Easy Logarithms for COP400

Logarithms have long been a convenient tool for the simplification of multiplication, division, and root extraction. Many assembly language programmers avoid the use of logarithms because of supposed complexity in their application to binary computers. Logarithms conjure up visions of time consuming iterations during the solution of a long series. The problem is far simpler than imagined and its solution yields, for the applications programmer, the classical benefits of logarithms:

- 1) Multiplication can be performed by a single addition.
- 2) Division can be performed by a single subtraction.
- 3) Raising a number to a power involves a single multiply.
- 4) Extracting a root involves a single divide.

When applied to binary computer operation logarithms yield two further important advantages. First, a broad range of values can be handled without resorting to floating point techniques (other than implied by the characteristic). Second, it is possible to establish the significance of an answer during the body of a calculation, again, without resorting to floating point techniques.

Implementation of base $_{10}$ logarithms in a binary system is cumbersome and unnecessary since logarithmic functions can be implemented in a number system of any base. The techniques presented here deal only with logarithms to the base $_{2}$.

A logarithm consists of two parts: an integer characteristic and a fractional mantissa.

		TL/DD/6942-
	CHARACTERISTIC	MANTISSA
LOG _{2 3 =}	1	0.95
LOG _{2 4 =}	2	0.00
LOG _{2 8 =}	3	0.00
100	2	0.52

FIGURE 1. The Logarithmic Function and Some Example Values

National Semiconductor COP Brief 2 September 1986

In Figure 1 some points on the logarithmic curve are identified and evaluated to the base₂. Notice that the characteristic in each case represents the highest even power of 2 contained in the value of X. This is readily seen when binary notation is used.

X ₁₀			X_2			Log ₂ X	$Log_2 X Where X =$
	24	2 3	22	21	20	Characteristic	Even Power of 2
3	0	0	0	*	1	1	
4	0	0	*	0	0	2	010.0000
8	0	*	0	0	0	3	011.0000
10	Ω	*	Ω	1	0	3	

FIGURE 2. Identification of the Characteristic

In Figure 2 each point evaluated in Figure 1 has been repeated using binary notation. An arrow subscript indicates the highest even power of 2 appearing in each value of X. Notice that in X = 3 the highest even power of 2 is 2^1 . Thus the characteristic of the $\log_2 3$ is 1. Where X = 10 the characteristic of the $\log_2 10$ is 3.

To find the $\log_2 X$ is very easy where X is an even power of 2. We simply shift the value of X left until a carry bit emerges from the high order position of the register. This procedure is illustrated in *Figure 3*. This characteristic is found by counting the number of shifts required and subtracting the result from the number of bits in the register. In practice it is easier to being with the number of bits and count down once prior to each shift.

Counter for Characteristic	Value of)			
1000	0000	1000	Initial	
0111	0001	0000	First Shift	
0110	0010	0000	Second Shift	
0101	0100	0000	Third Shift	
0100	1000	0000	Fourth Shift	
0011	0000	0000	Fifth Shift	
Characteristic	Mantissa		Final	
011.0000	0.0	0 0	$Log_2 X = 3.00$	

FIGURE 3. Conversion to Base₂ Logarithm by Base Shift

Examination of the final value obtained in *Figure 3* reveals no bits in the mantissa. The value 3 in the characteristic, however, indicates that a bit did exist in the 2³ position of the original number and would have to be restored in order to reconstruct the original value (antilog).

The log of any even power of 2 can be found in this way:

Decimal	Binary	Log ₂
128	10000000	0111.00000000
64	01000000	0110.00000000
32	00100000	0101.00000000
4	00000100	0010.00000000
2	00000010	0001.00000000
1	00000001	0000.00000000

A simple flow chart, and program, can be devised for generating the values found in the table and, as will be apparent, a straight line approximation for values that are not even powers of 2. The method, as already illustrated in *Figure 3*, involves only shifting a binary number left until the most significant bit moves into the carry position. The characteristic is formed by counting. Since a carry on each successive shift will yield a decreasing power of 2, we must start the characteristic count with the number of bits in the binary value (x) and count down one each shift.

