
© 1998 National Semiconductor Corporation 1

USBN9602 Bus

Powered Applications

By Jim Lyle, National Semiconductor

National Semiconductor’s USBN9602 Universal Serial Bus Function Controller is a flexible product
that was designed primarily for use in a wide variety of “self powered” USB node applications. In its
standard configuration it is not suitable for “bus powered” applications because it’s suspend current
too high.

Nonetheless, the USBN9602 can be used effectively even in bus powered applications with only a few
minor modifications to its external circuitry. With these changes the suspend current drops well below
the 500 uA limit established by the USB specification.

This paper discusses the hardware modifications necessary, shows examples of the associated firm-
ware, and then discusses the results obtained in actual testing. The code fragments shown are avail-

able on the world wide web.1

Hardware Modifications

The recommended external USBN9602 circuitry for bus powered operation is shown in Figure 1.

This circuit is drawn assuming the MICROWIRE interface2. Note that there are only minor differ-
ences between this circuit and the one necessary for self powered operation. The only additional com-
ponents are D1-D3, and R4-R5. In addition, this circuit requires a general purpose output bit, and an

input that can either interrupt the microcontroller3 or “wake” it up out of its own standby mode.

Clock Stopping

The USBN9602 does not contain any provision for stopping it’s clock oscillator. Yet this oscillator
alone consumes several milliamps when active. It must be stopped for bus powered operation.

1. See http://www.national.com/sw/USB/ for this and other USBN9602 designer resources.

2. The parallel mode connections will be similar, with the primary differences in the pullup/pulldown
details.

3. The USBN9602 requires an external microcontroller of some type to manage the node application and the
high-level USB protocol interactions.

USBN9602 Bus Powered Applications

2 USBN9602 Firmware Description

FIGURE 1. USBN9602 Connections

Fortunately, a simple modification to the oscillator circuit (Figure 2) stops and starts and stops it reliably. Note the
Diode D1, whose anode is attached to the XIN pin. This diode is oriented so that it conducts current when the /STOP-
CLK signal is low, clamping the oscillator. When the /STOPCLK signal is high, the diode is reverse biased and effec-
tively removed from the circuit.

FIGURE 2. Oscillator Circuit

VUSB 1
-DATA 2
+DATA 3
GRND 4

S
H
L
D

5

J1
USB_BJACK

VCC

L1
FB

D-
D+

R618

R718

R51.5K

/RST

VCC

VCC

RST 16

INTR 4
CS 1
RD 2
WR/SK 3
A0/SI/ALE 7

D0/SO 8
D1 9
D2 10
D3 11
D4 12
D5 13
D6 14
D7 15

MODE0 25
MODE1 24
CLK 28

XIN 26
XOUT 27

D- 20
D+ 19

DACK 6
DRQ 5

3.3V 18

AGND 17

V
C
C

2
2

U1 USBN9602

R2

10K

/WAKEUP

/STOPCLK

INTR
/USBCS

SK
SO

SI

GND

2 1
D1

1N914A

R3
100K

R1
1.5K

C6
.01

C10

22pF

C11

22pF

L2 FB

GND

AGND

 2 1
D2

1N914A

R43.3K

C5
10uF

GND

L3
470nH

C7

56pF

C8

18pF

Y1
48MHz

C9
.1

 2 1
D3

1N914A
VCC

XIN 26
XOUT 27

/STOPCLK 2 1
D1

1N914A

GND

L3
470nH

C7

56pF

C8

18pF

Y1
48MHz

C9
.1

USBN9602 Firmware Description 3

Hardware Modifications

The diode used is a small-signal type with very low capacitance. This is crucial to minimize the load on the oscillator

circuit1. Note that the load capacitor’s value (C8) has been adjusted downward so that the parallel sum of this value and

the diode’s capacitance equals the desired result2.

There are no particular requirements on the /STOPCLK signal, except that for best operation it should swing very near
VSS on the low side, and VCC on the high side.

Microcontroller Clock

The USBN9602 has a programmable CLK (output) pin which was designed to provide the microcontroller it’s clock
and eliminate the need for an additional crystal or oscillator. Since the /STOPCLK signal is under firmware control,
however, this necessarily implies that the microcontroller cannot use the CLK. That is because once /STOPCLK was
serted, the microcontroller would also stop dead in its tracks, and there is no clean way to restart it.

