# Low Power Applications and Technical Data Book

|  | Helpful Hints                                     |
|--|---------------------------------------------------|
|  | 10.0 Selection of Devices and<br>Cautions for Use |



# 10.0 Selections of Devices and Cautions for Use

#### 10.1 Use of Thyristors

#### 10.1.1 Determination of the Current

The permissible currents for thyristors is shown by the average value.

 When no rush current flows (heater, solenoid load) Load current x 1.3 to 1.5 ≤ permissible current for thyristor

Example:

1A x 1.5  $\rightarrow$  Applicable to 2A type thyristors. Determine the size of heatsink fin from the catalog. See Figure 10.1.

• When the rush current flows (lamp, transformer, motor load), the rush current should be measured and a detailed heat calculation should be made. The current is roughly estimated to be twice the calculated value when no rush current flows.

## Figure 10.1



#### Figure 10.2



PULSE WIDTH

 When pulses are used (capacitor discharge, LC oscillation, short-duration application) (less than 10 seconds). See Figure 10.2.

#### 10.1.2 Selection of Withstanding Voltage Class

Withstanding voltage of thyristor (V<sub>DRM</sub>) =

Supply Voltage x 2.5 to 3

See Figure 10.3.

# 10.1.3 Selection of Voltage Items

|                   |                    | With-<br>standing |                         |                         |
|-------------------|--------------------|-------------------|-------------------------|-------------------------|
| Supply<br>Voltage | Location<br>of Use | Voltage<br>Class  | V <sub>DRM</sub><br>(V) | V <sub>DSM</sub><br>(V) |
| 100V              | Japan              |                   |                         |                         |
| Line              | (Home              | 8                 | 400                     | —                       |
|                   | Use)               |                   |                         |                         |
| 120V              | USA                |                   |                         |                         |
| Line              |                    |                   |                         |                         |
| 100V              | Earth              |                   |                         |                         |
| Line              | Leakage            | 8                 | 400                     | 500                     |
|                   | Breaker            |                   |                         |                         |
| 200V              | Japan              |                   |                         |                         |
| Line              |                    |                   |                         |                         |
| 230V,             |                    |                   |                         |                         |
| 240V              | Europe             | 12                | 600                     | —                       |
| Line              |                    |                   |                         |                         |
| 200V              | Leakage            |                   |                         |                         |
| Line              | Protector          | 12                | 600                     | 800                     |
| (240V)            |                    |                   |                         |                         |

# Figure 10.3



#### Measures for dv/dt

When large voltage dv/dt is applied to thyristors, CR absorbers should be connected in parallel to the thyristors to lighten the dv/dt applied to the device.

A capacitor of  $0.047\mu$ F and a resistor of  $33\Omega$  are generally used for low power thyristors.

It is generally recommended to insert a resistor of  $1k\Omega$  between the gate and cathode for high-sensitivity low-current thyristors to lighten the dv/dt.

Figure 10.4 shows how to lighten the dv/dt with a CR absorber.

#### Cautions on the di/dt

If the current rate-of-rise di/dt exceeds the limit when a thyristor is turned on, the device may be damaged. In applications for inverters and choppers which discharge large currents when the thyristor is turned on, the di/dt causes a problem and, therefore, should be lightened by connecting an anode reactor.

## Figure 10.4





#### **Measures for Error Prevention**

The cause and preventive measures of errors in the trigger circuit are shown in the following table.

| Cause                                                                                                               | Preventative Measures                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Noise to<br>Trigger                                                                                                 | 1. Stabilize the supply voltage.                                                                                                                                                                                                                                                    |
| Circuit                                                                                                             | <ol> <li>Insert a surge voltage<br/>abosrber.</li> </ol>                                                                                                                                                                                                                            |
|                                                                                                                     | <ol> <li>Avoid the use of a<br/>differentiation circuit<br/>which can be easily<br/>affected by the noise<br/>votItage resulting from<br/>the design of trigger<br/>circuits.</li> <li>Provide electromagnetic<br/>shields to avoid external<br/>noise from the chassis.</li> </ol> |
| Noise<br>Voltage<br>(Induced<br>in relation<br>to the<br>trigger<br>circuit to<br>the gate<br>of the<br>thyristor.) | <ol> <li>Use shielded wires to<br/>transmit the trigger<br/>signals.</li> <li>Keep the wires as far<br/>apart as possible from<br/>the main circuit wires to<br/>avoid electromagnetic<br/>complications.</li> </ol>                                                                |
| Feedback<br>Noise<br>from<br>the Main<br>Circuit                                                                    | <ol> <li>Insert an abosrber at the gate. (See Below)</li> <li>Insert a diode (See Below)</li> <li>R: 100 ~ 1KΩ<br/>C: 0.01 ~ 0.1μF</li> </ol>                                                                                                                                       |
|                                                                                                                     | ABSORBER FOR THE GATE                                                                                                                                                                                                                                                               |

#### 10.2 Use of Triacs

#### 10.2.1 Determination of the Current

The permissible currents for triacs are shown by the effective values. See Figure 10.5.

The indicator values of AC ammeter are important.

 When no rush current flows (heater load) Load current x 1.3 to 1.5 ≤ permissible current for triacs

Example:  $6A \times 1.5 \rightarrow Applicable$  to 10A class thyristors

Determine the size of heatsink fin from the catalog.

• When the rush current flows (lamp, transformer, motor load) The rush current should be measured and a detailed heat calculation should be made.

Provide us with the following values and Powerex will do the calculation for you.

Ambient Temperature:  $T_a = \___°C$ 

Peak Value of Rush Current:  $I_P = \_\__A$ Waveform if available.