FIGURE 4. Base₂ Logarithms of Even Powers of 2

FIGURE 5. Log Flowchart

FIGURE 6

The program shown develops the \log_2 of any even power of 2 by shifting and testing as previously described. Examine what happens to a value of X that is not an even power of 2. In *Figure 7*, the number 25 is converted to a base 2 log.

 $\begin{array}{c} 25_{10} = 0\,0\,0\,1\,1\,0\,0\,2_2 \\ \text{Shift left until carry} = 1 \\ \hline \textbf{Characteristic Carry} & \textbf{Mantissa} & \textbf{Log_2} \\ 0\,1\,0\,0 & 1 & 1\,0\,0\,1\,0\,0\,0\,0\,1\,0\,0.1\,0\,0\,1\,0\,0\,0\,0 \end{array}$

Figure 7. Straight Line Approximation of Base₂ Log

The resulting number when viewed as an integer characteristic and a fractional mantissa is $4.5625_{10}.$ The fraction 0.5625 is a straight line approximation of the logarithmic curve between the correct values for the base_2 logs of 2^4 and $2^5.$ The accuracy of this approximation is sufficient for many applications. The error can be corrected, as will be seen later in this discussion, but for now let's look at the problem of exponents or the conversion to an antilog.

To reconstruct the original value of X, find the antilog, requires only restoration of the most significant bit and then its alignment with the power of 2 position indicated by the characteristic. In the example, approximation (log $_2\ 25\ =\ 0100.1001$) restoration of MSB can be accomplished by shifting the mantissa (only) one position to the right. In the process a one is shifted into the MSB position.

Approximation of Log₂ X Restoration of MSB
Char. Mantissa
0100.10010000 0100.11001000

The value of the characteristic is 4 so the mantissa must be shifted to the right until MSB is aligned with the 2^4 position.

 2^7 2^6 2^5 2^4 2^3 2^2 2^1 2^0

The completion of this operation restores the value of X (X = 25) and is the procedure used to find an antilog. *Figure 8* is a flow chart for finding an antilog using this procedure. Ths implementation in source code is shown in *Figure 9*.

FIGURE 8. Flow Chart for Conversion to Antilog

ogs		SEMBLER F				
73			. FORM	: CON	VERT TO ANTILOG	•:
74						
75						
76			; THE FOLL	OWING SUBRO	UTINE CONVERTS THE	STRAIGHT LINE
77			; THE APPR	OXIMATION OF	A BASE 2 LOGARITHM	TO ITS CORRESPONDING
78			; ANTILOG.	UPON EXIT FRO	OM THE ROUTINE THE C	CONTENTS OF CH
79			; WILL BE E	QUAL TO THE I	HEXADECIMAL VALUE O	F ' ¢ F'.
80						
81				. LOCAL		
82						
83						
84	00D	A4	ALOG:	JSRP	SDB2	; SET ACC TO 0.
85	00E	00	CLRA			; CLEAR MANTISSA AREA.
86	00F	36		X	03	; AND MOVE MANTISSA TO
87	010	34		XIS	03	; TEMPORARY STORAGE.
88	011	00		CLRA		; LEAVE POINTER AT LO
89	012	36		X	03	; ORDER OF MANTISSA.
90	013	37		XDS	03	
91	014	22		SC	****	; RESTORE MSB OF X.
92	015	D8	00114	JP	\$SLX	OUIET DELLA DEL
93 94	01	A9	\$SLM:	JSRP	SHLR	; SHIFT REMAINDER
94 95	017	A3		ICDD	éppa.	; LEFT INTO CARRY.
96	017	AA	\$SLX:	JSRP JSRP	SDR2 SHLC	; MOVE BACK 2 DIGITS.
97	019	05	Φ3LΛ.	LD	SHLO	; SHIFT X LEFT 1. ; LOAD CHARACTERISTIC.
98	01A	5F	\$TST:	AISC	-1	: CHARACTERISTIC -1.
99	01B	48	\$LST:	RET	-,	; IF NO CARRY — FINIS.
100	01C	36	ΨΕΟ1.	X	03	; STORE REMAINDER AND MOVE
101	•	-		**	00	: DOWN ONE REGISTER.
102	01D	A4		JSRP	SDB2	; MOVE BACK 2 DIGITS.
103	01E	D6		JP	\$SLM	; DO IT AGAIN.
104				•	•	, = =
105						
106			; 4 ROUTINE	S ARE CALLED	FROM THE SUBROUTIN	NE PAGE BY THIS
107				: SDB2, SDR2, S		

FIGURE 9

TL/DD/6942-6

Using the linear approximation technique just described, some error will result when converting any value of X that is not an even power of 2.

