
LM1117 Qualificatio Package

LINEAR REGULATOR

YOU ASKED + + WE MADE ITI AN TINDUSTRY STANDARD REGULATOR WITH ADVANTAGE PRICING

WHAT CAN WE BUILD FOR YOU?M

LM1117 QUALIFICATION PACKAGE

Summer 1998

Table of Contents

I.0 Introduction	
2.0 Device Information	
2.1 Datasheet	
3.0 Process Information	
3.1 Process Details	
3.2 Process Flow & Masks 3-1	
4.0 Packaging Information	
4.1 Package Material	
4.2 Tape and Reel Dimensions	
4.3 Die Photo	,
4.4 Bonding Diagrams 4-5	
5.0 Reliability Data	
5.1 Reliability Report 5-1	
6.0 Characterization Data	
6.1 Test Summaries6-1	

1.0 INTRODUCTION

1.1 General Product Description

National Semiconductor Corporation's LM1117 is, for most applications, a low cost alternative to several other quasi-low dropout (quasi-LDO) regulators which are currently available. The device is produced in four voltage options: 5.0V, 3.3V, 2.85V, adjustable. Its operation is guaranteed at junction temperatures ranging from 0°C to 125°C. There are two package types available: TO-220 and SOT-223. The package drawings are contained in the datasheet, which is included as part of this booklet. The various product/package combinations are listed below.

Output Voltage 5.0V	Full Device Name LM1117T-5.0 LM1117MP-5.0 LM1117MPX-5.0	Packaging Details TO-220 SOT-223, 250 units/reel SOT-223, 2000 units/reel
3.3V	LM1117T-3.3 LM1117MP-3.3 LM1117MPX-3.3	TO-220 SOT-223, 250 units/reel SOT-223, 2000 units/reel
2.85V	LM1117T-2.85 LM1117MP-2.85 LM1117MPX-2.85	TO-220 SOT-223, 250 units/reel SOT-223, 2000 units/reel
Adjustable	LM1117T-ADJ LM1117MP-ADJ LM1117MPX-ADJ	TO-220 SOT-223, 250 units/reel SOT-223, 2000 units/reel

The LM1117 is fabricated using National's bipolar LB300 process. Fabrication steps are summarized in section 3-2 of this booklet. The four output voltage options are processed identically except that each receives a unique metal mask. The die size is 80 mils x 50 mils. For a more detailed description of the fabrication process refer to section 3-0.

1.2 Reliability/Qualification Overview

The LM1117 was qualified almost entirely in the 3.3V option in SOT-223 (i.e. LM1117MP-3.3). The SOT-223 was chosen because it is the most commonly used package in this device's application. The other options were qualified by extension. Only the electrostatic discharge (ESD) testing was done in TO-220. Please refer to section 5-1 for details regarding the qualification.

1.3 Technical Assistance

Product Engineer

James Dreyfus email: James.Dreyfus@nsc.com Tel: 408.721.2721

Application Engineers

Dong-mei Yan email: Dong-mei.Yan@nsc.com Tel: 408.721.3501

2.0 DEVICE INFORMATION

🚫 National Semiconductor

LM1117 800mA Low-Dropout Linear Regulator

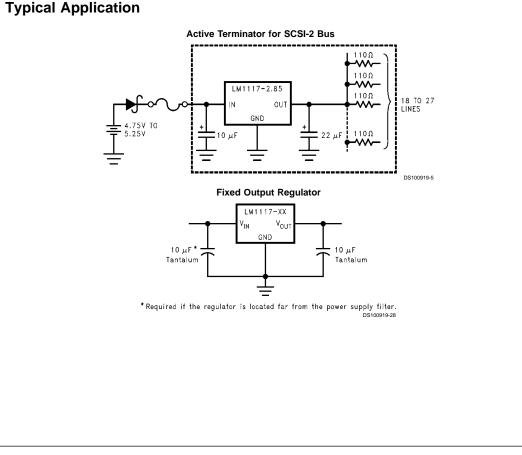
General Description

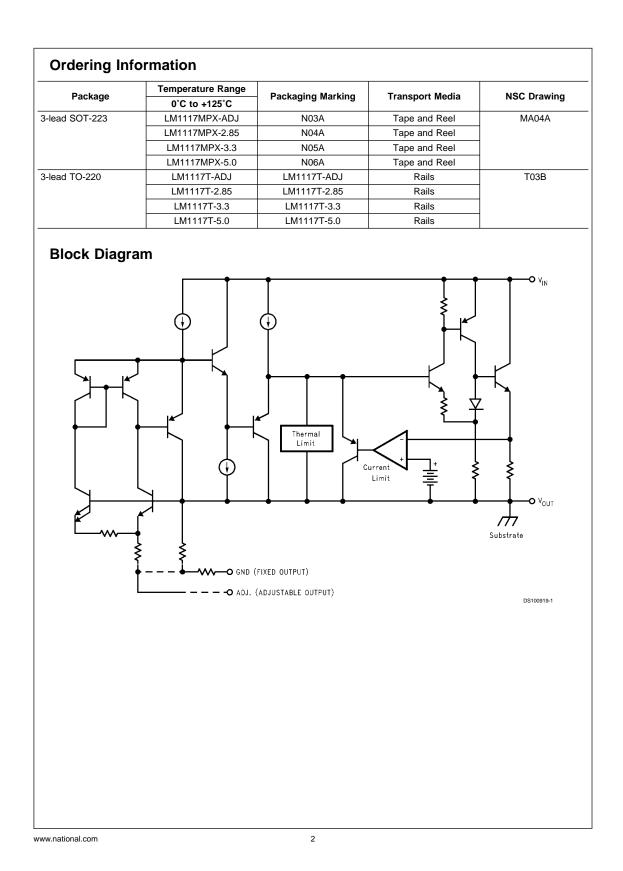
The LM1117 is a series of low dropout voltage regulators with a dropout of 1.2V at 800mA of load current. It has the same pin-out as National Semiconductor's industry standard LM317.

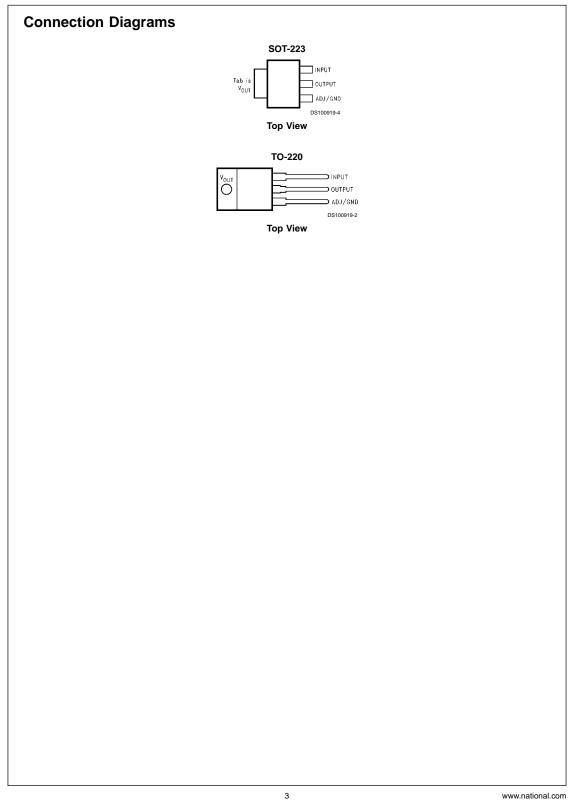
The LM1117 is available in an adjustable version, which can set the output voltage from 1.25V to 13.8V with only two external resistors. In addition, it is also available in three fixed voltages, 2.85V, 3.3V, and 5V.

The LM1117 offers current limiting and thermal shutdown. Its circuit includes a zener trimmed bandgap reference to assure output voltage accuracy to within ±1%.

The LM1117 series is available in SOT-223 and TO-220 packages. A minimum of 10µF tantalum capacitor is required at the output to improve the transient response and stability.




