February 1996

National Semiconductor

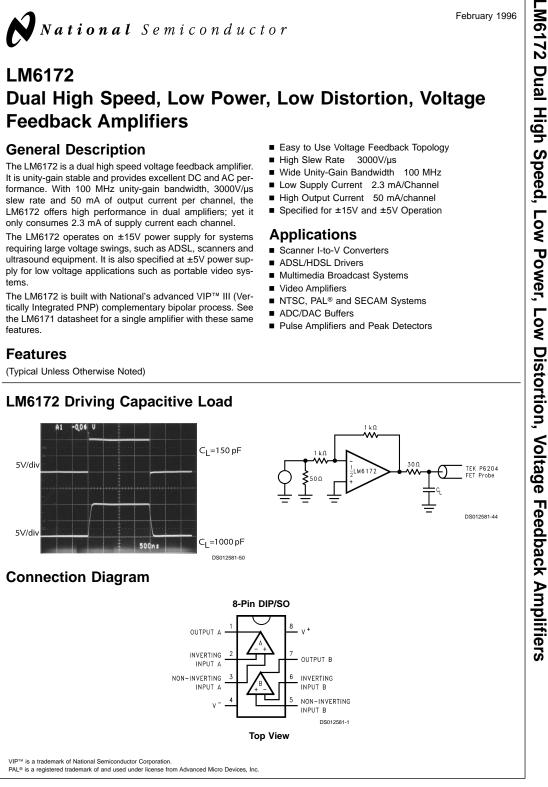
LM6172 Dual High Speed, Low Power, Low Distortion, Voltage **Feedback Amplifiers**

General Description

The LM6172 is a dual high speed voltage feedback amplifier. It is unity-gain stable and provides excellent DC and AC performance. With 100 MHz unity-gain bandwidth, 3000V/µs slew rate and 50 mA of output current per channel, the LM6172 offers high performance in dual amplifiers; yet it only consumes 2.3 mA of supply current each channel.

The LM6172 operates on ±15V power supply for systems requiring large voltage swings, such as ADSL, scanners and ultrasound equipment. It is also specified at ±5V power supply for low voltage applications such as portable video systems.

The LM6172 is built with National's advanced VIP™ III (Vertically Integrated PNP) complementary bipolar process. See the LM6171 datasheet for a single amplifier with these same features.


- Easy to Use Voltage Feedback Topology
- High Slew Rate 3000V/µs
- Wide Unity-Gain Bandwidth 100 MHz
- Low Supply Current 2.3 mA/Channel
- High Output Current 50 mA/channel
- Specified for ±15V and ±5V Operation

Applications

- Scanner I-to-V Converters
- ADSL/HDSL Drivers
- Multimedia Broadcast Systems
- Video Amplifiers
- NTSC, PAL[®] and SECAM Systems
- ADC/DAC Buffers
- Pulse Amplifiers and Peak Detectors

Features

(Typical Unless Otherwise Noted)

Package	Tempera	ture Range	Transport	NSC
	Industrial	Military	Media	Drawing
	–40°C to +85°C	-55°C to +125°C		
8-Pin DIP	LM6172IN		Rails	N08E
8-Pin CDIP		5962-9560401QPA (Note 1)	Rails	J08A
8-Pin Small Outline	LM6172IM		Rails	M08A
	LM6172IMX		Tape and Reel	1

Note 1: For the military temperature grade, please refer to the Military Datasheet: MNLM6172AMJ/883. The NSID for the military temp grade is LM6172AMJ-QML.

www.national.com

. .

