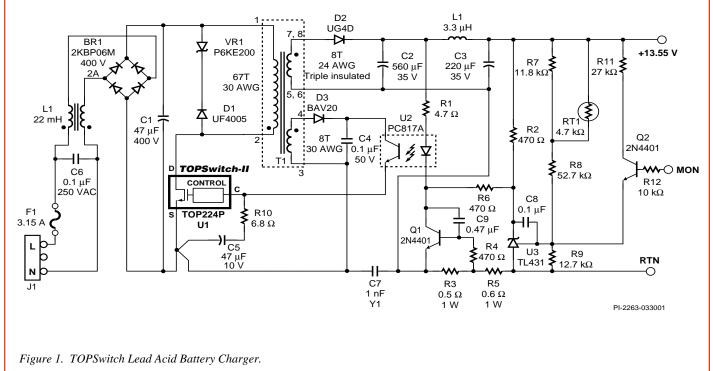
Design Idea DI-2 *TOPSwitch*[®] Lead Acid Battery Charger

Application	Device	Power Output	Input Voltage	Output Voltage	Topology
Battery Charger	TOP224P	20 W	85 - 265 VAC	13.55 V @ 25 °C	Flyback

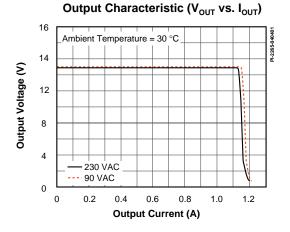
Design Highlights

- Low cost
- · Replaces low efficiency, bulky linear supply
- World wide input voltage range
- Efficiency >75%
- Adjustable current limited output
- Temperature compensated for lead acid batteries.
- Control input for sensing battery presence

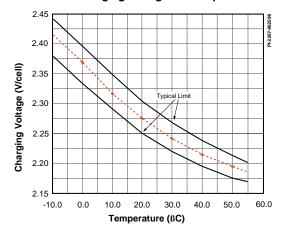
Operation


The *TOPSwitch* generates a single isolated output voltage from a rectified AC input. This output can be used to charge a lead-acid battery in applications such as fire/burglar alarms and emergency lighting.

Lead acid batteries for standby uses are normally charged at ~ 2.3 V/cell and current limited to 0.1 A per Ah of capacity. In addition the charging voltage of lead acid batteries is dependent on temperature.


The primary side of the circuit is almost identical to the RD5 board (20 W universal reference design board). D3 has been changed to a BAV20 with a higher breakdown voltage than the 1N4148.

D2, C2, L1 and C3 rectify and filter the output from the secondary. R1, U2, C9, Q1, R3, R4 and R5 form the current limit. When the voltage across R3 reaches ~0.6 V Q1 turns on, drawing current through U2 via R1. This will reduce the *TOPSwitch* duty cycle and hence the output current (constant current operation). R5 is added to ensure that there is always a voltage available to drive the optocoupler at low output voltages. C9/R4 adds compensation and limits base current.


The output voltage is controlled using a TL431 voltage reference (U3). Here the current through the opto (U2) is altered dependant on the output voltage. R7, R8, R9 and RT1 set up a voltage of 2.5 V at the reference pin of U3. R6 limits the maximum current through the opto. R2 is added as a minimum load to maintain regulation at light or no load. The addition of RT1 provides the temperature compensation.

R11, R12 and Q2 provide battery detection. By applying 5 V to R12, Q2 turns on, adding R11 to the existing resistor divider, and reducing the output voltage setpoint to approximately 8 V. This disables the charger, allowing the battery voltage to be measured. The exact battery voltage gives the state of charge.

Cell Charging Voltage vs. Temperature

For the latest updates, visit our Web site: www.powerint.com

Transformer Parameters				
Core Material	TDK PC40 EE22/29/6-Z Gap for A _L of 145 nH/T²			
Bobbin	YC 2204 (Ying Chin)			
Winding Order	Primary (2-1), Tape, Bias (4-3), Tape, Secondary (7,8-5,6)			
Primary Inductance (Pins 1-2, all others open)	650 μH ± 10% @ 100 kHz			
Primary Resonant Frequency (Pins 1-2, all others open)	700 kHz minimum			
Leakage Inductance (Pins 1-2, with Pins 5-7 shorted)	35 μH maximum			

Key Design Points

- R3 sets output current limit threshold value given by $0.6/I_{\text{LIMIT}}$.
- Rate R3 and R5 according to I_{LIMIT}^2 R dissipation.
- Ensure total voltage across R3 and R5>1.5 V @ I_{LIMIT} if control to 0 V out is required.
- If output current rises or if instability at low output voltages verify cathode of D3 > 6 V, i.e. that there is sufficient voltage to drive the optocoupler. Add additional bias turns as needed.
- Choose tolerances of U2, R7, R8, R9 and R10 to give the desired overall tolerance (R7, R8, R9 = 0.1%; R10 = 1% and U2 = 1% for overall tolerance < 2%).
- Q1, Q2 can be any general-purpose transistor.
- Prototypes may be based on RD5 board (see www.powerint.com).
- Thermistor used is Philips part # 2322-640-54472.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein, nor does it convey any license under its patent rights or the rights of others.

The PI Logo, **TOPSwitch**, **TinySwitch** and **EcoSmart** are registered trademarks of Power Integrations, Inc. ©Copyright 2001, Power Integrations, Inc.

WORLD HEADQUARTERS	EUROPE & AFRICA	TAIWAN	CHINA	
AMERICAS	Power Integrations (Europe) Ltd.	Power Integrations	Power Integrations	
Power Integrations, Inc.	United Kingdom	International Holdings, Inc.	International Holdings, Inc.	
San Jose, CA 95138 USA	Phone: +44-1344-462-300	Taipei, Taiwan	China	
Customer Service:	Fax: +44-1344-311-732	Phone: +886-2-2727-1221	Phone: +86-755-367-5143	
Phone: +1 408-414-9665	e-mail: eurosales@powerint.com	Fax: +886-2-2727-1223	Fax: +86-755-377-9610	
Fax: +1 408-414-9765	-	e-mail: taiwansales@powerint.com	e-mail: chinasales@powerint.con	
e-mail: usasales@powerint.com			-	
KOREA	JAPAN	INDIA (Technical Support)	APPLICATIONS HOTLINE	
Power Integrations	Power Integrations, K.K.	Innovatech	World Wide +1-408-414-9660	
International Holdings, Inc.	Keihin-Tatemono 1st Bldg.	Bangalore, India		
Seoul, Korea	Japan	Phone: +91-80-226-6023	APPLICATIONS FAX	
Phone: +82-2-568-7520	Phone: +81-45-471-1021	Fax: +91-80-228-9727	World Wide +1-408-414-9760	
Fax: +82-2-568-7474	Fax: +81-45-471-3717	e-mail: indiasales@powerint.com		
e-mail: koreasales@powerint.com	e-mail: japansales@powerint.com			

