LM4041 Precision Micropower Shunt Voltage Reference **General Description** Key Specifications (LM4041-1.2) Ideal for space critical applications, the LM4041 precision Output voltage tolerance voltage reference is available in the sub-miniature (3 mm x (A grade, 25°C) ±0.1%(max) 1.3 mm) SOT-23 surface-mount package. The LM4041's ad-Low output noise vanced design eliminates the need for an external stabilizing 20µV_{rms} capacitor while ensuring stability with any capacitive load, (10 Hz to 10kHz) thus making the LM4041 easy to use. Further reducing de-60µA to 12mA Wide operating current range sign effort is the availability of a fixed (1.225V) and adjust-Industrial temperature range -40°C to +85°C able reverse breakdown voltage. The minimum operating Extended temperature range -40°C to +125°C current is 60 µA for the LM4041-1.2 and the LM4041-ADJ. Low temperature coefficient 100 ppm/°C (max) Both versions have a maximum operating current of 12 mA. The LM4041 utilizes fuse and zener-zap reverse breakdown or reference voltage trim during wafer sort to ensure that the Applications prime parts have an accuracy of better than $\pm 0.1\%$ Portable, Battery-Powered Equipment (A grade) at 25°C. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable Data Acquisition Systems Instrumentation reverse breakdown voltage accuracy over a wide range of operating temperatures and currents. Process Control Energy Management Features Automotive Precision Audio Components Small packages: SOT-23, and TO-92 No output capacitor required Tolerates capacitive loads Reverse breakdown voltage options of 1.225V and adjustable **Connection Diagrams** SOT-23 11392-40 *This pin must be left floating or connected to pin 2. **Top View** See NS Package Number M03B (JEDEC Registration TO-236AB) TO-92 1.21 ADJ DS011392-3 DS011392-32 **Bottom View** See NS Package Number Z03A

💊 National Semiconductor

February 1999

LM4041 Precision Micropower Shunt Voltage Reference

DS011392 © 1999 National Semiconductor Corporation

Reverse Breakdown Voltage Tolerance at 25°C	Package				
and Average Reverse Breakdown Voltage Temperature Coefficient	M3 (SOT-23)	Z (TO-92)			
⊧0.1%, 100 ppm/°C max (A grade)	LM4041AIM3-1.2	LM4041AIZ-1.2			
	See NS Package	See NS Package			
	Number M03B	Number Z03A			
±0.2%, 100 ppm/°C max (B grade)		LM4041BIZ-1.2			
	LM4041BIM3-1.2				
	See NS Package	See NS Package			
	Number M03B	Number Z03A			
⊧0.5%, 100 ppm/°C max (C grade)	LM4041CEM3-1.2	LM4041CIZ-1.2,			
	LM4041CIM3-1.2 LM4041CEM3-ADJ	LM4041CIZ-ADJ			
	LM4041CIM3-ADJ				
	See NS Package	See NS Package			
	Number M03B	Number Z03A			
±1.0%, 150 ppm/°C max (D grade)	LM4041DEM3-1.2	LM4041DIZ-1.2,			
	LM4041DIM3-1.2 LM4041DEM3-ADJ	LM4041DIZ-ADJ			
	LM4041DIM3-ADJ				
	See NS Package	See NS Package			
	Number M03B	Number Z03A			
2.0%, 150 ppm/°C max (E grade)	LM4041EEM3-1.2	LM4041EIZ-1.2			
	LM4041EIM3-1.2				
	See NS Package	See NS Package			
	Number M03B	Number Z03A			

· ·

ree fields of marking are p	possible on the SOT-23's small surface. This table gives the meaning of the three field
Part Marking	Field Definition
R1A	First Field:
R1B	R = Reference
R1C	Second Field:
R1D	1 = 1.225V Voltage Option
R1E	A = Adjustable
	Third Field:
RAC	A-E = Initial Reverse Breakdown
RAD	Voltage or Reference Voltage Tolerance
	$A = \pm 0.1\%$, $B = \pm 0.2\%$, $C = \pm 0.5\%$, $D = \pm 1.0\%$, $E = \pm 2.0\%$

Absolute Maximum Ratings (Note 1)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Reverse Current	20 mA
Forward Current	10 mA
Maximum Output Voltage	
(LM4041-ADJ)	15V
Power Dissipation ($T_A = 25^{\circ}C$) (Note 2)	
M3 Package	306 mW
Z Package	550 mW
Storage Temperature	–65°C to +150°C
Lead Temperature	
M3 Packages	
Vapor phase (60 seconds)	+215°C
Infrared (15 seconds)	+220°C
Z Package	

Soldering (10 seconds)	+260°C
ESD Susceptibility	
Human Body Model (Note 3)	2 kV
Machine Model (Note 3)	200V
See AN-450 "Surface Mounting Methods and Th on Product Reliability" for other methods of solde surface mount devices.	