Figure 10 contains a table of correct base 2 logarithms for values of X from 1 through 32 along with the error incurred for each when using linear approximation. Notice that no error results for values of X that are even powers of 2. Also notice that the error incurred for multiples of even powers of 2 of any given value of X is always the same.

Value of X	Error
5	0.12
$2 \times 5 = 10$	0.12
$4 \times 5 = 20$	0.12
3	0.15
$2 \times 3 = 6$	0.15
$4 \times 3 = 12$	0.15
$8 \times 3 = 24$	0.15

x	Hexadecimal	Linear Approximation	Error	$E_{M} - 1 + \frac{EM - EM - 1}{2}$	
	Log Base	of Log Base 2	Hexadecimal	_м ' 2	
1	0.00	0.00	0.00		
2	1.00	1.00	0.00		
3	1.95	1.80	0.15		
4	2.00	2.00	0.00		
5	2.52	2.40	0.12		
6	2.95	2.80	0.15		
7	2.CE	2.C0	0.0E		
8	3.00	3.00	0.00		
9	3.2B	3.20	0.0B		
10	3.52	3.40	0.12		
11	3.75	3.60	0.15		
12	3.95	3.80	0.15		
13	3.B3	3.A0	0.13		
14	3.CE	3.C0	0.0E		
15	3.E8	3.E0	0.08		
16	4.00	4.00	0.00	0.03	
17	4.16	4.10	0.06	0.03	
18	4.2B	4.20	0.0B	0.0D	
19	4.3F	4.30	0.0F	0.00	
20	4.52	4.40	0.12	0.11	
21	4.67	4.50	0.17	0.15	
22	4.75	4.60	0.15	0.16	
23	4.87	4.70	0.17	0.16	
24	4.95	4.80	0.15	0.16	
25	4.A4	4.90	0.14	0.13	
26	4.B3	4.IA0	0.13	0.14	
27	4.C1	4.B0	0.11	0.12	
28	4.CE;	4.C0	0.0E	0.10 0.0D	
29	4.DB	4.D0	0.0B	0.0D 0.0A	
30	4.E8	4.E0	0.08	0.0A 0.06	
31	4.F4	4.F0	0.04	0.02	
32	5.00	5.00	0.00	0.02	
33		5.1-			

FIGURE 10. Error Incurred by Linear Approximation of Base 2 Logs

An error that repeats in this way is easily corrected using a look-up table. The greatest absolute error will occur for the least value of X not an even power of 2, X = 3, is about 8%. A 4 point correction table will eliminate this error but will move the greatest uncompensated error to X = 9 where it

will be about 4%. This process continues until at 16 correction points the maximum error for the absolute value of the logarithm is less than 1 percent. This can be reduced to 0.3 percent by distributing the error. Interpolated error values are listed in *Figure 10* and are repeated in *Figure 11* as a binary table.

High Order	Binary	Hexadecimal Correction Value	
4 Mantissa	Correction		
Bits	Value		
0000	00000000	0 0	
0001	00001001	0 9	
0010	00001101	0 3	
0011	00010001	1 1	
0100	00010101	1 5	
0101	00010110	1 6	
0110	00010110	1 6	
0111	00010110	1 6	
1000	00010101	1 5	
1001	00010100	1 4	
1010	00010010	1 2	
1011	00010000	1 0	
1100	00001101	0 D	
1101	00001010	0 A	
1110	00000110	0 6	
1111	00000010	0 2	

FIGURE 11. Correction Table for L₂ X Linear Approximations

Notice in *Figure 10* that left justification of the mantissa causes its high order four bits to form a binary sequence that always corresponds to the proper correction value. This works to advantage when combined with the COP400 LQID instruction. LQID implements a table look-up function using the contents of a memory location as the address pointer. Thus we can perform the required table look-up without disturbing the mantissa.