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 3)	
Human Body Model	3 kV
Machine Model	300V
Supply Voltage (V ⁺ – V ⁻)	36V
Differential Input Voltage (Note 10)	±10V
Output Short Circuit to Ground	
(Note 4)	Continuous
Storage Temp. Range	–65°C to +150°C

$\begin{array}{ll} \mbox{Maximum Junction Temperature} \\ (Note 5) & 150^{\circ}{\rm C} \end{array} \\ \hline \mbox{Operating Ratings} (Note 2) \\ \mbox{Supply Voltage} & 5.5V \leq V_{\rm S} \leq 36V \\ \mbox{Junction Temperature Range} \\ \mbox{LM6172l} & -40^{\circ}{\rm C} \leq {\rm T_J} \leq +85^{\circ}{\rm C} \\ \mbox{Thermal Resistance} (\theta_{\rm JA}) \\ \mbox{N Package, 8-Pin Molded DIP} & 95^{\circ}{\rm C/W} \\ \mbox{M Package, 8-Pin Surface Mount} & 160^{\circ}{\rm C/W} \end{array}$

±15V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = +15V$, $V^- = -15V$, $V_{CM} = 0V$, and $R_L = 1 \text{ k}\Omega$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	Typ (Note 6)	LM6172I Limit (Note 6)	Units
V _{os}	Input Offset Voltage		0.4	3	mV
03				4	max
TC V _{os}	Input Offset Voltage		6		µV/°C
	Average Drift				
IB	Input Bias Current		1.2	3	μA
				4	max
l _{os}	Input Offset Current		0.02	2	μA
				3	max
R _{IN}	Input Resistance	Common Mode	40		MΩ
		Differential Mode	4.9		1
Ro	Open Loop Output Resistance		14		Ω
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 10V$	110	70	dB
				65	min
PSRR	Power Supply Rejection Ratio	$V_{S} = \pm 15V$ to $\pm 5V$	95	75	dB
				70	min
A _V	Large Signal Voltage	$R_{L} = 1 k\Omega$	86	80	dB
	Gain (Note 7)			75	min
		R _L = 100Ω	78	65	dB
				60	min
Vo	Output Swing	$R_L = 1 k\Omega$	13.2	12.5	V
				12	min
			-13.1	-12.5	V
				-12	max
		$R_L = 100\Omega$	9	6	V
				5	min
			-8.5	-6	V
				-5	max
	Continuous Output Current	Sourcing, $R_L = 100\Omega$	90	60	mA
	(Open Loop) (Note 8)			50	min
		Sinking, $R_L = 100\Omega$	-85	-60	mA
				-50	max
I _{sc}	Output Short Circuit	Sourcing	107		mA
	Current	Sinking	-105		mA
ls	Supply Current	Both Amplifiers	4.6	8	mA

±15V DC Electrical	Characteristics (Continued))
--------------------	-----------------------------	---

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = +15V$, $V^- = -15V$, $V_{CM} = 0V$, and $R_L = 1 \text{ k}\Omega$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	Typ (Note 6)	LM6172I Limit (Note 6)	Units
				9	max

±15V AC Electrical Characteristics

•

Unless otherwise specified, T_J = 25°C, V^+ = +15V, V^- = -15V, V_{CM} = 0V, and R_L = 1 $k\Omega$

			LM6172I	
Symbol	Parameter	Conditions	Тур	Units
			(Note 6)	
SR	Slew Rate	$A_V = +2$, $V_{IN} = 13 V_{PP}$	3000	V/µs
		$A_V = +2$, $V_{IN} = 10 V_{PP}$	2500	V/µs
	Unity-Gain Bandwidth		100	MHz
	-3 dB Frequency	A _V = +1	160	MHz
		A _V = +2	62	MHz
	Bandwidth Matching between Channels		2	MHz
φ _m	Phase Margin		40	Deg
t _s	Settling Time (0.1%)	$A_V = -1, V_{OUT} = \pm 5V,$	65	ns
		$R_{L} = 500\Omega$		
A _D	Differential Gain (Note 9)		0.28	%
φ _D	Differential Phase (Note 9)		0.6	Deg
e _n	Input-Referred	f = 1 kHz	12	pА
	Voltage Noise			pA √Hz
i _n	Input-Referred	f = 1 kHz	1	nV
	Current Noise			√Hz
	Second Harmonic	f = 10 kHz	-110	dB
	Distortion (Note 11)	f = 5 MHz	-50	dB
	Third Harmonic	f = 10 kHz	-105	dB
	Distortion (Note 11)	f = 5 MHz	-50	dB