Operating Ratings(Notes 1, 2)

Temperature Range	$(T_{min} \le T_A \le T_{max})$
Industrial Temperature Range	$-40^{\circ}C \le T_A \le +85^{\circ}C$
Extended Temperature Range	$-40^{\circ}C \le T_A \le +125^{\circ}C$
Reverse Current	
LM4041-1.2	60 µA to 12 mA
LM4041-ADJ	60 µA to 12 mA
Output Voltage Range	
LM4041-ADJ	1.24V to 10V

LM4041-1.2 Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for $T_A = T_J = T_{MIN}$ **to** T_{MAX} **;** all other limits $T_A = T_J = 25^{\circ}$ C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±2.0%, respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4041AIM3 LM4041AIZ	LM4041BIM3 LM4041BIZ	Units (Limit)
•,			(Limits	Limits	()
				(Note 5)	(Note 5)	
V _R	Reverse Breakdown Voltage	I _R = 100 μA	1.225			V
	Reverse Breakdown Voltage	I _R = 100 μA		±1.2	±2.4	mV (max)
	Tolerance (Note 6)			±9.2	±10.4	mV (max)
I _{RMIN}	Minimum Operating Current		45			μΑ
				60	60	μA (max)
				65	65	μA (max)
$\Delta V_R / \Delta T$	Average Reverse Breakdown	I _R = 10 mA	±20			ppm/°C
	Voltage Temperature	I _R = 1 mA	±15	±100	±100	ppm/°C (max)
	Coefficient (Note 6)	I _R = 100 μA	±15			ppm/°C
$\Delta V_R / \Delta I_R$	Reverse Breakdown Voltage	$I_{RMIN} \le I_R \le 1 \text{ mA}$	0.7			mV
	Change with Operating			1.5	1.5	mV (max)
	Current Change			2.0	2.0	mV (max)
		1 mA ≤ I _R ≤ 12 mA	4.0			mV
				6.0	6.0	mV (max)
				8.0	8.0	mV (max)
Z _R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz,	0.5			Ω
		I _{AC} = 0.1 I _R		1.5	1.5	Ω (max)
e _N	Wideband Noise	I _R = 100 μA	20			μV _{rms}
		10 Hz ≤ f ≤ 10 kHz				
ΔV_R	Reverse Breakdown Voltage	t = 1000 hrs				
	Long Term Stability	T = 25°C ±0.1°C	120			ppm
		I _R = 100 μA				

Symbol	Parameter	Conditions	Typical (Note 4)	LM4041CIM3 LM4041CIZ Limits	LM4041DIM3 LM4041DIZ Limits	LM4041EIM3 LM4041EIZ Limits	Units (Limit)
V _R	Reverse Breakdown	I _R = 100 μA	1.225	(Note 5)	(Note 5)	(Note 5)	V
	Voltage Reverse Breakdown Voltage	I _R = 100 μA		±6	±12	±25	mV (max)
	Tolerance (Note 6)			±14	±24	±36	mV (max)
I _{RMIN}	Minimum Operating Current		45				μA
				60	65	65	μA (max)
				65	70	70	μA (max)
$\Delta V_R / \Delta T$	V _R Temperature	I _R = 10 mA	±20				ppm/°C
	Coefficient (Note 6)	I _R = 1 mA	±15	±100	±150	±150	ppm/°C (ma
		I _R = 100 μΑ	±15				ppm/°C
$\Delta V_R / \Delta I_R$	Reverse Breakdown	$I_{RMIN} \le I_R \le 1 \text{ mA}$	0.7				mV
	Voltage Change with			1.5	2.0	2.0	mV (max)
	Operating Current Change			2.0	2.5	2.5	mV (max)
	Change	1 mA ≤ I _R ≤ 12 mA	2.5				mV
			2.0	6.0	8.0	8.0	mV (max)
				8.0	10.0	10.0	mV (max)
Z _R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz	0.5	0.0	10.0	10.0	Ω
		$I_{AC} = 0.1 I_{R}$		1.5	2.0	2.0	Ω(max)
e _N	Wideband Noise	I _R = 100 μA	20				μV _{rms}
		10 Hz ≤ f ≤ 10 kHz					
ΔV_R	Reverse Breakdown	t = 1000 hrs					
	Voltage Long Term Stability	T = 25°C ±0.1°C I _R = 100 μA	120				ppm