800mA


Features

- Available in 2.85V, 3.3V, 5V, and Adjustable Versions
- Space Saving SOT-223 Package
- Current Limiting and Thermal Protection
- Output Current
- Temperature Range
- 0°C to 125°C Line Regulation 0.2% (Max)
- 0.4% (Max) Load Regulation
- Applications
- 2.85V Model for SCSI-2 Active Termination
- Post Regulator for Switching DC/DC Converter
- High Efficiency Linear Regulators
- Battery Charger
- Battery Powered Instrumentation

_M1117 800mA Low-Dropout Linear Regulator

Absolute Maximum Ratings (Note 1)

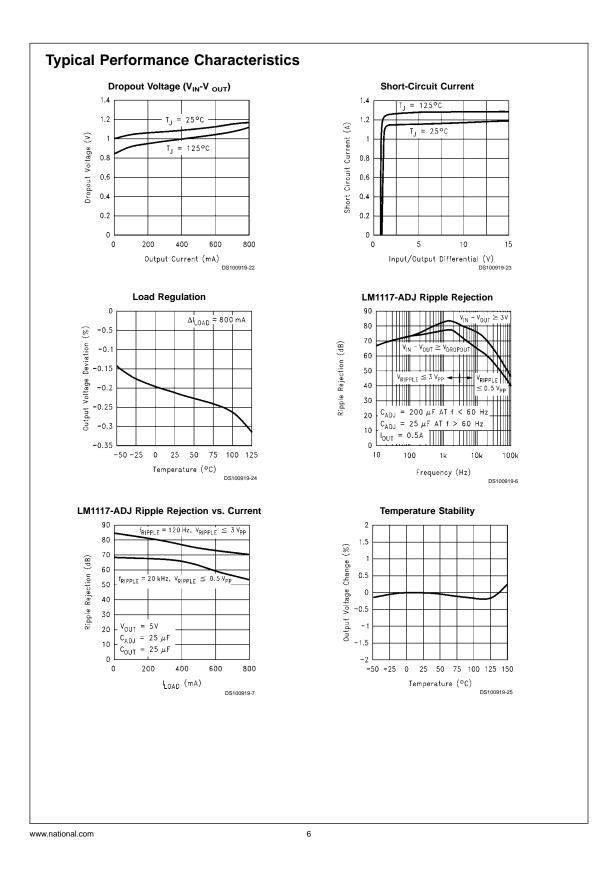
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

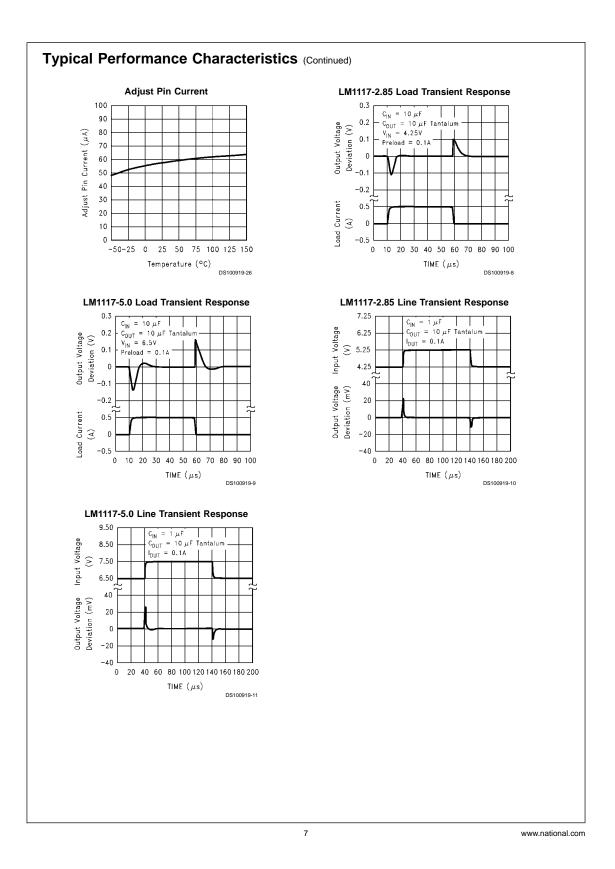
Maximum Input Voltage (V _{IN} to GND)	
LM1117-ADJ, LM1117-3.3,	
LM1117-5.0	20V
Power Dissipation (Note 2)	Internally Limited
Junction Temperature (T _J) (Note 2)	150°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature	

TO-220 (T) Package	260°C, 10 sec
SOT-223 (IMP) Package	260°C, 4 sec
ESD Tolerance (Note 3)	200 0, 4 300 2000V

Operating Ratings (Note 1)

Input Voltage (V _{IN} to GND)	
LM1117-ADJ, LM1117-3.3, LM1117-5.0	15V
LM1117-2.85	10V
Junction Temperature Range (T _J) (Note 2)	0°C to 125°C


Electrical Characteristics


Typicals and limits appearing in normal type apply for T $_{\rm J}$ = 25°C. Limits appearing in **Boldface** type apply over the entire junction temperature range for operation, 0°C to 125°C.

Symbol	Parameter	Conditions	Min (Note 5)	Typ (Note 4)	Max (Note 5)	Units	
V _{REF} Reference Voltage		Itage LM1117-ADJ					
		I_{OUT} =10mA, V_{IN} - V_{OUT} =2V, T_J =25°C	1.238	1.250	1.262	V	
		10mA≤I _{OUT} ≤ 800mA, 1.4V≤	1.225	1.250	1.270	V	
		V _{IN} -V _{OUT} ≤10V					
V _{OUT}	Output Voltage	LM1117-2.85					
		I_{OUT} =10mA, V_{IN} =4.85V, T_{J} =25°C	2.820	2.850	2.880	V	
		O≤I _{OUT} ≤800mA, 4.25V≤ V _{IN} ≤10V	2.790	2.850	2.910	V	
		O≤I _{OUT} ≤500mA, V _{IN} =4.10V	2.790	2.850	2.910	V	
		LM1117-3.3					
		I_{OUT} =10mA, V_{IN} =5V T_J =25°C	3.267	3.300	3.333	V	
		O≤I _{OUT} ≤800mA, 4.75V≤ V _{IN} ≤10V	3.235	3.300	3.365	V	
		LM1117-5.0					
		$I_{OUT}=10$ mA, $V_{IN}=7$ V, $T_{J}=25$ °C	4.950	5.000	5.050	V	
		O≤I _{OUT} ≤ 800mA, 6.5V≤ V _{IN} ≤12V	4.900	5.000	5.100	V	
ΔV_{OUT}	Line Regulation	LM1117-ADJ					
	(Note 6)	I _{OUT} =10mA, 1.5V≤ V _{IN} -V _{OUT} ≤13.75V		0.035	0.2	%	
		LM1117-2.85			-		
		I _{OUT} =0mA, 4.25V≤ V _{IN} ≤10V		1	6	m∨	
		LM1117-3.3					
		I _{OUT} =0mA, 4.75V≤ V _{IN} ≤15V		1	6	m∨	
		LM1117-5.0					
		I _{OUT} =0mA, 6.5V≤ V _{IN} ≤15V		1	10	m∨	
ΔV_{OUT}	Load Regulation	LM1117-ADJ					
	(Note 6)	V _{IN} -V _{OUT} =3V, 10≤I _{OUT} ≤800mA		0.2	0.4	%	
		LM1117-2.85					
		V _{IN} =4.25V, 0≤I _{OUT} ≤800mA		1	10	m∨	
		LM1117-3.3					
		V _{IN} =4.75V, 0≤I _{OUT} ≤800mA		1	10	m∨	
		LM1117-5.0					
		V _{IN} =6.5V, 0≤I _{OUT} ≤800mA		1	15	m۷	
_{in} -V _{out}	Dropout Voltage	I _{OUT} =100mA		1.10	1.20	V	
	(Note 7)	I _{OUT} =500mA		1.15	1.25	V	
		I _{OUT} =800mA		1.20	1.30	V	
I _{LIMIT}	Current Limit	V _{IN} -V _{OUT} =5V, T _J =25°C	800	1200	1500	mA	
	Minimum Load	LM1117-ADJ					
	Current (Note 8)	V _{IN} =15V	1	1.7	5	m A	

4

ymbol	Parameter	Conditions	Conditions Min (Note 5)			
	Quiescent Current	LM1117-2.85			. ,	
		V _{IN} ≤10V		5	10	mA
		LM1117-3.3				
		V _{IN} ≤15V		5	10	mA
		LM1117-5.0				
		V _{IN} ≤15V		5	10	mA
	Thermal Regulation	T _A =25°C, 30ms Pulse		0.01	0.1	%/V
	Ripple Regulation	f _{RIPPLE} =120Hz, V _{IN} -V _{OUT} =3V V _{RIPPLE} =1V _{PP}	60	75		dB
	Adjust Pin Current			60	120	μA
	Adjust Pin Current Change	10≤ I _{OUT} ≤ 800mA, 1.4V≤ V _{IN} -V _{OUT} ≤ 10V		0.2	5	μA
	Temperature Stability		0.5		. %	
	Long Term Stability	T _A =125°C, 1000Hrs		0.3		%
	RMS Output Noise	(% of V _{OUT}), 10Hz≤f≤10kHz		0.003		%
	Thermal Resistance	3-Lead SOT-223		15.0		°C/V
	Junction-to-Case	3-Lead TO-220		3.0		°C/V
	Thermal Resistance	3-Lead SOT-223		136		°C/V
	Junction-to-Ambient	3-Lead TO-220		79		°C/V
	(No heat sink;					
	No air flow)					
lote 2: Th max)-T _A)/6 lote 3: Fo lote 4: Typ lote 5: All lote 6: Lo lote 7: Th	e maximum power dissipation is J _{JA} . All numbers apply for packa r testing purposes, ESD was ap pical Values represent the most limits are guaranteed by testing ad and line regulation are mea: e dropout voltage is the input/ou		allowable power dissi th 100pF.	pation at any amb	ient temperature is	s P _D = (T
	e minimum output current requi	-				

APPLICATION NOTE

1.0 External Capacitors/Stability

1.1 Input Bypass Capacitor

An input capacitor is recommended. A 10μ F tantalum on the input is a suitable input bypassing for almost all applications.

1.2 Adjust Terminal Bypass Capacitor

The adjust terminal can be bypassed to ground with a bypass capacitor (C_{ADJ}) to improve ripple rejection. This bypass capacitor prevents ripple from being amplified as the output voltage is increased. At any ripple frequency, the impedance of the C_{ADJ} should be less than R1 to prevent the ripple from being amplified:

 $1/(2\pi^* f_{RIPPLE}^* C_{ADJ}) < R1$

The R1 is the resistor between the output and the adjust pin. Its value is normally in the range of 100-200 Ω . For example, with R1=124 Ω and f_{RIPPLE} =120Hz, the C_{ADJ} should be 11µF.

