

December 1994

Typical

LM6118/LM6218 Fast Settling Dual Operational Amplifiers

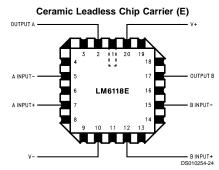
General Description

The LM6118 series are monolithic fast-settling unity-gain-compensated dual operational amplifiers with ± 20 mA output drive capability. The PNP input stage has a typical bias current of 200 nA, and the operating supply voltage is $\pm 5 \text{V}$ to $\pm 20 \text{V}$.

These dual op amps use slew enhancement with special mirror circuitry to achieve fast response and high gain with low total supply current.

The amplifiers are built on a junction-isolated VIP $^{\text{TM}}$ (Vertically Integrated PNP) process which produces fast PNP's that complement the standard NPN's.

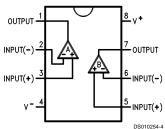
Features


■ Low offset voltage:	0.2 mv
■ 0.01% settling time:	400 ns
■ Slew rate A _v = -1:	140 V/µs
■ Slew rate A _v = +1:	75 V/µs
■ Gain bandwidth:	17 MHz
■ Total supply current:	5.5 mA

Applications

■ Output drives 50Ω load (±1V)

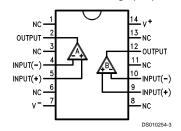
- D/A converters
- Fast integrators
- Active filters


Connection Diagrams and Order Information

Note 1: Available per SMD #5962-9156501

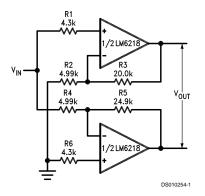
Order Number LM6118E/883 (Note 1) See NS Package Number E20A

Dual-In-Line Package (J or N)



Top View
Order Number LM6118N, LM6118J/883 (Note 1),
LM6218AN or LM6218N
See NS Package Number J08A or N08E

VIP™ is a trademark of National Semiconductor Corporation.


Connection Diagrams and Order Information (Continued)

Small Outline Package (WM)

Top View Order Number LM6218AWM or LM6218WM See NS Package Number M14B

Typical Applications

Single ended input to differential output $A_V = 10$, BW = 3.2 MHz $40~V_{PP}$ Response = 1.4 MHz $V_S = \pm 15V$

Wide-Band, Fast-Settling 40 V_{PP} Amplifier

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Total Supply Voltage 42V
Input Voltage (Note 3)
Differential Input Current (Note 4) ±10 mA
Output Current (Note 5) Internally Limited
Power Dissipation (Note 6) 500 mW

ESD Tolerance

 $(C = 100 \text{ pF}, R = 1.5 \text{ k}\Omega)$ ±2 kV

Junction Temperature 150°C
Storage Temperature Range -65°C to +150°C
Lead Temperature

300°C

(Soldering, 10 sec.)

Operating Temp. Range

Electrical Characteristics

 ± 5 V \leq V_S \leq ± 2 0V, V_{CM} = 0V, V_{OUT} = 0V, I_{OUT} = 0A, unless otherwise specified. Limits with standard type face are for T_J = 25°C, and **Bold Face Type** are for **Temperature Extremes.**

