

SINGLE

5 V+

4 OUTPUT

LNN 393

13

12

11

10 INC+ IN C-OUTC

OUTD

IN D-

IN D+

V

QUAD TSSOP/SO

OUTA INA INA+

 V^+

5

LMV324 LMV824

6

IN B+

IN B-

OUTB

LMV321	LMV331	LMV821
LMV358	LMV393	LMV822
LMV324	LMV339	LMV824

SPECS

- SC70-5 Package: 50% Smaller than SOT-23
- 2.7 to 5.5V Single **Supply Operation**

Rail-to-Rail Output

World's Smallest Op-Amp

CAN

WHAT

National Semiconductor WEBUILD

FORYOU?TM

LMV PRODUCTS QUALIFICATION PACKAGE

March 1998

Table of Contents

1.0 Introduction
2.0 Device Information
2.1 Datasheets
2.1.1 LMV321/358/324
2.1.2 LMV331/393/339 2-27
2.1.3 LMV821/822/824
2.2 Die Photos
2.2.1 LMV324/339
2.2.2 LMV358/393
2.2.3 LMV321/331
2.2.4 LMV824/821
2.2.5 LMV821 2-75
3.0 Process Information
3.1 Process Outline
3.2 Process Detail
4.0 Packaging Information
41 Package Material & Dimensions 4-1
4 2 Bonding Diagrams 4-8
4.3 Tane and Reel Diagrams 4-26
5.0 Reliability Data
5.1 Reliability Reports for LMV3xx5-1
5.2 Reliability Reports for LMV8xx
6.0 Characterization Data
6.1 Parametric Data for LMV3xx6-1
6.2 Parametric Data for LMV8xx

1.1 General Product Description

This qualification booklet covers a series of 9 products, 6 general purpose Op Amps and 3 general purpose Comparators. Each are available in 2 different package types for a total of 18 product/package combinations.

Quad Op Amp	LMV324M/MX (14 lead SOIC package) LMV324MT/MTX (14 lead TSSOP package)
	LMV824M/MX (14 lead SOIC package) LMV824MT/MTX (14 lead TSSOP package)
Dual Op Amp	LMV358M/MX (8 lead SOIC package) LMV358MM/MMX (8 lead MSOP package)
	LMV822M/MX (8 lead SOIC package) LMV822MM/MMX (8 lead MSOP package)
Single Op Amp	LMV321 M5/M5X (5 lead SOT-23 package) LMV321M7/M7X (5 lead SC70 package)
	LMV821 M5/M5X (5 lead SOT-23 package) LMV821 M7/M7X (5 lead SC70 package)
Quad Comparator	LMV339M/MX (14 lead SOIC package) LMV339MT/MTX (14 lead TSSOP package)
Dual Comparator	LMV393M/MX (8 lead SOIC package) LMV393MM/MMX (8 lead MSOP package)
Single Comparator	LMV331 M5/M5X (5 lead SOT-23 package) LMV331 M7/M7X (5 lead SC70 package)

They feature low voltage operation (2.7V to 5.0V for LMV300 series and 2.5V to 5.0V for LMV800 series) and are designed for applications where low power, small size, and price are main objectives. LMV800 series Op Amps offers enhanced performance over that of LMV300 series Op Amps.

1.2 Technical Product Description

All 9 products are manufactured using National's advanced Submicron Silicon Gate BiCMOS process. Internal name for this process is CS80CBi, which uses 6 inch wafers.

Actual silicon processing flow (oxide growths, implants, etching, etc.) are the same for all 9 products.

LMV300 Series

LMV358, LMV393, are metalization mask options of the LMV324, sharing previous mask steps in common with LMV324.

LMV324, LMV358, and LMV393 all have a die size of 23mils X 28mils.

LMV321 uses different mask set (different than LMV324), and the **LMV331** is a metalization mask option of the LMV321, sharing previous mask steps in common with LMV321. LMV321 and LMV331 have a die size of 17mils X 17mils.

LMV339 uses it's own dedicated mask set (separate from LMV324 or LMV321 mask set). LMV339 has a die size of 23mils X 28mils.

LMV800 Series

LMV822 is a metalization option of LMV824. LMV824 and LMV822 both have a die size of 24mils X 34mils.

LMV821 uses it's own dedicated mask set (seperate from LMV824 mask set). LMV821 has a die size of 19mils X 19mils.

1.3 Reliability/Qualification Overview

SC70 Package

The 5 lead SC70 package (used in LMV321M7/M7X, LMV821M7/M7X and LMV331M7/M7X) is new in the industry of linear integrated circuits. Other package types used for LMV300 and LMV800 series have been released previously.

The LMV321 was used as a qualification vehicle for this package and went through full package reliability (see Reliability Test Report FEM19970494 later in this qualification booklet under Reliability Reports section 5.0). Qualification of LMV321, LMV821, and LMV331 for use in SC70 package is covered by FEM19970494.

LMV300 and LMV800 Series

Because of same wafer fab process used on all 9 products, die layout simialrities, and same package types, the entire series was qualified by selecting particular products for actual reliability testing and qualifying the others by extension. (Qualifying by extension is a standard practice in the semiconductor industry.) Copies of all Reliability Test Reports listed below can below can be found under Reliability Reports section 5.0 later in this qualification booklet.

In Summary:

FSC19970377	LMV324 in SOIC and TSSOP packages LMV358 in MSOP package
FSC19980030	LMV824 in TSSOP package
FEM19970494	LMV321 in SC70 package
FEM19970440	LMV321 in SOT-23 package
FSC19980031	LMV821 in MDIP package
FSC19980093	LMV339 in SOIC package LMV393 in SOIC package LMV331 in SOT-23 package

1.4 Technical Assistance

Product Engineers

LMV324 and LMV358	Frank Smoot email: frank.smoot@nsc.com Tel: 408.721.5025
LMV824, LMV822, and LMV821	Altaf Ahmad email: altaf.ahmad@nsc.com Tel: 408.721.5957
LMV321	James Dreyfus email: james.dreyfus@nsc.com Tel: 408.721.2721
LMV339, LMV393, and LMV331	Doug Simin email: doug.simin@nsc.com Tel: 408.721.3245

Applications Engineers

LMV324, LMV358	Dong-mei Yan
and LMV321	email: dong-mei.yan@nsc.com
	Tel: 408.721.3501

LMV824, LMV822,Kelly Flahertyand LMV821email: kelly.flaherty@nsc.comTel: 408.721.8390

LMV339, LMV393, and LMV331 Muna Acosta email: muna.acosta@nsc.com

Tel: 408.721.5517

2.1 DATASHEETS

2.1.1 LMV321/358/324 Datasheet

© 1998 National Semiconductor Corporation DS100060

www.national.com

	Temperature Range				
Package	Industrial	Packaging Marking	Transport Media	NSC Drawing	
	-40°C to +85°C				
-Pin SC70-5	LMV321M7	A12	250 Units Tape and Reel	MAA05	
	LMV321M7X	A12	3k Units Tape and Reel		
-Pin SOT23-5	LMV321M5	A13	250 Units Tape and Reel	MA05B	
	LMV321M5X	A13	3k Units Tape and Reel		
-Pin Small Outline	LMV358M	LMV358M	Rails		
	LMV358MX	LMV358M	2.5k Units Tape and Reel	M08A	
Pin MSOP	LMV358MM	V358	250 Units Tape and Reel		
	LMV358MMX	V358	3.5k Units Tape and Reel	MUA08A	
I-Pin Small Outline	LMV324M	LMV324M	Rails		
	LMV324MX	LMV324M	2.5k Units Tape and Reel	M14A	
1-Pin TSSOP	LMV324MT	LMV324MT	Rails		
	I MV324MTX	LMV324MT	2.5k Units Tape and Reel	MTC14	

www.national.com

2

Absolute Maximum Ratings (Note 1)			Storage Temp. Range Junction Temp. (T _j , max) (Note 5)		–65°C to 150°C 150°C		
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/							
Distrib	utors for availability and specific	ations.	Opera	ting Rat	ings (Note 1)		
ESD T	Tolerance (Note 2)		Supply V	oltage		2.7V to 5.5V	
Mac	hine Model	100V	Temperat	ture Range			
Hum	nan Body Model		LMV32	1, LMV358, L	_MV324	–40°C≤T ,i≤85°C	
LMV	/358/324	2000V	Thermal	Resistance (6)(Note 10)		
LMV	/321	900V	5-pin \$	SC70-5		478°C/W	
Differe	ential Input Voltage	± Supply Voltage	5-pin \$	SOT23-5		265°C/W	
Supply	/ Voltage (V+-V -)	5.5V	8-Pin	SOIC		190°C/W	
Output	t Short Circuit to V ⁺	(Note 3)	8-Pin	MSOP		235°C/W	
Output	t Short Circuit to V -	(Note 4)	14-Pin	SOIC		145°C/W	
Mounti	ing Temp.		14-Pin	TSSOP		155°C/W	
Lead	Temp. (Soldering,10 sec)	260°C					
2 7V	DC Electrical Charac	teristics					
	btherwise specified, all limits guarantee	nteed for T $_{\rm J}$ = 25°C, V ⁺	= 2.7V, V ⁻	= 0V, V _{CM} =	1.0V, $V_0 = V^+/2$ ar	nd R _L > 1 MΩ.	
Gymbol	ranameter	Conditions		(Note 6)	(Note 7)	Onits	
V _{os}	Input Offset Voltage			1.7	7	mV max	
TCV _{os}	Input Offset Voltage Average Drift			5		µV/°C	
IB	Input Bias Current			11	250	nA max	
I _{os}	Input Offset Current			5	50	nA max	
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 1.7V$		63	50	dB min	
PSRR	Power Supply Rejection Ratio	$2.7V \le V^+ \le 5V$ $V_O = 1V$		60	50	dB min	
V _{CM}	Input Common-Mode Voltage Range	For CMRR≥50dB		-0.2	0	V min	
				1.9	1.7	V max	
Vo	Output Swing	$R_L = 10k\Omega$ to 1.35V		V+ -10	V+ -100	mV min	
				60	180	mV max	
I _S	Supply Current	LMV321		80	170	μA max	
		LMV358 Both amplifiers		140	340	μA max	
					000	114	

www.national.com

LMV Products Qualification Package 2-3

Symbol	Parameter	Conditions	Typ (Note 6)	Limit (Note 7)	Units
GBWP	Gain-Bandwidth Product	C _L = 200 pF	1		MHz
Φ _m	Phase Margin		60		Deg
G _m	Gain Margin		10		dB
e _n	Input-Referred Voltage Noise	f = 1 kHz	46		nV √Hz
İn	Input-Referred Current Noise	f = 1 kHz	0.17		<u>pA</u> √Hz
5V D Unless of Boldface	C Electrical Characte therwise specified, all limits guarar i limits apply at the temperature ex	Pristics hteed for $T_J = 25^{\circ}C$, $V^* = 5V$, hteremes.	$V^{-} = 0V, V_{CM} = 2.0V,$	$V_0 = V^+/2$ and R L	> 1 MΩ.
Symbol	Parameter	Conditions	(Note 6)	(Note 7)	Unit
Vos	Input Offset Voltage		1.7	7 9	mV max
TCV _{os}	Input Offset Voltage Average Drift		5		μV/°C
IB	Input Bias Current		15	250 500	nA max
l _{os}	Input Offset Current		5	50 150	nA max
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 4V$	65	50	dB min
PSRR	Power Supply Rejection Ratio	$\begin{array}{l} 2.7 V \leq V^+ \leq 5 V \\ V_O = 1 V \; V_CM = 1 V \end{array}$	60	50	dB min
V _{CM}	Input Common-Mode Voltage Range	For CMRR≥50dB	-0.2	0	V min
			4.2	4	V max
A _V	Large Signal Voltage Gain (Note 8)	$R_{L} = 2k\Omega$	100	15 10	V/m min
Vo	Output Swing	$R_L = 2k\Omega$ to 2.5V	V* -40	V⁺ -300 V⁺ -400	mV min
			120	300 400	mV max
		$R_L = 10k\Omega$ to 2.5V	V* -10	V+ -100 V+ -200	mV min
			65	180 280	mV max
lo	Output Short Circuit Current	Sourcing, $V_{O} = 0V$	60	5	mA min
		Sinking, $V_{O} = 5V$	160	10	mA min
s	Supply Current	LMV321	130	250 350	μA max
		LMV358 Both amplifiers	210	440 615	μA max
	1	<u> </u>			<u> </u>

2-4 National Semiconductor

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for T $_{\rm J}$ = 25°C, V⁺ = 5V, V⁻ = 0V, V_{CM} = 2.0V, V_O = V⁺/2 and R $_{\rm L}$ > 1 MΩ. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 6)	Limit (Note 7)	Units
SR	Slew Rate	(Note 9)	1		V/µs
GBWP	Gain-Bandwidth Product	C _L = 200 pF	1		MHz
Φ_{m}	Phase Margin		60		Deg
G _m	Gain Margin		10		dB
e _n	Input-Referred Voltage Noise	f = 1 kHz,	39		$\frac{nV}{\sqrt{Hz}}$
i _n	Input-Referred Current Noise	f = 1 kHz	0.21		<u>pA</u> γHz

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is in-tended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model, 1.5 k Ω in series with 100 pF. Machine model, 0Ω in series with 200 pF.

Note 3: Shorting output to V⁺ will adversely affect reliability.

Note 4: Shorting output to V⁻ will adversely affect reliability.

Note 5: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Note 6: Typical values represent the most likely parametric norm.

Note 7: All limits are guaranteed by testing or statistical analysis.

Note 8: R_L is connected to V^{*}. The output voltage is $0.5V \le V_0 \le 4.5V$.

Note 9: Connected as voltage follower with 3V step input. Number specified is the slower of the positive and negative slew rates.

Note 10: All numbers are typical, and apply for packages soldered directly onto a PC board in still air.

Typical Performance Characteristics Unless otherwise specified, V_S = +5V, single supply, T_A = 25°C. Supply Current vs Supply Input Current vs Sourcing Current vs Voltage (LMV321) Temperature Output Voltage 200 1000 - 10 5 175 100 - 10 150 (ΨĦ) (PA) 125 10 - 1. (mA) Supply Current ent 100 SOURCE ' 75 - 16 put 0.1 50 0.001 25 -20 0 0 2 3 4 5 -40 -20 0 20 40 60 80 0.001 0.01 0.1 10 Supply Voltage (V) DS100060-73 Temperature (°C) DS100060-A9 Output Voltage Referenced to V⁺ (V) DS100060-69 Sourcing Current vs Sinking Current vs Sinking Current vs Output Voltage Output Voltage Output Voltage 1000 1000 1000 $V_{s} = 2.7$ 100 100 100 l III iuw 10 10 10 (mA) (mA) (mA) SOURCE **I**SINK SINK 0.1 0.1 Ð 0.01 0.01 0.01 0.001 0.001 0.001 0.001 0.01 0.1 1 10 0.001 0.01 0.1 10 0.001 0.01 0.1 10 1 Output Voltage Referenced to V⁺ (V) DS100060-68

Output Voltage Referenced to GND (V)

www.national.com

LMV Products Qualification Package 2-5

Output Voltage Referenced to GND (V)

2-6 National Semiconductor

LMV Products Qualification Package 2-7

LMV Products Qualification Package 2-9

2.0 Capacitive Load Tolerance

The LMV321/358/324 can directly drive 200 pF in unity-gain without oscillation. The unity-gain follower is the most sensitive configuration to capacitive loading. Direct capacitive loading reduces the phase margin of amplifiers. The combination of the amplifier's output impedance and the capacitive

LMV324.

2.5V and R_L (= $2k\Omega$) connected to GND. It is apparent that

the crossover distortion has been eliminated in the new

10

Application Notes (Continued)

load induces phase lag. This results in either an underdamped pulse response or oscillation. To drive a heavier capacitive load, circuit in *Figure 3* can be used.

