LM185/LM285/LM385 Adjustable Micropower Voltage References

General Description

The LM185/LM285/LM385 are micropower 3-terminal adjustable band-gap voltage reference diodes. Operating from 1.24 to 5.3V and over a $10\mu A$ to 20mA current range, they feature exceptionally low dynamic impedance and good temperature stability. On-chip trimming is used to provide tight voltage tolerance. Since the LM185 band-gap reference uses only transistors and resistors, low noise and good long-term stability result.

Careful design of the LM185 has made the device tolerant of capacitive loading, making it easy to use in almost any reference application. The wide dynamic operating range allows its use with widely varying supplies with excellent regulation.

The extremely low power drain of the LM185 makes it useful for micropower circuitry. This voltage reference can be used to make portable meters, regulators or general purpose analog circuitry with battery life approaching shelf life. Further, the wide operating current allows it to replace older references with a tighter tolerance part.

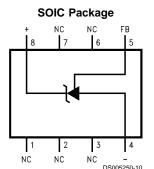
The LM185 is rated for operation over a –55°C to 125°C temperature range, while the LM285 is rated –40°C to 85°C and the LM385 0°C to 70°C. The LM185 is available in a hermetic TO-46 package and a leadless chip carrier package, while the LM285/LM385 are available in a low-cost TO-92 molded package, as well as S.O.

Features

- Adjustable from 1.24V to 5.30V
- Operating current of 10µA to 20mA
- 1% and 2% initial tolerance
- 1Ω dynamic impedance
- Low temperature coefficient

Connection Diagrams

TO-92 Plastic Package



Bottom View

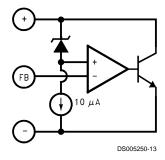
TO-46 Metal Can Package



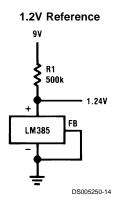
Bottom View

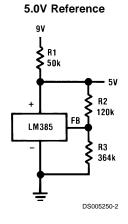
Top View

20-Leadless Chip Carrier



Top View


Ordering Information


Package		Temperature Range		NSC
	−55°C to 125°C	-40°C to 85°C	0°C to 70°C	Drawing
TO-46	LM185BH			
	LM185BH/883			H03H
	LM185BYH			ПОЗП
	LM185BYH/883			
TO-92		LM285BXZ	LM385BXZ	
		LM285BYZ	LM385BYZ	7024
		LM285Z	LM385BZ	Z03A
			LM385Z	
8-Pin SOIC		LM285M	LM385M	MOOA
		LM285BYM	LM385BM	
20-Leadless Chip Carrier	LM185BE/883			E20A

Block Diagram

Typical Applications

$$V_{OUT} = 1.24 \left(\frac{R3}{R2} + 1 \right)$$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

(Note 2)

Reverse Current 30mA Forward Current 10mA

Operating Temperature Range (Note 3)

 LM185 Series
 −55°C to 125°C

 LM285 Series
 −40°C to 85°C

 LM385 Series
 0°C to 70°C

Storage Temperature -55°C to 150°C

Soldering Information

TO-92 Package (10 sec.) 260°C TO-46 Package (10 sec.) 300°C

SO Package

 Vapor Phase (60 sec.)
 215°C

 Infrared (15 sec.)
 220°C

See An-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Note 4)