1 144044 1 2

Symbol	Parameter	Conditions	Typical (Note 4)	Limits	LM4041DEM3 Limits	Limits	Units (Limit)
V _R	Reverse Breakdown Voltage	I _R = 100 μA	1.225	(Note 5)	(Note 5)	(Note 5)	V
	Reverse Breakdown Voltage Error	I _R = 100 μA		±6	±12	±25	mV (max)
	(Note 6)			±18.4	±31	±43	mV (max)
I _{RMIN}	Minimum Operating		45				μΑ
Cu	Current			60	65	65	µA (max)
				68	73	73	µA (max)
$\Delta V_R / \Delta T$ VR Temperature Coefficient(Note 6)		I _R = 10 mA	±20				ppm/°C
	Coefficient(Note 6)	I _R = 1 mA	±15	±100	±150	±150	ppm/°C (max)
		I _R = 100 μA	±15				ppm/°C
$\Delta V_R / \Delta I_R$	Reverse Breakdown	$I_{RMIN} \le I_R \le 1.0 \text{ mA}$	0.7				mV
	Change with			1.5	2.0	2.0	mV (max)
	Current			2.0	2.5	2.5	mV (max)
		$1 \text{ mA} \le I_R \le 12 \text{ mA}$	2.5				mV
				6.0	8.0	8.0	mV (max)
				8.0	10.0	10.0	mV (max)
Z _R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz,	0.5				Ω
		$I_{AC} = 0.1 I_{R}$		1.5	2.0	2.0	Ω (max)
e _N	Noise Voltage	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz	20				μV_{rms}
ΔV_R	Long Term Stability (Non-Cumulative)	t = 1000 hrs T = 25°C ±0.1°C $I_R = 100 \ \mu A$	120				ppm

LM4041-1.2 Electrical Characteristics (Extended Temperature Range)

www.national.com

•

LM4041-ADJ (Adjustable) **Electrical Characteristics (Industrial Temperature Range)**

Typical LM4041CIM3 LM4041DIM3 Units Symbol Parameter Conditions (Note 4) (Limit) LM4041CIZ LM4041DIZ (Note 5) (Note 5) I_R = 100 μA, V_{OUT} = 5V 1.233 VREF Reference Voltage V Reference Voltage $I_{R} = 100 \ \mu A, V_{OUT} = 5V$ ±6.2 ±12 mV (max) Tolerance (Note 8) ±14 ±24 mV (max) $I_{\rm RMIN}$ Minimum Operating 45 μΑ Current 60 65 µA (max) 70 65 µA (max) Reference Voltage $\Delta V_{\mathsf{REF}} / \Delta \mathsf{I}_{\mathsf{R}}$ $I_{\text{RMIN}} \leq I_{\text{R}} \leq 1 \text{ mA}$ 0.7 mν Change with Operating SOT-23: $V_{OUT} \ge 1.6V$ 1.5 2.0 mV (max) Current Change (Note 7) 2.0 2.5 mV (max) $1 \text{ mA} \le I_R \le 12 \text{ mA}$ 2 m٧ SOT-23: $V_{OUT} \ge 1.6V$ (Note 4 6 mV (max) 7) 6 8 mV (max) $\Delta V_{REF} / \Delta V_O$ Reference Voltage -1.55 mV/V $I_R = 1 \text{ mA}$ Change -2.0 -2.5 mV/V (max) with Output Voltage mV/V (max) -2.5 -3.0 Change I_{FB} Feedback Current 60 nA 100 150 nA (max) 120 200 nA (max) $\Delta V_{REF} / \Delta T$ Average Reference $V_{OUT} = 5V,$ $I_R = 10 \text{ mA}$ 20 ppm/°C Voltage Temperature I_R = 1 mA 15 ppm/°C (max) ±100 ±150 Coefficient (Note 8) ppm/°C $I_R = 100 \ \mu A$ 15 Dynamic Output $I_R = 1 \text{ mA}, \text{ f} = 120 \text{ Hz},$ Z_{OUT} Impedance $I_{AC} = 0.1 I_{R}$ 0.3 Ω $V_{OUT} = V_{REF}$ $V_{OUT} = 10V$ 2 Ω Wideband Noise I_R = 100 μA $V_{OUT} = V_{REF}$ 20 μV_{rms} е_N $10 \text{ Hz} \leq f \leq 10 \text{ kHz}$ $t = 1000 \text{ hrs}, \quad I_R = 100 \ \mu\text{A}$ 120 ΔV_{REF} Reference Voltage Long ppm $T = 25^{\circ}C \pm 0.1^{\circ}C$ Term Stability

Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_J = 25$ °C unless otherwise specified (SOT-23, see (Note 7), $I_{RMIN} \leq I_R \leq 12 \text{ mÅ}, V_{REF} \leq V_{OUT} \leq 10V$. The grades C and D designate initial Reference Voltage Tolerances of ±0.5% and ±1%, respectively for $V_{OUT} = 5V$.