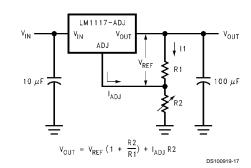
1.3 Output Capacitor

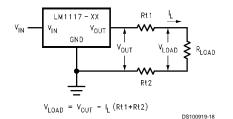
The output capacitor is critical in maintaining regulator stability, and must meet the required conditions for both minimum amount of capacitance and ESR (Equivalent Series Resistance). The minimum output capacitance required by the LM117 is 10µF, if a tantalum capacitor is used. Any increase of the output capacitance will merely improve the loop stability and transient response. The ESR of the output capacitor should be less than 0.5Ω. In the case of the adjustable regulator, when the C _{ADJ} is used, a larger output capacitance (22µf tantalum) is required.

2.0 Output Voltage

The LM1117 adjustable version develops a 1.25V reference voltage, V_{REF}, between the output and the adjust terminal. As shown in Figure 1, this voltage is applied across resistor R1 to generate a constant current I1. The current I_{ADJ} from the adjust terminal could introduce error to the output. But since it is very small (60µA) compared with the I1 and very constant with line and load changes, the error can be ignored. The constant current I1 then flows through the output set resistor R2 and sets the output voltage to the desired level.

For fixed voltage devices, R1 and R2 are integrated inside the devices.




Figure 1. Basic Adjustable Regulator

3.0 Load Regulation

The LM1117 regulates the voltage that appears between its output and ground pins, or between its output and adjust pins. In some cases, line resistances can introduce errors to the voltage across the load. To obtain the best load regulation, a few precautions are needed.

www.national.com

Figure 2 shows a typical application using a fixed output regulator. The Rt1 and Rt2 are the line resistances. It is obvious that the V $_{\rm LOAD}$ is less than the V $_{\rm OUT}$ by the sum of the voltage drops along the line resistances. In this case, the load regulation seen at the R $_{\rm LOAD}$ would be degraded from the data sheet specification. To improve this, the load should be tied directly to the output terminal on the negative side.

Figure 2. Typical Application using Fixed Output Regulator

When the adjustable regulator is used (Figure 3), the best performance is obtained with the positive side of the resistor R1 tied directly to the output terminal of the regulator rather than near the load. This eliminates line drops from appearing effectively in series with the reference and degrading regulation. For example, a 5V regulator with 0.05Ω resistance between the regulator and load will have a load regulation due to line resistance of $0.05\Omega \times I_L$. If R1 (=125 Ω) is connected near the load, the effective line resistance will be 0.05Ω (1+R2/R1) or in this case, it is 4 times worse. In addition, the ground side of the resistor R2 can be returned near the ground of the load to provide remote ground sensing and improve load regulation.

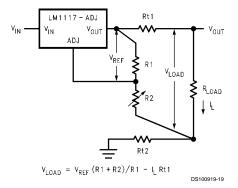


Figure 3. Best Load Regulation using Adjustable Output Regulator

4.0 Protection Diodes

Under normal operation, the LM1117 regulators do not need any protection diode. With the adjustable device, the internal resistance between the adjust and output terminals limits the current. No diode is needed to divert the current around the regulator even with capacitor on the adjust terminal. The adjust pin can take a transient signal of $\pm 25V$ with respect to the output voltage without damaging the device.

When a output capacitor is connected to a regulator and the input is shorted to ground, the output capacitor will discharge

APPLICATION NOTE (Continued)

into the output of the regulator. The discharge current depends on the value of the capacitor, the output voltage of the regulator, and rate of decrease of V $_{\rm IN}$. In the LM1117 regulators, the internal diode between the output and input pins can withstand microsecond surge currents of 10A to 20A. With an extremely large output capacitor (\geq 1000 μ F), and with input instantaneously shorted to ground, the regulator could be damaged.

In this case, an external diode is recommended between the output and input pins to protect the regulator, as shown in Figure 4.

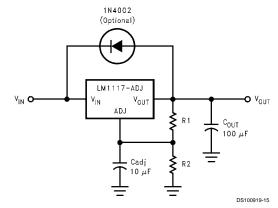


Figure 4. Regulator with Protection Diode

5.0 Heatsink Requirements

The LM1117 regulators have internal thermal shutdown to protect the device from over-heating. Under all possible operating conditions, the junction temperature of the LM1117 must be within the range of 0°C to 125°C. A heatsink may be required depending on the maximum power dissipation and

maximum ambient temperature of the application. To determine if a heatsink is needed, the power dissipated by the regulator, P_D , must be calculated:

$$I_{\rm IN} = I_{\rm L} + I_{\rm C}$$

 $\mathsf{P}_\mathsf{D} = (\mathsf{V}_\mathsf{IN}\text{-}\mathsf{V}_\mathsf{OUT})\mathsf{I}_\mathsf{L} + \mathsf{V}_\mathsf{IN}\mathsf{I}_\mathsf{G}$

Figure 5 shows the voltages and currents which are present in the circuit.

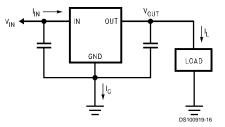


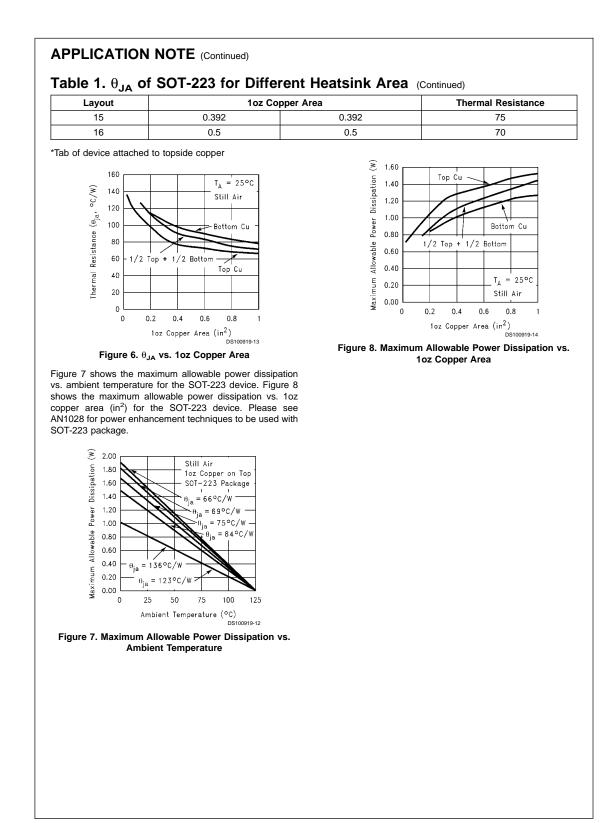
Figure 5. Power Dissipation Diagram

The next parameter which must be calculated is the maximum allowable temperature rise, ${\rm T_R}({\rm max})$:

 $T_R(max)=T_J(max)-T_A(max)$

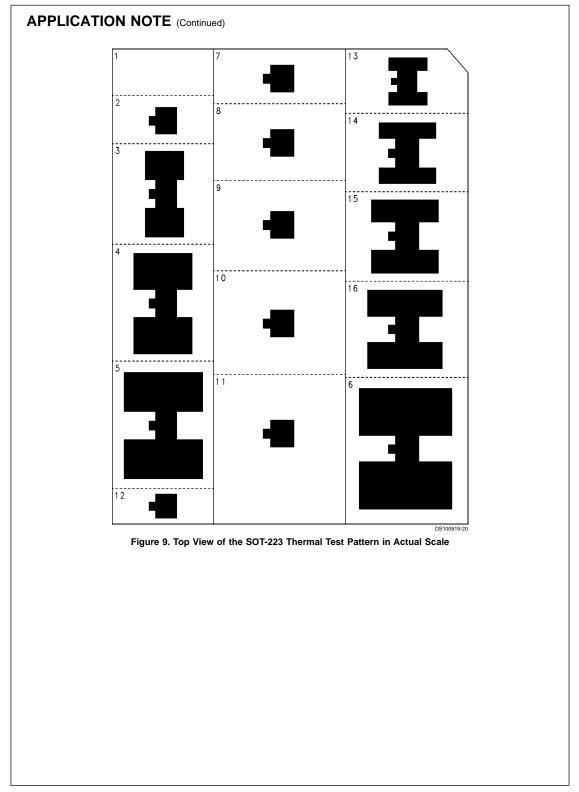
where $T_J(max)$ is the maximum allowable junction temperature (125°C), and $T_A(max)$ is the maximum ambient temperature which will be encountered in the application.