				LM185, LM	285	LM385						
			1	35BX, 85BY				LM3	85BX,			
Parameter	Conditions	Тур	LM185B, LM285BX,		LM285		Тур	LM385BY		LM385		Units
		1,75		85BY			1,75					(Limit)
			Tested	Design	Tested	Design		Tested	Design	Tested	Design	
			Limit	Limit	Limit	Limit		Limit	Limit	Limit	Limit	
	100.4	1.010	(Note 5)	(Note 6)	(Note 5)	(Note 6)	4.040	(Note 5)	(Note 6)	(Note 5)	(Note 6)	.,,
Reference Voltage	I _R = 100μA	1.240	1.252		1.265	1.270	1.240	1.252	1.255	1.265	1.270	V
			1.255									(max)
			1.228		1.215	1.205		1.228	1.215	1.215	1.205	V
			1.215									(min)
Reference Voltage	I _{MIN} < I _R < 1mA	0.2	1	1.5	1	1.5	0.2	1	1.5	1	1.5	mV
Change with Current	1mA < I _R < 20mA	4	10	20	10	20	5	15	25	15	25	(max)
Dynamic Output	$I_R = 100 \mu A, f = 100 Hz$											
Impedance	I _{AC} = 0.1 I _R V _{OUT} = V _{REF}	0.3					0.4					Ω
	V _{OUT} = 5.3V	0.7					1					
Reference Voltage	I _R = 100μA											mV
Change with Output		1	3	6	3	6	2	5	10	5	10	(max)
Voltage												
Feedback Current		13	20	25	20	25	16	30	35	30	35	nA (max)
Minimum Operating	V _{OUT} = V _{REF}	6	9	10	9	10	7	11	13	11	13	μA
Current (see curve)	V _{OUT} = 5.3V	30	45	50	45	50	35	55	60	55	60	(max)
Output Wideband	I _R = 100μA, 10Hz < f < 10kHz											
Noise	V _{OUT} = V _{REF}	50					50					μV _{rms}
	V _{OUT} = 5.3V	170					170					
Average Temperature	I _R = 100μA X Suffix		30					30				ppm/°c
Coefficient (Note 7)	Y Suffix		50					50				(max)
	All Others			150		150			150		150	
Long Term Stability	I _R = 100μA, T = 1000 Hr,	20					20					ppm
	$T_A = 25^{\circ}C \pm 0.1^{\circ}C$											

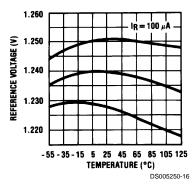
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 2: Refer to RETS185H for military specifications.

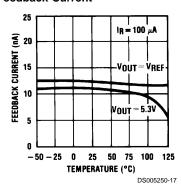
Note 3: For elevated temperature operation, T_Jmax is:

LM185 150°C LM285 125°C LM385 100°C

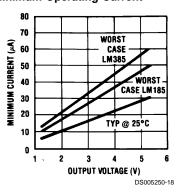
Thermal Resistance	TO-92	TO-46	SO-8
θ _{JA} (Junction to Ambient)	180°C/W (0.4" leads)	440°C/W	165°C/W
	170°C/W (0.125" leads)		
θ _{JC} (Junction to Case)	N/A	80°C/W	N/A

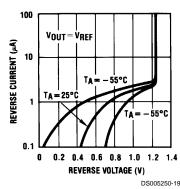

Electrical Characteristics (Note 4) (Continued)

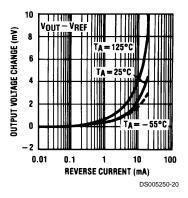
Note 4: Parameters identified with boldface type apply at temperature extremes. All other numbers apply at T_A = T_J = 25°C. Unless otherwise specified, all parameters apply for V_{REF} < V_{OUT} < 5.3V.

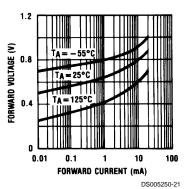

- Note 5: Guaranteed and 100% production tested.
- Note 6: Guaranteed, but not 100% production tested. These limits are not to be used to calculate average outgoing quality levels.
- Note 7: The average temperature coefficient is defined as the maximum deviation of reference voltage at all measured temperatures from T_{MIN} to T_{MAX}, divided by T_{MAX} T_{MIN}. The measured temperatures are –55, –40, 0, 25, 70, 85, 125°C.