Therefore the microcontroller must have its own clock of some kind3,4.

FIGURE 3. Wake Up Circuit

Wake Up

With it’s clock stopped, the USBN9602 is deaf and blind. It cannot detect the resume or reset5 sequences on the USB
lines when it is time to wake up. Some other mechanism is necessary, such as that shown in Figure 3. In suspend, the
USB signals are normally held in the “J” state (D+ high, and D- low). The microcontroller must assume responsibility

1. The total capacitance of series-connected capacitors is less than the smallest capacitor in the chain. A 1N914A diode has a capac-
itance of only about 2 pF, and therefore it limits the total loading to no more than this value.

2. The total load capacitance should be approximately 20 pF.

3. The microcontroller’s private clock could be a very slow one, however. This would keep the microcontroller active, but at very
low power levels. Then, when the node is signalled to resume, the USBN9602 CLK pin could be used to provide the higher speed
clock necessary for normal operations.

4. There is another alternative. The /STOPCLK signal could be generated by an asynchronous flip-flop that was set by the micro-
controller, and cleared by either reset or by the /WAKEUP signal. In this case the microcontroller could potentially still use the
CLK pin.

5. Upon “restarting” (warm-booting) the host, the bus will first go idle, and this will cause the node to enter the suspend state. Then
the host will issue a USB reset, usually without any other prior activity. Therefore the node must be able to go directly from sus-
pend to reset.

R51.5K

D- 20
D+ 19

/WAKEUP

R1
1.5K

USBN9602 Bus Powered Applications

4 USBN9602 Firmware Description

for waking the node up upon seeing either the “K” (D+ low and D- high) or “SE0” (both D+ and D-) states1. Since USB
signalling occurs at essentially 3.3V CMOS levels, most microcontrollers can simply monitor the D+ line and look for a
high-to-low transition. A large-value isolation resistor is used to limit loading and transmission line stub effects that
could degrade the signal quality.

The buffer used to receive the /WAKEUP signal should be a Schmitt trigger variety with low capacitance, with input
thresholds similar to those specified for the USB.

Transceiver Supply

The USBN9602 contains an internal regulator for the USB transceiver. The regulator consumes some power itself, but it

also sources current into the USB cable2 during suspend. That is because the upstream hub contains 15 KOhm pulldown
resistors on each of the USB lines. During suspend the hub floats it’s output drivers, so there is a current path from the
USBN9602’s regulator, through R1 and the USB cable, into the D+ pulldown.

It is not possible to simply turn the regulator off to reduce this current consumption. That would allow the D+ line to
fall, which the hub might interpret as a remote wake up signal. Also, there would be a risk of latchup in the transceiver
circuitry.

FIGURE 4. Transceiver “Keep-Alive” Circuit

However, during suspend the regulator can be turned off if there is an external path that provides sufficient current to

maintain D+ in a valid high state3. The circuit shown in Figure 4 is suitable for this purpose. The circuit draws no addi-

tional current of its own, the series diodes limit the VOH
4 level, and the resistor limits the maximum current. It also sup-

plies the transceiver with just enough current to stay alive. The value of the bulk bypass capacitor (C5) has been

1. These definitions refer to high-speed USB devices. Low-speed devices see the opposite polarities.

2. Of necessity, the cable and the upstream hub are always connected to a bus powered device during suspend.

3. Per the USB Specification, D+ is defined high when greater than 2.0 Volts.

4. The diodes provide a total drop of about 1.4 Volts.

D+ 19

3.3V 18

AGND 17

USBN9602

R1
1.5K

C6
.01

AGND

 2 1
D2

1N914A

R43.3K

C5
10uF

 2 1
D3

1N914A
VCC

USBN9602 Firmware Description 5

Firmware Requirements

increased to 10 uF to provide a suitably low impedance (short term) current source when D+ is driven low (to signal the
resume or reset events).

This circuit is not sufficient for normal operation. The internal regulator must be turned on to ensure reliable device
detection and to transmit or receive data properly.

Miscellaneous Power Savings

Unused inputs should not be allowed to float under any circumstances. Figure 5 shows how the unused inputs should be
pulled for the MICROWIRE interface mode. Do not connect these inputs directly to the power rails. Use resistors
instead because that will ensure the lowest possible power consumption and will guard against damage if the
USBN9602 output buffers should somehow become enabled.