In Figure 3, the isolation resistor $R_{\rm ISO}$ and the load capacitor C_L form a pole to increase stability by adding more phase margin to the overall system. The desired performance depends on the value of $R_{\rm ISO}$. The bigger the $R_{\rm ISO}$ resistor value, the more stable Vout will be. Figure 4 is an output waveform of Figure 3 using 620 Ω for $R_{\rm ISO}$ and 510 pF for C_L .

FIGURE 4. Pulse Response of the LMV324 Circuit in Figure 3

The circuit in *Figure 5* is an improvement to the one in *Figure 3* because it provides DC accuracy as well as AC stability. If there were a load resistor in *Figure 3*, the output would be voltage divided by R_{ISO} and the load resistor. Instead, in *Figure 5*, R_F provides the DC accuracy by using feed-forward techniques to connect V_{IN} to R_L. Caution is needed in choosing the value of R_F due to the input bias current of the LMV321/358/324. C_F and R_{ISO} serve to counteract the loss of phase margin by feeding the high frequency component of the output signal back to the amplifier's inverting input, thereby preserving phase margin in the overall feedback loop. Increased capacitive drive is possible by increasing the value of C_F. This in turn will slow down the pulse response.

FIGURE 5. Indirectly Driving A Capacitive Load with DC Accuracy

3.0 Input Bias Current Cancellation

The LMV321/358/324 family has a bipolar input stage. The typical input bias current of LMV321/358/324 is 15 nA with 5V supply. Thus a 100 kΩ input resistor will cause 1.5 mV of error voltage. By balancing the resistor values at both inverting and non-inverting inputs, the error caused by the amplifier's input bias current will be reduced. The circuit in *Figure* 6 shows how to cancel the error caused by input bias current.

FIGURE 6. Cancelling the Error Caused by Input Bias Current

4.0 Typical Single-Supply Application Circuits

4.1 Difference Amplifier

11

The difference amplifier allows the subtraction of two voltages or, as a special case, the cancellation of a signal common to two inputs. It is useful as a computational amplifier, in making a differential to single-ended conversion or in rejecting a common mode signal.

www.national.com

FIGURE 7. Difference Amplifier

4.2 Instrumentation Circuits

The input impedance of the previous difference amplifier is set by the resistors R₁, R₂, R₃, and R₄. To eliminate the problems of low input impedance, one way is to use a voltage follower ahead of each input as shown in the following two instrumentation amplifiers.

4.2.1 Three-op-amp Instrumentation Amplifier

The quad LMV324 can be used to build a three-op-amp instrumentation amplifier as shown in *Figure 8*.

FIGURE 8. Three-op-amp Instrumentation Amplifier

The first stage of this instrumentation amplifier is a differential-input, differential-output amplifier, with two voltage followers. These two voltage followers assure that the input impedance is over 100 MΩ. The gain of this instrumentation amplifier is set by the ratio of R_2/R_1 , R_3 should equal R_1 , and R_4 equal R_2 . Matching of R_3 to R_1 and R_4 to R_2 affects the CMRR. For good CMRR over temperature, low drift resistors should be used. Making R_4 slightly smaller than R_2 and adding a trim pot equal to twice the difference between R_2 and R_4 will allow the CMRR to be adjusted for optimum.

4.2.2 Two-op-amp Instrumentation Amplifier

A two-op-amp instrumentation amplifier can also be used to make a high-input-impedance dc differential amplifier (*Figure 9*). As in the three-op-amp circuit, this instrumentation amplifier requires precise resistor matching for good CMRR. R4 should equal to R1 and R3 should equal R2.

FIGURE 9. Two-Op-amp Instrumentation Amplifier

4.3 Single-Supply Inverting Amplifier

There may be cases where the input signal going into the amplifier is negative. Because the amplifier is operating in single supply voltage, a voltage divider using R₃ and R₄ is implemented to bias the amplifier so the input signal is within the input common-mode voltage range of the amplifier. The capacitor C₁ is placed between the inverting input and resistor R₁ to block the DC signal going into the AC signal source, V_{IN}. The values of R₁ and C₁ affect the cutoff frequency, fc = 1/2\pi R_1 C_1.

As a result, the output signal is centered around mid-supply (if the voltage divider provides $V^{\dagger}/2$ at the non-inverting input). The output can swing to both rails, maximizing the signal-to-noise ratio in a low voltage system.

FIGURE 10. Single-Supply Inverting Amplifier

4.4 Active Filter

4.4.1 Simple Low-Pass Active Filter

The simple low-pass filter is shown in Figure 11. Its low-frequency gain ($\omega \rightarrow 0$) is defined by $-R_3/R_1$. This allows low-frequency gains other than unity to be obtained. The filter has a -20dB/decade roll-off after its corner frequency fc. R_2 should be chosen equal to the parallel combination of R_1 and R_3 to minimize errors due to bias current. The frequency response of the filter is shown in Figure 12.

FIGURE 12. Frequency Response of Simple Low-Pass Active Filter in Figure 11

Note that the single-op-amp active filters are used in to the applications that require low quality factor, $Q(\le 10)$, low frequency (≤ 5 kHz), and low gain (≤ 10), or a small value for the product of gain times Q (\leq 100). The op amp should have an open loop voltage gain at the highest frequency of interest at least 50 times larger than the gain of the filter at this frequency. In addition, the selected op amp should have a slew rate that meets the following requirement:

SlewRate $\geq 0.5~x~(\omega_{H}V_{OPP})~x~10^{-6}~V/\mu sec$ where $\omega_{\!\mathsf{H}}$ is the highest frequency of interest, and V_{opp} is the output peak-to-peak voltage.

4.4.2 Sallen-Key 2nd-Order Active Low-Pass Filter

The Sallen-Key 2nd-order active low-pass filter is illustrated in Figure 13. The dc gain of the filter is expressed as

$$A_{\perp P} = \frac{R_3}{R_4} + 1 \tag{1}$$

Its transfer function is

$$\frac{V_{OUT}}{V_{IN}}(S) = \frac{\frac{\overline{c_{1}c_{2}h_{1}R_{2}} + A_{LP}}{S^{2} + S\left(\frac{1}{c_{1}R_{1}} + \frac{1}{c_{1}R_{2}} + \frac{1}{c_{2}R_{2}} - \frac{A_{LP}}{c_{2}R_{2}}\right) + \frac{1}{c_{1}c_{2}c_{1}R_{2}}}$$
(2)

FIGURE 13. Sallen-Key 2nd-Order Active Low-Pass Filter

The following paragraphs explain how to select values for R₁, R₂, R₃, R₄, C₁, and C $_2$ for given filter requirements, such as A_{LP}, Q, and f $_c$.

The standard form for a 2nd-order low pass filter is

$$\frac{V_{\text{DUT}}}{V_{\text{IN}}}(S) = \frac{A_{\text{LP}}\omega_{c}^{2}}{S^{2} + \left(\frac{\omega_{c}}{Q}\right)S + \omega_{c}^{2}}$$

where

Q: Pole Quality Factor

 $\omega_{\text{C}}\text{: Corner Frequency}$

ω

Comparison between the Equation (2) and Equation (3) yields

$$\omega_{c}^{2} = \frac{1}{C_{1} C_{2} R_{1} R_{2}}$$
(4)

(3)

(6)

(8)

$$\frac{\omega_{\rm c}}{Q} = \frac{1}{C_1 R_1} + \frac{1}{C_1 R_2} + \frac{1}{C_2 R_2} - \frac{A_{\rm LP}}{C_2 R_2}$$
(5)

To reduce the required calculations in filter design, it is convenient to introduce normalization into the components and design parameters. To normalize, let ω_{C} = ω_{n} = 1rad/s, and $C_1 = C_2 = C_n = 1F$, and substitute these values into Equation (4) and Equation (5). From Equation (4), we obtain

$$1 = \frac{1}{R_{0}}$$

From Equation (5), we obtain

 $R_2 = -$

$$P = \frac{1 \pm \sqrt{1 - 4Q^2 (2 - A_{LP})}}{1 + Q^2 (2 - A_{LP})}$$

(7) For minimum dc offset, V+ = V-, the resistor values at both inverting and non-inverting inputs should be equal, which means

$$R_1 + R_2 = \frac{R_3 R_4}{R_3 + R_4}$$

From Equation (1) and Equation (8), we obtain

$$R_3 = (R_1 + R_2)A_{LP}$$
 (9)

13

www.national.com

LMV Products Qualification Package 2-13

Application Notes (Continued)

$$R_{4} = \left(\frac{A_{LP}}{A_{LP}-1}\right)(R_{1}+R_{2})$$

(10)

The values of C_1 and C_2 are normally close to or equal to

$$C = \frac{10}{f_c} \mu F$$

As a design example:

Require: $A_{LP} = 2$, Q = 1, fc = 1KHz Start by selecting C1 and C2. Choose a standard value that is close to

$$C = \frac{1}{f_c} \mu F$$

$$C_1 = C_2 = \frac{10}{1 \times 10^3} \mu F = 0.01 \ \mu F$$

From Equations (6), (7), (9), (10),

 $\begin{array}{l} \mathsf{R_{1}=1\Omega}\\ \mathsf{R_{2}=1\Omega}\\ \mathsf{R_{3}=4\Omega}\\ \mathsf{R_{4}=4\Omega} \end{array}$

The above resistor values are normalized values with $\omega_n{=}1\,{\rm rad}/{\rm s}$ and $C_1=C_2=C_n=1F.$ To scale the normalized cut-off frequency and resistances to the real values, two scaling factors are introduced, frequency scaling factor (k_η) and impedance scaling factor $(k_m).$

$$k_{f} = \frac{\omega_{c}}{\omega_{n}} = \frac{2\pi \times 1 \times 10^{3}}{1} = 2\pi \times 10^{3}$$
$$k_{m}k_{f} = \frac{Cn}{C1}$$
$$k_{m} = 1.59 \times 10^{4}$$

Scaled values:

 $R_2 = R_1 = 15.9 \text{ k}\Omega$

 $R_3 = R_4 = 63.6 \text{ k}\Omega$ $C_1 = C_2 = 0.01 \text{ }\mu\text{F}$ An adjustment to the scaling may be made in order to have realistic values for resistors and capacitors. The actual value used for each component is shown in the circuit.

4.4.3 2nd-order High Pass Filter

A 2nd-order high pass filter can be built by simply interchanging those frequency selective components (R_1 , R_2 , C_1 , C_2) in the Sallen-Key 2nd-order active low pass filter. As shown in *Figure 14*, resistors become capacitors, and capacitors become resistors. The resulted high pass filter has the same corner frequency and the same maximum gain as the previous 2nd-order low pass filter if the same components are chosen.

FIGURE 14. Sallen-Key 2nd-Order Active High-Pass Filter

4.4.4 State Variable Filter

A state variable filter requires three op amps. One convenient way to build state variable filters is with a quad op amp, such as the LMV324 (*Figure 15*).

This circuit can simultaneously represent a low-pass filter, high-pass filter, and bandpass filter at three different outputs. The equations for these functions are listed below. It is also called "Bi-Quad" active filter as it can produce a transfer function which is quadratic in both numerator and denominator.

www.national.com

15

FIGURE 17. Waveforms of the Circuit in Figure 16

As shown in the waveforms in *Figure 17*, the pulse width (T₁) is set by R₂. C and V_{OH}, and the time between pulses (T₂) is set by R₁, C and V_{OL}. This pulse generator can be made to have different frequencies and pulse width by selecting different capacitor value and resistor values.

Figure 18 shows another pulse generator, with separate charge and discharge paths. The capacitor is charged through R1 and is discharged through R_2 .

4.6 Current Source and Sink

The LMV321/358/324 can be used in feedback loops which regulate the current in external PNP transistors to provide current sources or in external NPN transistors to provide current sinks.

4.6.1 Fixed Current Source

A multiple fixed current source is show in *Figure 20*. A voltage (V_{REF} = 2V) is established across resistor R₃ by the voltage divider (R₃ and R₄). Negative feedback is used to cause the voltage drop across R₁ to be equal to V_{REF}. This controls the emitter current of transistor Q₁ and if we neglect the base current of Q₁ and Q₂, essentially this same current is available out of the collector of Q₁.

Large input resistors can be used to reduce current loss and a Darlington connection can be used to reduce errors due to the β of $\mathsf{Q}_1.$

The resistor, $R_2,$ can be used to scale the collector current of Q_2 either above or below the 1 mA reference value.

www.national.com

16

www.national.com

2.1.2 LMV331/393/339 Datasheet

	Temperature Range	Packaging	Transport	NSC
Package	Industrial Marking -40°C to +85°C		Media	Drawing
5-pin SC70-5	LMV331M7	C13	250 Units Tape and Reel	MAA05
	LMV331M7X	C13	3k Units Tape and Reel	
5-pin SOT23-5	LMV331M5	C12	250 Units Tape and Reel	MA05B
	LMV331M5X	C12	3k Units Tape and Reel	
8-pin Small Outline	LMV393M	LMV393M	Rails	1400.4
	LMV393MX	LMV393M	2.5k Units Tape and Reel	INIU8A
8-pin MSOP	LMV393MM	V393	250 UnitsTape and Reel	MUADRA
	LMV393MMX	V393	3.5k Units Tape and Reel	
14-pin Small Outline	LMV339M	LMV339M	Rails	N44.4.0
	LMV339MX	LMV339M	2.5k Units Tape and Reel	
14-pin TSSOP	LMV339MT	LMV339MT	Rails	MTC14
	LMV339MTX	LMV339MT	2.5k Units Tape and Reel	MIC14

www.national.com

2

Absolute Maximum Ratings (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2)	
Human Body Model	
LMV331/ 393/ 339	800V
Machine Model LMV331/339/393	120V
Differential Input Voltage	± Supply Voltage
Supply Voltage (V ⁺ – V ⁻)	5.5V
Mounting Temperature	
Lead Temp. (soldering, 10 sec)	260°C
Infrared (15 sec)	215°C
Storage Temp. Range	-65°C to +150°C

Junction Temperature (Note 3)	150°C
Operating Ratings(Note 1)	
Supply Voltage	2.7V to 5.5V
Temperature Range	
LMV393, LMV339, LMV331 -40°C	≤ T _J ≤ +85°C
Thermal Resistance (θ _{JA})	
M Package, 8-pin Surface Mount	190°C/W
M Package, 14-pin Surface Mount	145°C/W
MTC Package, 14-pin TSSOP	155°C/W
MAA05 Package, 5-pin SC70-5	478°C/W
M05A Package 5 -pin SOT23-5	265°C/W
MM Package, 8-pin Mini Surface Mount	235°C/W

2.7V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, V+ = 2.7V, V- = 0V. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 4)	LMV331/ 393/339 Limit (Note 5)	Units
V _{OS}	Input Offset Voltage		1.7	7	mV max
TCV _{os}	Input Offset Voltage Average Drift		5		µV/°C
IB	Input Bias Current		10	250 400	nA max
I _{os}	Input Offset Current		5	50 150	nA max
V _{CM}	Input Voltage Range		-0.1		V
			2.0		V
V _{SAT}	Saturation Voltage	I _{sink} ≤ 1mA	200		mV
l _o	Output Sink Current	$V_{O} \le 1.5V$	23	5	mA min
Is	Supply Current	LMV331	40	100	µA max
		LMV393 Both Comparators	70	140	µA max
		LMV339 All four Comparators	140	200	µA max
	Output Leakage Current		.003	1	µA max

2.7V AC Electrical Characteristics

 $T_J = 25^{\circ}C$, V+ = 2.7V, $R_L = 5.1 \text{ k}\Omega$, V- = 0V.

