
© 1998 National Semiconductor Corporation 1

USBN9602 Interface

Examples

By Jim Lyle, National Semiconductor

National Semiconductor’s USBN9602 Universal Serial Bus Function Controller can be used in a wide
variety of USB applications, and with a wide variety of microcontrollers. This white paper illustrates
the latter using detailed examples. Specifically, it outlines the hardware and firmware required to con-
nect the USBN9602 with COP8 (National Semiconductor), MC68HC11 (Motorola), and 80C188EB

(Intel) microcontrollers1.

Most of the firmware shown in this paper is drawn from a reference design for an HID Class2 joy-

stick. The complete source code for this firmware is available on National Semiconductor’s web site3.
While this joystick application is one specific example from one device class, the protocol mecha-
nisms used are similar (or identical) to those required by most devices and most classes.

USB-Side Hardware Connections

The required USB-side hardware is shown in Figure 1. This circuitry should not change much from
one application to the next, and much of it is primarily to reduce EMI emissions.

R1 is the pullup resistor which indicates to the host that this is a full-speed device. R3 and R4 are
series termination resistors. C5 and C6 are high frequency bypass capacitors. L1 and L2 are ferrite
beads on the USB power and ground connections. Bus power is available via the VUSB point if nec-
essary. If not, L1 may be omitted.

The USBN9602 contains an internal 3.3V regulator sized to meet its own internal requirements and
that of the pullup resistor. Do not use the internal regulator to power anything else. If desired, an

1. Strictly speaking, the 80C188EB is an integrated microprocessor (not a microcontroller) because it requires
external memory. It is designed for embedded control applications, however, and so fits well with other true
microcontrollers.

2. The USB Specification defines the basic framework for USB devices and the standard protocols they use.
There are also device “Classes” which define additional protocol layers that reside above (and make use of)
the standard protocols. Among these classes are Audio, Printer, Comm (Communications), and HID (Human
Interface Device).

3. See http://www.national.com and search for USBN9602. From this devices home page, follow the link for
“Design Tools’.

USBN9602 Interface Examples

2 USBN9602 Firmware Description

external regulator can be connected to the 3.3V pin. If you do this you must guarantee that the internal regulator remains

disabled1.

FIGURE 1. USB Side Connections to the USBN9602

Microcontroller-Side Specifics

The USBN9602 has a generic microcontroller interface designed to connect virtually any microcontroller or micropro-
cessor with a minimum of additional circuitry. It provides both serial and parallel connections, and the latter may

optionally take advantage of a DMA interface2.

The following sections provide specific examples for the aforementioned list of microcontrollers.

COP8

National Semiconductor’s COP8 microcontroller architecture defines a family of 8-bit controllers with a wide variety of
features and functions. All members of the family have a MICROWIRE port, however. MICROWIRE is a four-wire
serial interface used to connect external peripherals. It provides the means necessary to connect the USBN9602 in this
case.

1. The internal regulator is disabled by default in the firmware discussed in this application. To enable it, the constant ‘VREG_ON
must be defined at the top of the source code before compilation.

2. This requires a DMA controller in the target system.

L1
FB

VUSB

D- 20
D+ 19

3.3V 18

AGND 17

USBN9602

R1
1.5K

R318

R418

GND

C5

22pF

C6

22pF

VUSB 1
-DATA 2
+DATA 3
GRND 4

S
H
L
D

5

J1
USB_BJACK

L2 FB

D-
D+

GND

AGND

C3
1uF

C4
.01

USBN9602 Firmware Description 3

Microcontroller-Side Specifics

The MICROWIRE connection between the COP8 microcontroller and the USBN9602 is shown in Figure 2. This is very
simple, and only a few connections are necessary for the entire interface. MODE0 and MODE1 are both pulled high to
select the MICROWIRE mode. The four MICROWIRE signals are labeled /CS (Chip Select), SO (Serial Output), SK

(Serial Clock), and SI (Serial Input) and are wired straight across1. The /RST signal connects both the COP8 and the
USBN9602, although the circuitry that drives it is not shown. Please see the COP8 Data Sheet for the appropriate reset
circuit. The DRQ (DMA Request) and /DACK (DMA Acknowledgment) pins are respectively not connected and tied
high. These are the proper connections to make when the DMA feature will not be used.

FIGURE 2. MICROWIRE Connection Between the COP8 and the USBN9602

Note that the connection between the USBN9602’s CLK output pin and the COP8’s CKI input is optional. The
USBN9602 must have a 48 MHz third-overtone crystal for proper operation. This 48MHz internal clock is sub-divided

by a firmware-selectable integer2 and then driven onto the CLK pin. As shown here, this feature can eliminate the
microcontroller’s need for an additional crystal or oscillator.