If the CLK pin is not used (see “Microcontroller Clock” on page 3), then disable the output by setting the CODIS bit in
the Clock Configuration (CCONF) register. Also, the INTR pin has an internal pulldown and should be kept in the low
state during suspend. One easy way to accomplish this is to disable the pin by setting the INTOC[1:0] field in the Main
Control (MCNTRL) register to 0.

FIGURE 5. Pullups and Pulldowns

Firmware Requirements

The firmware is responsible for managing the USBN9602 hardware at all times, including in suspend mode. The firm-
ware must ensure an orderly shutdown, save necessary state, and then reverse these operations when waking.

Powerup

Suspend is signalled on the USB by detecting 3 milliseconds of idle time on the bus. When connecting the cable, the

power lines will connect before the signal lines1. Also, it may take the host some time to recognize a device and start
communicating with it. Therefore it’s likely that a false suspend event will occur very early in the power-up sequence of

1. This is because the power pins in the connectors are longer than the signal pins, and is necessary because the USB allows hot-
plugging devices.

VCC

RD

D1 9
D2 10
D3 11
D4 12
D5 13
D6 14
D7 15

MODE0 25
MODE1 24

DACK 6
 5

R2

10K

GND
1N914A

R3
100K

USBN9602 Bus Powered Applications

6 USBN9602 Firmware Description

the USBN9602. The node should avoid entering the suspend state at this time, however, because some of the modifica-
tions made here might interfere with node detection and enumeration. A suspend timeout counter (See “Suspend Event”
on page 7.) is one easy way to accomplish this.

ALT Event Interrupt Handler

The suspend and resume events are signalled by the SD3 and RESUME bits in the Alternate Event Register (ALTEV).
An example of a suitable interrupt service routine for these bits is shown in Figure 6. It is possible that both of these bits
might be set, if a resume sequence followed very closely on the suspend condition. For that reason this interrupt service
routine gives the resume event a higher priority than the suspend event. Further, “else if” constructs are used to ensure
that only one of the reset, resume, or suspend events is acted upon, in that order of succession.

FIGURE 6. ALT Event Interrupt Handler

/**/
/* This subroutine handles USB ‘alternate’ events. */
/**/
void usb_alt(void)
 {
 evnt = read_usb(ALTEV); /*check the events */

 if(evnt & RESET_A) /*reset event */
 {
 write_usb(NFSR,RST_ST); /*enter reset state */
 write_usb(FAR,AD_EN+0); /*set default address */
 write_usb(EPC0, 0x00); /*enable EP0 only */
 FLUSHTX0; /*flush TX0 and disable */
 write_usb(RXC0,RX_EN); /*enable the receiver */

 /*adjusting ints is nec. here in case we were in suspend */
 write_usb(ALTMSK,NORMAL_ALTMSK);/*adjust interrupts */
 write_usb(NFSR,OPR_ST); /*go operational */
 }

 else if(evnt & RESUME_A) /*resume event */
 {
 write_usb(ALTMSK,NORMAL_ALTMSK);/*adjust interrupts */
 write_usb(NFSR,OPR_ST); /*go operational */
 }

 else if((evnt & SD3)&&(suscntr==0)) /*suspend event */
 {
 write_usb(ALTMSK,SUSPND_ALTMSK);/*adj interrupts */
 write_usb(NFSR,SUS_ST); /*enter suspend state */
 deep_sleep(); /*reduce power cons. */
 suscntr=SUSPND_TO; /*start suspend cntr */
 }

 else /*spurious alt. event! */
 {
 }
 }

USBN9602 Firmware Description 7

Firmware Requirements

Suspend Event

The suspend event handler code is isolated in Figure 7. This code modifies the Alternate Event Mask (ALTMSK)1 and
Node Functional State (NFSR) registers to reflect their suspend state values. Then the deep_sleep() procedure shuts
down the node and waits for the resume event.