Symbol	Parameter	Conditions	Typ (Note 4)	Units
t _{PHL}	Propagation Delay (High to Low)	Input Overdrive =10 mV	1000	
		Input Overdrive =100 mV	350	115
t _{PLH}	Propagation Delay (Low to High)	Input Overdrive =10 mV	500	
		Input Overdrive =100 mV	400	ns
				•

3

ymbol	Parameter	Cond	litions	Typ (Note 4)	LMV331/ 393/339 Limit (Note 5)	Units
os	Input Offset Voltage			1.7	7 9	mV max
CV _{os}	Input Offset Voltage Average Drift			5		µV/°C
	Input Bias Current			25	250 400	nA max
S	Input Offset Current			2	50 150	nA max
СМ	Input Voltage Range			-0.1		V
	Voltage Gain			50	20	V/mV mir
sat	Saturation Voltage	I _{sink} ≤ 4 mA		200	400	mV max
	Output Sink Current	$V_{\odot} \le 1.5V$		84	10	mA
;	Supply Current	LMV331		60	120 150	µA max
		LMV393 Both Comparate	ors	100	200 250	µA max
		LMV339		170	300	µA max
		All four Compar	rators		350	
5V A(Output Leakage Current C Electrical Char, C, V+ = 5V, R, = 5.1 kΩ, V-	All four Compare acteristics	rators	.003	350 1	µA max
5V A(T _J = 25°(Symbol	Output Leakage Current C Electrical Char. C, V+ = 5V, R _L = 5.1 kΩ, V- Paramete	All four Compare acteristics - = 0V.	rators	L.003	350 1 (Note 4)	μA max Units
5V A(T _J = 25°0 Symbol	Output Leakage Current C Electrical Char. C, V+ = 5V, R _L = 5.1 kΩ, V- Paramete Propagation Delay (High	All four Compare	Input Overdriv	003	350 1 (Note 4) 600 200	Units
5V A(T _J = 25°C Symbol	Output Leakage Current C Electrical Char. C, V+ = 5V, R _L = 5.1 kΩ, V- Paramete Propagation Delay (High Propagation Delay (Low 1)	All four Company acteristics - = 0V. r to Low) to High)	Input Overdriv Input Overdriv Input Overdriv	003 Conditions ve =10 mV ve =100 mV ve =100 mV	350 1 (Note 4) 600 200 450	Units
5V A (T _J = 25°(Symbol 'HL 'LH	Output Leakage Current C Electrical Char. C, V+ = 5V, R _L = 5.1 kΩ, V- Paramete Propagation Delay (High Propagation Delay (Low the solute Maximum Patience indicate line)	All four Compare	Input Overdri Input Overdri Input Overdri Input Overdri Input Overdri		350 1 (Note 4) 600 200 450 300 rs indicate conditions for which	Units Units Ins Ins Ins Ins Ins Ins Ins Ins Ins In

www.national.com

4

Application Circuits

Basic Comparator

A basic comparator circuit is used for converting analog signals to a digital output. The LMV331/393/339 have an open-collector output stage, which requires a pull-up resistor to a positive supply voltage for the output to switch properly. When the internal output transistor is off, the output voltage will be pulled up to the external positive voltage.

The output pull-up resistor should be chosen high enough so as to avoid excessive power dissipation yet low enough to supply enough drive to switch whatever load circuitry is used on the comparator output. On the LMV331/393/339 the pull-up resistor should range between 1k to $10 k \Omega$.

The comparator compares the input voltage (V_{in}) at the non-inverting pin to the reference voltage (V_{roi}) at the inverting pin. If V_{in} is less than V_{ref} , the output voltage (V_o) is at the saturation voltage. On the other hand, if V_{in} is greater than V_{ref} , the output voltage (V_o) is at $V_{cc.}$

Comparator with Hysteresis

The basic comparator configuration may oscillate or produce a noisy output if the applied differential input voltage is near the comparator's offset voltage. This usually happens when the input signal is moving very slowly across the comparator's switching threshold. This problem can be prevented by the addition of hysteresis or positive feedback.

Inverting Comparator with Hysteresis

The inverting comparator with hysteresis requires a three resistor network that are referenced to the supply voltage $V_{\rm cc}$ of the comparator. When Vin at the inverting input is less than V_a , the voltage at the non-inverting node of the comparator ($V_{\rm in} < V_a$), the output voltage is high (for simplicity assume V_o switches as high as $V_{\rm cc}$). The three network resistors can be represented as R_1/R_3 in series with R_2 . The lower input trip voltage V_{a1} is defined as

$$V_{a_1} = \frac{V_{CC} R_2}{(R_1 || R_3) + R_2}$$

When V_{in} is greater than Va (V_{in} V_a), the output voltage is low very close to ground. In this case the three network resistors can be presented as $R_2//R_3$ in series with R_1 . The upper trip voltage V_{a2} is defined as

$$V_{a2} = \frac{V_{CC}(R_2 / / R_3)}{R_1 + (R_2 / / R_3)}$$

The total hysteresis provided by the network is defined as $\Delta V_a = V_{a1} - V_{a2}$

To assure that the comparator will always switch fully to V_{cc} and not be pulled down by the load the resistors values should be chosen as follow:

 $R_{pull-up} \le R_{load}$ and $R_1 \ge R_{pull-up}$.

www.national.com

6

Square Wave Oscillator

Comparators are ideal for oscillator applications. This square wave generator uses the minimum number of components. The output frequency is set by the RC time constant of the capacitor C_1 and the resistor in the negative feedback R_a . The maximum frequency is limited only by the large signal propagation delay of the comparator in addition to any capacitive loading at the output, which would degrade the output slew rate.

FIGURE 5. Squarewave Oscillator

DS100080-24

8

To analyze the circuit, assume that the output is initially high. For this to be true, the voltage at the inverting input V_{α} has to be less than the voltage at the non-inverting input V_{a} . For V_{c} to be low, the capacitor C_{1} has to be discharged and will charge up through the negative feedback resistor R_{a} . When it has charged up to value equal to the voltage at the positive input $V_{a_{1}}$ the comparator output will switch. $V_{a_{1}}$ will be given by:

www.national.com

$$V_{a1} = \frac{V_{CC} R_2}{R_2 + (R_1 / / R_2)}$$

lf: Then:

$$R_1 = R_2 = R_3$$

$$V_{a1} = 2V_{cc}/3$$

When the output switches to ground, the value of V_a is reduced by the hysteresis network to a value given by: $V_{a2}=V_{cc}/3$

Capacitor C₁ must now discharge through R₄ towards ground. The output will return to its high state when the voltage across the capacitor has discharged to a value equal to $V_{a2}.$

For the circuit shown, the period for one cycle of oscillation will be twice the time it takes for a single RC circuit to charge up to one half of its final value. The time to charge the capacitor can be calculated from

$$V_{\rm C} = V_{\rm max} e^{\frac{-1}{\rm RC}}$$

Where V_{max} is the max applied potential across the capacitor = $(2V_{cc}/3)$

and $V_{C} = Vmax/2 = V_{CC}/3$ One period will be given by:

٧

or calculating the exponential gives:

1/freq = 2(0.694) R₄ C₁

Resistors R₃ and R₄ must be at least two times larger than R₅ to insure that V_o will go all the way up to V_{cc} in the high state. The frequency stability of this circuit should strictly be a function of the external components.

Free Running Multivibrator

A simple yet very stable oscillator that generates a clock for slower digital systems can be obtained by using a resonator as the feedback element. It is similar to the free running multivibrator, except that the positive feedback is obtained through a quartz crystal. The circuit oscillates when the transmission through the crystal is at a maximum, so the crystal in its series-resonant mode.

The value of R₁ and R₂ are equal so that the comparator will switch symmetrically about +V_{cc}/2. The RC constant of R₃ and C₁ is set to be several times greater than the period of the oscillating frequency, insuring a 50% duty cycle by maintaining a DC voltage at the inverting input equal to the absolute average of the output waveform.

Application Circuits (Continued)

Positive Peak Detector:

Positive peak detector is basically the comparator operated as a unit gain follower with a large holding capacitor from the output to ground. Additional transistor is added to the output to provide a low impedance current source. When the output of the comparator goes high, current is passed through the transistor to charge up the capacitor. The only discharge path will be the 1M ohm resistor shunting C1 and any load that is connected to the output. The decay time can be altered simply by changing the 1M ohm resistor. The output should be used through a high impedance follower to a avoid loading the output of the peak detector.

FIGURE 8. Positive Peak Detector

Negative Peak Detector:

For the negative detector, the output transistor of the comparator acts as a low impedance current sink. The only discharge path will be the 1 $M\Omega$ resistor and any load impedance used. Decay time is changed by varying the 1 $M\Omega$ resistor

FIGURE 9. Negative Peak Detector

Driving CMOS and TTL

The comparator's output is capable of driving CMOS and TTL Logic circuits.

FIGURE 10. Driving CMOS

FIGURE 11. Driving TTL

AND Gates

The comparator can be used as three input AND gate. The operation of the gate is as follow:

The resistor divider at the inverting input establishes a reference voltage at that node. The non-inverting input is the sum of the voltages at the inputs divided by the voltage dividers. The output will go high only when all three inputs are high, casing the voltage at the non-inverting input to go above that at inverting input. The circuit values shown work for a "0" equal to ground and a "1" equal to 5V.

The resistor values can be altered if different logic levels are desired. If more inputs are required, diodes are recommended to improve the voltage margin when all but one of the inputs are high.

www.national.com

10

2.1.3 LMV821/822/824 Datasheet

	Temperature Range			
Package	Industrial	Packaging Marking	Transport Media	NSC Drawing
	-40°C to +85°C			
5-Pin SC-70-5	LMV821M7	A15	250 Units Tape and Reel	MAA05
	LMV821M7X	A15	3k Units Tape and Reel	
-Pin SOT23-5	LMV821M5	A14	250 UnitsTape and Reel	MA05B
	LMV821M5X	A14	3k Units Tape and Reel	
3-Pin SO	LMV822M	LMV822M	Rails	M08A
	LMV822MX	LMV822M	2.5k Units Tape and Reel	
3-Pin MSOP	LMV822MM	LMV822	250 Units Tape and Reel	MUA08A
	LMV822MMX	LMV822	3.5k Units Tape and Reel	
14-Pin SO	LMV824M	LMV824M	Rails	M14A
	LMV824MX	LMV824M	2.5k Units Tape and Reel	
14-Pin TSSOP	LMV824MT	LMV824MT	Rails	MTC14
	LMV824MTX	LMV824MT	2.5k Units Tape and Reel	

Abso	olute Maximum Ratin	gs (Note 1)					
If Milita please o	ary/Aerospace specified device contact the National Semiconduc	es are required, ctor Sales Office/	Opera	ating Rati	ings (Note 1)	
Distribu	itors for availability and specific	ations.	Supply \	/oltage		2.5V t	o 5.5V
ESD To	olerance (Note 2)		Tempera	ature Range			
Mach	nine Model	100V LMV8		21, LMV822, L	MV824	–40°C ≤T _J	≤85°C
Human Body Model			Thermal	Resistance (0	(_{AL}		
LMV	822/824	2000V	Ultra ⁻	Tiny SC70-5 Pa	ackage	440 °C/	W
LMV	821	1500V	5-Pin	Surface Mount			
Differer	ntial Input Voltage ±	Supply Voltage	Tiny S	SOT23-5 Packa	age 5-Pin	265 °C/	W
Supply	Voltage (V+-V -)	5.5V	Surface		D		
Output	Short Circuit to V ⁺ (Note 3)		SU Pa Mor	ackage, 8-Pin :	Бипасе	10	°C/W
Output	Short Circuit to V ⁻ (Note 3)		MSOF	Packada 8-E	Pin Mini	150	5 0/11
Mounti	ng Temp.		Surface	Mount		23	5 °C/W
Lead	I Temp. (Soldering, 10 sec)	260°C	SO Pa	ackage, 14-Pin	Surface		
Infrai	red (10 sec)	215°C	Mou	unt		14	5 °C/W
Storage	e Temperature Range	–65°C to 150°C	TSSO	P Package, 14	-Pin	15	5 °C/W
Junctio	n Temperature (Note 4)	150°C					
2.7V Unless of Boldface	DC Electrical Character therwise specified, all limits guaranter limits apply at the temperature ex	cteristics nteed for T _J = 25°C. V ⁺ stremes.	= 2.7V, V	- = 0V, V _{CM} =	1.0V, V _O = 1.3	5V and R $_{\rm L}$ >	• 1 MΩ.
Symbol	Parameter	Condition		Typ (Note 5)	LMV821/8 Limit (N	322/824 lote 6)	Units
Vos	Input Offset Voltage			1	3 4		mV max
TCV _{OS}	Input Offset Voltage Average Drift			1			µV/°C
I _B	Input Bias Current			30	90		nA
					14)	max
los	Input Offset Current			0.5	30	1	nA
					50	1	max
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 1.7V$		85	70	1	dB
					68	;	min
+PSRR	Positive Power Supply	$1.7V \le V^+ \le 4V, V^- =$	1V, V _O =	85	75	1	dB
	Rejection Ratio	$0V, V_{CM} = 0V$			70	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	min
-PSRR	Negative Power Supply	-1.0V ≤ V ⁻ ≤ -3.3V, V ⁴	⁺ =1.7V,	85	75		dB
	Rejection Ratio	V _O = 0V, V _{CM} = 0V			70	ı	min
V _{CM}	Input Common-Mode Voltage	For CMRR ≥ 50dB		-0.3	-0.2	2	V
	Range						max
				2.0	1.9)	V
							min
A _V	Large Signal Voltage Gain	Sourcing, $R_L=600\Omega$ to	o 1.35V,	100	90		dB
		v _O =1.35V to 2.2V			85		min
		Sinking, $R_{L}=600\Omega$ to	1.35V,	90	85		dB
		v ₀ =1.33V to 0.3V	(05) (400	80		min
		Sourcing, $R_L=2k\Omega$ to V_=1.35V to 2.2V	1.35V,	100	95		dB
		Sinking P = 2k0 to 1	25	05	90		
		$V_{0}=1.35$ to 0.5V	,	90	90		ub min
					00		
		3				www	national.com

2.7V	DC Electrical Charac	teristics (Continued)			
Unless of Boldface	therwise specified, all limits guaran imits apply at the temperature ex	teed for $T_J = 25^{\circ}C$. V ⁺ = 2.7V, V tremes.	⁻ = 0V, V _{CM} =	1.0V, V_o = 1.35V and R $_{\rm L}$ >	1 MΩ.
Symbol	Parameter	Condition	Typ (Note 5)	LMV821/822/824 Limit (Note 6)	Units
Vo	Output Swing	$V^+=2.7V$, $R_L=600\Omega$ to 1.35V	2.58	2.50	V
				2.40	min
			0.13	0.20	V
				0.30	max
		V ⁺ =2.7V, R _L = 2kΩ to 1.35V	2.66	2.60	V
				2.50	min
			0.08	0.120	V
				0.200	max
I _o	Output Current	Sourcing, V _O =0V	16	12	mA
					min
		Sinking, V _o =2.7V	36	20	mA
					min
Is	Supply Current	LMV821 (Single)	0.22	0.3	mA
				0.5	max
		LMV822 (Dual)	0.45	0.6	mA
				0.8	max
		LMV824 (Quad)	0.72	1.0	mA
				1.2	max
Unless of Boldface	therwise specified, all limits guaran limits apply at the temperature ex	teed for $T_J = 25^{\circ}C$. V ⁺ = 2.5V, V tremes.	⁻ = 0V, V _{CM} =	1.0V, $V_0 = 1.25V$ and R $_L >$	1 MΩ.
Symbol	Parameter	Condition	(Note 5)	Limit (Note 6)	Units
Vos	Input Offset Voltage		1	3	mV
				4	max
Vo	Output Swing	$V^{+}=2.5V, R_{L}=600\Omega$ to 1.25V	2.37	2.30	V .
				2.20	min
			0.13	0.20	V
			0.40	0.30	max
		V =2.5V, R _L = 2K22 10 1.25V	2.40	2.40	V
			0.00	2.30	min
			0.08	0.12	V
				0.20	max
2.7V Unless of Boldface	AC Electrical Charac therwise specified, all limits guaran limits apply at the temperature ex	teristics teed for $T_J = 25^{\circ}C. V^* = 2.7V, V$ tremes.	⁻ = 0V, V _{CM} =	1.0V, V _O = 1.35V and R _L >	1 MΩ.
Symbol	Parameter	Conditions	Typ (Note 5)	LMV821/822/824 Limit (Note 6)	Units
SR	Slew Rate	(Note 7)	1.5		V/µs
GBW	Gain-Bandwdth Product		5	l	MHz
			-		101112
Φ _m	Phase Margin		61		Deg.