		Тур	LM6118	LM6218A	LM6218	
Parameter	Conditions	25°C	Limits	Limits	Limits	Units
			(Notes 7, 8)	(Note 7)	(Note 7)	
Input Offset Voltage	V _S = ±15V	0.2	1	1	3	mV (max)
			2	2	4	
Input Offset Voltage	$V- + 3V \le V_{CM} \le V + - 3.5V$	0.3	1.5	1.5	3.5	mV (max)
			2.5	2.5	4.5	
Input Offset Current	$V- + 3V \le V_{CM} \le V + - 3.5V$	20	50	50	100	nA (max)
			250	100	200	
Input Bias Current	$V- + 3V \le V_{CM} \le V + - 3.5V$	200	350	350	500	nA (max)
			950	950	1250	
Input Common Mode	$V- + 3V \le V_{CM} \le V + - 3.5V$	100	90	90	80	dB (min)
Rejection Ratio	V _S = ±20V		85	85	75	
Positive Power Supply	V- = -15V	100	90	90	80	dB (min)
Rejection Ratio	5V ≤ V+ ≤ 20V		85	85	75	
Negative Power Supply	V+ = 15V	100	90	90	80	dB (min)
Rejection Ratio	-20V ≤ V- ≤ -5V		85	85	75	
Large Signal	$V_{out} = \pm 15V$ $R_L = 10k$	500	150	150	100	V/mV (min)
Voltage Gain	V _S = ±20V		100	100	70	
	$V_{out} = \pm 10V$ $R_L = 500$	200	50	50	40	V/mV (min)
	$V_S = \pm 15V$ (±20 mA)		30	30	25	
V _O Output Voltage	Supply = $\pm 20V$ R _L = $10k$	17.3	±17	±17	±17	V (min)
Swing						
Total Supply Current	V _S = ±15V	5.5	7	7	7	mA (max)
			7.5	7.5	7.5	
Output Current Limit	V _S = ±15V, Pulsed	65	100	100	100	mA (max)
Slew Rate, Av = -1	V _S = ±15V, V _{out} = ±10V	140	100	100	100	V/µs (min)
	$R_S = R_f = 2k, C_f = 10 pF$		50	50	50	
Slew Rate, Av = +1	V _S = ±15V, V _{out} = ±10V	75	50	50	50	V/µs (min)
	$R_S = R_f = 2k, C_f = 10 pF$		30	30	30	
Gain-Bandwidth Product	$V_{\rm S} = \pm 15 \text{V}, f_{\rm o} = 200 \text{kHz}$	17	14	14	13	MHz (min)
0.01% Settling Time	$\Delta V_{\text{out}} = 10 \text{V}, V_{\text{S}} = \pm 15 \text{V},$	400				ns
$A_V = -1$	$R_S = R_f = 2k, C_f = 10 pF$	400				
Input Capacitance	Inverter	5				pF
	Follower	3				pF

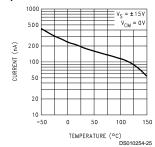
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.

Note 3: Input voltage range is $(V^+ - 1V)$ to (V^-) .

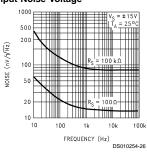
Electrical Characteristics (Continued)

Note 4: The inputs are shunted with three series-connected diodes back-to-back for input differential clamping. Therefore differential input voltages greater than about 1.8V will cause excessive current to flow unless limited to less than 10 mA.

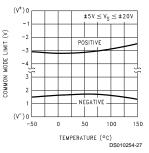
Note 5: Current limiting protects the output from a short to ground or any voltage less than the supplies. With a continuous overload, the package dissipation must be taken into account and heat sinking provided when necessary.

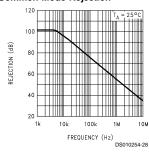

Note 6: Devices must be derated using a thermal resistance of 90°C/W for the N, J and WM packages.

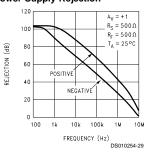
Note 7: Limits are guaranteed by testing or correlation.

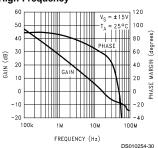

Note 8: A military RETS specification is available on request. At the time of printing, LM6118J/883 and LM6118E/883 RETS spec complied with the Boldface limits in this column.

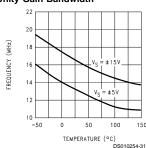
Typical Performance Characteristics

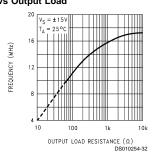

Input Bias Current

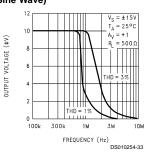

Input Noise Voltage


Common Mode Limits

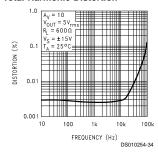

Common Mode Rejection


Power Supply Rejection

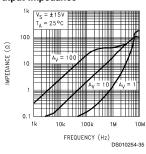

Frequency Response High Frequency


Unity Gain Bandwidth

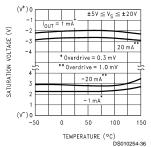
Unity Gain Bandwidth vs Output Load

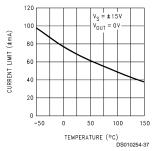


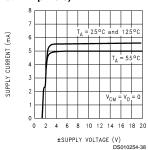
Large Signal Response (Sine Wave)