Symbol	Parameter	Cond	litions	Typical (Note 4)	LM4041CEM3	LM4041DEM3	Units (Limit)
				-	(Note 5)	(Note 5)	
V _{REF}	Reference Voltage	I _R = 100 μA, \		1.233			V
	Reference Voltage	I _R = 100 μA, \	/ _{OUT} = 5V		±6.2	±12	mV (max)
	Tolerance (Note 8)				±18	±30	mV (max)
RMIN	Minimum Operating Current			45			μA
	Current				60	65	μA (max)
	5 () ()				68	73	µA (max)
$\Delta V_{REF} / \Delta I_{R}$	Reference Voltage	$I_{RMIN} \le I_R \le 1$		0.7			mV
	Change with Operating Current Change	SOT-23: V _{OUT}	· ≥ 1.6V		1.5	2.0	mV (max)
		(Note 7)			2.0	2.5	mV (max)
		$1 \text{ mA} \le I_R \le 12$		2			mV
		SOT-23: V _{OUT}	$\ge 1.6V$ (Note		8	10	mV (max)
		7)			6	8	mV (max)
$\Delta V_{REE} / \Delta V_{O}$	Reference Voltage	I _R = 1 mA		-1.55			mV/V
KEP 0	Change	R .			-2.0	-2.5	mV/V (max)
	with Output Voltage Change				-3.0	-4.0	mV/V (max)
I _{FB}	Feedback Current			60			nA
					100	150	nA (max)
					120	200	nA (max)
$\Delta V_{REE} / \Delta T$	Average Reference	$V_{OUT} = 5V,$	I _R = 10 mA	20			ppm/°C
	Voltage Temperature		I _R = 1 mA	15	±100	±150	ppm/°C (max
	Coefficient (Note 8)		I _R = 100 μA	15			ppm/°C
Z _{OUT}	Dynamic Output	I _R = 1 mA, f =					
	Impedance	$I_{AC} = 0.1 I_{R}$					
			$V_{OUT} = V_{REF}$	0.3			Ω
			V _{OUT} = 10V	2			Ω
e _N	Wideband Noise		$V_{OUT} = V_{REF}$	20			μV _{rms}
		$10 \text{ Hz} \le \text{f} \le 10$		100			
ΔV_{REF}	Reference Voltage Long Term Stability	t = 1000 hrs, T = 25°C ±0.1	l _R = 100 μΑ °C	120			ppm

LM4041-ADJ (Adjustable) Electrical Characteristics (Extended Temperature Range)

www.national.com

.

Electrical Characteristics (continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

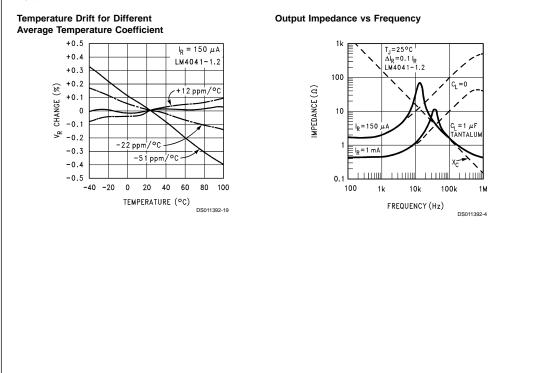
Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $PD_{max} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4041, $T_{Jmax} = 125^{\circ}C$, and the typical thermal resistance (θ_{JA}), when board mounted, is 326°C/W for the SOT-23 package, and 180°C/W with 0.4" lead length and 170°C/W with 0.125" lead length for the TO-92 package.

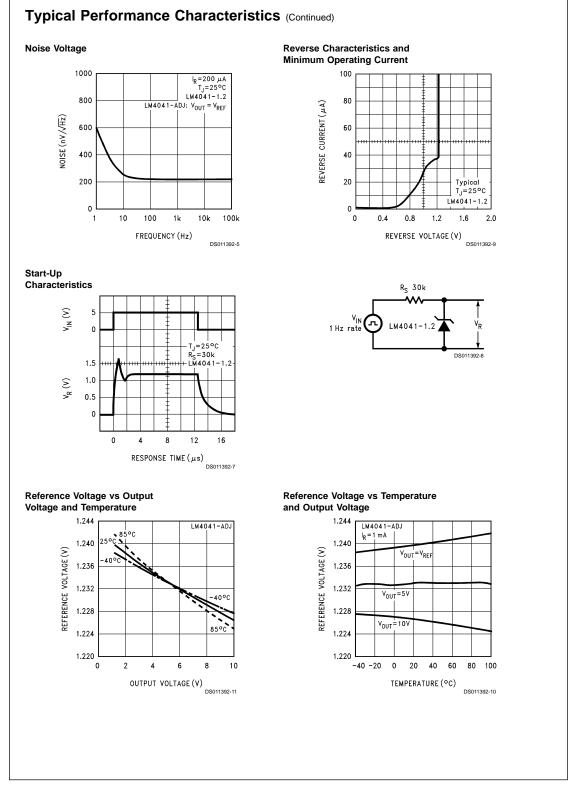
Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

Note 4: Typicals are at $T_J = 25^{\circ}C$ and represent most likely parametric norm.