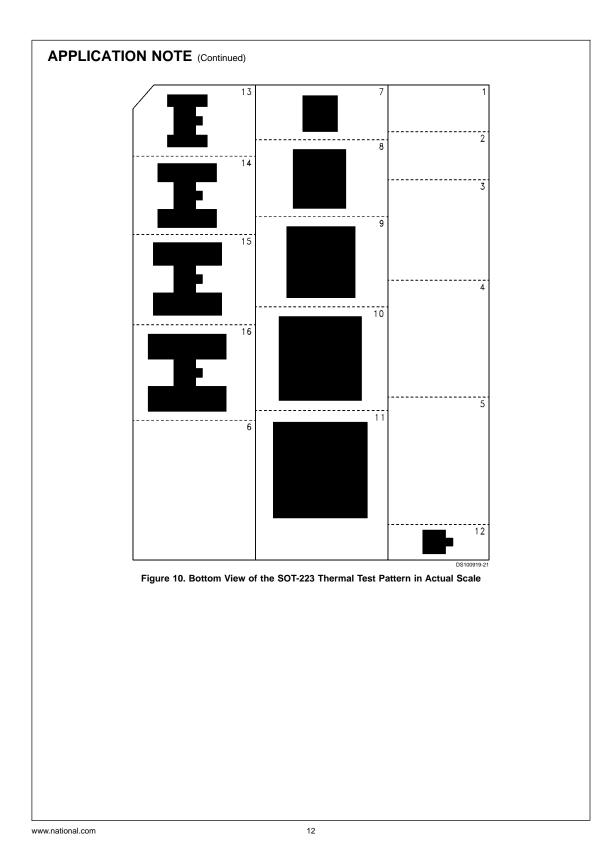
Using the calculated values for $T_R(max)$ and P $_D$, the maximum allowable value for the junction-to-ambient thermal resistance $(\theta_{\rm JA})$ can be calculated:

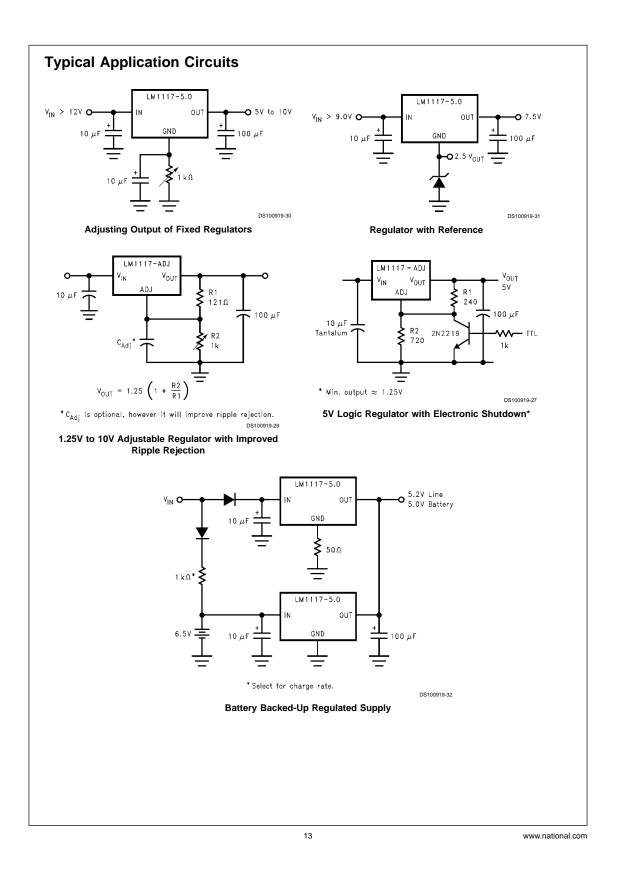

 $\theta_{JA} = T_R(max)/P_D$

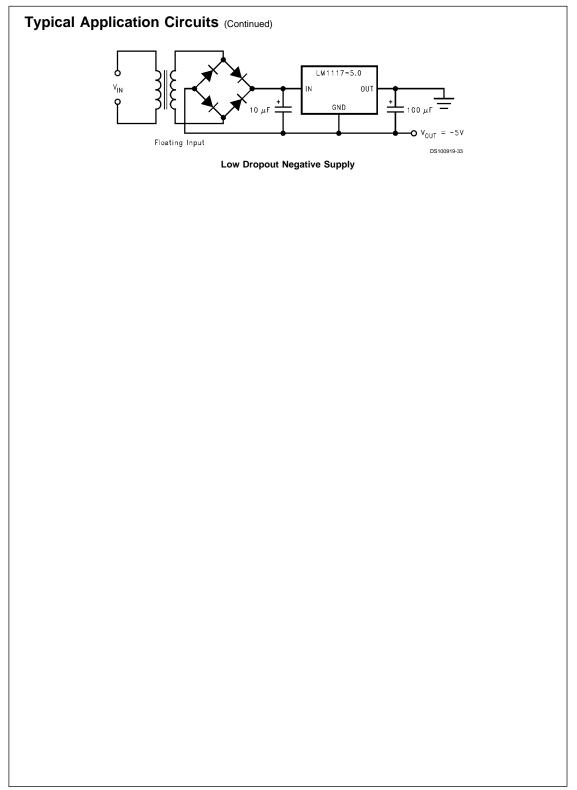
If the maximum allowable value for θ_{JA} is found to be ${\geq}136\,^{\circ}C/W$ for SOT-223 package or ${\geq}79\,^{\circ}C/W$ for TO-220 package, no heatsink is needed since the package alone will dissipate enough heat to satisfy these requirements. If the calculated value for θ_{JA} falls below these limits, a heatsink is required.

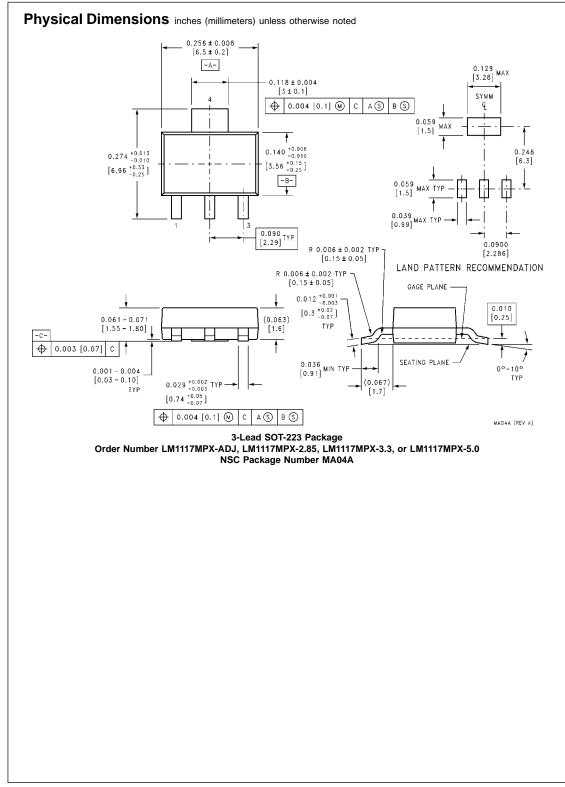
As a design aid, Table 1 shows the value of the θ_{JA} of SOT-223 for different heatsink area. The copper patterns that we used to measure these θ_{JA} s are shown at the end of the Application Notes Section. Figure 6 reflects the same test results as what are in the Table 1.

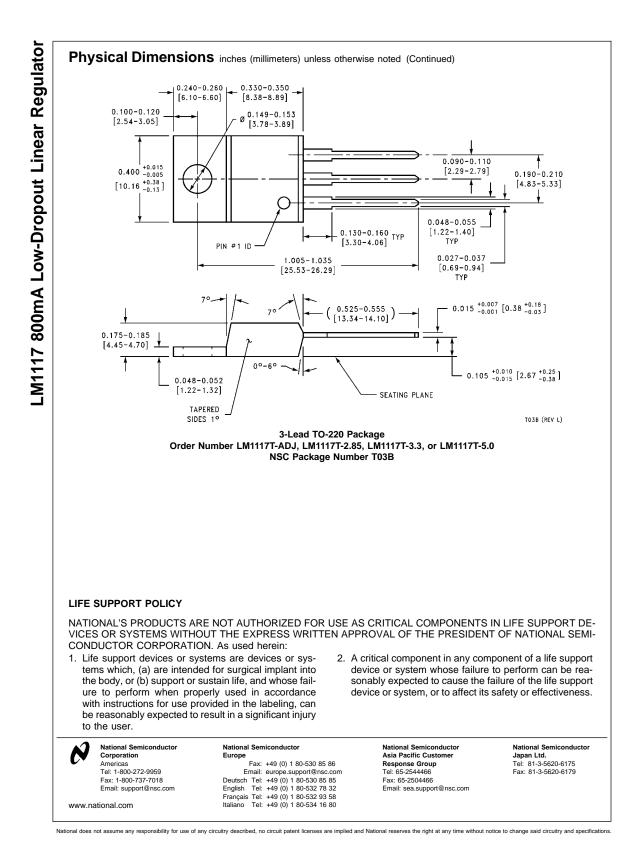

Table 1. θ_{JA} of SOT-223 for Different Heatsink Area


Layout	1oz Co	Thermal Resistance			
	Top Side (in ²)*	Bottom Side (in ²)	(θ _{JA} ,°C/W)		
1	0.0123	0	136		
2	0.066	0	123		
3	0.3	0	84		
4	0.53	0	75		
5	0.76	0	69		
6	1	0	66		
7	0	0.2	115		
8	0	0.4	98		
9	0	0.6	89		
10	0	0.8	82		
11	0	1	79		
12	0.066	0.066	125		
13	0.175	0.175	93		
14	0.284	0.284	83		