Figure 12 is the flow chart for correction of a logarithm found by linear approximation. Figure 13 is its implementation in COP400 assembly language. Notice that there are two entry points into the program. One is for correction of logs (LADJ:), the other is for correction of a value prior to its conversion to an antilog (AADJ:).

FIGURE 12. Flow Chart for Correction of a Value Found by Straight Line Approximation

```
COP CROSS ASSEMBLER
                                 PAGE: 4
LOGS
    110
                                     FORM
                                                       ; ----- ADJUST VALUE OF LOGARITHM -----;
    111
    112
                                                       . LOCAL
   114
115
                                     ; THE FOLLOWING TABLE IS USED DURING THE CORRECTION OF VALUES
    116
                                     FOUND BY STRAIGHT LINE APPROXIMATION, IT IS PLACED HERE IN
                                      ORDER TO ALIGN ITS BEGINNING ELEMENT WITH A ZERO ADDRESS AS
   118
                                     REQUIRED BY THE LQID INSTRUCTION.
    120
           01F
                                                       NOP
                                                                                                           ; REGISTER WITH ZERO ADDRESS
           020
021
                    03
09
    121
                                     TPLS:
                                                       . WORD
                                                                         03,09,0D,011
           022
023
                    0D
11
15
16
16
16
15
14
12
10
0D
0A
06
           024
025
   122
                                      WORD
                                                       015,016,016,016
           026
027
           028
029
   123
                                                       . WORD
                                                                         015,014,012,010
           02A
02B
    124
           020
                                                       WORD
                                                                         0D.0A.06.02
           02D
           02E
   125
                                     THE FOLLOWING SUBROUTINE ADJUSTS THE VALUE OF A BASE 2 LOGARITHM FOUND BY STRAIGHT LINE APPROXIMATION. THE CORRECTION TERMS ARE TAKEN FROM THE TABLE ABOVE. THE
   126
127
   128
129
                                      SUBROUTINE HAS 2 ENTRY POINTS:
   130
131
                                                       LADJ: - ADJUSTS A VALUE DURING CONVERSION TO A LOG
   132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
                                                       AADJ: -- ADJUSTS A VALUE DURING CONVERSION TO ANTILOG
                                     ,
; THE CARRY FLAG IS SET UPON ENTRY TO DISTINGUISH BETWEEN LOG
                                     ; (C = 1) AND ANTILOG (C = 0) CONVERSIONS. DURING A LOGARITHM ; CONVERSION THE VALUE FOUND IN THE ABOVE TABLE IS ADDED TO
                                      THE MANTISSA. DURING AN ANTILOG CONVERSION THE VALUE FOUND
                                     ; IN THE ABOVE TABLE IS SUBTRACTED FROM THE MANTISSA.
                    32
F3
22
           030
                                     AADJ:
                                                       RC
                                                                                                           : C = 0 FOR ANTILOG
           031
032
                                                       JP
SC
                                                                                                            CONVERSION.

C = FOR LOG2 ADJ.
                                                                         $LD
                                     LADJ:
           033
034
                    05
07
                                     $LD
                                                       LD
XDS
                                                                                                            MOVE ADDRESS POINTER BACK
                                                                                                            ONE LOCATION.
           035
036
037
038
                    05
37
                                                       LD
XDS
                                                                                                            LOAD CONTENTS OF HI MANTISSA
AND STORE IT IN THE LO ORDER
                                                                         03
   149
150
                    06
                                                       X
CLRA
                                                                                                            OF THE TEMP MEMORY LOCATION.
SET TABLE POINTER
   151
           039
                                                       AISC
                                                                         TBL
                                                                                                            (ACC) TO TABLE ADDRESS.
COP CROSS ASSEMBLER
                                 PAGE: 5
LOGS
                                                       LQID
    152
           03A
                                                                                                           ; LOAD CORRECTION VALUE TO Q.
           03B
                    332C
                                                                                                           TRANSFER Q REGISTER CONTENTS TO MEMORY.
    153
                                     $GTM:
                                                       CQMA
    154
           03D
    155
           03F
                    07
                                                       XDS
    156
           03F
                    20
                                                                                                           ; ANTILOG?
                                                       skc
   157
158
                                                                                                            YES — COMPLIMENT.
ADD CORRECTION VALUE
           040
                                                       JSRP
                                                                         COMP
           041
                                     $ADD:
                                                       JSRP
                                                                         ADRO
                    98
   159
160
                                                                                                           ; TO MANTISSA.
; SET POINTER TO
           042
                    35
                                                       LD
   161
162
           043
                                     $LST:
                                                                         ; CHARACTERISTIC AND
                                                                                                           ; RETURN.
   163
164
                                     ; 2 ROUTINES ARE CALLED FROM THE SUBROUTINE PAGE BY THIS
   165
166
167
                                     ; PROGRAM: COMP, ADRO
                                                       V1 = TPLS&OFF
                    0020
    169
   170
171
```