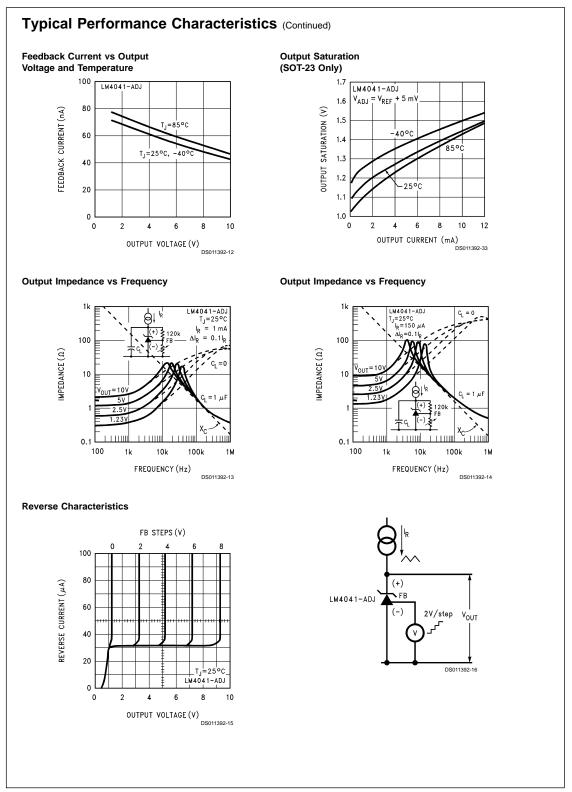
Note 5: Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.

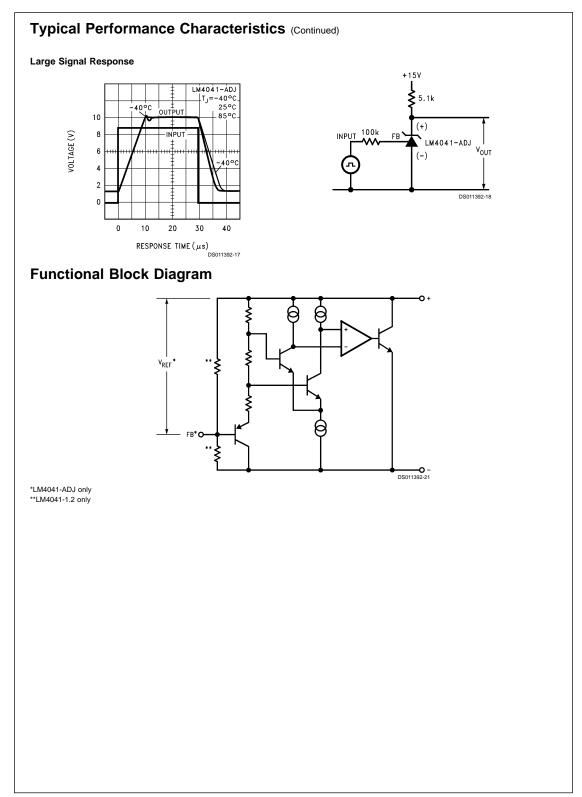
Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R \Delta T)(\max \Delta T)(V_R)]$. Where, $\Delta V_R | \Delta T$ is the V_R temperature coefficient, max ΔT is the maximum difference in temperature from the reference point of 25 °C to T $_{MAX}$ or T $_{MIN}$, and V_R is the reverse breakdown voltage. The total over-temperature tolerance for the different grades in the industrial temperature range where max ΔT =65°C is shown below:


A-grade: $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$ C-grade: $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$ D-grade: $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$ E-grade: $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$


The total over-temperature tolerance for the different grades in the extended temperature range where max $\Delta T = 100$ °C is shown below:

B-grade: $\pm 1.2\% = \pm 0.2\% \pm 100 \text{ ppm/}^{\circ}\text{C} \times 100^{\circ}\text{C}$ C-grade: $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/}^{\circ}\text{C} \times 100^{\circ}\text{C}$ D-grade: $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/}^{\circ}\text{C} \times 100^{\circ}\text{C}$ E-grade: $\pm 4.5\% = \pm 2.0\% \pm 150 \text{ ppm/}^{\circ}\text{C} \times 100^{\circ}\text{C}$