www.national.com


10



3.0 PROCESS INFORMATION

3.1 PROCESS DETAILS

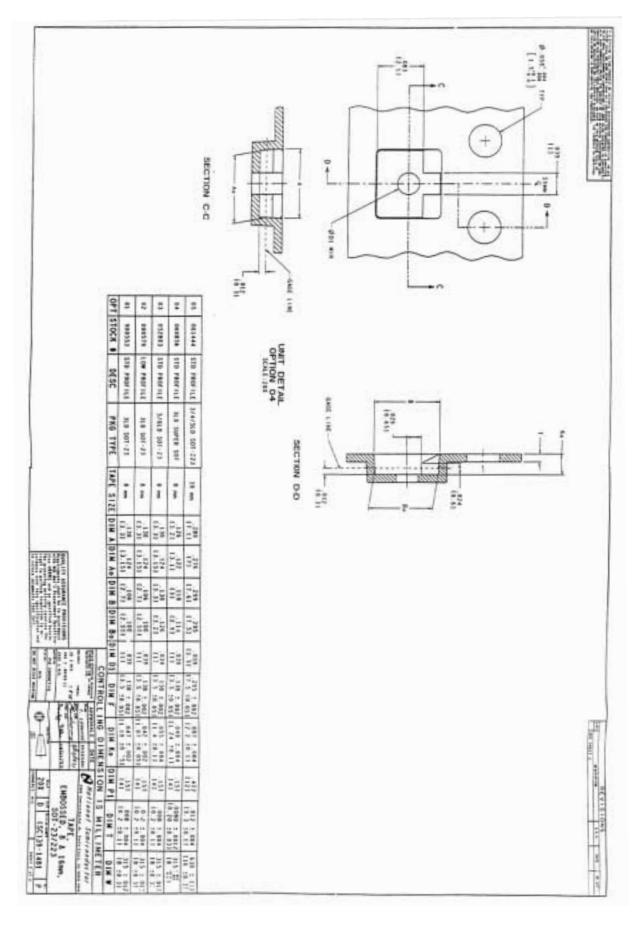
Fabrication Site: Greenock, Scotland Process Technology: LB300 (Bipolar) Wafer Diameter: 6 inches (150 mm) Number of Masks: 11 Metallization: Al with 0.5% Cu Top Side Passivation: Oxide/Nitride

3.2 PROCESS FLOW AND MASKS

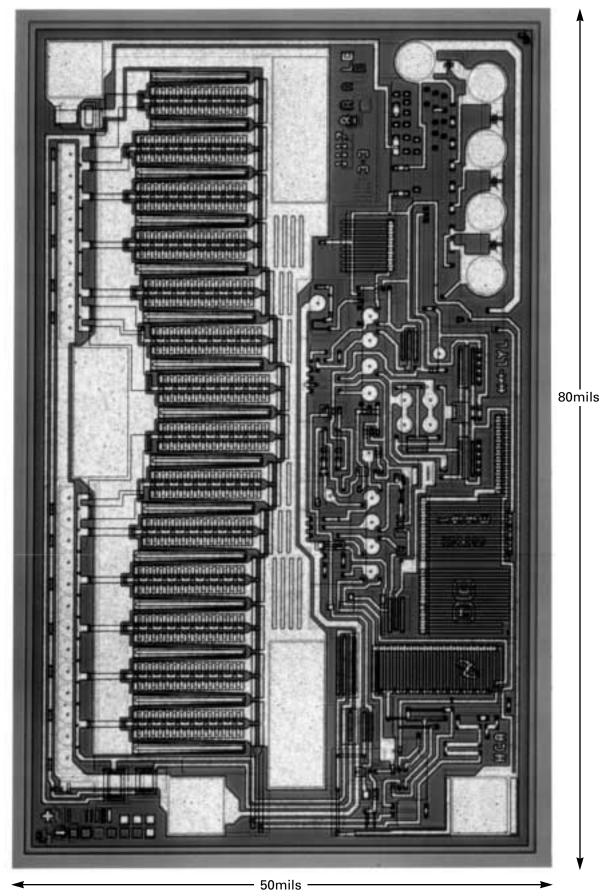
1: Laser Scribe 2: Initial Oxide 3: Collector Mask 4: Collector Implant **5: Collector Diffusion** 6: Iso-Up Mask 7: Iso-Up Implant 8: Strip/Inspect 9: Epi Growth 10: Epi Reox 11: Plug Mask 12: Plug PreDep 13: Plug Diffusion 14: Iso Down Mask 15: Pre Iso-Down Implant Ox 16: Iso Down Implant 17: Iso Down Diffusion 18: FTA mask 19: FTA Implant 20: FTA Reox 21: Base Mask 22: Pre Base Implant Ox 23: Base Implant 47: Electrical Test

24: Base Diffusion

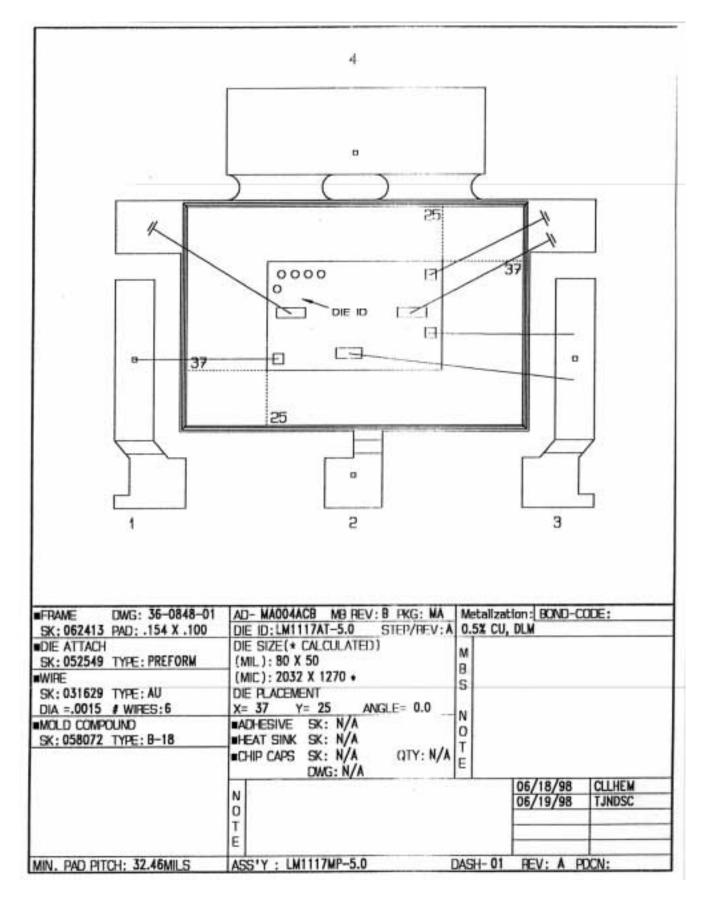
25: Post Base Ox 26: Emitter Mask 27: Iso/CB Diode Check 28: Screen Ox 29: Emitter Implant 30: Emitter Diffusion 31: Resistor Mask 32: Resistor Implant 33: VOE (Vapox Over Emitter) 34: Getter 35: Capacitor Ox 36: Anneal 37: Contact Mask 38: Platinum Depostion 39: Platinum Silicide 40: Platinum Strip 41: Titanium Tungsten Sputter 42: Metal Deposition 43: Metal Mask 44: Passivation 45: Passivation Mask 46: Anneal