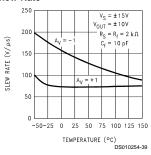


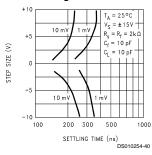
Typical Performance Characteristics (Continued)

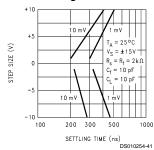

Total Harmonic Distortion

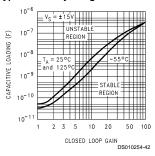

Output Impedance


Output Saturation

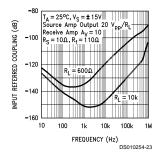

Output Current Limit

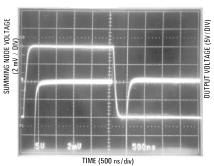

Supply Current (Both Amplifiers)


Slew Rate


Inverter Settling Time

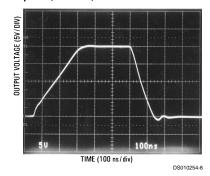
Follower Settling Time


Typical Stability Range

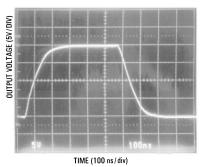

www.national.com

Typical Performance Characteristics (Continued)

Amplifier to Amplifier Coupling



Settling Time, Vs = ±15V



DS010254-7

Step Response, Av = +1, $Vs = \pm 15V$

Step Response, Av = -1, $Vs = \pm 15V$

DS010254-

Application Information

General

The LM6118 series are high-speed, fast-settling dual op-amps. To insure maximum performance, circuit board layout is very important. Minimizing stray capacitance at the inputs and reducing coupling between the amplifier's input and output will minimize problems.

Supply Bypassing

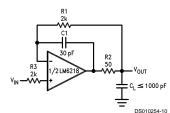
To assure stability, it is recommended that each power supply pin be bypassed with a 0.1 μF low inductance capacitor near the device. If high frequency spikes from digital circuits or switching supplies are present, additional filtering is recommended. To prevent these spikes from appearing at the output, R-C filtering of the supplies near the device may be necessary.

Power Dissipation

These amplifiers are specified to 20 mA output current. If accompanied with high supply voltages, relatively high power dissipation in the device will occur, resulting in high junction temperatures. In these cases the package thermal resistance must be taken into consideration. (See Note 5 under Electrical Characteristics.) For high dissipation, an N package with large areas of copper on the pc board is recommended.

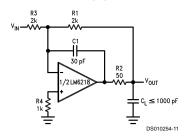
Amplifier Shut Down

If one of the amplifiers is not used, it can be shut down by connecting both the inverting and non-inverting inputs to the V– pin. This will reduce the power supply current by approximately 25%.

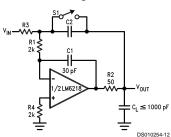

Capacitive Loading

Maximum capacitive loading is about 50 pF for a closed-loop gain of +1, before the amplifier exhibits excessive ringing and becomes unstable. A curve showing maximum capacitive loads, with different closed-loop gains, is shown in the Typical Performance Characteristics section.

To drive larger capacitive loads at low closed-loop gains, isolate the amplifier output from the capacitive load with 50Ω . Connect a small capacitor directly from the amplifier output to the inverting input. The feedback loop is closed from the isolated output with a series resistor to the inverting input.


Application Information (Continued)

Voltage Follower

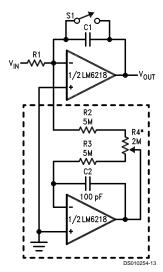

For C_L = 1000 pF, Small signal BW = 5 MHz 20 V_{p-p} BW = 500 kHz

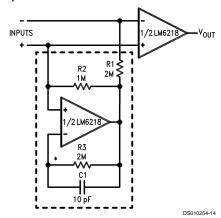
Inverter

Settling time to 0.01%, 10V Step For C_L = 1000 pF, settling time \approx 1500 ns For C_L = 300 pF, settling time \approx 500 ns

Integrator

Examples of unity gain connections for a voltage follower, Inverter, and integrator driving capacitive loads up to 1000 pF are shown here. Different R1–C1 time constants and capacitive loads will have an effect on settling times.