Therefore, as an example, the A-grade LM4041-1.2 has an over-temperature Reverse Breakdown Voltage tolerance of $\pm 1.2V \times 0.75\% = \pm 9.2$ mV. **Note 7:** When V_{QUT} $\leq 1.6V$, the LM4041-ADJ in the SOT-23 package must operate at reduced I_R. This is caused by the series resistance of the die attach between the die (-) output and the package (-) output pin. See the Output Saturation (SOT-23 only) curve in the Typical Performance Characteristics section. **Note 8:** Reference voltage and temperature coefficient will change with output voltage. See Typical Performance Characteristics curves.


Typical Performance Characteristics

10

Applications Information

The LM4041 is a precision micro-power curvature-corrected bandgap shunt voltage reference. For space critical applications, the LM4041 is available in the sub-miniature SOT-23 surface-mount package. The LM4041 has been designed for stable operation without the need of an external capacitor connected between the "+" pin and the "-" pin. If, however, a bypass capacitor is used, the LM4041 remains stable. Design effort is further reduced with the choice of either a fixed 1.2V or an adjustable reverse breakdown voltage. The minimum operating current is 60 μ A for the LM4041-1.2 and the LM4041-ADJ. Both versions have a maximum operating current of 12 mA.

LM4041s using the SOT-23 package have pin 3 connected as the (-) output through the package's die attach interface. Therefore, the LM4041-1.2's pin 3 must be left floating or connected to pin 2 and the LM4041-ADJ's pin 3 is the (-) output.

In a conventional shunt regulator application (*Figure 1*), an external series resistor ($R_{\rm S}$) is connected between the supply voltage and the LM4041. $R_{\rm S}$ determines the current that flows through the load ($I_{\rm L}$) and the LM4041 ($I_{\rm Q}$). Since load current and supply voltage may vary, $R_{\rm S}$ should be small enough to supply at least the minimum acceptable $I_{\rm Q}$ to the LM4041 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and $I_{\rm L}$ is at its minimum, $R_{\rm S}$ should be large enough so that the current flowing through the LM4041 is less than 12 mA.

 R_S should be selected based on the supply voltage, (V_S) , the desired load and operating current, $(I_L \mbox{ and } I_Q)$, and the LM4041's reverse breakdown voltage, $V_R.$

$$\mathsf{R}_{\mathsf{S}} = \frac{\mathsf{V}_{\mathsf{S}} - \mathsf{V}_{\mathsf{R}}}{\mathsf{I}_{\mathsf{L}} + \mathsf{I}_{\mathsf{Q}}}$$

The LM4041-ADJ's output voltage can be adjusted to any value in the range of 1.24V through 10V. It is a function of the internal reference voltage (V_{REF}) and the ratio of the external feedback resistors as shown in *Figure 2*. The output voltage is found using the equation

$$_{O} = V_{RFF}[(R2/R1) + 1]$$

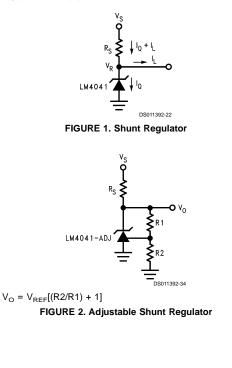
where V_O is the output voltage. The actual value of the internal V_{REF} is a function of $V_O.$ The "corrected" V_{REF} is determined by

V

 $V_{REF} = \Delta V_O (\Delta V_{REF} / \Delta V_O) + V_Y$

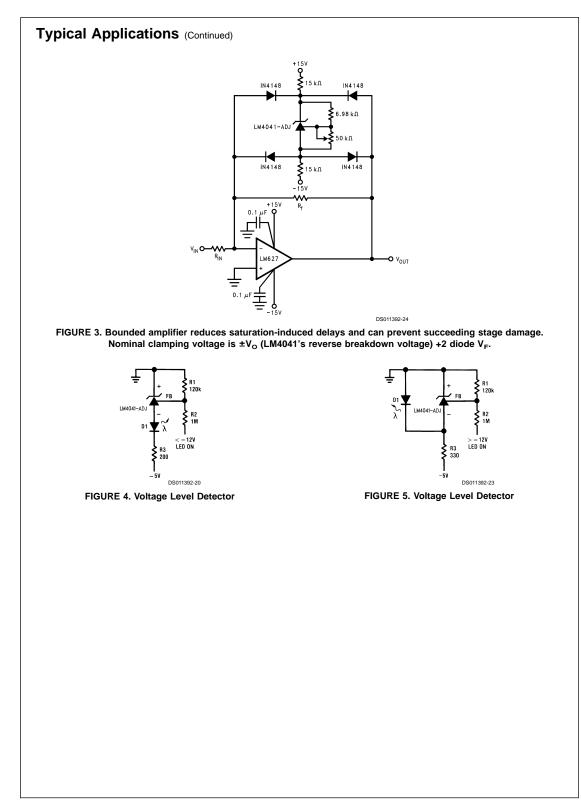
(2)