(Note 8)

f = 1 kHz, V_{CM} = 1V

4

135

28

dB <u>nV</u> √Hz

www.national.com

en

Amp-to-Amp Isolation

Input-Related Voltage Noise

2.7V AC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for T_J = 25°C. V⁺ = 2.7V, V⁻ = 0V, V_{CM} = 1.0V, V_O = 1.35V and R_L > 1 MΩ. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMV821/822/824 Limit (Note 6)	Units
i _n	Input-Referred Current Noise	f = 1 kHz	0.1		<u>pA</u> √Hz
THD	Total Harmonic Distortion	$ f = 1 \text{ kHz}, \text{A}_{\text{V}} = -2, \\ \text{R}_{\text{L}} = 10 \text{ k}\Omega, \text{V}_{\text{O}} = 4.1 \text{V}_{\text{PP}} $	0.01		%

5V DC Electrical Characteristics Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$. V⁺ = 5V, V⁻ = 0V, V_{CM} = 2.0V, V_O = 2.5V and R_L > 1 MΩ. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	Typ (Note 5)	LMV821/822/824 Limit (Note 6)	Units
Vos	Input Offset Voltage		1	3	mV
				4.0	max
TCV _{OS}	Input Offset Voltage Average Drift		1		μV/°C
I _B	Input Bias Current		40	100	nA
				150	max
l _{os}	Input Offset Current		0.5	30	nA
				50	max
CMRR	Common Mode Rejection Ratio	$0V \le V_{CM} \le 4.0V$	90	72	dB
				70	min
+PSRR	Positive Power Supply	$1.7V \le V^+ \le 4V, V^- = 1V, V_O =$	85	75	dB
	Rejection Ratio	0V, V _{CM} = 0V		70	min
-PSRR	Negative Power Supply	$-1.0V \le V^- \le -3.3V, V^+ = 1.7V,$	85	75	dB
	Rejection Ratio	$V_{O} = 0V, V_{CM} = 0V$		70	min
V _{CM}	Input Common-Mode Voltage Range	For CMRR ≥ 50dB	-0.3	-0.2	V
			4.3	12	
			4.5	4.2	min
^	Larga Signal Voltage Gain	Sourcing P =6000 to 2.5V	105	05	
ηv	Large Signar Voltage Gain	$V_{o}=2.5 \text{ to } 4.5 \text{V}$	105	95	min
		Sinking $R = 6000$ to 2.5V	105	90	dB
		$V_{O}=2.5$ to 0.5V	100	90	min
		Sourcing $B_{1} = 2k\Omega$ to 2.5V	105	95	dB
		$V_{O}=2.5 \text{ to } 4.5 \text{V}$	100	90	min
		Sinking $R_1 = 2k\Omega$ to 2.5	105	95	dB
		V _O =2.5 to 0.5V	100	90	min
Vo	Output Swing	$V^{+}=5V.R_{1}=600\Omega$ to 2.5V	4.84	4.75	V
. 0				4.70	min
			0.17	0.250	V
				.30	max
		V ⁺ =5V, R ₁ =2kΩ to 2.5V	4.90	4.85	V
		, E		4.80	min
			0.10	0.15	V
				0.20	max

5

5V DC Electrical Characteristics (Continued)

Unless otherwise specified, all limits guaranteed for T_J = 25°C. V⁺ = 5V, V⁻ = 0V, V_{CM} = 2.0V, V_O = 2.5V and R_L > 1 MΩ. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Condition	Typ (Note 5)	LMV821/822/824 Limit (Note 6)	Units
I _o	Output Current	Sourcing, V _O =0V	45	20	mA
				15	min
		Sinking, V _O =5V	40	20	mA
				15	min
Is	Supply Current	LMV821 (Single)	0.30	0.4	mA
				0.6	max
		LMV822 (Dual)	0.5	0.7	mA
				0.9	max
		LMV824 (Quad)	1.0	1.3	mA
				1.5	max

5V AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}$ C. V⁺ = 5V, V⁻ = 0V, V_{CM} = 2V, V_O = 2.5V and R_L > 1 MΩ. Boldface limits apply at the temperature extremes.

Symbol	Parameter	Conditions	Typ (Note 5)	LMV821/822/824 Limit (Note 6)	Units
SR	Slew Rate	(Note 7)	2.0	1.5	V/µs min
GBW	Gain-Bandwdth Product		5.6		MHz
Φ_{m}	Phase Margin		67		Deg.
G _m	Gain Margin		15		dB
	Amp-to-Amp Isolation	(Note 8)	135		dB
e _n	Input-Related Voltage Noise	$f = 1 \text{ kHz}, V_{CM} = 1V$	24		nV √Hz
i _n	Input-Referred Current Noise	f = 1 kHz	0.25		<u>pA</u> 1√Hz
THD	Total Harmonic Distortion	f = 1 kHz, A _V = -2, R _L = 10 kΩ, V _O = 4.1 V _{PP}	0.01		%

tended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical 0 Note 2: Human body model, 1.5 k Ω in series with 100 pF. Machine model, 200 Ω in series with 100 pF.

Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may adversely affect reliability.

Note 4: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J^-}, m_A) = T_A / \theta_{JA}$.

Note 5: Typical Values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: V⁺ = 5V. Connected as voltage follower with 3V step input. Number specified is the slower of the positive and negative slew rates.

Note 8: Input referred, V⁺ = 5V and R_L = 100 k Ω connected to 2.5V. Each amp excited in turn with 1 kHz to produce V _O = 3 V_{PP}.

2-54 National Semiconductor

LMV Products Qualification Package 2-55

APPLICATION NOTE

This application note is divided into two sections: design considerations and Application Circuits.

1.0 Design Considerations

- This section covers the following design considerations:
- 1. Frequency and Phase Response Considerations
- 2. Unity-Gain Pulse Response Considerations
- 3. Input Bias Current Considerations

1.1 Frequency and Phase Response Considerations

The relationship between open-loop frequency response and open-loop phase response determines the closed-loop stability performance (negative feedback). The open-loop phase response causes the feedback signal to shift towards becoming positive feedback, thus becoming unstable. The further the output phase angle is from the input phase angle, the more stable the negative feedback will operate. Phase Margin (ϕ_m) specifies this output-to-input phase relationship at the unity-gain crossover point. Zero degrees of phasemargin means that the input and output are completely in phase with each other and will sustain oscillation at the unitygain frequency.

The AC tables show ϕ_m for a no load condition. But ϕ_m changes with load. The Gain and Phase vs Frequency plots in the curve section can be used to graphically determine the ϕ_m for various loaded conditions. To do this, examine the phase angle portion of the plot, find the phase margin point at the unity-gain frequency, and determine how far this point is from zero degree of phase-margin. The larger the phasemargin, the more stable the circuit operation.

The bandwidth is also affected by load. The graphs of Figure 1 and Figure 2 provide a quick look at how various loads affect the ϕ_m and the bandwidth of the LMV821/822/824 family. These graphs show capacitive loads reducing both ϕ_m and bandwidth, while resistive loads reduce the bandwidth but increase the ϕ_m . Notice how a 600 Ω resistor can be added in parallel with 220 picofarads capacitance, to increase the ϕ_m 20°(approx.), but at the price of about a 100 kHz of bandwidth.

Overall, the LMV821/822/824 family provides good stability for loaded condition.

FIGURE 1. Phase Margin vs Common Mode Voltage for Various Loads

11

FIGURE 2. Unity-Gain Frequency vs Common Mode Voltage for Various Loads

1.2 Unity Gain Pulse Response Considerations

A pull-up resistor is well suited for increasing unity-gain, pulse response stability. For example, a 600 Ω pull-up resistor reduces the overshoot voltage by about 50%, when driving a 220 pF load. *Figure 3* shows how to implement the pull-up resistor for more pulse response stability.

FIGURE 3. Using a Pull-up Resistor at the Output for Stabilizing Capacitive Loads

Higher capacitances can be driven by decreasing the value of the pull-up resistor, but its value shouldn't be reduced beyond the sinking capability of the part. An alternate approach is to use an isolation resistor as illustrated in *Figure 4. Figure 5* shows the resulting pulse response from a LMV824, while driving a 10,000pF load through a 20 Ω isolation resistor.

FIGURE 4. Using an Isolation Resistor to Drive Heavy Capacitive Loads

FIGURE 5. Pulse Response per Figure 4

1.3 Input Bias Current Consideration

Input bias current (I_B) can develop a somewhat significant offset voltage. This offset is primarily due to I_B flowing through the negative feedback resistor, R_F. For example, if I_B is 90nA (max room) and R_F is 100 kΩ, then an offset of 9 mV will be developed (V_{OS}=I_Bx R_F). Using a compensation resistor (R_C), as shown in *Figure* 6, cancels out this affect. But the input offset current (I_{OS}) will still contribute to an offset voltage in the same manner - typically 0.05 mV at room temp.

FIGURE 6. Canceling the Voltage Offset Effect of Input Bias Current

2.0 APPLICATION CIRCUITS

- This section covers the following application circuits:
- 1. Telephone-Line Transceiver
- 2. "Simple" Mixer (Amplitude Modulator)
- 3. Dual Amplifier Active Filters (DAAFs)
- a. Low-Pass Filter (LPF)
- b. High-Pass Filter (HPF)

www.national.com

5. Tri-level Voltage Detector

2.1 Telephone-Line Transceiver

The telephone-line transceiver of *Figure 7* provides a fullduplexed connection through a PCMCIA, miniature transformer. The differential configuration of receiver portion (UR), cancels reception from the transmitter portion (UT). Note that the input signals for the differential configuration of UR, are the transmit voltage (Vt) and Vt/2. This is because R_{match} is cobsen to match the coupled telephone-line impedance; therefore dividing Vt by two (assuming R1 >> R3). The differential configuration of UR has its resistor chosen to cancel the Vt and Vt/2 inputs according to the following equation:

FIGURE 7. Telephone-line Transceiver for a PCMCIA Modem Card

Note that Cr is included for canceling out the inadequacies of the lossy, miniature transformer. Refer to application note AN-397 for detailed explanation.

2.2"Simple" Mixer (Amplitude Modulator)

The mixer of *Figure 8* is simple and provides a unique form of amplitude modulation. Vi is the modulation frequency (F_M), while a +3V square-wave at the gate of Q1, induces a carrier frequency (F_C). Q1 switches (toggles) U1 between inverting and non-inverting unity gain configurations. Offsetting a sine wave above ground at Vi results in the oscilloscope photo of *Figure 9*.

The simple mixer can be applied to applications that utilize the Doppler Effect to measure the velocity of an object. The difference frequency is one of its output frequency components. This difference frequency magnitude ($F_{M^*}F_C$) is the key factor for determining an object's velocity per the Doppler Effect. If a signal is transmitted to a moving object, the reflected frequency will be a different frequency. This difference in transmit and receive frequency is directly proportional to an object's velocity.

-15100128-40

2.4 Dual Amplifier Active Filters (DAAFs)

The LMV822/24 bring economy and performance to DAAFs. The low-pass and the high-pass filters of *Figure 10* and *Figure 11* (respectively), offer one key feature: excellent sensitivity performance. Good sensitivity is when deviations in component values cause relatively small deviations in a filter's parameter such as cutoff frequency (Fc). Single amplifier active filters like the Sallen-Key provide relatively poor sensitivity performance that sometimes cause problems for high production runs; their parameters are much more likely to deviate out of specification than a DAAF would. The DAAFs of *Figure 10* and *Figure 11* are well suited for high volume production.

FIGURE 10. Dual Amplifier, 3 kHz Low-Pass Active Filter with a Butterworth Response and a Pass Band Gain of Times Two

FIGURE 11. Dual Amplifier, 300 Hz High-Pass Active Filter with a Butterworth Response and a Pass Band Gain of Times Two

Table 1 provides sensitivity measurements for a 10 M Ω condition. The left column shows the passive components for the 3 kHz low-pass DAAF. The third column shows the components for the 300 Hz high-pass DAAF. Their respective sensitivity measurements are shown to the right of each component column. Their values consists of the percent change in cutoff frequency (Fc) divided by the percent change in component value. The lower the sensitivity value, the better the performance.

Each resistor value was changed by about 10 percent, and this measured change was divided into the measured change in Fc. A positive or negative sign in front of the measured value, represents the direction Fc changes relative to components' direction of change. For example, a sensitivity value of negative 1.2, means that for any 1 percent increase in component value, Fc decreases by 1.2 percent.

Note that this information provides insight on how to fine tune the cutoff frequency, if necessary. It should be also noted that R_4 and R_5 of each circuit also caused variations in

the pass band gain. Increasing R_4 by ten percent, increased the gain by 0.4 dB, while increasing R_5 by ten percent, decreased the gain by 0.4 dB.

TABLE 1

Component (LPF)	Sensitivity (LPF)	Component (HPF)	Sensitivity (HPF)
R _a	-1.2	C _a	-0.7
C ₁	-0.1	R _b	-1.0
R ₂	-1.1	R ₁	+0.1
R ₃	+0.7	C ₂	-0.1
C ₃	-1.5	R ₃	+0.1
R ₄	-0.6	R ₄	-0.1
R5	+0.6	R ₅	+0.1

Active filters are also sensitive to an op amp's parameters -Gain and Bandwidth, in particular. The LMV822/24 provide a large gain and wide bandwidth. And DAAFs make excellent use of these feature specifications.

Single Amplifier versions require a large open-loop to closed-loop gain ratio - approximately 50 to 1, at the Fc of the filter response. *Figure 12* shows an impressive photograph of a network analyzer measurement (hp3577A). The measurement was taken from a 300kHz version of *Figure 10*. At 300 kHz, open-loop to closed-loop gain ratio (Fc) about 5 to 1 (footnote). This is 10 times lower than the 50 to 1 "rule of thumb" for Single Amplifier Active Filters.

FIGURE 12. 300 kHz, Low-Pass Filter, Butterworth Response as Measured by the HP3577A Network Analyzer

In addition to performance, DAAFs are relatively easy to design and implement. The design equations for the low-pass and high-pass DAAFs are shown below. The first two equation calculate the Fc and the circuit Quality Factor (Q) for the LPF (*Figure 10*). The second two equations calculate the Fc and Q for the HPF (*Figure 11*).

To simplify the design process, certain components are set equal to each other. Refer to *Figure 10* and *Figure 11*. These equal component values help to simplify the design equations as follows:

To illustrate the design process/implementation, a 3 kHz, Butterworth response, low-pass filter DAAF (*Figure 10*) is designed as follows:

1. Choose $C_1 = C_3 = C = 1 \text{ nF}$

2. Choose
$$R_4 = R_5 = 1 \ k\Omega$$

3. Calculate $\rm R_a$ and $\rm R_2$ for the desired Fc as follows:

$$R_{a} = R_{2} = \frac{1}{2\pi(F_{C})C}$$
$$= \frac{1}{2\pi(3 \text{ kHz}) \text{ In F}}$$
$$= 53.1 \text{ k}\Omega$$
$$\cong 53.6 \text{ k}\Omega \text{ (Practical Value)}$$

4. Calculate R_3 for the desired Q. The desired Q for a Butterworth (Maximally Flat) response is 0.707 (45 degrees into the s-plane). R_3 calculates as follows:

$$R_{3} = \frac{0}{2\pi(\Gamma_{c})c}$$
$$= \frac{0.707}{2\pi(3 \text{ kHz}) \ln F}$$
$$= 37.5 \text{ kn}$$
$$\cong 37.4 \text{ kn} (Practical Value)$$

Notice that R_3 could also be calculated as 0.707 of R_a or $R_2.$ The circuit was implemented and its cutoff frequency measured. The cutoff frequency measured at 2.92 kHz.

