National Semiconductor

LM837 Low Noise Quad Operational Amplifier

General Description

The LM837 is a quad operational amplifier designed for low noise, high speed and wide bandwidth performance. It has a new type of output stage which can drive a 600Ω load, making it ideal for almost all digital audio, graphic equalizer, preamplifiers, and professional audio applications. Its high performance characteristics also make it suitable for instrumentation applications where low noise is the key consideration

The LM837 is internally compensated for unity gain operation. It is pin compatible with most other standard quad op amps and can therefore be used to upgrade existing systems with little or no change.

Schematic and Connection Diagrams

High slew rate

Features

- Wide gain bandwidth product
- Power bandwidth
- High output current
- Excellent output drive performance
- Low input noise voltage
- Low total harmonic distortion
- Low offset voltage

© 1995 National Semiconductor Corporation TL/H/9047 RRD-B30M75/Printed in U. S. A.

LM837 Low Noise Quad Operational Amplifier

February 1995

10 V/µs (typ)

8 V/μs (min)

25 MHz (typ)

15 MHz (min)

200 kHz (typ)

 $\pm 40 \text{ mA}$

>600 Ω

-IN3 9

OUT3 8 TL/H/9047-2

Absolute Maximum If Military/Aerospace specifie please contact the Nationa Office/Distributors for available	Rating d devices	JS s are required, nductor Sales	Soldering Information Dual-In-Line Package	00000	
Supply Voltage	Vcc/Vee	±18V	Small Outline Package	200 C	
Differential Input Voltage (Note 1)	VID	±30V	Vapor Phase (60 seconds)	215°C 220°C	
Common Mode Input Voltage (Note 1)	VIC	±15V	ESD rating is to be determined.	220 0	
Power Dissipation (Note 2)	PD	1.2W (N) 830 mW (M)	See AN-450 "Surface Mounting Methods a on Product Reliability" for other methods of	and Their Effect of soldering sur-	
Operating Temperature Range	T _{OPR}	-40°C to +85°C	face mount devices.		
Storage Temperature Range	T _{STG} -	-60°C to +150°C			

DC Electrical Characteristics ${\sf T}_A=$ 25°C, ${\sf V}_S=$ $\pm\,15{\sf V}$

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OS}	Input Offset Voltage	$R_S = 50\Omega$		0.3	5	mV
los	Input Offset Current			10	200	nA
IB	Input Bias Current			500	1000	nA
A _V	Large Signal Voltage Gain	$R_L = 2 k\Omega, V_{OUT} = \pm 10V$	90	110		dB
V _{OM}	Output Voltage Swing	$R_L = 2 k\Omega$	±12	±13.5		V
		$R_L = 600\Omega$	±10	±12.5		V
V _{CM}	Common Mode Input Voltage		±12	±14.0		V
CMRR	Common Mode Rejection Ratio	$V_{IN} = \pm 12V$	80	100		dB
PSRR	Power Supply Rejection Ratio	$V_{\rm S} = 15 \sim 5, -15 \sim -5$	80	100		dB
IS	Power Supply Current	$R_L = \infty$, Four Amps		10	15	mA

AC Electrical Characteristics ${\sf T}_A=25^{\circ}{\sf C},\,{\sf V}_S=\,\pm\,15{\sf V}$

Symbol	Parameter	Condition	Min	Тур	Max	Units
SR	Slew Rate	$R_L = 600\Omega$	8	10		V/µs
GBW	Gain Bandwidth Product	$f = 100 \text{ kHz}, \text{R}_{\text{L}} = 600 \Omega$	15	25		MHz

Design Electrical Characteristics ${\sf T}_A=25^{\circ}{\sf C}, {\sf V}_S=~\pm15{\sf V}~({\sf Note}~3)$

Symbol	Parameter	Condition	Min	Тур	Мах	Units
PBW	Power Bandwidth	$V_{\mbox{O}}=$ 25 $V_{\mbox{P-P}}, \mbox{R}_{\mbox{L}}=$ 600 $\Omega, \mbox{THD}<$ 1 %		200		kHz
e _{n1}	Equivalent Input Noise Voltage	JIS A, $R_S = 100\Omega$		0.5		μV
e _{n2}	Equivalent Input Noise Voltage	f = 1 kHz		4.5		nV/√Hz
i _n	Equivalent Input Noise Current	f = 1 kHz		0.7		pA/√Hz
THD	Total Harmonic Distortion	$\begin{array}{l} A_V = \ 1, V_{OUT} = 3 \ Vrms, \\ f = \ 20 \ \sim \ 20 \ kHz, \ R_L = \ 600 \Omega \end{array}$		0.0015		%
fU	Zero Cross Frequency	Open Loop		12		MHz
φm	Phase Margin	Open Loop		45		deg
	Input-Referred Crosstalk	$f = 20 \sim 20 \text{ kHz}$		-120		dB
$\Delta V_{OS} / \Delta T$	Average TC of Input Offset Voltage			2		μV/°C

Note 1: Unless otherwise specified the absolute maximum input voltage is equal to the power supply voltage.

Note 2: For operation at ambient temperatures above 25°C, the device must be derated based on a 150°C maximum junction temperature and a thermal resistance, junction to ambient, as follows: LM837N, 90°C/W; LM837M, 150°C/W.

Note 3: The following parameters are not tested or guaranteed.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.