±5V DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = +5V$, $V^- = -5V$, $V_{CM} = 0V$, and $R_L = 1 \text{ k}\Omega$. Boldface limits apply at the temperature extremes

Symbol	Parameter	Conditions	Typ (Note 6)	LM6172I Limit	Units
				(Note 6)	
Vos	Input Offset Voltage		0.1	3	mV
				4	max
TC V _{os}	Input Offset Voltage		4		μV/°C
	Average Drift				
I _B	Input Bias Current		1.4	2.5	μA
				3.5	max
l _{os}	Input Offset Current		0.02	1.5	μA
				2.2	max
R _{IN}	Input Resistance	Common Mode	40		MΩ
		Differential Mode	4.9		
Ro	Output Resistance		14		Ω
CMRR	Common Mode Rejection Ratio	$V_{CM} = \pm 2.5 V$	105	70	dB

	at the temperature extremes				
			Тур	LM6172I	
Symbol	Parameter	Conditions	(Note 6)	Limit	Units
				(Note 6)	
				65	min
PSRR	Power Supply Rejection Ratio	$V_{S} = \pm 15V$ to $\pm 5V$	95	75	dB
				70	min
A _V	Large Signal Voltage	$R_{L} = 1 \ k\Omega$	82	70	dB
	Gain (Note 7)			65	min
		$R_L = 100\Omega$	78	65	dB
				60	min
Vo	Output Swing	$R_{L} = 1 k\Omega$	3.4	3.1	V
				3	min
			-3.3	-3.1	V
				-3	max
		R _L = 100Ω	2.9	2.5	V
				2.4	min
			-2.7	-2.4	V
				-2.3	max
	Continuous Output Current	Sourcing, $R_L = 100\Omega$	29	25	mA
	(Open Loop) (Note 8)			24	min
		Sinking, $R_L = 100\Omega$	-27	-24	mA
				-23	max
I _{sc}	Output Short Circuit	Sourcing	93		mA
	Current	Sinking	-72		mA
Is	Supply Current	Both Amplifiers	4.4	6	mA
				7	max

· ·

±5V AC Electrical Characteristics Unless otherwise specified, T_J = 25°C, V⁺ = +5V, V⁻ = -5V, V_{CM} = 0V, and R_L = 1 k Ω .

Symbol	Parameter	Conditions	LM61722 Typ (Note 6)	Units
SR	Slew Rate	A_{V} = +2, V_{IN} = 3.5 V_{PP}	750	V/µs
	Unity-Gain Bandwidth		70	MHz
	-3 dB Frequency	A _V = +1	130	MHz
		A _V = +2	45	MHz
φ _m	Phase Margin		57	Deg
t _s	Settling Time (0.1%)	$A_{V} = -1, V_{OUT} = \pm 1V,$ $R_{I} = 500\Omega$	72	ns
A _D	Differential Gain (Note 9)	11L 00032	0.4	%
ф _D	Differential Phase (Note 9)		0.7	Deg
e _n	Input-Referred Voltage Noise	f = 1 kHz	11	$\frac{nV}{\sqrt{Hz}}$
i _n	Input-Referred Current Noise	f = 1 kHz	1	pA √Hz
	Second Harmonic	f = 10 kHz	-110	dB
	Distortion (Note 11)	f = 5 MHz	-48	dB
	Third Harmonic	f = 10 kHz	-105	dB