The firmware required to communicate with the USBN9602 starts in Figure 3 with that used to configure the
MICROWIRE port. This code enables the necessary output pins, selects the proper MICROWIRE mode and clock
period, and then enables the MICROWIRE function.

1. The MICROWIRE signal names are referenced to the host (microcontroller). For example, the SO signal is the serial data output
from the microcontroller. Therefore it must connect to the USBN9602’s serial data input pin. Likewise, the SI signal must connect
to the USBN9602’s serial data output pin.

2. At reset, the divisor is preset to 12, producing a 4MHz clock on the CLK pin. The firmware can select a new divisor whenever
necessary.

 26
 27

GND

L3
470nH

C7

56pF

C8

18pF

Y1
48MHz

C9
.1

VCC

10K

/RST 34

G0/INT 35

G1 36

G2/T1B 37

G3/T1A 38

G4/SO 3

G5/SK 4

G6/SI 5

G7/RSTRT 6

C
K
I

7

U3

COP87L88EGN

RST 16

INTR 4
CS 1
RD 2
WR/SK 3
A0/SI/ALE 7

D0/SO 8
D1 9
D2 10
D3 11
D4 12
D5 13
D6 14
D7 15

MODE0 25
MODE1 24
CLK 28

XIN
XOUT

DACK 6
DRQ 5

V
C
C

2
2

U1

USBN9602

/DACK

VCC

/CS

SO
SK
SI

USBN9602 Interface Examples

4 USBN9602 Firmware Description

FIGURE 3. COP8 MICROWIRE Configuration

Next, Figure 4 shows a series of macro definitions. These are used as building blocks for the following functions for two
reasons. First, system specific details are better isolated here and make for more readable code further on. Second, the
functions used to communicate with the USBN9602 are heavily used, and in-line code executes faster and is more effi-
cient than nested function calls.

FIGURE 4. COP8 Macros Used to Access the USBN9602

The read_usb and write_usb functions are shown in Figure 5. These are the actual functions that transfer data from and
to the USBN9602, respectively, and they are similar to each other. First, the functions assert the USBN9602’s chip
select pin. Then they send the address and command (read or write) through the MICROWIRE port, and then receive or
send the data the same way. Finally the functions de-assert the chip select pin, then read_usb returns the data.

 /*Configure the Microwire port */
 PORTGC.SO = 1; /*enable SO output */
 PORTGC.SK = 1; /*enable SK output */
 PORTGC.SKSEL=0; /*selects norm. SK mode */
 CNTRL.MSEL = 1; /*enable Microwire intf */
 CNTRL.SL1 = 0; /*SK period = 2xTC */
 CNTRL.SL0 = 0; /*SK period = 2xTC */

/* Send data out the microwire port ***********************************/
#define MWOUT(dta) { \
 MWSR = dta; /*put in shft reg */\
 PSW.BUSY = 1; /*start shifting */\
 while (PSW.BUSY == 1);} /*wait until done */

/* Turn off all microwire chip selects ********************************/
#define MWCSOFF {USBCSOFF; EECSOFF; A2DCSOFF;}

/* send address and command out via the microwire port ****************/
#define MWADRCMD(adr,cmd) MWOUT((adr & 0x3F) | cmd)

/* Assert/De-assert the 9602 CS* signal *******************************/
#define USBCSENB SETBIT(PORTGC,BIT2); /*enable the output bit */
#define USBCSON { \
 MWCSOFF; /*de-assert chip sels */\
 CLRBIT(PORTGD,BIT2);} /*re-assert USB CS* */
#define USBCSOFF SETBIT(PORTGD,BIT2);

USBN9602 Firmware Description 5

Microcontroller-Side Specifics

FIGURE 5. COP8 read_usb and write_usb Routines

MC68HC11

Motorola’s MC68HC11 microcontroller is a popular choice for embedded applications. It does not have a MICROW-
IRE interface, but it does have something very similar called an SPI (Serial Peripheral Interface). This has a number of

features and modes, including one (Mode 01) which is essentially MICROWIRE compatible. Therefore an SPI connec-
tion to the USBN9602 can be used with this microcontroller.

The SPI connection is shown in Figure 6, and indeed is so similar to the MICROWIRE case that only a few additional
comments are necessary here. The SPI signals are named MISO (Master In, Slave Out), MOSI (Master Out, Slave In),
SCK (Serial Clock), and /SS (Slave Select). The crystal or oscillator circuit is not shown for simplicity, but the same cir-
cuit shown in Figure 2 may be used.

Note that the INTR pin in this case is low-true (it was high-true in the COP8 example). The INTR output is program-
mable. Its polarity and type (totem-pole or open-collector) can be selected by writing the appropriate data pattern to the

associated USBN9602 register2.