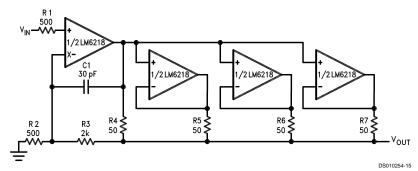

Input Bias Current Compensation


Input bias current of the first op amp can be reduced or balanced out by the second op amp. Both amplifiers are laid out in mirror image fashion and in close proximity to each other, thus both input bias currents will be nearly identical and will track with temperature. With both op amp inputs at the same potential, a second op amp can be used to convert bias current to voltage, and then back to current feeding the first op amp using large value resistors to reduce the bias current to the level of the offset current.

Examples are shown here for an inverting application, (a) where the inputs are at ground potential, and a second circuit (b) for compensating bias currents for both inputs.

Application Information (Continued)

Bias Current Compensation

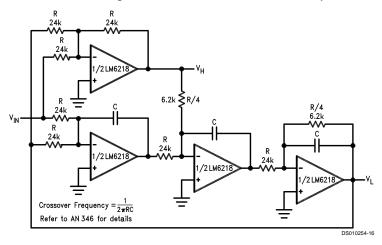


*mount resistor close to input pin to minimize stray capacitance

(b) Compensation to Both Inputs

(a) Inverting Input Bias Compensation for Integrator Application

Amplifier/Parallel Buffer



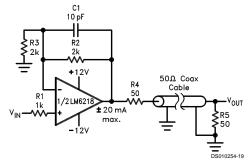
 A_V = +5, I_{OUT} \leq 80 mA V_S = ±15V, C_L \leq 0.01 μF Large and small signal B.W. = 1.3 MHz (THD = 3%)

^{*}adjust for zero integrator drift

Application Information (Continued)

Constant-Voltage Crossover Network With 12 dB/Octave Slope

Bilateral Current Source

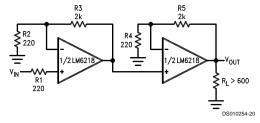

 $V_S = \pm 15V, -10 \le V_{IN} \le 10V$

$$\frac{I_{OUT}}{V_{IN}} = \frac{R4}{R2\,R6} = \frac{1\,mA}{1V}$$

Output dynamic range = 10V - R6 $|I_{OUT}|$ R_L = 500 Ω , small signal BW = 6 MHz Large signal response = 800 kHz