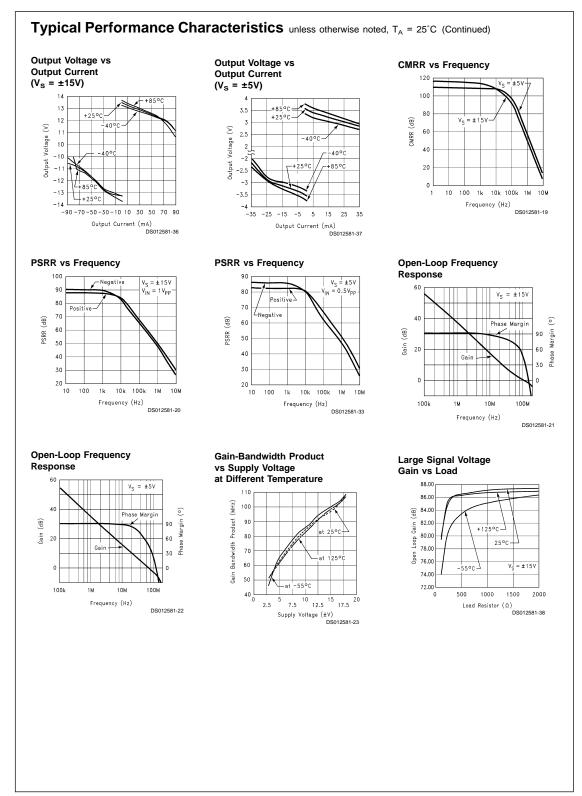
Symbol	Parameter	Conditions	LM61722 Typ (Note 6)	Units
Di	stortion (Note 11)	f = 5 MHz	-50	dB
nded to be functional, but ote 3: Human body mode ote 4: Continuous short of ote 5: The maximum pov $_{D} = (T_{J(max)} - T_{A})/\theta_{JA}$. All ote 6: Typical Values rep ote 7: All limits are guara ote 8: Large signal voltag DUT = ±1V. ote 9: The open loop out ote 10: Differential gain a ote 11: Differential input v ote 12: Harmonics are m	In Ratings indicate limits beyond which dam. Is specific performance is not guaranteed. P al, 1.5 kQ in series with 100 pF. Machine N ircuit operation can result in exceeding the ver dissipation is a function of $T_{i}(max)$, θ_{iA} , numbers apply for packages soldered dire resent the most likely parametric norm. Inteed by testing or statistical analysis. Is gain is the total output swing divided by put current is the output swing with the 100 and phase are measured with $A_V = +2$, V_{IN} voltage is applied at $V_S = \pm 15V$. easured with $A_V = +2$, $V_{IN} = 1$ V_{PP} and R_I DIMAGENCE Characteris	or guaranteed specifications and the te- fodel, 200 Ω in series with 100 pF. a maximum allowed junction temperatur and T _A . The maximum allowable powe- ctly into a PC board. the input signal required to produce that $\Omega\Omega$ load resistor divided by that resistor. $I = 1 V_{PP}$ at 3.58 MHz and both input at $L = 100\Omega$.	st conditions, see the Electrical e of 150°C. r dissipation at any ambient terr t swing. For $V_S = \pm 15V$, $V_{OUT} =$ nd output 75 Ω terminated.	Characteristics.
upply Voltage vs upply Current	Supply Cu Temperati		Input Offset Voltage vs Temperature	
6.5 5.5 5.5 7 4 4 5.5 5 5 5 5 7 4 4 5.5 5 5 5 7 4 4 5.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6.5 6 6 6 6 6 6 6 7 5.5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 7 8 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	$V_{\rm S} = \pm 15V$ $V_{\rm S} = \pm 5V$	$\begin{array}{c} 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.0 \\$	-V ₅ = ±15V
	3.5	-35 -15 5 25 45 65 85 105 125 Temperature (°C) DS012581-15	-0.4 -0.5 -0.6 -55 -35 -15 5 25 - Temperatu	
	10 12.5 15 17.5 20 oltage (±V) DS012581-14 //s Short Circ	Temperature (°C)	-0.5 -0.6 -55-35-15 5 25	ure (°C) DS012581-16