The required SPI firmware is likewise very similar to the MICROWIRE examples. The only differences are those relat-
ing to minor differences in the hardware. An example of the SPI configuration code is shown in Figure 7, the hardware
specific macros are in Figure 8, and the read_usb and write_usb functions are in Figure 9. Note that the latter functions
are essentially identical to the MICROWIRE equivalents but for the macro prefixes.

1. Not to be confused with the USBN9602’s MODE0 pin.

2. The INTR output is tri-stated after reset.

/**/
/* This subroutine reads the USB register whose address is given. */
/**/
byte read_usb(byte adr)
 {
 USBCSON; /*turn on CS */
 MWADRCMD(adr,USBREAD); /*send cmd and addr */
 MWOUT(0); /*send dummy data */
 USBCSOFF; /*turn off CS */
 return(MWSR); /*return the result */
 }

/**/
/* This subroutine writes the USB register whose address is given. */
/**/
void write_usb(byte adr, byte dta)
 {
 USBCSON; /*turn on CS */
 MWADRCMD(adr,USBWRITE); /*send cmd and addr */
 MWOUT(dta); /*send the data */
 USBCSOFF; /*turn off CS */
 }

USBN9602 Interface Examples

6 USBN9602 Firmware Description

FIGURE 6. SPI Connection Between the MC68HC11 and the USBN9602

FIGURE 7. MC68HC11 SPI Configuration

FIGURE 8. MC68HC11 Macros Used to Access the USBN9602

/RST 17

/IRQ 19

PD0 20
PD1 21
PD2 22
PD3 23
PD4 24
PD5 25

EXTAL 7

U4

68HC11A1_PLCC

MISO
MOSI

RST 16

INTR 4
CS 1
RD 2
WR/SK 3
A0/SI/ALE 7

D0/SO 8
D1 9
D2 10
D3 11
D4 12
D5 13
D6 14
D7 15

MODE0 25
MODE1 24
CLK 28

U1

USBN9602

VCC

SCK
/SS

 /*Enable the SPI port, putting it in Mode 0 (CPOL=0, CPHA=0), */
 /*Master mode, interrupts OFF, 1 MHz clock (with 8 MHz osc.), */
 /*Port D totem pole, bit 2 is input, all others outputs */
 /*Bit 5 is used as the CS* for the USBN9602 */
 PORTD=0xFF; /*set to known value */
 DDRD=0x3B; /*set PORTD[0..5] dir. */
 SPCR=SPE+MSTR; /*enable, in master mode */
 tmp=SPSR; /*flush the */
 tmp=SPDR; /* SPI port */

/* Send data out the SPI port ***/
#define SPIOUT(dta) { \
 SPDR = dta; /*put in shft reg */\
 while (!TSTBIT(SPSR,SPIF));} /*wait until done */

/* Turn off all SPI chip selects **************************************/
#define SPICSOFF USBCSOFF

/* send address and command out via the SPI port **********************/
#define SPIADRCMD(adr,cmd) SPIOUT((adr & 0x3F) | cmd)

/* Assert/De-assert the 9602 CS* signal *******************************/
#define USBCSON { \
 SPICSOFF; /*de-assert chip sels */\
 CLRBIT(PORTD,BIT5);} /*re-assert USB CS* */
#define USBCSOFF SETBIT(PORTD,BIT5)

USBN9602 Firmware Description 7

Microcontroller-Side Specifics

FIGURE 9. MC68HC11 read_usb and write_usb Routines

80C188EB

The COP8 and MC68HC11 use the USBN9602’s serial (MICROWIRE) interface mode. The USBN9602 also supports
two parallel modes: Multiplexed and Non-Multiplexed. The former is for microprocessors that multiplex their address
and data buses, and the latter is for microprocessors and controllers that do not. The parallel modes require more wires,
but provide higher bandwidth.

FIGURE 10. Parallel Connection (Multiplexed) Between the 80C188EB and the USBN9602

/**/
/* This subroutine reads the USB register whose address is given. */
/**/
byte read_usb(byte adr)
 {
 USBCSON; /*turn on CS */
 SPIADRCMD(adr,USBREAD); /*send cmd and addr */
 SPIOUT(0); /*send dummy data */
 USBCSOFF; /*turn off CS */
 return(SPDR); /*return the result */
 }

/**/
/* This subroutine writes the USB register whose address is given. */
/**/
void write_usb(byte adr, byte dta)
 {
 USBCSON; /*turn on CS */
 SPIADRCMD(adr,USBWRITE); /*send cmd and addr */
 SPIOUT(dta); /*send the data */
 USBCSOFF; /*turn off CS */
 }