The circuit also showed good repeatability. Ten different LMV822 samples were placed in the circuit. The corresponding change in the cutoff frequency was less than a percent.

www.national.com

14

2.5 Tri-level Voltage Detector

The tri-level voltage detector of *Figure 13* provides a type of window comparator function. It detects three different input voltage ranges: Min-range, Mid-range, and Max-range. The output voltage (V_O) is at V_{CC} for the Min-range. V_O is at V_{ee}. *Figure 14* shows a V_O vs. V_I oscilloscope photo per the circuit of .

Its operation is as follows: V₁ deviating from GND, causes the diode bridge to absorb I_{IN} to maintain a clamped condition (V_o= 0V). Eventually, I_{IN} reaches the bias limit of the diode bridge. When this limit is reached, the clamping effect

stops and the op amp responds open loop. The design equation directly preceding *Figure 13*, shows how to determine the clamping range. The equation solves for the input voltage band on each side GND. The mid-range is twice this voltage band.

$$\Delta V = \frac{R}{R_1} (V_{CC} - V_{Diode})$$

 $|-\Delta V \rightarrow |-\Delta V \rightarrow |$

ov

FIGURE 14. X, Y Oscilloscope Trace showing V_{OUT} vs V_{\rm IN} per the Circuit of Figure 13

+V_{IN}

DS100128-35

^0^+

-V₀

15

-V_{IN}

FIGURE 13. Tri-level Voltage Detector

2.2 Die Photos 2.2.1 LMV324/339

2.2.2 LMV358/393

2.2.3 LMV321/331

2.2.4 LMV824/822

2-74 National Semiconductor

2.2.5 LMV821

3.0 PROCESS INFORMATION

3.0 PROCESS INFORMATION

3.1 Process Flow

Fabrication Site: South Portland Fairchild

Process Technology: CS80CBi (Submicron Silicon Gate CMOS/Bipolar)

Wafer Diameter: 6 inch

Number of Masks: 18

Metalization: 0.5% Copper, dual layer Aluminum metal,

 1^{st} layer = 7,500Å thick 2^{nd} layer = 12,000Å thick

Top Side Passivation: Polyamide (30,000A thick)

over Nitride (11,500A thick) over Oxide (5,000A thick)

3.2 Process Detail & Masks

- 1: Initial Oxide
- 2: Trench Define & Etch
- 3: Mask 0.6, N- Iso
- 4: N- Iso Implant
- 5: N- Iso Drive
- 6: N- Iso Oxide Strip & Screen Oxide
- 7: Mask 0.8, N+ Buried Layer
- 8: N+ Buried Layer Implant
- 9: Mask 0.9, P+ Buried Layer
- 10: P+ Buried Layer Implant
- 11: Buried Layer Anneal
- 12: Epi Growth
- 13: Pad Oxide & Nitride
- 14: Mask 1.0, N-Well
- 15: N- Well Implant
- 16: Selective Oxide
- 17: N-Well Nitride Strip
- 18: P-Well Implant
- 19: Selective Oxide Etch
- 20: N- Well & P- Well Drive-In Oxide
- 21: Drive-In Oxide Strip
- 22: Mask 2.0, Composite
- 23: Composite Pad Oxide & Composite Nitride
- 24: Composite Mask Etch
- 25: Mask 3.0, P- Field
- 26: P- Field Implant
- 27: Iso Field Oxide
- 28: Active (Composite Area) Nitride Strip
- 29: Pad Oxide Removal & Sacrificial Oxide Growth & Vt Adjust Implant
- 30: Sacrificial Oxide Strip & Gate Oxide & Poly Deposition
- 31: Poly Dope & Poly Anneal

3.0 PROCESS INFORMATION

3.2 Process Detail & Masks (cont)

32: Mask 4.0, Poly 33: Poly Etch 34: Poly Seal Oxide 35: Mask 4.3, P-LDD 36: P-LDD Implant 37: Mask 4.5, N-LDD 38: N-LDD Implant 39: Spacer Oxide Deposit & Etch 40: Mask 5.0, N+ 41: N+ Implant 42: Mask 5.5, Base 43: Base Etch & Base Implant 44: N+ Drive 45: Mask 6.0, P+ 46: P+ Implant 47: Dielectric Layer1 & P+ Anneal 48: SOG 49: Mask 7.0, Window 50: Window Etch & Contact Dielectric 51: Mask 7.1, Contact 52: Contact Etch 53: Contact Plug & Etchback 54: Metal1 Deposition 55: Mask 8.0, Metal1 56: Metal1 Etch 57: Metal1 Alloy 58: Dielectric Layer2 59: Mask 9.0, Via 60: Via Etch 61: Via Deposition & Metal2 Deposit 62: Mask 10.0, Metal2 63: Metal2 Etch 64: Passivation Oxide/Nitride/Polyamide 65: Mask 13.0, Passivation 66: Passivation Etch

4.1 PACKAGE MATERIAL & DIMENSIONS

Generic Package Type

14 Lead SOIC

NS Package Number

Package/Compound Manufacturer

Package/Compound Mfg's Designation

Lead Frame Material Manufacturer

External Lead Frame Coating

Pins

Die Attached Method

Bond Wire

Bond Type

Package Thermal

M14A

Epoxy Cresol Novolac Sumitomo

Sumitomo EME-1100R NSC B14

Copper NSC-DCI

Solder Plate Sn/Pb

Gull Wing, 9mils Thick

Poly 6

Gold, 0.9mils

Hot Thermosonic Ball

145°C/W for LMV324 LMV824, and LMV339 14 Lead TSSOP

MTC14

Epoxy Cresol Novolac Sumitomo

Sumitomo EME-7351LS

Copper

Solder Plate Sn/Pb

Gull Wing, 6mils Thick

Poly 6

Gold, 0.9mils

Hot Thermosonic Ball

155°C/W for LMV324, LMV824, and LMV339

4.1 PACKAGE MATERIAL & DIMENSIONS (cont)

Generic Package Type	8 Lead SOIC	8 Lead MSOP
NS Package Number	M08A	MUA08A
Package/Compound Manufacturer	Epoxy Cresol Novolac Sumitomo	Epoxy Cresol Novolac Nitto Denko
Package/Compound Mfg's Designation	Sumitomo EME-1100R NSC B14	Nitto MP-7400
Lead Frame Material Manufacturer	Copper NSC-DCI	Copper
External Lead Frame Coating	Solder Plate Sn/Pb	Solder Plate Sn/Pb
Pins	Gull Wing, 9mils Thick	Gull Wing, 7mils Thick
Die Attached Method	Poly 6	Ероху
Bond Wire	Gold, 0.9mils	Gold, 0.9mils
Bond Type	Hot Thermosonic Ball	Hot Thermosonic Ball
Package Thermal	190°C/W for LMV358, LMV 322, and LMV393	235°C/W for LMV358 LMV 322, and LMV393

4.1 PACKAGE MATERIAL & DIMENSIONS (cont)

Generic Package Type

NS Package Number

Package/Compound Manufacturer

Package/Compound Mfg's Designation

Lead Frame Material Manufacturer

External Lead Frame Coating

Pins

Die Attached Method

Bond Wire

Bond Type

Package Thermal

5 Lead SOT-23

MA05B

Epoxy Cresol Novolac Sumitomo

Sumitomo EME-6710 NSC B18

Copper NSC-DCI

Solder Plate Sn/Pb

Gull Wing, 6mils Thick

Eutectic, Crr/Ag/Sn

Gold, 1.0mils

Hot Thermosonic Ball

265°C/W for LMV321, LMV821, and LMV331 5 Lead SC70

MAA05A

Epoxy Cresol Novolac Nitto Denko

Nitto MP-8000C

Copper Enomoto

Solder Plate Sn/Pb

Gull Wing, 6mils Thick

Eutectic, Crr/Ag/Sn

Gold, 1.0mils

Hot Thermosonic Ball

478°C/W for LMV321 LMV821, and LMV331

14 Pin Small Outline Order Number LMV324M, LMV324MX, LMV339M, LMV339MX, LMV824M and LMV824MX NS Package Number M14A

14 Pin TSSOP Order Number LMV324MT, LMV324MTX, LMV339TM, LMV339MTX, LMV824MT and LMV824MTX NS Package Number MTC14

8 Pin Small Outline Order Number LMV358M, LMV358MX, LMV393M, LMV393MX, LMV822M, and LMV822MX NS Package Number M08A

8 Pin MSOP Order Number LMV358MM, LMV358MMX, LMV393MM, LMV393MMX, LMV822MMX and LMV822MMX NS Package Number MUA08A

LMV Products Qualification Package 4-5

5 Pin SOT23-5 Tape and Reel Order Number LMV321M5, LMV321M5X, LMV331M5, LMV331M5X, LMV821M5, and LMV821M5X NS Package Number MA05B

5 Pin SC70-5 Tape and Reel Order Number LMV321M7, LMV321M7X, LMV331M7, LMV331M7X, LMV821M7, and LMV821M7X NS Package Number MAA05A

4.2 BONDING DIAGRAMS

⁴⁻⁸ National Semiconductor

⁴⁻¹⁰ National Semiconductor

LMV Products Qualification Package 4-11

⁴⁻¹⁸ National Semiconductor

⁴⁻²⁰ National Semiconductor

⁴⁻²² National Semiconductor

⁴⁻²⁴ National Semiconductor

4.3 TAPE AND REEL DIAGRAMS

For 14 lead TSSOP look at dimensions in table for OPT01 (STOCK #053044)

Tamir and 1112-50 C=0055ED STIPPE ST BEND RADUS BOIL 19 XAU Takes, 3 \$1ATIC E I ł φ and in the second MARY STREET 15 2 HH. TAPE 3121 PEDESTAL OFTION TIPICAL OF TO VALL 1 * LEADS ÷ AL 01 01 10 10 10 SECTION A-A 0PT 5TOCK = 1 11.1.10 DIMENSIONS ARE IN MILLIMETERS 5 ------(T AS AND NO MUTABLE OF A FLAME & AND AT THE BELINK OF THE PERTER FOLLOW RELATIVE TO SPECIAL MALE MANAGED AS 1980 PERTERA AN INCOLO 15 DETERMINE Comparing Fully included for support on the sector of the SECTION 8-8 -11's Textuics? automatic stretes annual. NOTES: WILLS DISCHARTE INCOMEN Committe more his COCCO (and in pros-1 100 0 T F R I **Litranet** Lari . 2 4 -

4.0 PACKAGING INFORMATION

LMV Products Qualification Package 4-27

For 8 lead SOIC look at dimensions in table for OPT01 (STOCK #025349) For 14 lead SOIC look at dimensions in table for OPT02 (STOCK #025350) For 8 lead MSOP look at dimensions in table for OPT17 (STOCK #060860)

ΠI	23 23	8.	8	1	12	22	1021	ŝ	32	12	12	-	-	-	-	-	-								This are the second	10.2	139-149
開き	100	100	-	197	1	100	221	1	15	11 1	121	111	121	100	140	105	141	14 810						1 mm	TAPE TA	12.16 M	10 125
	:	10.10	10.11	100	100	10.00	11.20	0.0	11.52			:			111		141	UN NI						11.1.4.2	2	1	-
	W.V	140	144	55	10.00	10.00	121	11.25	10.01	10	11.11	10	10	100	12.41	(2.1)	10.11							a l'inne	THE PARTY IN		ľ
	-	1	1		1	1000	10	-	-	:		:	:	:	-	-	-	D14 11-						and services of	11	1	T
	114	-	-	-	-	13,451	1410	808	AVA.	111	111	101	-	-	10.0	N.M.	1	-								11.11	1
	10	8/18	118	110	-	100	100	8/18	110	N/N	-	818	-	111	-	111	5	91H C*								100111000 ID	
	118	111	818	N/N	N/M	194	12.40	818	-	-	-	-	-	-	-	-		01N 0								The statement	
	120	TANK IN	N.U.	10,00	11.51	tit.31	10.00	0.50	12.10	(15.35)	cin.30	111.00	15:00	15 13	0.50	10.11	13.00	-								11	11:
	5	10.00	11.11	:	ci Nati			100	10.11	-		-	-	11.1	-	111	111	DIMI									
	-	10 10	100	-	12 12	-	-	11.51	10.11	-	-	aia	414	-	-	-	:	011 00		¥ N							
	101	(2.3)	12.31	111	(1.1)	***	814	12.53	11.11		114	AVA.	N/N	MI/A	A11	RVA.	¥/8	0 810		8							
	-	13.50	0.0	81.8	(N.31	-	N/N	16.23	14.11	11.0	ana.	AVA	4/18	AVA.	W/W	#1/W		DIN C.									
		14, 53	(11)	BrA.	0.10	111	-	10.11	0.0		114	111	101	878	N/N	8/4	8/18	DIN C								Tros	
	10.00	100.01	10.41	100	194.31	113.01	113.31	tin. ht	19.50	10.01	115.00	10,011	110.11	6.5	110.011	10.50	1								116304	THE POST	Corts access
	0.50	110.411	10.453	11.555	110.451	110.025	10.45	110.41	165,45	110.433	魏	113,400	110.011	14.450	110.401	161,450	14.1	-		102.0		contr.	g		-	EABARD A	I II IIII
	16.21	10.01	NN IST	10.10	11.11	110.011	ris al	110.01	Cities in the second	1	110.00	5.0	in the second	10.00	16.91	IN NI	15.51			110 010	ľ		C BINCHES	Sist	NUMBER OF	11861.10	CO. DIMENT
	1020	101.101	101.00	il.mit	111.051	120.051	11.11	111.051	10.01	110.001	10.01	110.001	101.111	10.01	in and	1011	1.0	* *	8	10,12	In solution	11 0001	100 101	Press, 1	Sand P	Sert of	and the state
1	Į	1	ĩ	ï	ĩ	ī	ï	į	ļ	Į	Į	į	ł	Ī	ł	ī	ï	1 Mil	SC SPIC	anno.	1.800	CANTY	104.45	12.0	Fig.	THE PARTY	21 1015
	N0-01	******	#1-05		80-244	#12-0S	#42-0d	all-02	80-148	80-D8	a+1-05	#02-0t	##1-0t	80-144	#1-01	89-148	***-OE	TYPE	IN OTHER	COLOR MODEL	IT BUILDINGS	201501 110	Ches - in	The party of	OPICO CREME	POLITICA 1	11105 0100
4	*****	-	-	110010	\$58899			11000	1110010	11111		101125		0.029	111112	951529	-	\$1008	DIES: MI	151	P. Sault	-	THE R	5. AL 00	1000	P. SPORT	A. Clenks
	=	1	1	2	=	=	=	2	=	2	=	=	:	:	=	¥	=	CP1	2								

4-30 National Semiconductor

LMV Products Qualification Package 4-31

For 5 lead SOT-23 look at dimensions in table for OPT03 (STOCK #052803)

LMV Products Qualification Package 4-33

4-34 National Semiconductor

For SC70 Package

4-36 National Semiconductor

LMV Products Qualification Package 4-37

5.1 Reliability Reports for LMV3xx

Reliability Test Report

File Number: FSC19970377 Originator: Raj Subramoniam Date:October 8, 1997

Purpose	Approvals
THE LMV324/LMV358 NEW DEVICE QUALIFICATIONS	Arthe the 3-16-98 Date Internet Date Date 21 rest Across 3-16-98 No has laphanting Date
Reference File Net obers	Distribution List
RSC199701567 RSC199701566 RSC199701565 Q19960592	Std. Analog: Frank Smoot, Sharon Ignaut, Tuc Doan Rei Engineering: Nick Stanco, Al Sezen File

Abstract

The LMV324 is a new device that will be fabricated with CS80CBI process in the 6 inch fab line in NSFM. This device is a high performance, low voltage quad operational amplifier that will be available in both SOIC 14 leads and TSSOP 14 leads packages. The LMV358 is a dual operational amplifier, and is metal mask option of the LMV324. The LMV358 will be available in both MSOP-8 and SOIC-8 packages.

