. 2 # Application example Fig. 3 The BA546 will generally be used as a power amplifier for portable cassette players and similar equipment, and will usually have a preamplifier before it, so insert the volume control between the stages. The gain of the power stage alone is determined by R_{NF} . Use Fig. 12 to choose a value for R_{NF} that gives the required gain. When R_{NF} is 68Ω , the standard G_{VC} is 50dB. When combining the BA546 with an ALC-equipped preamplifier as the previous stage, the control voltage for the ALC can be taken from pin 4, and the power supply for the preamplifier from pin 9. Audio ICs BA546 #### Electrical characteristics curves Fig. 4 Quiescent current and voltage gain vs. power supply voltage Fig. 5 Rated and max. output power and total harmonic distortion vs. power supply voltage Fig. 6 Voltage gain vs. frequency Fig. 7 Total harmonic distortion vs. output power Fig. 8 Power dissipation vs. output power Fig. 9 Power dissipation vs. ambient temperature Fig. 10 Voltage gain vs. frequency Fig. 11 Total harmonic distortion vs. output power Fig. 12 Voltage gain and total harmonic distortion vs. feedback resistance ●External dimensions (Units: mm)