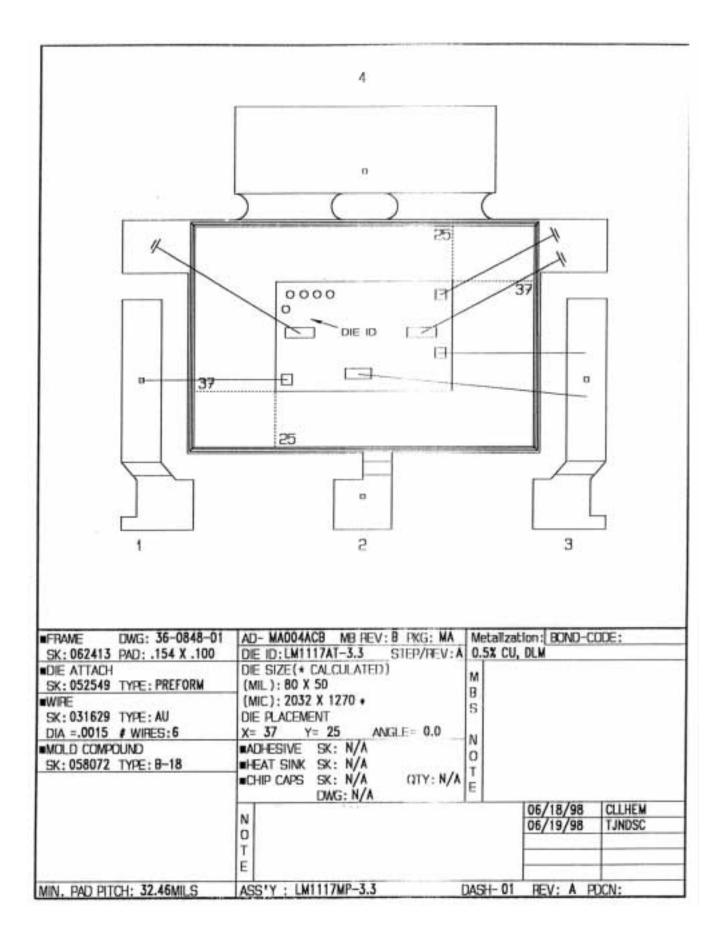

LM1117 Qualification Package 3-1

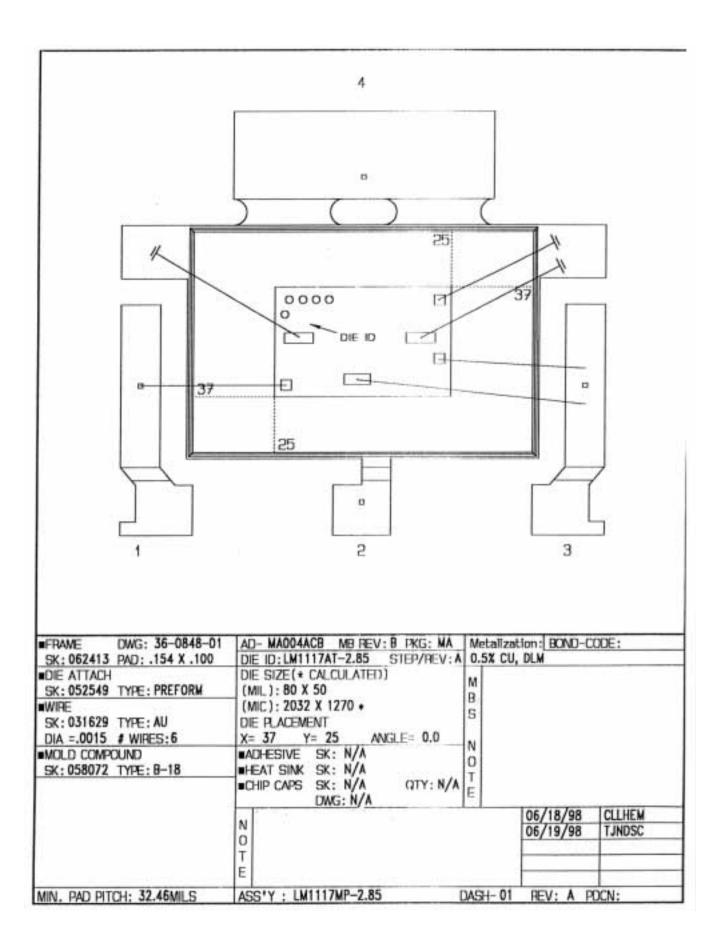
4.1 PACKAGE MATERIAL

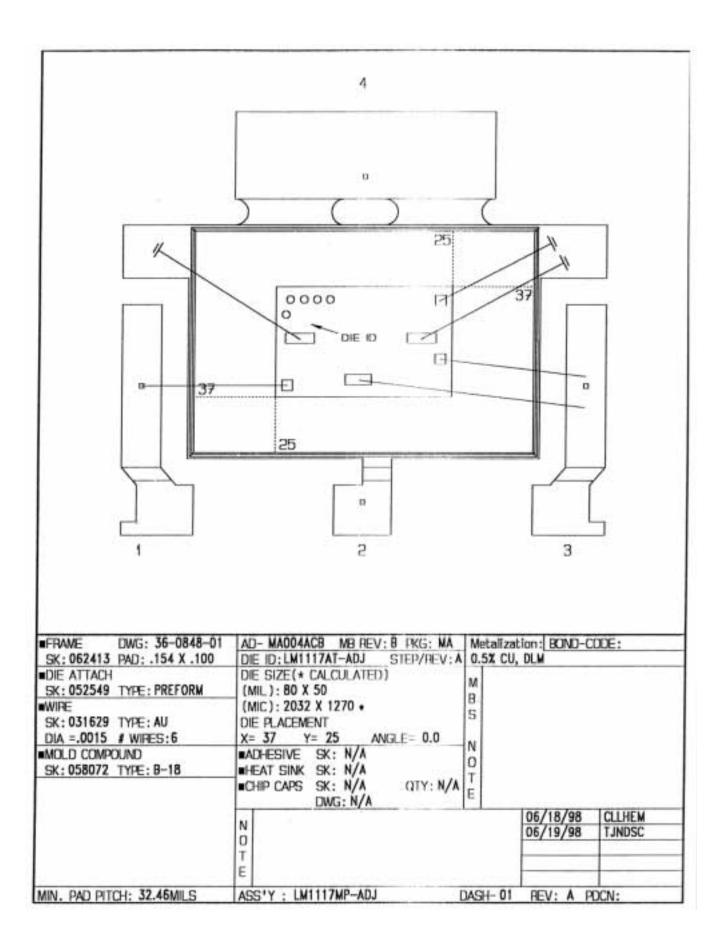

Generic Package Type	3 Lead SOT-223	TO-220
NS Package Number	MA04A	ТОЗВ
Mold Compound Manufacturer, Designation	Sumitomo EME-6710	Plaskon 7115 or Sumitomo EME-6700
Lead Frame Material Manufacturer	Copper QPL	Copper Gotoh
External Lead Frame Coating	Solder Plate Sn/Pb	Solder Plate Sn/Pb
Die Attached Method	Preform (Eutectic)	Preform (Eutectic)
Bond Wire	Gold, 1.5mils	Gold, 1.5mils
Bond Type	Thermosonic Ball	Thermosonic Ball
Package Thermal	136°C/W	79°C/W