The reliability testing was completed successfully as per the qualification plan. Based on the excellent results obtained, the LMV324 (in TSSOP-14 and SOIC-14) and LMV358 (in MSOP-8 and SOIC-8) is now fully qualified and released to production.

Human Body and Machine model ESD characterizations were performed on LMV324, and was found to be rated at 2.25KV and 100V, respectively. The LMV358 also passed Latch-up test (+/- 300mA over-current and 10V overvoltage condition) as per JEDEC Standard 17.

Description

Teet Request	Device Name	Sbgo Wafer Die Run	Fab	Fab Line	Ping Code	# Leads	Assy Loc	Date Cd	Mold Crept
RSC199701565	LMV324M	A	FM	6 INCH	SOIC	14	EM	9718	B14
RSC199701566	LMV358MM	A	FM	6 INCH	MSOP	8	EM		N7400
RSC199701567	LMV324MTC	A	FM.	6 INCH	TSSOP	14	AN"	9724	KMV184H
· AMKOR, Philip	pines								

NSC Company Confidential

Tests Performed Test: Autoclave Test with Level 1 Preconditioning (ACLV) Device LMV324M **Rel Humidity** Test Request Sbgrp Pressure High Temp LowTemp RSC199701585 A 100 15 121 0 LMV358MM 100 RSC199701556 A 15 121 0 RSC199701557 LMV324MTC 100 A 15 121 0 TP Duration Timepoints: Test Request RSC199701585/1566/1567 168 1 RSC199701565/1566/1567 2 336 Test: Operating Life Test (Static) (SOPL, bias condition +/- 2.75V)) Test Request RSC199701565 Device LMV324M High Temp LowTemp Sbgrp Rei Humidity Pressure Board Number 5010RE 150 A 0 Ó 0 LMV358MM A 150 Ô 0 5256RE RSC199701568 ō RSC199701567 LMV324MTC 0 0 150 0 5531RE A TP Duration Timepoints: **Test Request** RSC199701565/1565/1567 168 RSC199701565/1565/1567 2 500 RSC199701565/1566/1567 3 1000 Test: Temperature Cycle with Level 1 Preconditioning (TMCL) Test Request Device Shore Rei Sbgrp **Rei Humidity** Pressure High Temp LowTemp RSC199701555 LMV324M 0 -65 A 0 150 RSC199701566 LMV358MM ô 150 -65 A 0 LMV324MTC A 0 150 -65 RSC199701567 ۵ Test Request RSC199701565/1556/1567 Timepoints: TP Duration 1 500 RSC199701565/1566/1667 2 1000 Test: Temperature Humidity Bias Test with level 1 Preconditioning (THBT, bias condition +/-2.75V) **Rel Humidity** LowTemp Board Number Test Request Device Pressure High Temp Sbgrp RSC199701565 LMV324M 5011RE 85 0 85 0 A LMV358MM õ RSC199701566 85 0 85 5257RE A LMV324MTC 5532RE RSC199701557 85 0 85 ø ۸ Timepoints: **Test Request** TP Duration RSC199701565 168 RSC199701565 2 500 RSC199701565 3 1000 RSC199701567 1 168 RSC199701567 2 500 RSC199701567 3 524 1024 RSC199701567 4 RSC199701566 168 1 RSC199701566 500 2 644 RSC199701566 з RSC199701566 1000 4 Note: Level 1 Preconditioning: 85°C/85%RH moisture soak for 168 hrs. followed by 3 passes of 235°C IR reflow. Results/Discussion Test: Autoclave Test (ACLV) Test Request Device Sbgrp TP Duration Sample Size Rejects RSC199701565 168 77 0 LMV324M A 1 RSC199701565 LMV324M 2 336 77 0 A 0 RSC199701566 LMV358MM A 1 168 77 2 336 77 0 RSC199701566 LMV358MM A 168 77 0 RSC199701567 LMV324MT А 1 2 336 77 0 A RSC199701567 LMV324MT

NSC Company Confidential

Page 2

Printed: 12/05/96 1:33:02 PM

LMV Products Qualification Package 5-3

Test: Operati	ng Life Test	(Static)	(SOPI	1		-	
Test Request	Device	Sbgr	P TP	Duration	Sample	Size	Rejects
RSC199701565	LMV324M	A	1	168	77		0
RSC199701565	LMV324M	A	2	500	77		0
RSC199701565	LMV324M	A	3	1000	77		0
RSC199701566	LMV358MM	A	1	168	77		0
RSC199701566	LMV358MM	A	2	500	77		0
RSC199701566	LMV358MM	A	3	1000	77		0
RSC199701567	LMV324MT	A	1	168	77		0
RSC199701567	LMV324MT	A	2	500	77		0
RSC199701567	LMV324MT	А	3	1000	77		ō
Test: Tempera	ture Humidity	Bias Te:	st (TH	BT)			
Test Request	Device	Sbgr	P TP	Duration	Sample	Size	Rejects
RSC199701565	LMV324M	A	1	168	77	- 1990 - S	0
RSC199701565	LMV324M	A	2	500	77		0
RSC199701565	LMV324M	A	3	1000	77		0
SC199701566	LMV358MM	p.	1	168	77		0
SC199701566	LMU358MM	2	2	500	77		ñ
SC199701566	T.MU359MM	2	2	644	77		0
001001001000	TMUZEOWN		3	1000	22		0
30139701366	LMV 3 56PM	~	4	1000	11		0
RSC199701567	LMV324MT	A	1	168	11		0
RSC199701567	LMV324MT	A	2	500	76*		Q
RSC199701567	LMV324MT	A	3	524	76		0
RSC199701567	LMV324MT	A	4	1024	76		0
Cest: Tempera	ture Cycle (TM	(CL)			12000020002000		2 * 2 * 2 * 2 * 2 * 2
est Request	Device	Sbgrp	D TP	Duration	Sample	Size	Rejects
RSC199701565	LMV324M	A	1	500	77		0
RSC199701565	LMV324M	A	2	1000	77		0
RSC199701566	LMV358MM	A	1	500	77		0
RSC199701566	LMV358MM	A	2	1000	76*		0
SC199701567	LMV324MT	A	1	500	76		0
RSC199701567	LMV324MT	A	2	1000	76		0
SD Human bod	y Model						
evice	Voltage	Sample :	Size	Rejects			
MV324MT	1250V	5		0			
MV324MT	1500V	5		0			
MV324MT	1750V	5		0			
MV324MT	2000V	5		0			
MV324MT	2250V	5		0			
SD Machine M	odel						
evice	Voltage	Sample S	Size	Rejects			
MV324MT	100V	5		0			
MV324MT	150V	5		3			
atch-up test							
evice	Sample Size	Ret	iects				
	a sufficient a state						

Page 3

Conclusion

The estimated failure rate of the LMV324 family of devices is 18.211 FITS, and an MTBF of 5,4909,836 hours. The calculation was based on a 60% confidence factor and an activation energy of 0.7eV derated to 55C operating temperature.

The LMV324 (in TSSOP-14 and SOIC-14) and LMV358 (in MSOP-8 and SOIC-8) are now fully qualified and released to production.

NSC Company Confidential

Reliability Test Report	File Number: FEM19970494 Originator: Kumar Suresh Date:December 29, 1997

Purpose	Approvals
LMV321 SC70-5 PACKAGE QUALIFICATION	Did the 2-3-98
Reference File Numbers	Distribution List
REM199702597 Q19970103	KK SIOW, ANTHONY LAW, CSTEOH, RAJ SUBRAMANIAM, NICK STANCO

Abstract

The LMV321 is a single OP-AMP version based on the design of LMV324. This is a completely new layout incorporating only a single OP-AMP in a die size of 17X17 mils. The die will be fabricated with CS80CBI process and will be assembled in 5 lead SC70 package. In order to qualify the device in SC-70 package, 1 lot of OPL and 3 lots of BAKE, ACLV, TMCL, and THBT. Qualification of the die is achieved by combining this qualification plan and Q1997245.

Description

Test Request	Device Name	Sbgp	Water Dis Sun	Fab Loc	Fab Line	Pleg Code	# Leads	Assy Loc	Date Cd	Mold Cmprid
REM199702597	LMV321 SC(5)	A	b0083cg2	FM	6 INCH	MTC45	5	88	9742	MP-8000C
REM199702597	LMV321 SC(5)	в	b0083g3	FM	6 INCH	MTC45	5	B8	9742	MP-5000C
REM199702597	LMV321 SC(5)	C	60083de0	FM	6 INCH	MTC45	5	88	9742	MP-8000C

Tests Performed

Test Request	Device	Sbgrp	Rel Humidity	Pressure	High Temp	LowTemp
REM199702597	LMV321 SC(5)	A	100	15	121	0
REM199702597	LMV321 SC(5)	B	100	15	121	0
REM199702597	LMV321 SC(5)	C	100	15	121	0
est: High Temperatu	re Storage test (BAKE)					
Test Request	Device	Sbgrp	Rel Humidity	Pressure	High Temp	LowTemp
REM199702597	LMV321 SC(5)	A	0	0	150	0
REM199702597	LMV321 SC(5)	B	0	0	150	0
REM199702597	LMV321 SC(5)	C	0	0	150	0

NSC Company Confidential

Page 1

Test Request	Device	Sbgrp	Rel Humidity	Pressure	High Temp	LowTemp	
REM199702597	LMV321 SC(5)	Α.	0	0	150	0	
REM199702597	LMV321 SC(5)	в	0	0	150	0	
REM199702597	LMV321 SC(5)	C	0	0	150	0	
est: Temperature Cy	de (TMCL)						
Test Request	Device	Sborp	Rel Humidity	Pressure	High Temp	Low/Temp	
REM199702597	LMV321 SC(5)	A	0	0	150	-65	
REM199702597	LMV321 SC(5)	B	0		150	-65	
REM199702597	LMV321 SC(5)	C	ō	ō	150	-65	
est Temperature Hu	midity Bias Test (THB)	n i					
Test Request	Device	Shorp	Rei Humidity	Pressure	High Temp	LowTemp	
REM199702597	LMV321 SC(5)	A	85	0	85	0	
REM199702597	LMV321 SC(5)	B	85	õ	85	0	
REM199702597	LMV321 SC(5)	č	85	ñ	85	ě.	

Results/Discussion

Test Request	Device	(nonv)	Sbgrp	TP	Duration	Sample	Size	Rejects
REM199702597	LMV321	SC(5)	A	1	168	77	10103	0
REM199702597	LMV321	SC(5)	в	1	168	77		0
REM199702597	LMV321	SC(5)	с	1	168	77		0
Test: High Te	mperatu	re Stor	age test	(BAK	E)			
Test Request	Device		Sbgrp	TP	Duration	Sample	Size	Rejects
REN199702597	LMV321	SC(5)	A	1	168	77		0
REM199702597	LMV321	SC(5)	A	2	500	77		0
REM199702597	LMV321	SC(5)	A	3	1000	77		0
REM199702597	LMV321	SC(5)	в	1	168	77		0
REM199702597	LMV321	SC(5)	в	2	500	77		0
REM199702597	LMV321	SC(5)	в	3	1000	77		0
REM199702597	LMV321	SC(5)	С	1	168	77		0
REM199702597	LMV321	SC(5)	C	2	500	77		0
REM199702597	LMV321	SC(5)	с	3	1000	77		0
Test: Operati	ng Life	Test (Static) (SOPL)			
Test Request	Device		Sbgrp	TP	Duration	Sample	Size	Rejects
REM199702597	LMV321	SC(5)	A	1	168	77		0
REM199702597	LMV321	SC(5)	A	2	500	77		0
REM199702597	LMV321	SC(5)	A	3	1000	77		0
REM199702597	LMV321	SC(5)	B	1	168	77		0
REM199702597	LMV321	SC(5)	в	2	500	77		0
REM199702597	LMV321	SC(5)	B	3	1000	77		0
REM199702597	LMV321	SC(5)	C	1	168	77		0
REM199702597	LMV321	SC(5)	C	2	500	77		0
DEN100702507	LMV321	SC(5)	C	3	1000	77		0

NSC Company Confidential

Printed: 12/05/96 1:33:02 PM

LMV Products Qualification Package 5-7

Test Remeet	Device		Shave	TD	Duration	Sample	Size	Patanta
PEMI 00702507	IMU321	00/51	sugrp	11	160	Sampre :	arze	Rejects
REM100702597	TMU221	00(5)	A	1	100	22		0
REM199702597	LMV321	SC(5)	A	4	500	77		0
REM199702597	LMV321	SC(5)	A	3	1000	77		0
REM199702597	LMV321	SC(5)	в	1	168	77		0
REM199702597	LMV321	SC(5)	в	2	500	77		0
REM199702597	LMV321	SC(5)	в	3	1000	77		0
REM199702597	LMV321	SC(5)	C	1	168	77		0
REM199702597	LMV321	SC(5)	C	2	500	77		0
REM199702597	LMV321	SC(5)	С	3	1000	77		0
Test: Tempera	ture Cyc	le (TM	CL)					
Test Request	Device		Sbgrp	TP	Duration	Sample S	Size	Rejects
REM199702597	LMV321	SC(5)	A	1	500	77	0.000.000	0
REM199702597	LMV321	SC (5)	A	2	1000	77		0
REM199702507	LMU321	SC (5)	A	3	2000	77		0
DEM100702597	TMU221	SC (S)	n	-	500	77		0
REM199/0259/	100321	30(5)	B	1	300	77		0
REM199702597	LMV321	SC(5)	в	2	1000	11		0
REM199702597	LMV321	SC(5)	в	3	2000	77		0
REM199702597	LMV321	SC(5)	С	1	500	77		0
REM199702597	LMV321	SC(5)	C	2	1000	77		0
REM199702597	LMV321	SC(5)	с	3	2000	77		0
ASSEMBLY TEST	S:		Sbgrp	Sa	mple Size	Rejects		
Physical Dime	nsion		A		10	0		
- 1977 PARCELS - HOMES PA			в		10	0		
			С		10	0		
Lead Integrity	Y		A		45 Leads	0		
0.80.00400.8302000	200		в		45 Leads	0		
			С		45 Leads	0		
Bond Pull			A		30 Bonds	0		
			в		30 Bonds	0		
			с		30 Bonds	0		
Bond Shear			A		30 Bonds	0		
			в		30 Bonds	0		
			с		30 Bonds	0		
Solderability			А		15	0		
			в		15	0		
			с		15	O.		
Resistance to	solder		A		25	0		
			в		25	0		

NSC Company Confidential

Page 3

Printed: 12/05/96 1:33:02 PM

5-8 National Semiconductor

ESD				
Human Body Model	500v	5	0	
	1.0Kv	5	4	
	1.5Kv	5	0	
	2.0Kv	5	2	
	2.5Kv	5	1	
Machine Model	50v	5	0	
	100v	5	0	
	150v	5	0	

Conclusion

The LMV321 in the new SC70 package has successfully passed all required reliability tests through their release timepoints. The LMV321 is now qualified to be built in the SC70 package.

NSC Company Confidential

Reliability Test Report File Number: FSC19970440 Originator: Raj Subramoniam Date:November 18, 1997

Purpose	Approvais
TO QUALIFY THE NEW DEVICE, LMV321 IN SOT23-5 PACKAGE.	5. Kojmen 11/08/97
	Did the 11/18/17
1072 - Challen Storia	

Reference File Numbers	Distribution List			
RSC199702511 RSC199702489 RSC199702407 Q19970245	Rel Engineering: Al Sezen, Nick Stanco Amplifiers: Jim Dreyfus, Brian Baker, Sharon Ignaut			

Abstract

The LMV321 is a single OP-AMP version based on the design of LMV324. This is a completely new layout incorporating only a single OP-AMP in a die size of 17X17 mils. The die will be fabricated with CS80CBI process and will be assembled in 5 lead SOT-23 package. Qualification of the LMV321 in SOT23-5 package was achieved by running 1 lot each of BAKE, ACLV, TMCL and THBT, and 3 lots of OPL. Based on the excellent results obtained so far, the device is conditionally released to complete 500 hrs. on the last 2 lots of OPL.