The final step here is an interesting and important one. The USBN9602 asserts SD3 whenever the bus appears idle for
three milliseconds or more. This may happen after a bus reset, which might mean entering suspend just as the enumera-

tion process begins. It might also happen during the suspend process itself2, which might mean inadvertently re-enter-
ing suspend just after exiting. Both of these conditions are undesirable. To avoid them, a suspend time-out counter
(suscntr) is initialized to some maximum value here. This counter is decremented during a periodic real-time interrupt
until it reaches 0, and the microcontroller will not recognize a new suspend event until then. This has the effect of set-

ting a minimum3 time limit between successive suspend events. A value of two to four seconds seems to work well.

FIGURE 7. Suspend Event Handler

deep_sleep() Procedure

One example of a deep_sleep() procedure is shown in Figure 8. First, USBN9602 state is saved, then altered to reduce
power as much as possible (the INTR output is disabled and the regulator is turned off). A delay guarantees the
USBN9602 enough time to complete it’s internal operations, then it’s clock is stopped.

Now the microcontroller turns its attention elsewhere. The exact sequence of events here will be application dependent,
but should include things like turning off LEDs and extraneous circuitry, then preparing the microcontroller to “halt” or
“sleep”.

The test circuit that this white paper is based on uses a COP8 microcontroller, which stops all activity in halt mode. The
remainder of this procedure only occurs after the /WAKEUP signal occurs. First the microcontroller restarts the USB
clock and gives it adequate time to stabilize. Then the USBN9602 state is restored. Finally the ALTMSK and NFSR
registers are restored to their normal configurations. The latter steps duplicate those done in the resume event handler
because the USBN9602 may or may not detect the resume event as its clock restarts, and so we cannot count on a
resume event interrupt.

1. Ordinarily suspend interrupts are enabled and resume interrupts are disabled. Upon entering suspend this state is reversed, so that
the USBN9602 will not generate further suspend interrupts, but will interrupt when a resume event occurs.

2. The bus is idle during suspend. If the process of shutting down and waking up allows the USBN9602 to add up three milliseconds
of “idle” time, then it will flag another SD3 event.

3. This is not the same as a delay before each and every suspend event. The firmware waits only if it has just exited suspend. as soon
as that minimum time limit expires, it is free to instantly respond to a new suspend event. Since suspend events rarely occur close
together, this timeout interval will usually be hidden.

 else if((evnt & SD3)&&(suscntr==0)) /*suspend event */
 {
 write_usb(ALTMSK,SUSPND_ALTMSK);/*adj interrupts */
 write_usb(NFSR,SUS_ST); /*enter suspend state */
 deep_sleep(); /*reduce power cons. */
 suscntr=SUSPND_TO; /*start suspend cntr */
 }

USBN9602 Bus Powered Applications

8 USBN9602 Firmware Description

FIGURE 8. deep_sleep() Procedure

Resume Event

The corresponding resume event handler is shown in Figure 9. This handler simply restores the ALTMSK and NFSR
registers to their normal operational values. Note that since the deep_sleep() procedure already does this, the resume
event handler is often redundant. A separate resume handler is included for completeness, and in case the deep_sleep()
procedure is not included or is empty (in self powered applications, for example).

/**/
/* This subroutine puts the board to sleep, to reduce the overall */
/* current consumption in the suspend mode. */
/**/
void deep_sleep(void)
 {
#ifdef BUSPOWER
 usb_buf[2]=read_usb(MAMSK); /*save old mask contents */
 write_usb(MAMSK,0); /*disable interrupts */
 usb_buf[3]=read_usb(MCNTRL); /*save old MCNTRL */
 write_usb(MCNTRL,(usb_buf[3]&NAT)); /*prsv NAT, clr others */

 long_delay(); /*wait for writes to end */
 USBCKOFF; /*stop the 9602 clock */

 /*Turn everything extraneous on the board off. The analog sub- */
 /*section will be turned off, so all signals going into it must */
 /*be driven low, including the CS*. */
 PORTDD.BIT4= 1; PORTDD.BIT7= 1; /*turn LEDs OFF */
 MWSR = 0; /*drive SO low */
 A2DCSON; /*drive CS* low */
 ANALGOFF; /*turn off analog power */

 /*Set up the wake input */
 WKEN.UWK = 0; /*disable the wake input */
 WKEDG.UWK = 0; /*wake on falling edge */
 WKPND.UWK = 0; /*clear any pending wake */
 WKEN.UWK = 1; /*enable the wake input */