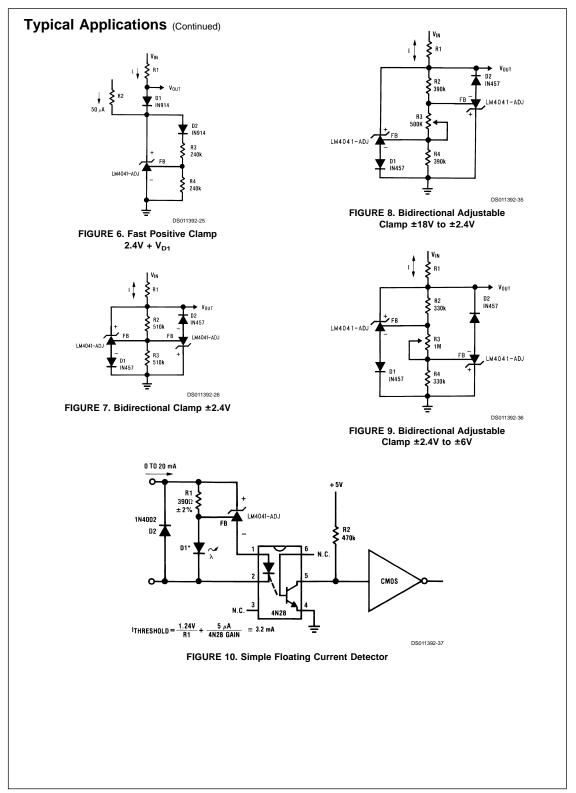
$$V_{\rm Y}$$
 = 1.240 V and

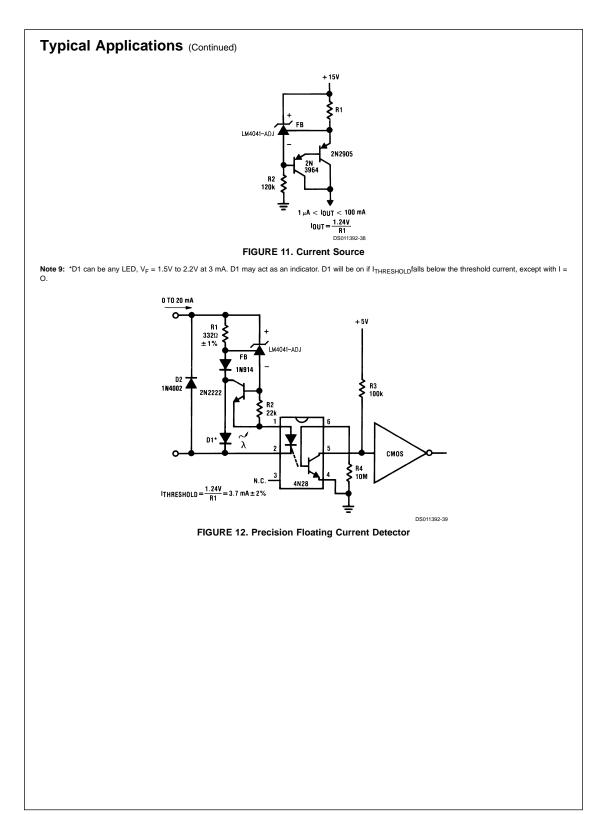

$$\Delta V_{\rm O} = (V_{\rm O} - V_{\rm Y})$$

 $\Delta V_{\mathsf{REF}}/\Delta V_{\mathsf{O}}$ is found in the Electrical Characteristics and is typically –1.55 mV/V. You can get a more accurate indication of the output voltage by replacing the value of V_{REF} in equation (1) with the value found using equation (2).