The LMV321 is rated 500V Human Body Model ESD and 150V Machine Model ESD.

Description

Test Recuest	Device Name	Shap	Wafer Die Run	Fab	Fab Line	Pkg Code	FLeads	Assy	Date Cd Moid
RSC199702407	LMV321M5	A	B0083CG2 W#?	FM	6 INCH	T\TG23	5	EM	B18
RSC199702489	LMV321M5	A	B0063CG3 W#1	FM	6 INCH	T\TG23	5	EM	815
RSC199702511	LMV321M5	A	80083DE0 W#6	FM	6 INCH	T\TG23	5	EM	B18

Tests Performed

Test Request RSC199702407	Device LMV321M5	Sbgrp A	Rel Humidity 100	Pressure 15psi	High Temp 121	LowTemp	
Timepoints:	Test Request RSC199702407 RSC199702407	TP 1 2	Dunation 96 168				
Test: High Temperatu Test Request	re Storage test (BAKE) Device	Sborp	Rel Humidity	Pressure	High Temp	LowTemp	

NSC Company Confidential

Page 1

	RSC199702407	1	168					
	RSC199702407	2	500					
	RSC199702407	3	1000					
Test: Operating Life 1	fest (Static) (SOPL)		2.2					
Test Request	Device	Sbgrp	Rel Humidity	Press	ure High Temp	LowTemp		
RSC199702407	LMV321M5	A	0	0	150	0		
RSC199702489	LMV321M6	A	0	0	150	0		
RSC199702511	LMV321M5	A	0	0	150	a		
Timepoints:	Test Request		TP	Durati	on .			
	RSC199702407/2489	12511	1	168				
	RSC199702407/2489	3/2511	2	500				
	RSC199702407/2489	A2511	3	1000				
Test: Temperature Cy	cle (TMCL) with Level 1	preconditio	ning"					
Test Request	Device	208.0	real Humidity	Press	ine High Lemp	Lowremp		
RSC199702407	LMV321M5	•	a	0	150	-65		
Timepoints:	Test Request	TP	Duration					
	RSC199702407	1	500					
	R\$C199702407	2	1000					
		Selen.						
Test: Temperature Hu	midity Bias Test (THBT) with Level	1 preconditionin	Queen	in Linh Tama	ImTerro		
Test Plequest	Device	abgrp	Hel Humally	Pressu	re rightemp	Lowiemp		
H3C199702407	LMV321M5	- A	65	e .	80			
Timepoints:	Test Request	TP	Duration					
	RSC199702407	1	168					
	RSC199702407	2	500					
	RSC199702407	3	1000					
Level 1 precondi	ioning Sequence: 85°C	-85%RH 1	noisture soak	for 168 1	hrs. followed by	3 passes of 2	35°C IR r	eflow.
Test: Autoc	lave Test (A	(CLV)	-	-				
Test Reques	t Device		Sbgrp	TP	Duration	sample	Size	Rejects
RSC19970240	7 LMV321M5		A	1	96	77		0
RSC19970240	7 LMV321M5		A	2	168	77		0
		-		DAVE	a.			
rest: High	Temperature	scorag	je test	BALLE	Deserved	C		Dedect
Test Reques	t Device		sbgrp	TP	Duration	sampie	5120	Rejects
RSC19970240	7 LMV321M5		A	1	168	77		0
	T THEFT STATE		A.	2	500	77		0

RSC199702407	LMV321M5	A	3	1000	77	In pr	ogress
Test: Operati	ng Life Test	(Static)	SOPI	; +/- 2.5V	; 4765R	E; 562	7RE)
Test Request	Device	Sbgrp	TP	Duration	Sample	Size	Rejects
RSC199702407	LMV321M5	A	1	168	77		0
RSC199702407	LMV321M5	A	2	500	77		0
RSC199702407	LMV321M5	λ	3	1000	77		0
RSC199702489	LMV321M5	A	1	168	77		0
RSC199702489	LMV321M5	A	2	500	76*	In pr	ogress
RSC199702489	LMV321M5	A	з	1000	76	In pr	ogress
RSC199702511	LMV321M5	A	1	168	77		0
RSC199702511	LMV321M5	A	2	500	77	In pr	ogress
RSC199702511	LMV321M5	A	з	1000	77	In pr	ogress

NSC Company Confidential

Page 2

Printed: 12/05/96 1:33:02 PM

LMV Products Qualification Package 5-11

Test: Temperature Humidity Bias Test (THBT +/- 2.5V; 4766RE; 5620RE) Test Request Device Sbgrp TP Duration Sample Size Rejects RSC199702407 LMV321M5 A 1 168 77 0 RSC199702407 LMV321M5 2 500 77 0 A RSC199702407 LMV321M5 A 3 1000 77 In progress Test: Temperature Cycle (TMCL) Sbgrp TP Duration Sample Size Rejects Test Request Device RSC199702407 LMV321M5 1 500 77 0 A 77 0 2 1000 RSC199702407 LMV321M5 A

* S/N 21 missing

Conclusion

The estimated failure rate of LMV321 is 54.743FITS and the Mean Time Between Failures (MTBF) is 18267147.54098 hrs. The calculation performed at 60% confidence factor was based on an activation energy of 0.7eV and an ambient operating temperature of 55C.

The LMV321 is now released Code R based on the excellent results obtained.

Reliabil	Lity Test Report File Number: Originator: Nick Stanco Date:February 24, 1998
Purpose	Approvals
LMV339 / LM393 / LM331 New Device Qualifications	Mill thin 2-3-98
Reference File Numbers	Distribution List
RSC199702691 RSC199702437 RSC199800128 RSC199800207 Q19970635	Doug Simin / Nick Stanco
Abstract	
The LMV339 (true quad), LMV393 (dual derived from LI comparator devices were subjected to reliability testing SOPL testing was completed on all three devices with o due to EOS/ESD and is invalid. The other failed unit dev we assume this unit to be a valid failure and consider the that the failure rate for this device family (the low voltage at an acceptable level of 8.82 FITS (@ 55C, 0.7eV, 60% All three devices passed Latch-up testing and all device Machine Model ESD performance levels with rated volta LMV339 (14L TSSOP and 14L SOIC packages), the LM SOT-23 and SC70 packages) are now fully qualified and	MV358), and LMV331 (true single derived from LMV321) per qual plan Q19970635 for qualification as new devices. nly two failures on the LMV339. One of these failures was reloped a faulty input protection diode on one comparator. If e implications towards this devices failure rate it can be seen a family of CS80CBI processed amps and comparators) is still is CL) at this time and that release of this device is warranted. Is were characterized for both Human Body Model and iges shown below in bold type. Based on these results the IV393 (8L MSOP and 8L SOIC peckages) and the LMV331 SL I released to production.

Description

Test Request	Device Name	Sbgp	Fab Loc	Fab Line	Pkg Code	Assy # Leads	Loc	Date Cd	Mold Crept
RSC199702437	LMV331M5X	A	FM	6 INCH	T\TG23	5	EM		818
RSC199702691	LMV339M	A	FM	6 INCH	NMSON	014	EM	9742	B14
RSC199600128	LMV339M	в	FM	CMOS	NMISON	014	EM	9748	814
RSC199800128	LMV339M	C	FM	CMOS	NMSON	014	EM	9748	814
RSC199800207	LMV393M	A	FM	6 INCH	MMSON		EM	9748	B14

Tests Performed

NSC Company Confidential

Page 1

Printed: 12/05/96 1:33:02 PM

LMV Products Qualification Package 5-13

Test: Operating Life Test (Static) (SOPL): Ta=150C, static bias

Results/Discussion

	Rejects per Lot Sample						
Tests	Time/Cycles	Lot 1	Lot 2	Lot 3			
LMV339M	336	2/77 *Note 1	0/77	0/77			
SOPL	500	0/75	0/77	0/77			
	1000	0/75	2 - 2	1			
LMV393M	356	0/77		· · · · · · · · · · · · · · · · · · ·			
SOPL	500	0/77					
100000	1000			· · · · · · · · · · · · · · · · · · ·			
LMV331M5X	168	0/77					
SOPL	500	0/77					
1,6.79-54	1000	0/77					

Note 1- Two LMV339M devices from Lot 1 failed after 336 hours of SOPL, details follow.

S/N 1 - This device failed ATE testing for high input offset voltage on comparators #1 and #2 and high input bias current on comparator #1. Curve tracing found a pin 5 to pin 12 short. A visual inspection found that the input diode had a metal flash from metal 1 to metal 1. Deprocessing and SEM analysis revealed an oxide rupture bridging metal 1 * metal 1, within the input protection diode. This is an invalid failure due to EOS/ESD of unknown origin.

S/N 23 - This device failed ATE testing for high input offset voltage and high input bias current on one comparator. This device did not recover after a 125C bake. Curve tracing found an early breakdown between pin 11 and pin 12. Bench test found comparator #3 to have more than 2mA input leakage. No anomalies were found during internal visual inspection. PHEMOS was performed and found the input diode to pin 11 to have an emission. This is typical of EOS/ESD damage. The diode was isolated from the circuit and mechanically probed to verify the failure mode. The unit was then deprocessed (in layers, all the way down to silicon), however, no defect was identified.

	HBM ESD		MM	ESD	LATCH-UP	
LMV339	500V	0/5	100V	0/5	0/5 (Per JEDEC 17)	
Real States and	800V	0/5	150V	0/5		
	1000V	1/5	175V	2/5		
	1500V	1/5	200V	4/5		
Security and the security	1750V	4/5	the second second	- and the second	The second state was seen	
LMV393	500V	0/5	100V	0/5	0/5 (Per JEDEC 17)	
	800V	0/5	125V	0/5		
	1000V	0/5	150V	2/5		
	1500V	1/5	200V	4/5		
	1750V	1/5	1	의 가슴 성격을 많		
LMV331	500V	0/5	100V	0/5	0/5 (Per JEDEC 17)	
	700V	0/5	125V	0/5		
	800V	0/5	150V	2/5		
	900V	1/5	175V	3/5		
	1000/	1/5				

Conclusion

The LMV339 (14L TSSOP and 14L SOIC packages), LMV393 (8L MSOP and 8L SOIC packages) and LMV331 5L SOT-23 and SC70 packages) are now fully qualified and released to production.

NSC Company Confidential

Reliability Test Report	File Number FSC19980031 Originator Nick Stanco
	Date:January 20, 1998

Purpose	Approvals	
LMV821 New Device Qualification	Mill How	3-16-98 bes 3-16-98 bes
Reference File Numbers	Distribution List	
R5C199702913	Altaf Ahmad / Nick Stanco	

Abstract

Q19970977

One lot of LMV821, specially bonded-out in an 8L MDIP package for qualification purposes, was subjected to SOPL testing per qual plan Q19970977 for qualification as a new device for the Amplifiers product line. 500 hours of SOPL at Ta=150C was completed without failure on the LMV821 qual lot. HBM and MM ESD characterization were also completed. Based on this SOPL testing, and successfully completed LMV321 5L SOT-23 and 5L SC-70 package qualifications, the LMV821 is now fully qualified and released in both the SOT-23 and SC-70 packages.

Description

Test Request	Device Name	Step	Fab Loc	Fab Une	Pkg Code	Assy # Leads	Loc	Date Cd	Mold Crept
RSC199702913	LMV821	A	FM	CSB0CBI	NMDIP	8	EM		B8

lests Performed							
Test: Operating Life Test (Static) (SOPL)							
Test Request RSC199702913	Device LMV821	Sbgrp A	Rel Humidity 0	Pressure 0	High Temp 150	Rei Ckt 4765Re-A	+/- 2.5V
Timepoints:	Test Request RSC199702913 RSC199702913	TP 1 2	Duration 168 500				

NSC Company Confidential

Page 1

Printed: 12/05/96 1:33:02 PM

LMV Products Qualification Package 5-15

Results/Discussion

Test: Operating Life Test (Static) (SOPL) Test Request Device Sbgrp TP Duration Sample Size Rejects RSC199702913 LMV821 A 1 168 77 0 RSC199702913 LMV821 A 2 500 77 0 Test: Human Body Model ESD Result: The LMV821 is rated at ±900V. Test: Machine Model ESD Result The LMV821 is rated at ±150V

Conclusion

Based upon successful completion of all reliability requirements as specified in qual plan Q19970977, the LMV821 op-amp is now fully qualified and released to production in both the 5L SOT-23 and 5L SC-70 packages.

NSC Company Confidential

Reliability Test Report	File Number: FSC19980030 Originator: Nick Stanco Date:January 20, 1998

Purpose	Approvals	
LMV822 & LMV824 New Device Qualifications	Miletter Aler	3-16-58 Data 3-16-58 Data

Reference	FILE NL	imbers	

Distribution List

RSC199702693 Q19970978

Altaf Ahmad / Nick Stanco

Abstract

One lot of LMV824M in the 14L SOIC package was subjected to SOPL testing per gual plan Q19970978 to gualify the LMV824 and LMV822 (metal option to create dual version from the LMV824 guad op-amp) as new devices for the Amplifiers product line. 1000 hours of SOPL at Ta=150C was completed without failure on the LMV824M gual lot. ESD and Latch-up tests yielded acceptable results. Based on these results both devices are now fully gualified and released to production.

The LMV822 is qualified in both the 8L MSOP and 8L SOIC packages and the LMV824 is qualified in both the 14L TSSOP and 14L SOIC packages.

Description

Test Request	Device Name	Sbap	Fab Loc	Fab Line	Pkg Code	# Leads	Assy Loc	Date Cd	Mold Crood
RSC199702693	LMV824M	A	FM	CS80CBI	MSOIC	014	EM	9745	B14

Tests Performed

est Request SC199702693	Device LMV824M	Sbgrp	Rel Humidity	Pressure	High Temp 150	Rel Ckt 5009Re-A	Voltage +/- 2.5V
Imepoints:	Test Request	TP	Duration				
	RSC199702683	1	168				
	RSC199702693	2	500				
	RSC199702693	3	1000				

NSC Company Confidential

Page 1

Printed: 12/05/96 1:33:02 PM

LMV Products Qualification Package 5-17

Results/Discussion

Test: Operating Life Test (Static) (SOPL) Test Request Device RSC199702693 LMV824M Sbgrp TP Duration Sample Size Rejects A 1 168 77 0 A RSC199702693 LMV824M 2 500 77 0 A Ô RSC199702693 LMV824M A з 1000 77 Test: Human Body Model ESD Result: Both the LMV822 and LMV824 achieved a rating of ±2000V. Test: Machine Model ESD Result: Both the LMV822 and LMV824 achieved a rating of ±100V. Test: Latch-up Result: Both devices are rated to ±300ma at 25°C and 85°C.

Conclusion

Based upon successful completion of all reliability requirements as specified in qual plan Q19970978, the LMV822 and LMV824 op-amps are now fully qualified and released to production.