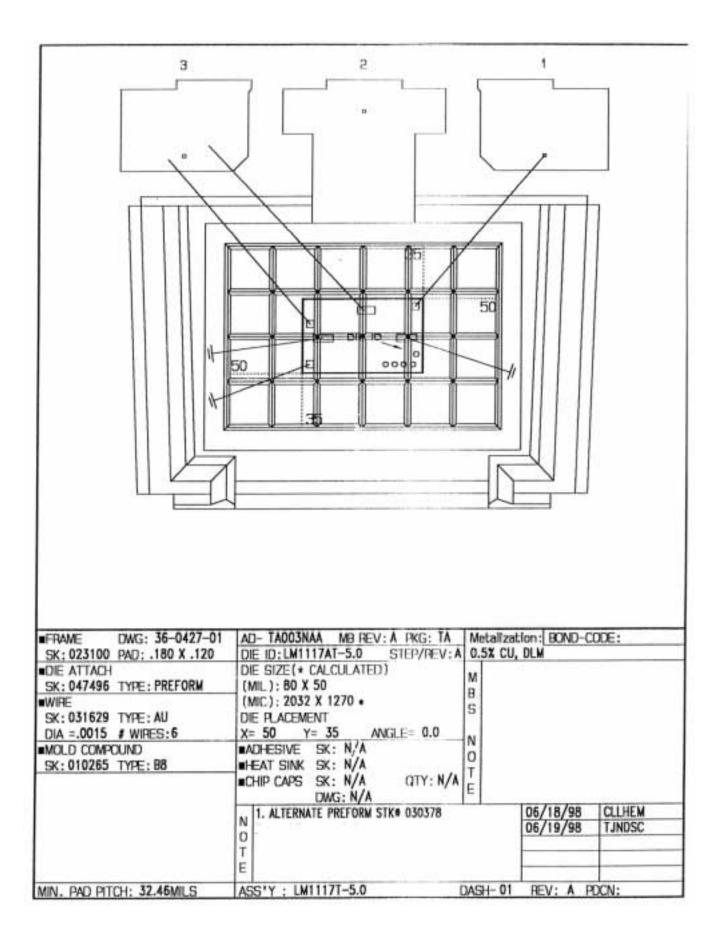
4.2 TAPE & REEL DIMENSIONS

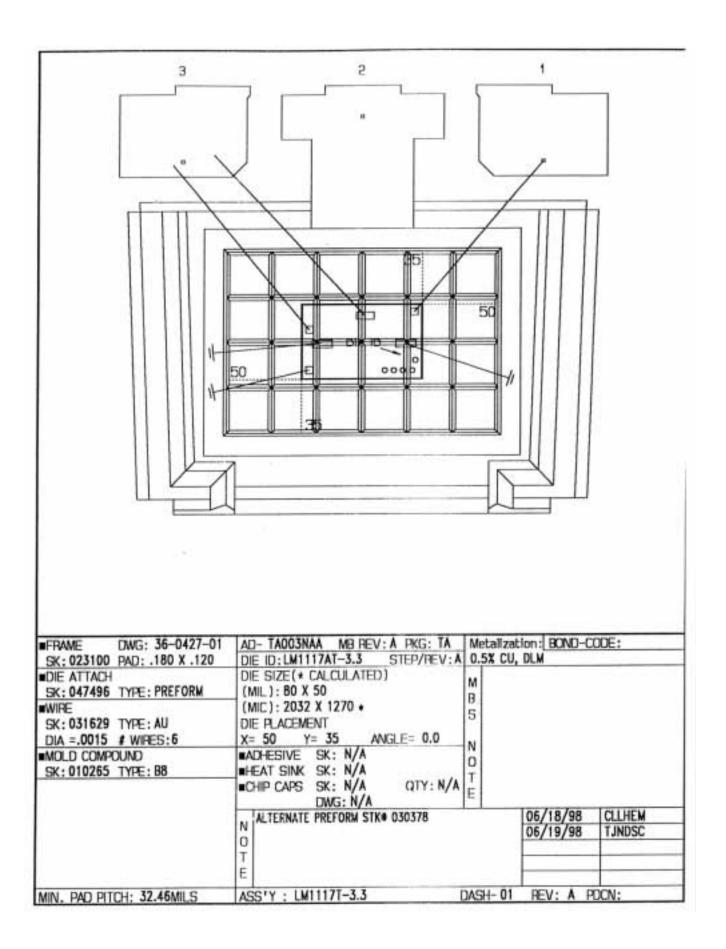

140	=	2	5	I	3	2	=	=	:	12	Ξ	12	12	
TAPE SIZE	r	12mm) line	Jam	12mm	i	lim	ĩ	127	iten	2400	i.	Lines	15
\$10CK #	PNCS	1946.01	2NG11	INCOM	017340	01310	10,010	073814	(((1)))	\$185.00	1023815	184364	428411	
DINA	13.00	330	13.00	310	33.00	330	11.00	137.0	112.00	111 CO	13.80	117.90	11.40	
DIN	1.1	1.5	1.5	1.5	1 In	218	410	5.5	1.5	1.1	5.1	1.1	910	
DINC	11 + 1207 - 108	13 +0.57-0.2	2.0-15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	13 48 57-0.2	2.0-16.0+ 61	2 0-15 0+ 118- 10 -1252 + 118-	120.0	13 4 12 12 10 2	11 +0.57-0.2	13 +0.5/-0.2	P	13 - 12 - 12 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	13 +9,37-9,2	
	195	285	.785	- 113	195	2412	10.2	18.2	28.2	111	785	185	18.7	
	4.00	118	1.90		1.1	150	198	7,145	2.163	1.00	100	2.143	1.13	
	.331 +, 056J -, 008		10.0.1810.000	- 145 1767 - 000	1.274 +.27	1, 745 + 018	2.220 +.010000	100 - 1000 - 101	1001010001	.446 +.4337400	9/2+ 1/8/2 + 184	446 +, 0307-, 003 10.4 +070	2 229 +.0183866	
	1967	10.4	22.4	1		-	-	1.541	-		-	199.	14	ž <u>ž</u>
	.301429	303 -407	1.41-41-144	11-1-1-12	1,234-1,384	1.179-1.004	2.281-2.334	111-111	11-1-15-4	15.9-19.4	1.12-4.12	425-170-4	2.201-2.334	
		The set of the local set of the s	Carrier Harrison and Stational Sourcesses of	and some and a second at the second s	14 WOLDER REELS SHALL BE ANTISTIFIC CONTER OF INLINCED	15. THERE MUST BE NO BUSANICH RETWINE MATING PARTS.	14 MARINE MELLS MALL BE FREE OF CODMETTIE DEFICITS SUCH AS ADDRESS FLASHING CHECKING PLAN MARKS, CIT.	12	11. Sing anderS Tanf will Cause a Caused in the restriction	1	8	19 ALL DATHER FROM THE WOLD WHIT BE DEDUCTLY ADMINIST	1 GLASS TAMPITOR HARMANING (1) Dr THE PLASTIC SEEL SHALL AT HEREA.	 N DA OFTION N DATES NULLY INSTANCE STELLED N DATES NULLY IN THE INFORMATION STELLED N DATES NULLY IN THE INFORMATION STELLED N DATES NULLY I

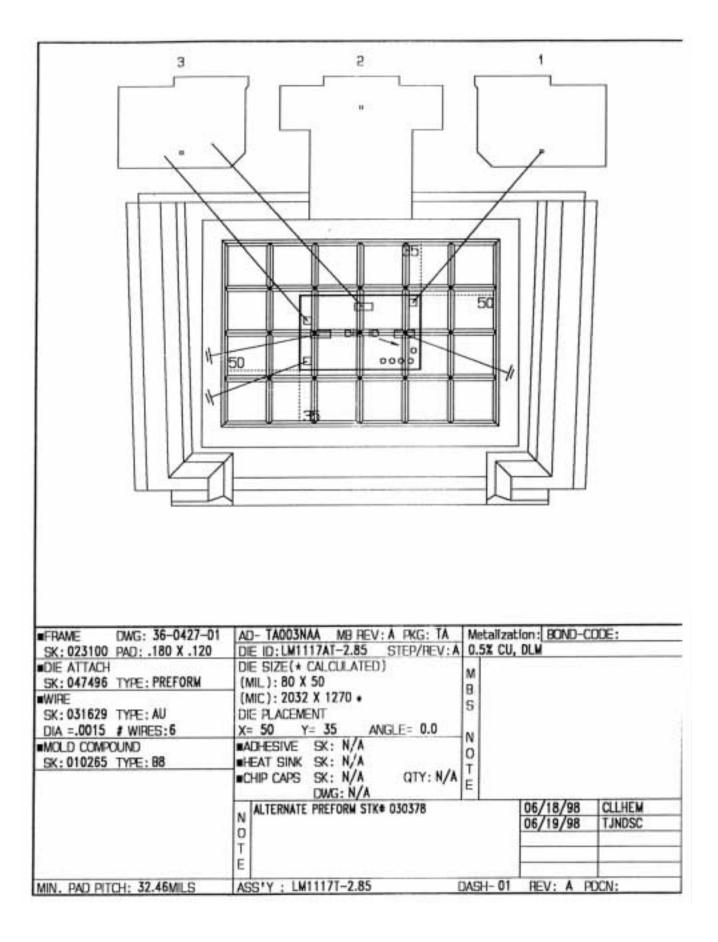


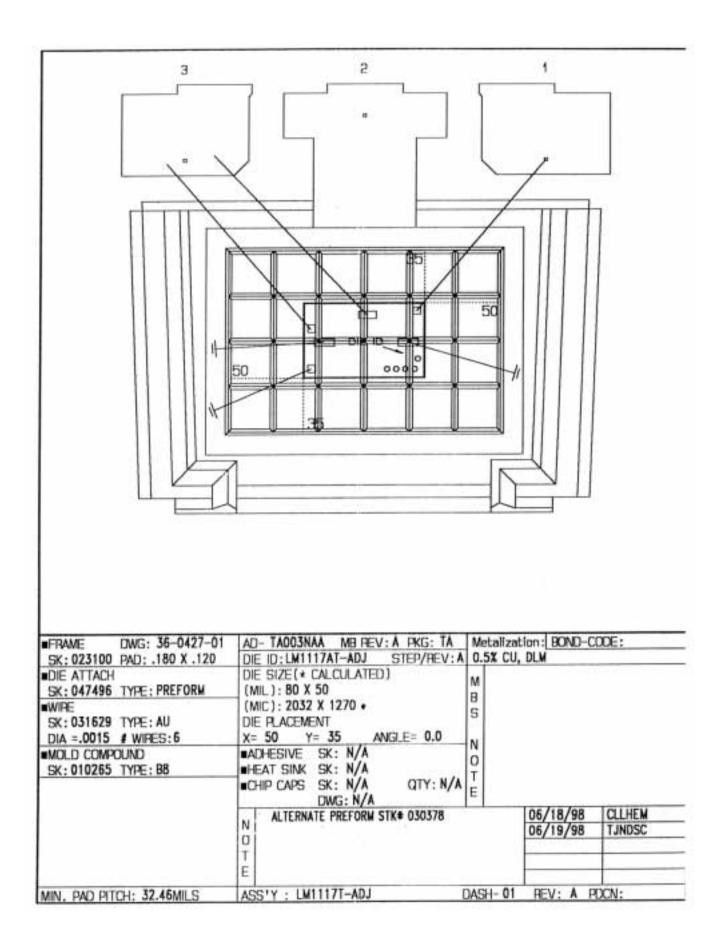

4.3 DIE PHOTO




4.4 BONDING DIAGRAMS







5.0 RELIABILITY DATA

Reliability Test Report

File Number: FSC19980214 Originator: Nick Stanco Date:May 14, 1998

Purpose

Approvals

LM1117 NEW DEVICE QUALIFICATION

Reliability Engineer

Reference File Numbers

Distribution List

Jim Dreyfus Nick Stanco

RSC199801268 RSC199801267 RSC199800916 REM199800705 Q19970942

Abstract

The LM1117 800 mA Low Drop Out Voltage Regulator fabricated on the NSUK LB300 process was subjected to reliability testing per qual Q19970942 for qualification as a new device. All required reliability testing has been completed without the occurrence of a single failure. Based on these results the LM1117 is now fully qualified and released to production in the 3L SOT-223 and TO-220 packages and in all voltage options.