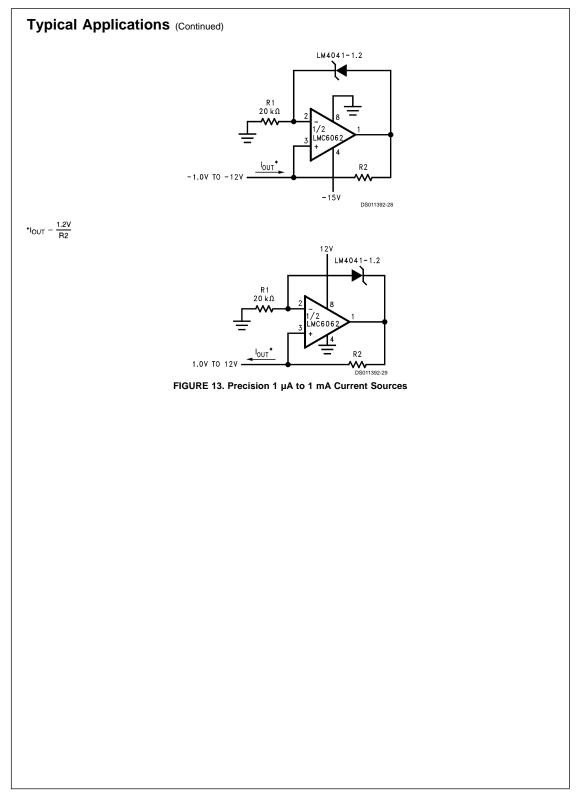
Note that the actual output voltage can deviate from that predicted using the typical value of $\Delta V_{REF}/\Delta V_O$ in equation (2): for C-grade parts, the worst-case $\Delta V_{REF}/\Delta V_O$ is –2.5 mV/V. For D-grade parts, the worst-case $\Delta V_{REF}/\Delta V_O$ is –3.0 mV/V.

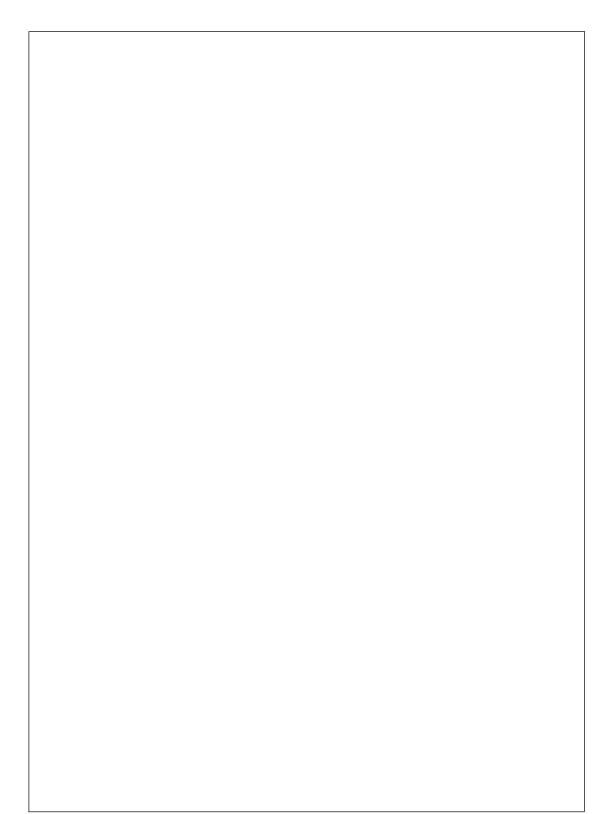

Typical Applications

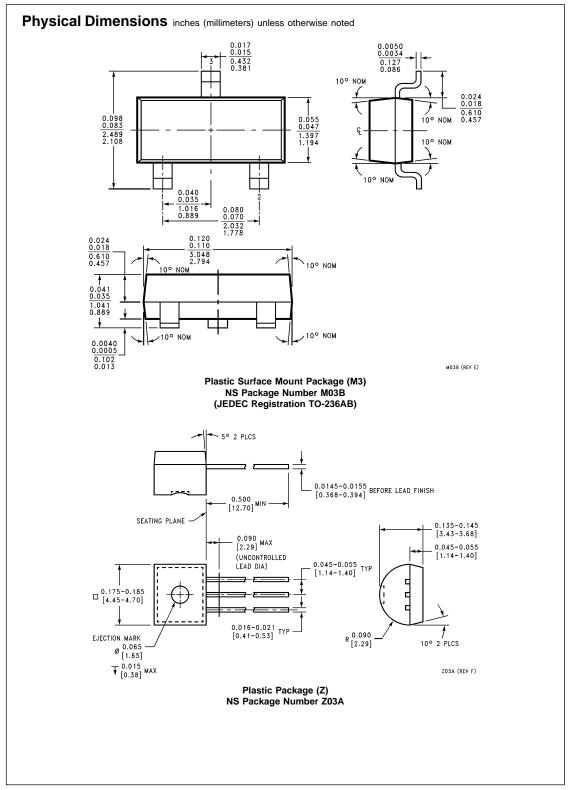

where



www.national.com


(1)





16

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor	National Semiconductor	National Semiconductor	National Semiconducto
Corporation	Europe	Asia Pacific Customer	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 93 58		
ww.national.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.