$$C_{out}$$
 equiv. = $\frac{R2 + R4}{2\pi f_0 R2 R6} = 32 pF (f_0 = 15 MHz)$

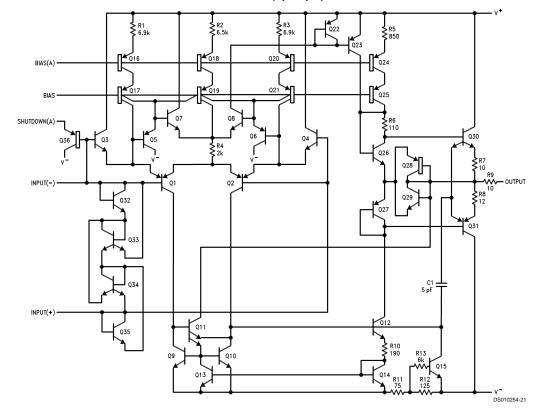
Coaxial Cable Driver

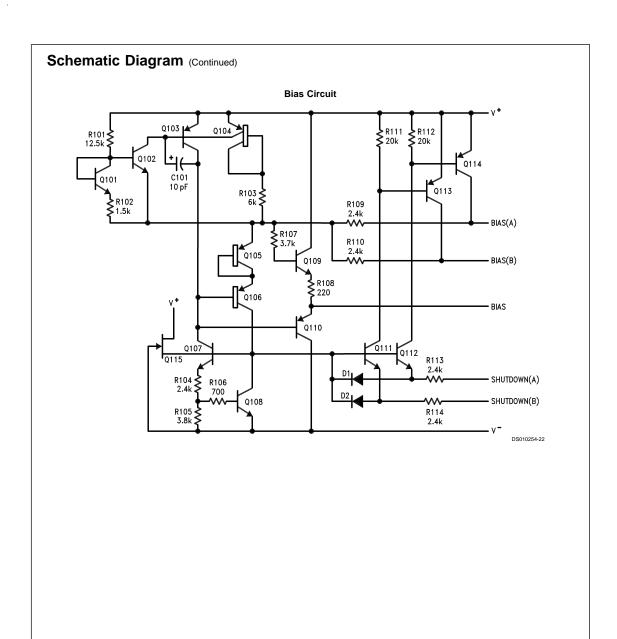

Small signal (200 mV $_{p\text{-}p})$ BW \approx 5 MHz

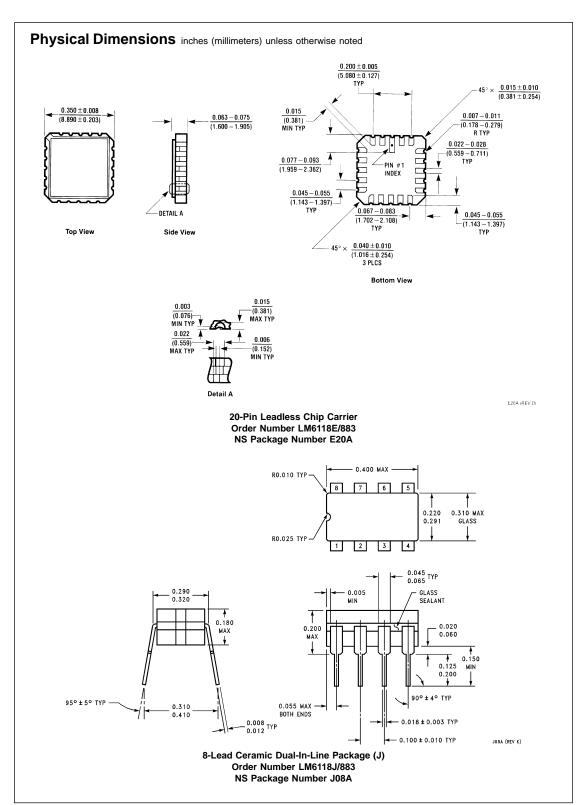
Application Information (Continued) Instrumentation Amplifier

R1 R2 R3 R4 10k 10k 10pF 1/2LM6218 V_{OUT}

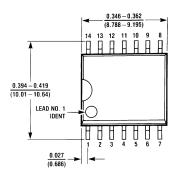
 A_V = 10, V_S = ±15V, All resistors 0.01% Small signal and large signal (20 $V_{P\text{-}P})$ B.W. \approx 800 kHz

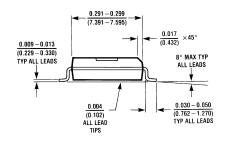

150 MHz Gain-Bandwidth Amplifier

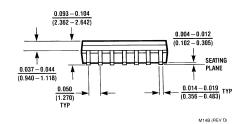

$$\label{eq:AV} \begin{split} A_V &= 100, \ V_S = \pm 15 \text{V}, \\ \text{Small signal BW} &\approx 1.5 \ \text{MHz} \\ \text{Large signal BW} &(20 \ \text{V}_{\text{p-p}}) \approx 800 \ \text{kHz} \end{split}$$


Schematic Diagram

1/2 LM6118 (Op Amp A)

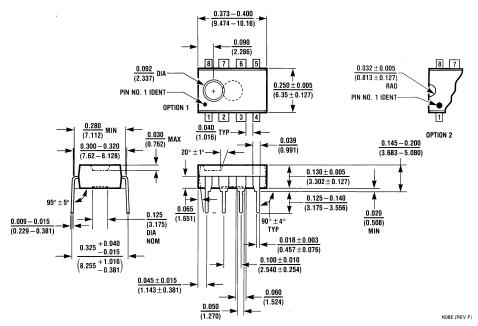

www.national.com





www.national.com

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)



8-Lead Molded Small Outline Package (M) Order Number LM6218AWM or LM6218WM NS Package Number M14B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

8-Lead Molded Dual-In-Line Package (N) Order Number LM6118N, LM6218AN or LM6218N NS Package Number N08E

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Europe
Fax: +49 (0) 1 80-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Custo Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5639-7560 Fax: 81-3-5639-7507