#### Figure 10.5



Constant Current Value: IT(RMS) = \_\_\_\_A

Operation Sequence:

\_\_\_\_\_ Seconds during ON

Seconds during OFF

The following triacs are applicable to the loads when the rush current flows (see following table).

| Load            | Rush<br>Current | Applicable<br>Triacs |
|-----------------|-----------------|----------------------|
| Incadescent     |                 |                      |
| Lamp            |                 |                      |
| 100V - 800W     | 80A             | BCR16CM              |
| 100V - 600W     | 60A             | BCR12CM              |
| 100V - 500W     | 50A             | BCR10CM              |
| Halogen         |                 |                      |
| Lamp            |                 |                      |
| 100V - 600W     | 72A             | BCR16CM              |
| Microwave Oven  |                 |                      |
| 100V - 600W     | 80A             | BCR16CM              |
| General Use –   | 40A-            |                      |
| 3 Phase         | 45A             |                      |
| Induction Motor |                 |                      |
| 0.75kW - 200V   |                 | BCR16CM              |
|                 |                 |                      |

# Section of Withstanding Voltage Class as shown in Figure 10.6.

Withstanding voltage of triacs:

V<sub>DRM</sub> = Two or three times the supply voltage

#### Figure 10.6





#### Section of Withstanding Voltage Items

#### 100V to 120V Line System

| Supply<br>Voltage | Location<br>of Use | With-<br>standing<br>Voltage<br>Item | V <sub>DRM</sub><br>(V) | V <sub>DSM</sub><br>(V) |
|-------------------|--------------------|--------------------------------------|-------------------------|-------------------------|
| 100V              | Japan              | 8                                    | 400                     | 600                     |
| Line              | (Home              |                                      |                         |                         |
|                   | Use)               |                                      |                         |                         |
| 120V              | USA                | 8                                    | 400                     | 600                     |
| Line              |                    |                                      |                         |                         |
| 100V              | Reversing          | 8                                    | 400                     | 600                     |
| Line              | Operation          |                                      |                         |                         |
| 120V              | of Capacitor       |                                      |                         |                         |
| Line              | Motor              |                                      |                         |                         |

#### 200V to 240V Line System

| Supply<br>Voltage | Location<br>of Use        | With-<br>standing<br>Voltage<br>Item | V <sub>DRM</sub><br>(V) | V <sub>DSM</sub><br>(V) |
|-------------------|---------------------------|--------------------------------------|-------------------------|-------------------------|
| 200V<br>Line      | Japan<br>(Factory<br>Use) | 12                                   | 600                     | 800                     |
| 230V,             | Europe                    | 12                                   | 600                     | 800                     |
| 240V              |                           |                                      |                         |                         |
| Line              |                           |                                      |                         |                         |

#### Selection of CR Absorber

In general, CR absorbers should be connected to suppress the  $(dv/dt)_{C}$  value applied to the device when controlling the inductive load by triacs as shown here.



The values for CR absorbers vary in accordance with the circuit conditions and sometimes they have to be determined by experimentation. In most cases, the  $(dv/dt)_{C}$  value can be controlled to be less than 2.5V/µs (supply voltage 100V) and 5V/µs (supply voltage 200V) when C is 0.1µF and R is 100 $\Omega$ .

# Recommended Values for C and R

|   | 100V ~ 120V  | 200V ~ 240V  |
|---|--------------|--------------|
| С | 0.1μF, 400WV | 0.1µF, 600WV |
| R | 100Ω, 0.5W   | 100Ω, 1W     |

#### 10.3 Gate Circuit and Gate Trigger Current

#### 10.3.1 Gate Circuit

As stated earlier, triacs have four trigger modes and can be used in the combinations shown in Figure 10.7.

#### 10.3.2 Inductive and Resistive Load

The commutation characteristics of triacs should be considered according to the load. Commutating characteristics  $(di/dt)_{C}$  and  $(dv/dt)_{C}$  shift to on-state without the gate signal and become uncontrollable as shown in Figure 10.8, if they exceed certain values during commutation through the effect of current delay when the inductive load (L load) is controlled by triacs (commutation failure). See Figure 10.9

To turn off the triacs, the appropriate device should be selected in accordance with the load. Also, C and R should be connected in series to the device to control the rise in voltage during commutation.

| Fxam  | nle        | of I  | nad |
|-------|------------|-------|-----|
| LAUIN | <b>DIO</b> | UI L! | ouu |

| L Load<br>(Inductive<br>Load) | Motors, Electromagnetic<br>Valves, Transformers,<br>Solenoids |
|-------------------------------|---------------------------------------------------------------|
| R Load<br>(Resistive<br>Load) | Heaters, Lamps                                                |

#### **Trigger Mode of Triacs**

Triacs are turned on by applying either positive or negative gate signals. Thyristors are turned on by the gate signal when either forward or reverse voltages are applied. See Figure 10.10.

Triacs can be triggered by the gate signal in the following four modes as shown in Figure 10.10. However, the IV mode is guaranteed only by the BCR1AM.

#### 10.4 Determination of Gate Current (See Figure 10.11)



### Figure 10.7



\*1 THE IV MODE (G + T2 --) IS NOT GENERALLY GUARANTEED EXCEPT THOSE OF BCR1AM. IF THIS TRIGGER MODE IS USED, SELECTION MUST BE MADE. SET THE SELECTION VALUS AT MORE THAN 80 ~ 100mA. (BCR3AM, BCR16HM)

### Figure 10.8 Waveforms During Commutation





# Figure 10.9 Waveforms of Voltage and Current Applied to Triacs During L Load



WAVEFORMS OF VOLTAGE AND CURRENT APPLIED TO TRIACS WHEN L LOAD IS USED AND WHEN COMMUTATION FAILS.

Figure 10.10 Trigger Mode for Triacs





#### Figure 10.11 Determination of Gate Current