FIGURE 13

Subroutines Used by the Log and Antilog Programs

```
COP CROSS ASSEMBLER PAGE: 6
LOGS
   172
                                          . FORM
   173
                0800
                            . PAGE 02
                                                        ; ·····→ SUBROUTINES -·····;
   174
                            ; THE FOLLOWING ROUTINES RESIDE ON THE SUBROUTINE PAGE. THEY
   175
   176
                            ; ARE CALLED BY THE LOGS PROGRAM BUT ARE GENERAL PURPOSE IN
                            , NATURE AND FUNCTION AS UTILITY ROUTINES.
   177
   178
   179
   180
   181
                                          ; ----- COMPLEMENT 8 BITS ----- ;
   182
                                          . LOCAL
   183
   184
                            ; THIS ROUTINE FORMS IN MEMORY THE 2'S COMPLEMENT OF THE TWO
   185
                            ; ADJACENT DIGITS IDENTIFIED BY THE ADDRESS POINTER. THE
   186
                            ; CONTENTS OF THE ADDRESS POINTER ARE NOT ALTERED.
   187
   188
   189
                            ; THERE ARE TWO ENTRY POINTS:
   190
                            ; COP: COMPLEMENT 8 BITS.
   191
   192
                            ; CMPE: EXTEND THE COMPLEMENT TO AN ADDITIONAL 8 BITS
   193
   194
   195
   196
        080
                22
                            COMP:
                                          SC
        081
                            CMPE:
                                          CLRA
                                                                                   ; SET MINUEND = 0
   197
                00
                                                                                   ; AND STORE IN MEMORY.
   198
        082
                06
                                          CASC
   199
        083
                10
   200
        084
                44
                                          NOP
   201
        085
                04
                                          XIS
   202
        086
                00
                                          CLRA
                                                                                   ; SET MINUEND = 0
   203
        087
                06
                                                                                   ; AND STORE IN MEMORY.
   204
        083
                10
                                          CASC
   205
        089
                44
                                          NOP
   206
        08A
   207
        08B
                44
                                          NOP
                                                                                   ; AVOID SKIP IF DIGIT 15.
   208
        08C
                                                         SDB2
                                                                                   ; RETURN THRU SDB2
   209
                                                                                   ; TO RESTORE POINTER.
   210
   211
   212
                            ; -----→ ADD 8 BITS IN ADJACENT REGISTERS ------;
   213
   214
                                          . LOCAL
   215
   216
   217
   218
                            ; THIS ROUTINE ADDS TWO BINARY DIGITS (8-BITS) FROM ANY REGISTER
   219
                            ; TO THE CORRESPONDING TWO BINARY DIGITS IN EITHER REGISTER
   220
                            ; IMMEDIATELY ADJACENT. THERE ARE THREE ENTRY POINTS:
   221
   222
                                          LADR: — RESET CARRY AND ADD 2 DIGIT PAIRS
   223
                                                                                                      TL/DD/6942-8
```

```
COP CROSS ASSEMBLER
                         PAGE: 7
LOGS
                                           LADD: — ADD 2 DIGIT PAIRS WITH UNMODIFIED CARRY
   224
                                           ADD1: - ADD 2 SINGLE DIGITS WITH UNMODIFIED CARRY
   225
   226
   227
   228
   229
                                                                                    ; RESET CARRY PRIOR TO ADD.
                32
                             LADR:
                                           RC
   230
        08D
                                                         01
                                                                                    ; LD ADDEND AND MOVE TO ADJ REG
                                           :D
   231
        08E
                15
                             LADD:
                                           ASC
                                                                                    ; ADD AUGEND.
         08F
   232
                30
                                                                                    ; AVOID CARRY!
                                           NOP
   233
        090
                44
                                                                                    ; STORE SUM AND MOVE TO ADDEND
                                           XIS
                                                         01
         091
                14
   234
                                                                                    ; REPEAT PROCESS
                                           LD
   235
        092
                15