NSC Company Confidential
6.1 Parametric Data for LMV3xx

LMV324 Room Temperature Data

Test Name	Units	Avg	Sigma
PSI 2.7V	mA	0.272	0.024
PSI 5V	mA	0.379	0.028
VOS A 2.7V	mV	1.4	2
VOS B 2.7V	mV	1.5	1.9
VOS C 2.7V	mV	1.5	2
VOS D 2.7V	mV	1.4	2
VOS A 5V	mV	-0.2	1.8
VOS B 5V	mV	-0.1	1.8
VOS C 5V	mV	-0.1	1.8
VOS D 5V	mV	-0.2	1.9
-IBIAS A 2.7V	nA	-16.3	2.1
-IBIAS B 2.7V	nA	-16.5	2.3
-IBIAS C 2.7V	nA	-16.3	2
-IBIAS D 2.7V	nA	-16	3.5
+IBIAS A 2.7V	nA	16.1	2.1
+IBIAS B 2.7V	nA	16	2
+IBIAS C 2.7V	nA	16.5	2
+IBIAS D 2.7V	nA	16.7	3.7
IOS A 2.7V	nA	-0.3	1.5
IOS B 2.7V	nA	-0.6	2.1
IOS C 2.7V	nA	0.3	1.6
IOS D 2.7V	nA	0.9	3.5
-IBIAS A 5V	nA	-18.1	2.4
-IBIAS B 5V	nA	-18.1	2.4
-IBIAS C 5V	nA	-18.7	2.4
-IBIAS D 5V	nA	-18.7	3.2
+IBIAS A 5V	nA	19.6	2.4
+IBIAS B 5V	nA	19.6	2.5
+IBIAS C 5V	nA	19.2	2.2
+IBIAS D 5V	nA	18.8	2.8
IOS A 5V	nA	1.7	2.9
IOS B 5V	nA	1.9	3
IOS C 5V	nA	2	3.1
IOS D 5V	nA	2.1	3.1
+SWINGA 5V 2K	V	4.951	0.034
+SWINGB 5V 2K	V	4.95	0.048
+SWINGC 5V 2K	V	4.951	0.006
+SWINGD 5V 2K	V	4.951	0.033

Test Name	Units	Avg	Sigma
+SWINGA 5V 10K	V	4.951	0.001
+SWINGB 5V 10K	V	4.991	0.002
+SWINGC 5V 10K	V	4.99	0.001
+SWINGD 5V 10K	V	4.991	0.002
+SWINGA 2.7V 10	V	2.693	0.002
+SWINGB 2.7V 10	V	2.692	0.001
+SWINGC 2.7V 10	V	2.692	0.001
+SWINGD 2.7V 10	V	2.692	0.001
-SWINGA 5V 2K	V	0.123	0.007
-SWINGB 5V 2K	V	0.122	0.006
-SWINGC 5V 2K	V	0.122	0.007
-SWINGD 5V 2K	V	0.124	0.006
-SWINGA 5V 10K	V	0.073	0.006
-SWINGB 5V 10K	V	0.072	0.006
-SWINGC 5V 10K	V	0.073	0.006
-SWINGD 5V 10K	V	0.073	0.006
-SWINGA 2.7V 10	V	0.062	0.004
-SWINGB 2.7V 10	V	0.062	0.003
-SWINGC 2.7V 10	V	0.062	0.004
-SWINGD 2.7V 10	V	0.063	0.004

LMV324 Room Temperature Data (cont)

LMV321 Room Temperature Data

Test Name	Units	Avg	Sigma
PSI 2.7V	mA	0.077	0.005
PSI 5V	mA	0.107	0.006
VOS A 2.7V	mV	-0.4	2.3
VOS A 5V	mV	-1.9	2
-IBIAS A 2.7V	nA	-17.2	3.6
+IBIAS A 2.7V	nA	16.1	3.9
IOS A 2.7V	nA	-1.2	1.9
-IBIAS A 5V	nA	-18.2	4.1
+IBIAS A 5V	nA	19.9	4.1
IOS A 5V	nA	-0.2	1.3
+SWINGA 5V 2K	V	4.95	0.015
+SWINGA 5V 10K	V	4.991	0.004
+SWINGA 2.7V10K	V	2.692	0.002
-SWINGA 5V 2K	V	0.127	0.013
-SWINGA 5V 10K	V	0.076	0.004
-SWINGA 2.7V10K	V	0.065	0.003

LMV358 Room Temperature Data

Test Name	Units	Avg	Sigma
PSI 2.7V	mA	0.132	0.023
PSI 5V	mA	0.243	0.028
VOS A 2.7V	mV	2.8	2.2
VOS B 2.7V	mV	2.9	2.2
VOS A 5V	mV	-0.9	2.1
VOS B 5V	mV	-1	2
-IBIAS A 2.7V	nA	-14	6.9
-IBIAS B 2.7V	nA	-12.9	6.3
+IBIAS A 2.7V	nA	14.1	6.6
+IBIAS B 2.7V	nA	13.1	7
IOS A 2.7V	nA	0.4	2.1
IOS B 2.7V	nA	0.9	2.1
-IBIAS A 5V	nA	-21.1	5.6
-IBIAS B 5V	nA	-20.5	5.6
+IBIAS A 5V	nA	23	5.4
+IBIAS B 5V	nA	21.4	5.7
IOS A 5V	nA	0.1	1.8
IOS B 5V	nA	0.1	2.1
+SWINGA 5V 2K	V	4.938	0.029
+SWINGB 5V 2K	V	4.943	0.02
+SWINGA 5V 10K	V	4.988	0.006
+SWINGB 5V 10K	V	4.989	0.005
+SWINGA 2.7V 10K	V	2.692	0.002
+SWINGB 2.7V 10K	V	2.693	0.002
-SWINGA 5V 2K	V	0.126	0.019
-SWINGB 5V 2K	V	0.127	0.018
-SWINGA 5V 10K	V	0.073	0.009
-SWINGB 5V 10K	V	0.073	0.009
-SWINGA 2.7V 10K	V	0.066	0.005
-SWINGB 2.7V 10K	V	0.067	0.005

Test Name	Units	Avg	Sigma
PSI 5V	UA	153.3	11.6
PSI 2.7V	UA	115	9.7
VSAT 4MA 5V A	MV	207.1	7.6
VSAT 4MA 5V B	MV	202	3.6
VSAT 4MA 5V C	MV	205	5.2
VSAT 4MA 5V D	MV	199	3.9
VOS 5V A	MV	-2.1	1.9
VOS 5V B	MV	-2.5	1.9
VOS 5V C	MV	-2.3	2
VOS 5V D	MV	-2.2	1.9
+IIB 5V A	NA	21.9	2.4
+IIB 5V B	NA	21.4	2.1
+IIB 5V C	NA	20.7	2
+IIB 5V D	NA	21.7	2.5
-IIB 5V A	NA	-25	2.2
-IIB 5V B	NA	-25.7	2
-IIB 5V C	NA	-25.6	2.2
-IIB 5V D	NA	-25.3	2.1
IOS 5V A	NA	-2.7	2.2
IOS 5V B	NA	-3.9	2.1
IOS 5V C	NA	-3.9	2.1
IOS 5V D	NA	-3.1	2.1
VOS 2.7V A	MV	-0.3	2.1
VOS 2.7V B	MV	-0.4	2.3
VOS 2.7V C	MV	-0.6	2.1
VOS 2.7V D	MV	-0.1	2.1
+IIB 2.7V A	NA	17.9	1.9
+IIB 2.7V B	NA	17.4	1.9
+IIB 2.7V C	NA	16.5	1.8
+IIB 2.7V D	NA	17.6	1.8
-IIB 2.7V A	NA	-18.7	1.8
-IIB 2.7V B	NA	-19.3	1.7
-IIB 2.7V C	NA	-19.2	1.9
-IIB 2.7V D	NA	-19.2	1.7
IOS 2.7V A	NA	-0.8	1.9
IOS 2.7V B	NA	-1.7	2
IOS 2.7V C	NA	-1.9	1.8
IOS 2.7V D	NA	-1.2	1.8

LMV339 Room Temperature Data

Test Name	Units	Avg	Sigma
PSI 5V	UA	104.3	8.8
PSI 2.7V	UA	71	6.6
VSAT 4MA 5V A	MV	177.8	3.9
VSAT 4MA 5V B	MV	180.7	4.1
VOS 5V A	MV	-0.4	1.5
VOS 5V B	MV	-0.3	1.6
+IIB 5V A	NA	28.2	3.7
+IIB 5V B	NA	27	3.3
-IIB 5V A	NA	-29.3	3.5
-IIB 5V B	NA	-29.2	4
IOS 5V A	NA	-1	2.1
IOS 5V B	NA	-1.7	2.3
VOS 2.7V A	MV	1.3	1.7
VOS 2.7V B	MV	1.2	1.7
+IIB 2.7V A	NA	20.3	3.1
+IIB 2.7V B	NA	20.9	2.7
-IIB 2.7V A	NA	-20.3	3.2
-IIB 2.7V B	NA	-20.4	3.3
IOS 2.7V A	NA	1.1	1.8
IOS 2.7V B	NA	0.4	1.9

LMV393 Room Temperature Data

LMV331 Room Temperature Data

Test Name	Units	Avg	Sigma
PSI 5V	UA	66.7	5.4
PSI 2.7V	UA	40.4	5.2
VSAT 4MA 5V	MV	175.3	5.6
VOS 5V	MV	0.6	1.7
VOS 2.7V	MV	2.4	1.9
+IIB 5V	NA	26.6	4.1
-IIB 5V	NA	-27	4.3
IOS 5V	NA	-0.3	2.4
+IIB 2.7V	NA	17.5	2.6
-IIB 2.7V	NA	-17.4	2.1
IOS 2.7V	NA	1.3	2.1

6.2 Parametric Data for LMV8xx

LMV824 Room Temperature Data

Test Name	Units	Avg	Sigma
PSI 2.7V	mA	0.792	0.043
PSI 5V	mA	1.042	0.054
Vos A 2.7V	mV	0.07	1.08
Vos B 2.7V	mV	0.08	1.11
Vos C 2.7V	mV	0.04	1.06
Vos D 2.7V	mV	-0.225	1.14
Vos A 5V	mV	0.055	1.11
Vos B 5V	mV	0.03	1.13
Vos C 5V	mV	-0.168	1.05
Vos D 5V	mV	-0.225	1.15
Neg Ibias A 2.7V	nA	38.3	3.5
Neg Ibias B 2.7V	nA	36.8	3.7
Neg Ibias C 2.7V	nA	38.7	3.1
Neg Ibias D 2.7V	nA	38.1	3.2
Pos Ibias A 2.7V	nA	37.5	3.6
Pos Ibias B 2.7V	nA	36.8	3.7
Pos Ibias C 2.7V	nA	37.9	3.4
Pos Ibias D 2.7V	nA	37.4	3.3
los A 2.7V	nA	-0.76	3.9
los B 2.7V	nA	-1.04	4.3
los C 2.7V	nA	-0.76	3.4
los D 2.7V	nA	-0.78	3.5
Neg Ibias A 5V	nA	44.8	3.1
Neg Ibias B 5V	nA	43.8	4.1
Neg Ibias C 5V	nA	43.6	3.5
Neg Ibias D 5V	nA	42.9	3.5
Pos Ibias A 5V	nA	43.7	3.6
Pos Ibias B 5V	nA	42.1	3.9
Pos Ibias C 5V	nA	42.6	3.3
Pos Ibias D 5V	nA	43.1	3.4
los A 5V	nA	-1.2	3.8
los B 5V	nA	-1.7	4.5
los C 5V	nA	-1	3.3
los D 5V	nA	-0.8	3.7
Pos Swing A 5V 600	V	4.828	0.004
Pos Swing B 5V 600	V	4.826	0.004
Pos Swing C 5V 600	V	4.826	0.006
Pos Swing D 5V 600	V	4.827	0.004

LMV824 Room Temperature Data (cont)

Test Name	Units	Avg	Sigma
Pos Swing A 5V 2K	V	4.941	0.003
Pos Swing B 5V 2K	V	4.94	0.003
Pos Swing C 5V 2K	V	4.94	0.003
Pos Swing D 5V 2K	V	4.94	0.004
Pos Swing A 2.5V 600	V	2.372	0.004
Pos Swing B 2.5V 600	V	2.372	0.004
Pos Swing C 2.5V 600	V	2.372	0.004
Pos Swing D 2.5V 600	V	2.371	0.005
Pos Swing A 2.7V 2K	V	2.458	0.001
Pos Swing B 2.7V 2K	V	2.458	0.001
Pos Swing C 2.7V 2K	V	2.458	0.001
Pos Swing D 2.7V 2K	V	2.457	0.001
Neg Swing A 5V 600	V	0.185	0.003
Neg Swing B 5V 600	V	0.184	0.003
Neg Swing C 5V 600	V	0.184	0.004
Neg Swing D 5V 600	V	0.187	0.004
Neg Swing A 5V 2K	V	0.112	0.003
Neg Swing B 5V 2K	V	0.111	0.002
Neg Swing C 5V 2K	V	0.111	0.002
Neg Swing D 5V 2K	V	0.112	0.002
Neg Swing A 2.5V 600	V	0.136	0.003
Neg Swing B 2.5V 600	V	0.135	0.003
Neg Swing C 2.5V 600	V	0.135	0.003
Neg Swing D 2.5V 600	V	0.137	0.003
Neg Swing A 2.7V 2K	V	0.089	0.002
Neg Swing B 2.7V 2K	V	0.09	0.002
Neg Swing C 2.7V 2K	V	0.09	0.002
Neg Swing D 2.7V 2K	V	0.09	0.002

Test Name	Units	Avg	Sigma
PSI 2.7V	mA	0.409	0.022
PSI 5V	mA	0.534	0.023
Vos A 2.7V	mV	0.07	1.08
Vos B 2.7V	mV	0.08	1.11
Vos A 5V	mV	0.055	1.11
Vos B 5V	mV	0.03	1.13
Neg Ibias A 2.7V	nA	38.3	3.5
Neg Ibias B 2.7V	nA	36.8	3.7
Pos Ibias A 2.7V	nA	37.5	3.6
Pos Ibias B 2.7V	nA	36.8	3.7
los A 2.7V	nA	-0.76	3.9
los B 2.7V	nA	-1.04	4.3
Neg Ibias A 5V	nA	44.8	3.1
Neg Ibias B 5V	nA	43.8	4.1
Pos Ibias A 5V	nA	43.7	3.6
Pos Ibias B 5V	nA	42.1	3.9
los A 5V	nA	-1.2	3.8
los B 5V	nA	-1.7	4.5
Pos Swing A 5V 600	V	4.828	0.004
Pos Swing B 5V 600	V	4.826	0.004
Pos Swing A 5V 2K	V	4.941	0.003
Pos Swing B 5V 2K	V	4.94	0.003
Pos Swing A 2.5V 600	V	2.372	0.004
Pos Swing B 2.5V 600	V	2.372	0.004
Pos Swing A 2.7V 2K	V	2.458	0.001
Pos Swing B 2.7V 2K	V	2.458	0.001
Neg Swing A 5V 600	V	0.185	0.003
Neg Swing B 5V 600	V	0.184	0.003
Neg Swing A 5V 2K	V	0.112	0.003
Neg Swing B 5V 2K	V	0.111	0.002
Neg Swing A 2.5V 600	V	0.136	0.003
Neg Swing B 2.5V 600	V	0.135	0.003
Neg Swing A 2.7V 2K	V	0.089	0.002
Neg Swing B 2.7V 2K	V	0.09	0.002

LMV822 Room Temperature Data

LMV821 Room Temperature Data

Test Name	Units	Avg	Sigma
PSI 2.7V	mA	0.206	0.014
PSI 5V	mA	0.278	0.019
Vos A 2.7V	mV	0.07	1.08
Vos A 5V	mV	0.055	1.11
Neg Ibias A 2.7V	nA	38.3	3.5
Pos Ibias A 2.7V	nA	37.5	3.6
los A 2.7V	nA	-0.76	3.9
Neg Ibias A 5V	nA	44.8	3.1
Pos Ibias A 5V	nA	43.7	3.6
los A 5V	nA	-1.2	3.8
Pos Swing A 5V 600	V	4.828	0.004
Pos Swing A 5V 2K	V	4.941	0.003
Pos Swing A 2.5V 600	V	2.372	0.004
Pos Swing A 2.7V 2K	V	2.458	0.001
Neg Swing A 5V 600	V	0.185	0.003
Neg Swing A 5V 2K	V	0.112	0.003
Neg Swing A 2.5V 600	V	0.136	0.003
Neg Swing A 2.7V 2K	V	0.089	0.002

NEED MORE INFO CONTACT US AT; WWW, NATIONAL, COM

NATIONAL SEMICONDUCTOR[®], **N**[®] and are registered trademarks of National Semiconductor Corporation. ©1998 National Semiconductor Corporation. All rights reserved.