 /*Stop everything, including the processor clock */
halt: PORTGD.BIT7= 1; /*halt processor */

 /*We get here only when awakened. Start everything back up. */
 /*Note that the “keep-alive” circuit is the only 3.3V source */
 /*available until the MCNTRL register is restored. The time */
 /*constant in that circuit must be sufficiently long. */
wake: ANALGON; /*turn on analog power */
 A2DCSOFF; /*restore analog CS* */
 USBCKENB; /*start the 9602 clock */
 long_delay(); /*wait for the 9602 clk */
 write_usb(MCNTRL,usb_buf[3]); /*restore MCNTRL */
 write_usb(MAMSK, usb_buf[2]); /*re-enable interrupts */
 write_usb(ALTMSK,NORMAL_ALTMSK); /*adjust interrupts */
 write_usb(NFSR,OPR_ST); /*go operational */
#endif
 }

USBN9602 Firmware Description 9

Results

Reset Event

The reset event handler appears in Figure 10. This is relevant to the suspend discussion because in the case of a warm-
boot, a bus reset will signal the exit from suspend and there may or may not be a corresponding resume event. Just as in

the resume case, therefore, the ALTMSK and NFSR registers must be modified to their normal operation values1.

FIGURE 9. Resume Event Handler

FIGURE 10. Reset Event Handler

Results

Several devices from different lots were tested for this paper at different voltages and temperatures, using the following
conditions (which represent the desired USBN9602 suspend state:

1. INTR low.

2. XIN low.

3. XOUT high.

4. Internal VREG ON2 (this means the VGE bit in the MCNTRL register should be set).

5. The NAT bit in the MCNTRL register set

6. D+ high (at about 3.3V)

7. D- low

8. All other inputs stable high or low.

1. Strictly speaking, if the deep_sleep() procedure is always included and if it does not return until a resume or reset event has been
detected, then the redundant code in the resume and reset handlers can be eliminated. This firmware was not written that way
though because it’s intent is to support a variety of microcontrollers in both bus powered and self powered applications.

2. For this test the voltage regulator was turned on because the tester used could not simulate the “keep-alive” circuit or the current
path into the hub’s pulldown resistor. The regulator consumes a similar level of current, and so was enabled to simulate cable load.

 else if(evnt & RESUME_A) /*resume event */
 {
 write_usb(ALTMSK,NORMAL_ALTMSK);/*adjust interrupts */
 write_usb(NFSR,OPR_ST); /*go operational */
 }

 if(evnt & RESET_A) /*reset event */
 {
 write_usb(NFSR,RST_ST); /*enter reset state */
 write_usb(FAR,AD_EN+0); /*set default address */
 write_usb(EPC0, 0x00); /*enable EP0 only */
 FLUSHTX0; /*flush TX0 and disable */
 write_usb(RXC0,RX_EN); /*enable the receiver */

 /*adjusting ints is nec. here in case we were in suspend */
 write_usb(ALTMSK,NORMAL_ALTMSK);/*adjust interrupts */
 write_usb(NFSR,OPR_ST); /*go operational */
 }

USBN9602 Bus Powered Applications

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or
(b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably
expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor
Corporation
Tel: 1-800-272-9959
Fax: 1-800-737-7018
Email: support@nsc.com

National Semiconductor
Europe

Fax: (+49) 0-180-530 85 86

Email: europe.support@nsc.com

Deutsch Tel: (+49) 0-180-530 85 85

English Tel: (+49) 0-180-532 78 32

National Semiconductor
Japan Ltd.
Tel: 81-3-5620-6175
Fax: 81-3-5620-6179

National Semiconductor
Asia Pacific
Customer Response Group
Tel: 65-254-4466
Fax: 65-250-4466
Email: sea.support@nsc.com

www.national.com

The worst-case current draw found under these conditions was 210 uA, with most devices close to 130 uA.

One USBN9602 Evaluation Board was modified per the suggestions in this paper, and that board draws less than 400

uA total, including USBN9602, microcontroller, and all other circuitry combined1.

Summary

While the USBN9602 was not designed for bus powered operations, minor modifications to its external circuitry allow
the suspend current to be reduced to levels well within the requirements of the USB Specification.

1. Of this total, approximately 180 uA is drawn by the hub’s pulldown resistor alone.