Description

Test Request	Device Name	Sbgp	Loc	Fab Line	Pkg Code	# Leads	Loc	Date Cd	Mold Cmpd
RSC199801267	I M1117MP	А	UK	6 INCH	T\MSON	3	EM	9252	B18
RSC199801268	LM1117MP-ADJ	A	UK	6 INCH	T\P223	3	EM	9252	B18
REM199800705	LM1117MP	A	UK	6 INCH	T\MSON	3	EM	9806	B18
REM199800705	LM1117MP	В	UK	6 INCH	T\MSON	3	EM	9806	B18
REM199800705	LM1117MP	С	UK	6 INCH	T\MSON	3	EM	9806	B18
RSC199800916	LM1117MP	А	UK	6 INCH	T\MSON	3	EM	9806	B18

Tests Performed

Test: Electrostatic Disc	harge - Human Body	Model (ESDH)
Test Request	Device	Method
RSC199801267	LM1117MP	ATE
RSC199801268	LM1117MP-ADJ	ATE
Test: Electrostatic Disc	harge - Machine Moo	del (ESDM)
Test Request	Device	Method
RSC199801267	LM1117MP	ATE
RSC199801268	LM1117MP-ADJ	ATE

Tests Performed (cont)

Test: Autoclave Test (A	CLV)					
Test Request	Device	Sbgrp	Rel Humidity	Pressure	High Temp	LowTemp
REM199800705	LM1117MP	А	100	15	121	-
REM199800705	LM1117MP	В	100	15	121	-
REM199800705	LM1117MP	С	100	15	121	-
Test: Operating Life Te	st (Static) (SOPL)					
Test Request	Device	Sbgrp	Rel Humidity	Pressure	High Temp	LowTemp
REM199800705	LM1117MP	А	-	-	125	-
REM199800705	LM1117MP	В	-	-	125	-
REM199800705	LM1117MP	С	-	-	125	-
Test: Power Cycle (PRC	CL)					
Test Request	Device	Sbgrp	Rel Humidity	Pressure	High Temp	LowTemp
RSC199800916	LM1117MP	А			150	25
Test: Temperature Cyc	le (TMCL)					
Test Request	Device	Sbgrp	Rel Humidity	Pressure	High Temp	LowTemp
REM199800705	LM1117MP	А	-	-	150	-65
REM199800705	LM1117MP	В	-	-	150	-65
REM199800705	LM1117MP	С	-	-	150	-65
Test: Temperature Hun	nidity Bias Test (TH	BT)				
Test Request	Device	Sbgrp	Rel Humidity	Pressure	High Temp	LowTemp
REM199800705	LM1117MP	A	85	-	85	-
REM199800705	LM1117MP	В	85	-	85	-
REM199800705	LM1117MP	С	85	-	85	-
Test: Preconditioning (soak and 235C IR reflo		onditioned p	ber RAI-5-039 usi	ing a Level 1	85C/85% RH 1	68 hour moisture

Results

		Reject	s per Lot Sample	Size	
Tests	Time/Cycles	Lot 1	Lot 2	Lot 3	
SOPL-IB1	168 hours	0/77	0/77	0/77	
	500 hours	0/77	0/77	0/77	
	1000 hours	0/77	0/77		
THBT-IB1	168 hours	0/77			
	500 hours	0/77			
	1000 hours	0/77			
ACLV-IB1	96 hours	0/77			
	168 hours	0/77			
TMCL-IB1	500 cycles	0/77			
	1000 cycles	0/77			
PRCL-IB1	3000 cycles	0/77			

Results (cont)

HBM ESD	LM1117MP-ADJ		LM1117MP	-3.3
	500 volts	0/5	500 volts	0/5
	1000 volts	0/5	1000 volts	0/5
	1500 volts	0/5	1500 volts	0/5
	2000 volts	0/5	2000 volts	0/5
MM ESD	LM1117MP-ADJ		LM1117MP	-3.3
	50 volts	0/5	50 volts	0/5
	100 volts	0/5	100 volts	0/5
	150 volts	0/5	150 volts	0/5
	200 volts	0/5	200 volts	0/5

Conclusion

The LM1117 is now fully qualified and released to production in the 3L SOT-223 and TO-220 packages and in all voltage options.

6.0 CHARACTERIZATION DATA

C 1 TECT CHIMMADIEC

6.1 TEST SUMMARIES			
LM1117-ADJ Typical	Units	Mean	Sigma
Reference Voltage, Vin - Vout = 2V, Iout = 10mA	V	1.252	0.003
Reference Voltage, Vin - Vout = 1.4V, lout = 1 mA	V	1.252	0.003
Reference Voltage, Vin - Vout = 1.4V, lout = 800mA	V	1.250	0.003
Reference Voltage, Vin - Vout = 10V, lout =10mA	V	1.252	0.003
Reference Voltage, Vin - Vout = 10V, lout = 100mA	V	1.251	0.003
Line Regulation, 1.5V < Vin - Vout < 13.75V, lout = 10mA	%	-0.004	0.013
Load Regulation, Vin - Vout = 3.0V, 10mA < lout < 800mA	%	0.175	0.025
Dropout Voltage, lout = 100mA	Refer t	o LM1117-3	.3V Data
Dropout Voltage, lout = 500mA	Refer t	o LM1117-3	.3V Data
Dropout Voltage, lout = 80 mA	Refer t	o LM1117-3	.3V Data
Current Limit	mA	1177	17.9
Thermal Regulation, Vin - Vout = 10V, lout = 100mA, 30 sec Pulse	%	0.006	0.023
Minimum Load Current	mA	1.052	0.0315
Adjust Pin Current	uA	55.1	1.1
Adjust Pin Current Change, Vin - Vout = 1.4V, 10mA < lout < 800mA	uA	-0.236	0.143

LM1117-5.0 Typical	Units	Mean	Sigma
Output Voltage, Vin = 6.5V, Iout = 0mA	V	5.005	0.020
Output Voltage, Vin =6.5V, lout = 800mA	V	5.003	0.020
Output Voltage, Vin = 7.0V, lout = 10mA	V	5.005	0.020
Output Voltage, Vin = 12V, Iout = 0mA	V	5.006	0.020
Output Voltage, Vin = 12V, lout = 100mA	V	5.004	0.020
Line Regulation, 6.5V < Vin < 15V, lout = 0mA	mV	0.395	0.238
Load Regulation, Vin = 6.5V, 0 < lout < 800mA	mV	1.638	1.108
Dropout Voltage, lout = 100mA	Refer to LM1117-3.3V Data		
Dropout Voltage, lout = 500mA	Refer to LM1117-3.3V Data		
Dropout Voltage, lout = 800mA	Refer to LM1117-3.3V Data		
Thermal Regulation, Vin - Vout = 10V, lout = 100 mA, 30 sec Pulse	%	-0.001	0.007
Current Limit	mA	1312	28.6
Quiescent Current, Vin < 15V	mA	5.749	0.069

6.0 CHARACTERIZATION DATA

LM1117-2.85 Typical	Units	Mean	Sigma	
Output Voltage, Vin = 4.85V, Iout = 10mA	V	2.857	0.007	
Output Voltage, Vin = 4.25V, lout = 0mA	V	2.857	0.007	
Output Voltage, Vin = 4.10V, Iout = 0mA	V	2.857	0.007	
Output Voltage, Vin = 10V, Iout = 0mA	V	2.857	0.007	
Output Voltage, Vin = 10V, Iout = 100mA	V	2.856	0.007	
Output Voltage, Vin =4.10V, lout=500mA	V	2.856	0.007	
Output Voltage, Vin =4.25V, lout=800mA	V	2.855	0.007	
Line Regulation, 4.25V < Vin < 10V, lout = 0mA	mV	0.297	0.198	
Load Regulation, 0 < lout < 800mA, Vin = 4.25V	mV	1.590	0.347	
Dropout Voltage, lout = 100mA	Refer to LM1117-3.3V Data			
Dropout Voltage, lout = 500mA	Refer to LM1117-3.3V Data			
Dropout Voltage, lout = 800mA	Refer to LM1117-3.3V Data			
Thermal Regulation, Vin - Vout = 10V, lout = 100mA, 30 sec Pulse	%	0.028	0.010	
Current Limit	mA	1212	22.8	
Quiescent Current	mA	5.729	0.098	

LM1117-3.3 Typical	Units	Mean	Sigma
Output Voltage, Vin = 5V, lout = 10mA	V	3.309	0.008
Output Voltage, Vin = 4.75V, lout = 0mA	V	3.309	0.008
Output Voltage, Vin = 4.75V, lout = 800mA	V	3.309	0.008
Output Voltage, Vin = 10V, lout = 0mA	V	3.310	0.008
Output Voltage, Vin =10V, lout = 100mA	V	3.308	0.008
Line Regulation, 4.75V < Vin < 15V, lout = 0mA	mV	-0.014	0.235
Load Regulation, 0 < lout < 800 mA, Vin = 4.75V	mV	0.738	0.403
Dropout Voltage, lout = 100mA	V	1.032	0.009
Dropout Voltage, lout = 500mA	V	1.171	0.008
Dropout Voltage, lout = 800mA	V	1.189	0.004
Thermal Regulation, Vin - Vout = 10V, lout = 100mA, 30 sec Pulse	%	0.020	0.010
Current Limit	mA	1245	28.3
Quiescent Current	mA	5.862	0.093

National Semiconductor supplies a comprehensive set of service and support capabilities. Complete product information and design support is available from National's customer support centers.

To receive sales literature and technical assistance, contact the National support center in your area.

Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

Europe

Fax: +49 (0) 1 80 5 30 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80 5 30 85 85 English Tel: +49 (0) 1 80 5 32 78 32

Japan

Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

Asia Pacific

Fax: 65-2504466 Email: sea.support@nsc.com Tel: 65-2544466 (IDD telephone charge to be paid by caller)

See us on the Worldwide Web @ http://www.national.com

NATIONAL SEMICONDUCTOR®, 🔗 ®, are trademarks of National Semiconductor Corporation. ©1998 National Semiconductor Corporation. All rights reserved.