                             ADD1:
                                                         01
                                                                                    ; FOR
   236
         093
                30
                                           ASC
                                                                                    ; HIGH ORDER
                                           NOP
   237
         094
                44
                                                                                    ; DIGIT.
                                           XIS
                                                         01
   238
        095
                14
                                           NOP
                                                                                    ; AVOID SKIP IF DIGIT 15.
   239
         096
                44
                                                                                    ; FINISHED - RETURN!!!!
                             $LST:
                                           RET
   240
         097
                48
   241
   242
   243
   244
                                           ; ----- ADD 8 BITS IN OPPOSITE REGISTERS -- ---- ;
   245
   246
                                           . LOCAL
   247
   248
   249
   250
                             ; THIS ROUTINE ADDS TWO BINARY DIGITS (8BITS) FROM ANY REGISTER
   251
                             ; TO THE CORRESPONDING TWO BINARY DIGITS IN EITHER REGISTER
   253
                             ; DIRECTLY OPPOSITE. THERE ARE THREE ENTRY POINTS:
   254
                                           ADR0: — RESET CARRY AND ADD 2 DIGIT PAIRS
   255
                                           ADD0: — ADD 2 DIGIT PAIRS WITH UNMODIFIED CARRY
   256
                                           AD01: — ADD 2 SINGLE DIGITS WITH UNMODIFIED CARRY
   257
   258
   259
   260
   261
                                           RÇ
                                                                                     ; RESET CARRY PRIOR TO ADD.
                             ADR0:
   262
         098
                 32
                                                                                     ; LD ADDEND AND MOVE TO OPP REG
                             ADD0:
                                           LD
                                                         03
                 35
   263
         099
                                                                                     ; ADD AUGEND.
                 30
         09A
                                            ASC
   264
                                            NOP
                                                                                     ; AVOID CARRY!
         09B
   265
                 44
                                                                                     ; STORE SUM AND MOVE TO ADDEND.
         09C
                 34
                                           XIS
                                                          03
   266
                                                                                     ; REPEAT PROCESS
         09D
                 15
                             AD01:
                                           ΙD
                                                          01
   267
                                                                                    ; FOR
                                            ASC
   268
         09E
                 30
                                                                                     HIGH ORDER
                                            NOP
   269
         09F
                 44
                                                                                     ; DIGIT.
                                            XIS
                                                          03
   270
         0A0
                 34
                                                                                     ; AVOID SKIP IF DIGIT 15.
   271
         0A1
                 44
                                            NOP
                                                                                    ; FINISHED - RETURN!!!!
                             $LST:
   272
         0A2
                 48
                                            RET
   273
   274
   275
                                            ; ·····→ SET DIGIT ADDRESS BACK TWO ·······;
   276
   277
```

```
COP CROSS ASSEMBLER
                         PAGE: 8
LOGS
  278
                                          . LOCAL
  279
                            ; THIS ROUTINE SUBTRACTS 2 FROM THE CONTENTS OF THE
  280
  281
                            ; DIGIT POINTER (B REGISTER). THE CONTENTS OF THE
                             : ACCUMULATOR ARE LOST IN THE PROCESS. THE USE OF
  282
  283
                             : SDB2 ALLOWS ADDRESSING WITHIN THE LOGS SUB
                             : ROUTINE TO BE RELATIVE TO THE CONTENTS OF THE
  284
  285
                             ; ADDRESS POINTER (B REGISTER) UPON ENTRY.
                             ; SDB2 IS COMMONLY USED IN BYTE OPERATIONS TO RESTORE THE
  286
  287
                             ; DIGIT POINTER TO THE LOW ORDER POSITION.