0.9 -55 -35 -15 5 25 45 65 85 105 125

-15 5 23 40 55 Temperature (°C) DS012581-17

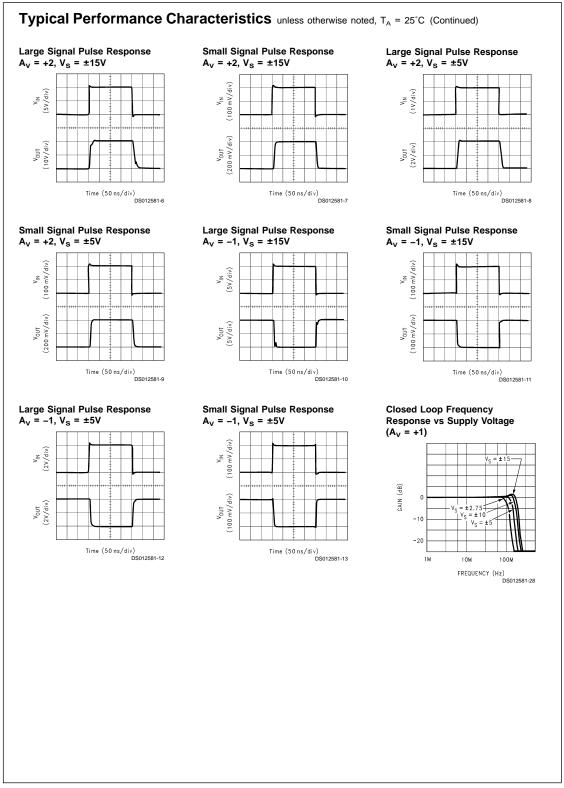
Input

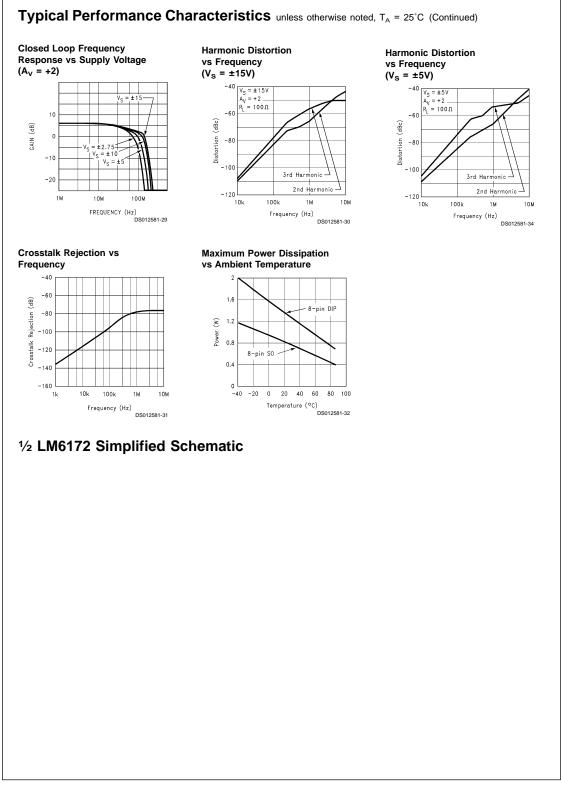
6

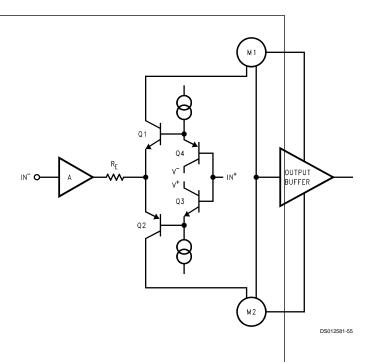

80 -55 -35 -15 5 25 45 65 85 105110 5 5 25 कर Current (mA) DS012581-18


-120

-130 -55-35-15 5 25 45 65 85 105 125


5 5 25 +0 --Current (mA) DS012581-35


90



8

Application Notes LM6172 Performance Discussion

The LM6172 is a dual high-speed, low power, voltage feedback amplifier. It is unity-gain stable and offers outstanding performance with only 2.3 mA of supply current per channel. The combination of 100 MHz unity-gain bandwidth, 3000V/µs slew rate, 50 mA per channel output current and other attractive features makes it easy to implement the LM6172 in various applications. Quiescent power of the LM6172 is 138 mW operating at ±15V supply and 46 mW at ±5V supply.