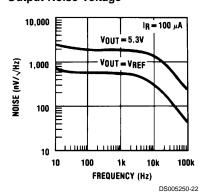
Typical Performance Characteristics

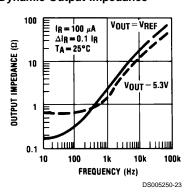

Temperature Drift of 3 Representative Units

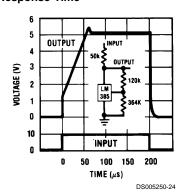

Feedback Current

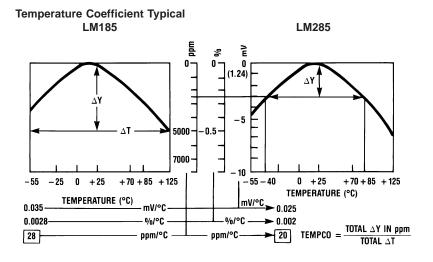

Minimum Operating Current

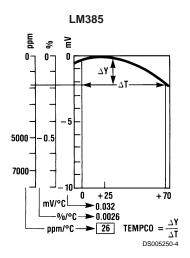

Reverse Characteristics


Reverse Characteristics

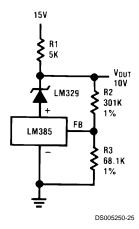

Forward Characteristics

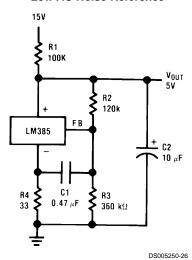

Output Noise Voltage


Dynamic Output Impedance

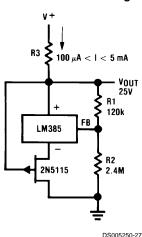


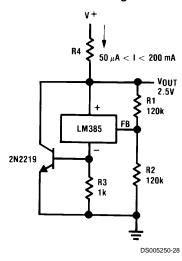
Response Time


Typical Performance Characteristics (Continued)

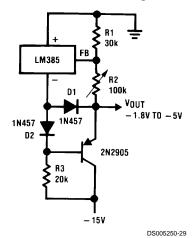


Typical Applications

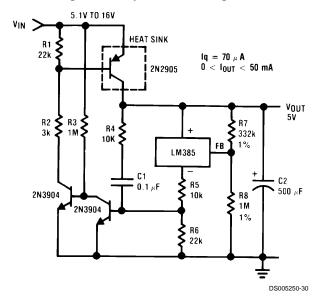

Precision 10V Reference


Low AC Noise Reference

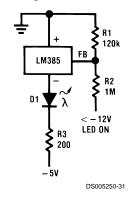
25V Low Current Shunt Regulator

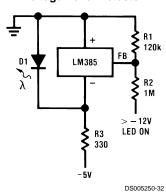


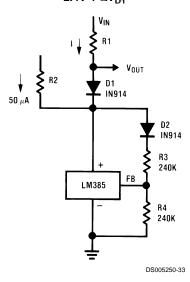
200 mA Shunt Regulator

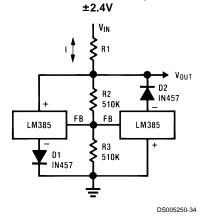


Typical Applications (Continued)

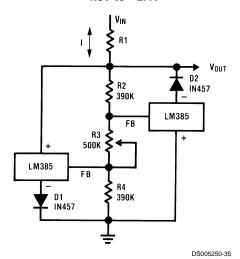

Series-Shunt 20 mA Regulator


High Efficiency Low Power Regulator

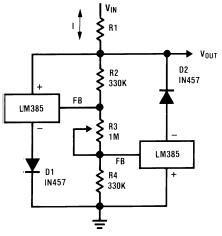

Voltage Level Detector


Voltage Level Detector

Fast Positive Clamp 2.4V + Δ V_{D1}

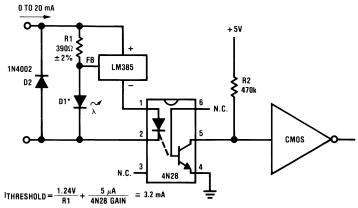


Bidirectional Clamp

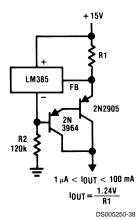


Typical Applications (Continued)