  288
                             ; THERE ARE TWO ENTRY POINTS:
  289
  290
                            ; SDR2:
                                          SET DIGIT ADDRESS BACK 2 AND MOVE TO OPPOSITE REGISTER.
   291
   292
                            ; SDB2: SET DIGIT ADDRESS BACK 2 RETAINING PRESENT REGISTER.
  293
  294
   295
  296
        0A3
                35
                             SDR2:
                                          LD
                                                         03
                                                                                   ; MOVE TO OPPOSITE REGISTER.
  297
        0A4
                4E
                             SDB2:
                                           СВА
                                                                                   PLACE DIGIT COUNT IN ACC.
                                                                                   ; SUBTRACT 2.
   298
        0A5
                                           AISC
                5E
                                                                                   ; SHOULD ALWAYS SKIP.
   299
        0A6
                                           NOP
                44
                                                                                   ; PUT DIGIT COUNT BACK.
                                          CAB
  300
        0A7
                50
                                           RET
                                                                                   ; FINISHED - RETURN!!
   301
        8A0
                48
   302
   303
                                          ; ----- SHIFT LEFT ←----- ;
   304
   305
   306
                                           . LOCAL
   307
                             ; THIS ROUTINE SHIFTS LEFT THE CONTENTS OF TWO MEMORY
   308
                             ; LOCATIONS ONE BIT. THERE ARE THREE ENTRY POINTS:
   309
   310
                                                         SHLR: RESETS THE CARRY BEFORE SHIFTING
   311
                                                              IN ORDER TO FILL THE LOW ORDER
   312
                                                              BIT POSITION WITH A 0.
   313
   314
   315
                                                         SHLC: SHIFTS THE STATE OF THE CARRY INTO
   316
                                                               THE LOW ORDER BIT POSITION.
   317
   318
                                                         SHL1: SHIFTS LEFT THE CONTENTS OF ONLY
   319
                                                              ONE MEMORY LOCATION. THE STATE
   320
                                                              OF THE CARRY IS SHIFTED INTO THE
   321
                                                              LOW ORDER POSITION OF MEMORY.
   322
   323
   324
                                                                                   ; CLEAR CARRY PRIOR TO SHIFT.
   325
         0A9
                32
                             SHLR:
                                           RC
   326
         0AA
                05
                             SHLC:
                                           LD
                                                                                   ; LOAD FIRST MEM DIGIT.
   327
         0AB
                                           ASC
                                                                                   ; DOUBLE IT.
                30
   328
         0AC
                                           NOP
                                                                                   ; AVOID SKIP.
                44
                                                                                   ; STORE SHIFTED DIGIT.
   329
         0AD
                                           XIS
                04
                                                                                    ; LOAD NEXT MEM DIGIT.
                             SHL1:
         0AE
                05
                                           LD
   330
                                                                                   ; DOUBLE IT TOO.
   331
        0AF
                30
                                           ASC
COP CROSS ASSEMBLER
                          PAGE: 9
LOGS
                                           NOP
                                                                                   : AVOID SKIP, IF ANY
         080
   332
                44
                                                                                   ; STORE SHIFTED DIGIT.
   333
        0B1
                04
                                           XIS
                             $LST:
                                           RET
                                                                                   ; FINISHED - RETURN!
   334
         0B2
                48
   335
   336
                                           . END
   337
                                                                                                        TL/DD/6942-10
```

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Europe Fax: (+49) 0-180-530 85 86 Email: onjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408