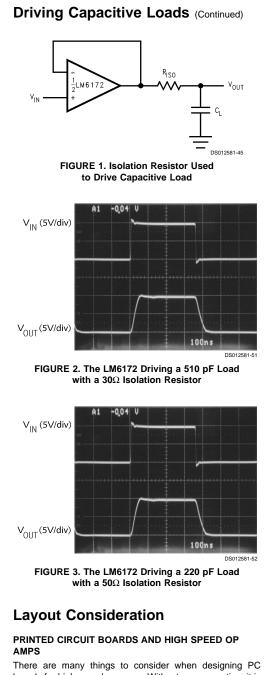
LM6172 Circuit Operation

The class AB input stage in LM6172 is fully symmetrical and has a similar slewing characteristic to the current feedback amplifiers. In the LM6172 Simplified Schematic, Q1 through Q4 form the equivalent of the current feedback input buffer, R_E the equivalent of the feedback resistor, and stage A buffers the inverting input. The triple-buffered output stage isolates the gain stage from the load to provide low output impedance.

LM6172 Slew Rate Characteristic

The slew rate of LM6172 is determined by the current available to charge and discharge an internal high impedance node capacitor. This current is the differential input voltage divided by the total degeneration resistor $R_{\rm E}$. Therefore, the slew rate is proportional to the input voltage level, and the higher slew rates are achievable in the lower gain configurations.

When a very fast large signal pulse is applied to the input of an amplifier, some overshoot or undershoot occurs. By placing an external series resistor such as 1 k Ω to the input of LM6172, the slew rate is reduced to help lower the overshoot, which reduces settling time.


Reducing Settling Time

The LM6172 has a very fast slew rate that causes overshoot and undershoot. To reduce settling time on LM6172, a 1 k Ω resistor can be placed in series with the input signal to decrease slew rate. A feedback capacitor can also be used to reduce overshoot and undershoot. This feedback capacitor serves as a zero to increase the stability of the amplifier circuit. A 2 pF feedback capacitor is recommended for initial evaluation. When the LM6172 is configured as a buffer, a feedback resistor of 1 k Ω must be added in parallel to the feedback capacitor.

Another possible source of overshoot and undershoot comes from capacitive load at the output. Please see the section "Driving Capacitive Loads" for more detail.

Driving Capacitive Loads

Amplifiers driving capacitive loads can oscillate or have ringing at the output. To eliminate oscillation or reduce ringing, an isolation resistor can be placed as shown in *Figure 1*. The combination of the isolation resistor and the load capacitor forms a pole to increase stability by adding more phase margin to the overall system. The desired performance depends on the value of the isolation resistor; the bigger the isolation resistor, the more damped (slow) the pulse response becomes. For LM6172, a 50Ω isolation resistor is recommended for initial evaluation.

boards for high speed op amps. Without proper caution, it is very easy to have excessive ringing, oscillation and other degraded AC performance in high speed circuits. As a rule, the signal traces should be short and wide to provide low inductance and low impedance paths. Any unused board space needs to be grounded to reduce stray signal pickup. Critical components should also be grounded at a common point to eliminate voltage drop. Sockets add capacitance to the board and can affect frequency performance. It is better to solder the amplifier directly into the PC board without using any socket.

USING PROBES

Active (FET) probes are ideal for taking high frequency measurements because they have wide bandwidth, high input impedance and low input capacitance. However, the probe ground leads provide a long ground loop that will produce errors in measurement. Instead, the probes can be grounded directly by removing the ground leads and probe jackets and using scope probe jacks.

COMPONENTS SELECTION AND FEEDBACK RESISTOR

It is important in high speed applications to keep all component leads short because wires are inductive at high frequency. For discrete components, choose carbon composition-type resistors and mica-type capacitors. Surface mount components are preferred over discrete components for minimum inductive effect.

Large values of feedback resistors can couple with parasitic capacitance and cause undesirable effects such as ringing or oscillation in high speed amplifiers. For LM6172, a feedback resistor less than 1 k Ω gives optimal performance.