Bidirectional Adjustable Clamp ±1.8V to ±2.4V

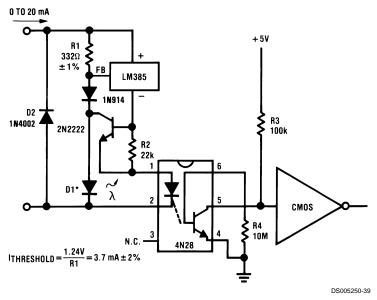


Bidirectional Adjustable Clamp ±2.4V to ±6V

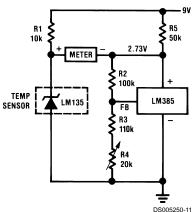


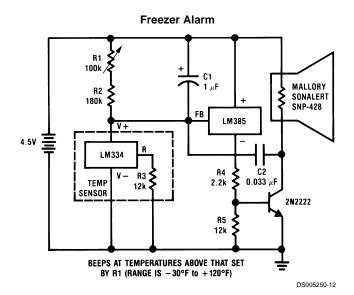
DS005250-36

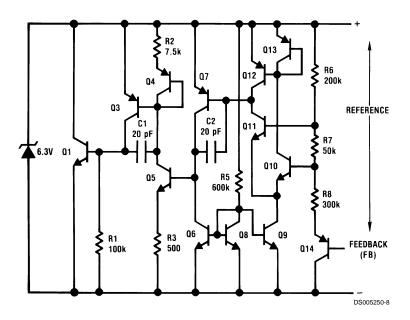
Simple Floating Current Detector


Current Source

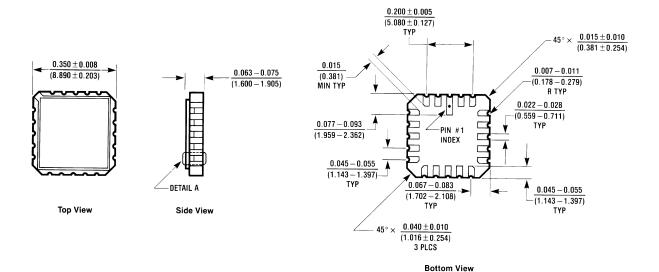
DS005250-37

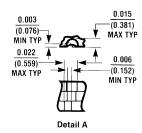

Typical Applications (Continued)


Precision Floating Current Detector

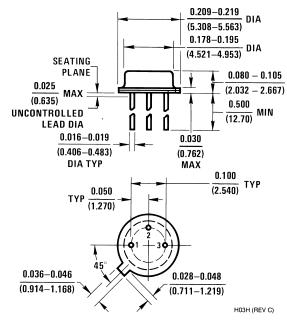

*D1 can be any LED, V_F=1.5V to 2.2V at 3 mA. D1 may act as an indicator. D1 will be on if I_{THRESHOLD} falls below the threshold current, except with I=O.

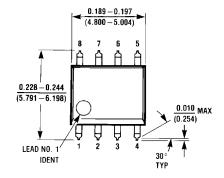
Centigrade Thermometer, 10mV/°C

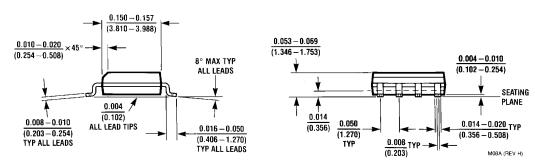


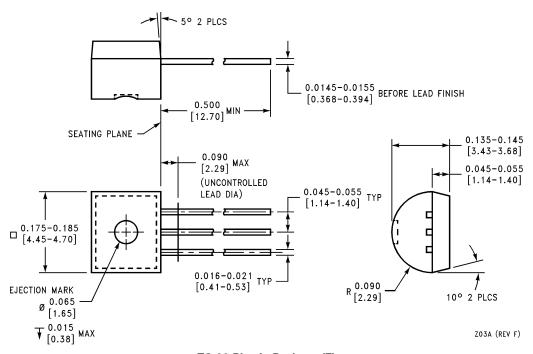


Schematic Diagram


Physical Dimensions inches (millimeters) unless otherwise noted


E20A (REV D)


20-Leadless Chip Carrier (E) NS Package Number E20A


TO-46 Metal Can Package (H) NS Package Number H03H

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

SO Package (M)
NS Package Number M08A

TO-92 Plastic Package (Z) NS Package Number Z03A

Notes

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: ap.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507