/RD
/WR

/GCS0
INT0

/RESIN RST 16

INTR 4
CS 1
RD 2
WR/SK 3
A0/SI/ALE 7

D0/SO 8
D1 9
D2 10
D3 11
D4 12
D5 13
D6 14
D7 15

MODE0 25
MODE1 24
CLK 28

U1

USBN9602

GND

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

ALE

CLKIN
VCC

USBN9602 Interface Examples

8 USBN9602 Firmware Description

The 80C188EB microprocessor does indeed have a multiplexed address and data bus. This processor can be connected
to the USBN9602 using the Multiplexed Mode as shown in Figure 10. The signals on the left correspond to 80C188EB
pin names. Note in particular that MODE0 is pulled high and MODE1 is pulled low, selecting the Multiplexed Mode.
Note also that the ‘188’s ALE signal (Address Latch Enable) signal is used to indicate that a valid address is on
AD[0..7].

The 80C188EB single-board computer used to test this application has an address latch built into it, and indeed does not
even bring the ALE signal out to the expansion connector used to connect the USBN9602. Therefore in this case it was
possible (and necessary) to use the Non-Multiplexed Mode, as shown in Figure 11. Note that both MODE0 and
MODE1 are pulled low, and that what was the ALE signal has been replaced by the latched (de-multiplexed and buff-
ered) BA[0] bit. Otherwise the connections remain the same.

FIGURE 11. Parallel Connection (Non-Multiplexed) Between the 80C188EB and the USBN9602

FIGURE 12. 80C188EB read_usb and write_usb Routines (Non-Multiplexed Mode)

/RD
/GCS0
INT0

/RESIN RST 16

INTR 4
CS 1
RD 2
WR/SK 3
A0/SI/ALE 7

D0/SO 8
D1 9
D2 10
D3 11
D4 12
D5 13
D6 14
D7 15

MODE0 25
MODE1 24
CLK 28

DRQ

USBN9602

GND

/WR

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

BA0

CLKIN

/**/
/* This subroutine reads the USB register whose address is given. */
/**/
byte read_usb(byte adr)
 {
 outp((IO_9602+1),adr); /*write to address reg */
 return(inp(IO_9602)); /*return the reg data */
 }

/**/
/* This subroutine writes the USB register whose address is given. */
/**/
void write_usb(byte adr, byte dta)
 {
 outp((IO_9602+1),adr); /*write to address reg */
 outp((IO_9602),dta); /*write the reg data */
 }

USBN9602 Firmware Description 9

Summary

The firmware required for these parallel modes is generally much simpler than for the serial interfaces because more of
the job is done in hardware by the microcontroller’s bus interface. The only configuration that is necessary is to initial-
ize the chip select logic used (in this case /GCS0). There are no macros defined because hardware does all of those
operations. Therefore the read_usb and write_usb functions simplify as shown in Figure 12. Here, IO_9602 is defined
as the base address of the USBN9602. In the Non-Multiplexed Mode the register address must first be written to the
address register (at location IO_9602+1), then the register can be read from or written to (at location IO_9602).

The equivalent Multiplexed Mode functions are even simpler. These are shown in Figure 13. Note that here the func-
tions have reduce to a single statement. In this case it would probably make more sense to replace these functions with
macros for even greater efficiency.

FIGURE 13. 80C188EB read_usb and write_usb Routines (Multiplexed Mode)

Summary

The USBN9602 is designed to be easily connected with many different kinds of microcontrollers. This paper has shown
specifically how to do it with COP8, MC68HC11, and 80C188EB devices, but the hardware and firmware discussed
also provide a more general overview of the essential concepts and constructs. Information presented here can be
applied even for other target microcontrollers.

/**/
/* This subroutine reads the USB register whose address is given. */
/**/
byte read_usb(byte adr)
 {
 return(inp(IO_9602+adr)); /*return the reg data */
 }

/**/
/* This subroutine writes the USB register whose address is given. */
/**/
void write_usb(byte adr, byte dta)
 {
 outp((IO_9602+adr),dta); /*write the reg data */
 }

USBN9602 Interface Examples

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor
Corporation
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com

National Semiconductor
Europe

Fax: (+49) 0-180-530 85 86

Email: europe.support@nsc.com

Deutsch Tel: (+49) 0-180-530 85 85

English Tel: (+49) 0-180-532 78 32

National Semiconductor
Japan Ltd.
Tel: 81-3-5620-6175
Fax: 81-3-5620-6179

National Semiconductor
Asia Pacific
Customer Response Group
Tel: 65-254-4466
Fax: 65-250-4466
Email: sea.support@nsc.com

www.national.com