Compensation for Input Capacitance

The combination of an amplifier's input capacitance with the gain setting resistors adds a pole that can cause peaking or oscillation. To solve this problem, a feedback capacitor with a value

 $C_F > (R_G \times C_{IN})/R_F$

can be used to cancel that pole. For LM6172, a feedback capacitor of 2 pF is recommended. *Figure 4* illustrates the compensation circuit.

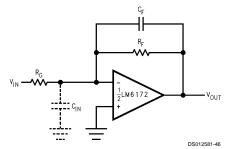


FIGURE 4. Compensating for Input Capacitance

Power Supply Bypassing

Bypassing the power supply is necessary to maintain low power supply impedance across frequency. Both positive and negative power supplies should be bypassed individually by placing 0.01 μ F ceramic capacitors directly to power supply pins and 2.2 μ F tantalum capacitors close to the power supply pins.

Power Supply Bypassing (Continued)

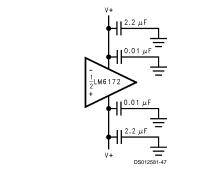
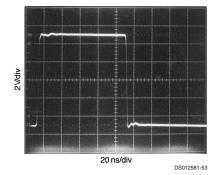



FIGURE 5. Power Supply Bypassing

Termination

In high frequency applications, reflections occur if signals are not properly terminated. *Figure 6* shows a properly terminated signal while *Figure 7* shows an improperly terminated signal.

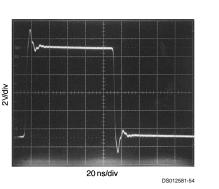


FIGURE 7. Improperly Terminated Signal

To minimize reflection, coaxial cable with matching characteristic impedance to the signal source should be used. The other end of the cable should be terminated with the same value terminator or resistor. For the commonly used cables, RG59 has 75Ω characteristic impedance, and RG58 has 50Ω characteristic impedance.

Power Dissipation

The maximum power allowed to dissipate in a device is defined as:

$$P_{\rm D} = (T_{\rm J(max)} - T_{\rm A})/\theta_{\rm JA}$$

Where P_D is the power dissipation in a device

 $T_{J\left(max\right)}$ is the maximum junction temperature

 ${\rm T}_{\rm A}$ is the ambient temperature

 θ_{JA} is the thermal resistance of a particular package

For example, for the LM6172 in a SO-8 package, the maximum power dissipation at 25° C ambient temperature is 780 mW.

Thermal resistance, θ_{JA} , depends on parameters such as die size, package size and package material. The smaller the die size and package, the higher θ_{JA} becomes. The 8-pin DIP package has a lower thermal resistance (95°C/W) than that of 8-pin SO (160°C/W). Therefore, for higher dissipation capability, use an 8-pin DIP package.

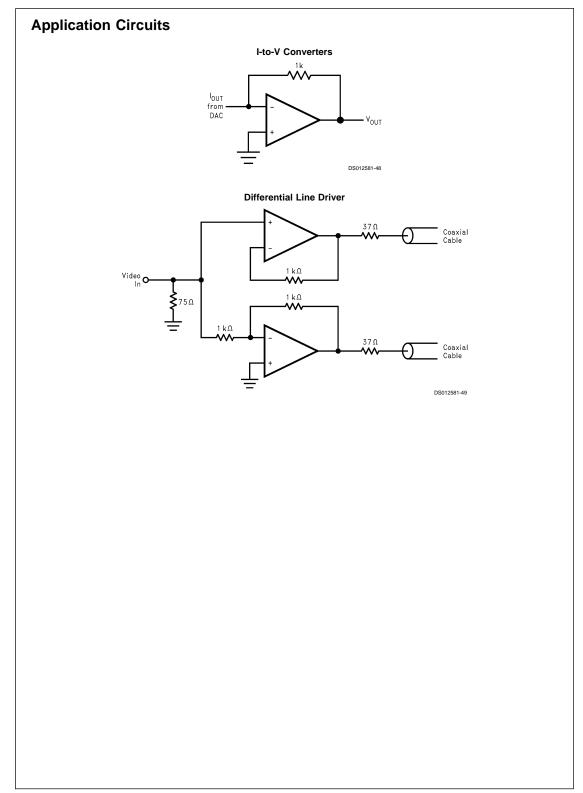
The total power dissipated in a device can be calculated as:

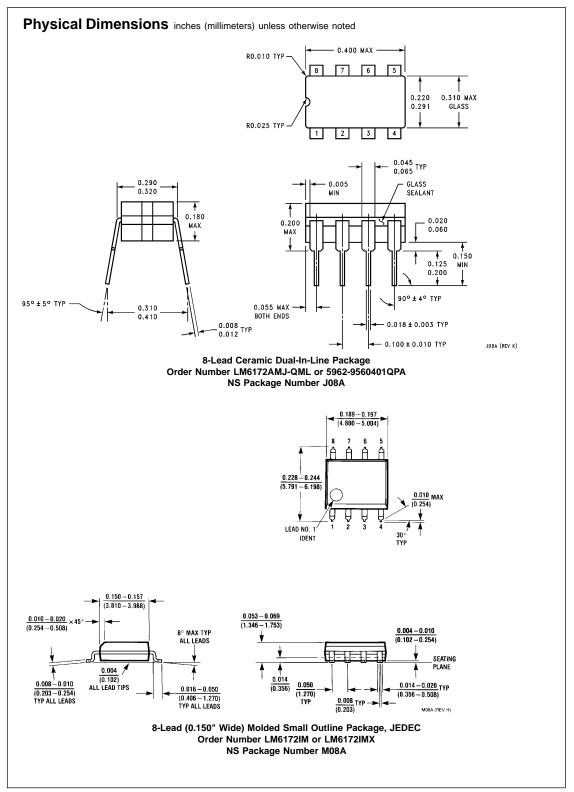
$P_D = P_Q + P_L$

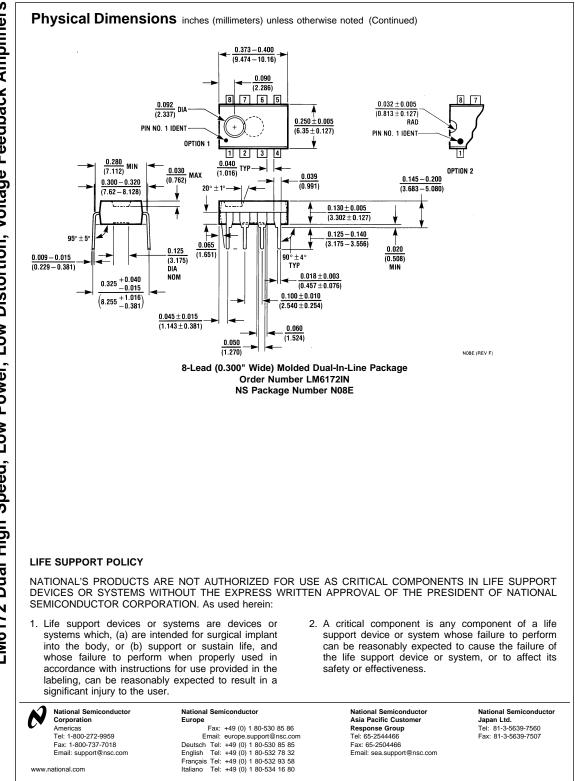
 P_{Q} is the quiescent power dissipated in a device with no load connected at the output. P_{L} is the power dissipated in the device with a load connected at the output; it is not the power dissipated by the load.

Furthermore,

 P_Q : = supply current x total supply voltage with no load


P_L: = output current x (voltage difference between supply voltage and output voltage of the same supply)


For example, the total power dissipated by the LM6172 with V_S = ±15V and both channels swinging output voltage of 10V into 1 k Ω is


$$P_{D}$$
: = $P_{Q} + P_{I}$

: = 2[(2.3 mA)(30V)] + 2[(10 mA)(15V - 10V)]

- = 138 mW + 100 mW
- : = 238 mW

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.