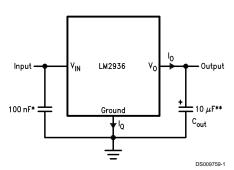


LM2936

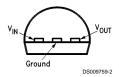
Ultra-Low Quiescent Current 5V Regulator

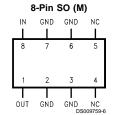

General Description

The LM2936 ultra-low quiescent current regulator features low dropout voltage and low current in the standby mode. With less than 15 μA quiescent current at a 100 μA load, the LM2936 is ideally suited for automotive and other battery operated systems. The LM2936 retains all of the features that are common to low dropout regulators including a low dropout PNP pass device, short circuit protection, reverse battery protection, and thermal shutdown. The LM2936 has a 40V operating voltage limit, $-40\,^{\circ}\text{C}$ to $+125\,^{\circ}\text{C}$ operating temperature range, and $\pm3\%$ output voltage tolerance over the entire output current, input voltage, and temperature range. The LM2936 is available in both a TO-92 package and an 8-pin surface mount package with a fixed 5V output.

Features

- Ultra low quiescent current ($I_Q \le 15 \mu A$ for $I_Q \le 100 \mu A$)
- Fixed 5V, 50 mA output
- Output tolerance ±3% over line, load, and temperature
- Dropout voltage typically 200 mV @ I_O = 50 mA
- Reverse battery protection
- -50V reverse transient protection
- Internal short circuit current limit
- Internal thermal shutdown protection
- 40V operating voltage limit


Typical Application


- * Required if regulator is located more than 2" from power supply filter capacitor.
- ** Required for stability. Must be rated for 10 μF minimum over intended operating temperature range. Effective series resistance (ESR) is critical, see curve. Locate capacitor as close as possible to the regulator output and ground pins. Capacitance may be increased without bound.

Connection Diagrams

TO-92 Plastic Package (Z)

Bottom View Order Number LM2936Z-5.0 See NS Package Number Z03A

Top View Order Number LM2936M-5.0 See NS Package Number M08A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Input Voltage (Survival) +60V, -50V ESD Susceptability (Note 2) 1900V Power Dissipation (Note 3) Internally limited

Junction Temperature (T_{Jmax}) 150°C

Storage Temperature Range -65°C to +150°C Lead Temperature 260°C (Soldering, 10 sec.)

Operating Ratings

Operating Temperature Range $$-40\,^{\circ}\text{C}$$ to +125 $^{\circ}\text{C}$$ Maximum Input Voltage (Operational) 40V

Electrical Characteristics

 V_{IN} = 14V, I_{O} = 10 mA, T_{J} = 25°C, unless otherwise specified. **Boldface** limits apply over entire operating temperature range

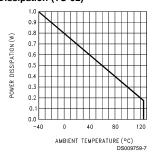
Parameter	Conditions	Typical (Note 4)	Tested Limit	Units
	Output Voltage	$5.5V \le V_{IN} \le 26V$,		4.85
I _O ≤ 50 mA (Note 6)		5		V
			5.15	V_{max}
Line Regulation	9V ≤ V _{IN} ≤ 16V	5	10	mV_{max}
	6V ≤ V _{IN} ≤ 40V, I _O = 1 mA	10	30	
Load Regulation	100 μA ≤ I _O ≤ 5 mA	10	30	mV_{max}
	5 mA ≤ I _O ≤ 50 mA	10	30	
Output Impedance	I _O = 30 mAdc and 10 mArms,	450		mΩ
	_f = 1000 Hz			
Quiescent Current	$I_{O} = 100 \ \mu A, \ 8V \le V_{IN} \le 24V$	9	15	μA _{max}
	I _O = 10 mA, 8V ≤ V _{IN} ≤ 24V	0.20	0.50	mA _{max}
	I _O = 50 mA, 8V ≤ V _{IN} ≤ 24V	1.5	2.5	mA _{max}
Output Noise Voltage	10 Hz-100 kHz	500		μV_{rms}
Long Term Stability		20		mV/1000 H
Ripple Rejection	V _{ripple} = 1 V _{rms} , _{fripple} = 120 Hz	60	40	dB _{min}
Dropout Voltage	I _O = 100 μA	0.05	0.10	V _{max}
	I _O = 50 mA	0.20	0.40	V _{max}
Reverse Polarity	$R_L = 500\Omega, V_O \ge -0.3V$		-15	V _{min}
DC Input Voltage				
Reverse Polarity	$R_L = 500\Omega, T = 1 \text{ ms}$	-80	-50	V_{min}
Transient Input Voltage				
Output Leakage with	$V_{IN} = -15V, R_{L} = 500\Omega$	-0.1	-600	μA _{max}
Reverse Polarity Input				
Maximum Line Transient	$R_L = 500\Omega, V_O \le 5.5V, T = 40 \text{ ms}$		60	V _{min}
Short Circuit	V _O = 0V	120	250	mA _{max}
Current			65	mA _{min}

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings.

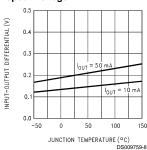
Note 2: Human body model, 100 pF discharge through a 1.5 k Ω resistor.

Note 3: The maximum power dissipation is a function of T_{Jmax} . Θ_{JA} , and T_{A} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{Jmax} - T_A)/\Theta_{JA}$. If this dissipation is exceeded, the die temperature will rise above 150°C and the LM2936 will go into thermal shutdown. For the LM2936Z, the junction-to-ambient thermal resistance (Θ_{JA}) is 195°C/W. For the LM2936M, θ ja is 160°C/W.

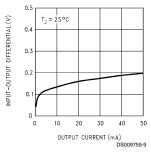
Note 4: Typicals are at 25°C (unless otherwise specified) and represent the most likely parametric norm.

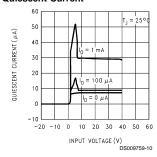

Note 5: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level) and 100% tested.

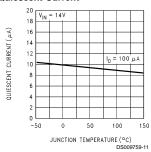
Note 6: To ensure constant junction temperature, pulse testing is used.

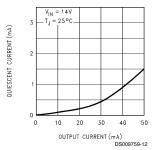

www.national.com

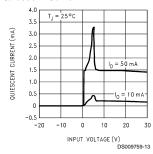
Typical Performance Characteristics

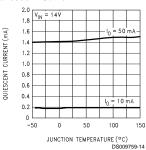

Maximum Power Dissipation (TO-92)

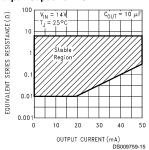

Dropout Voltage

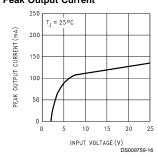

Dropout Voltage

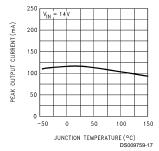

Quiescent Current

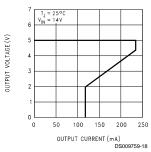

Quiescent Current


Quiescent Current

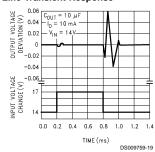

Quiescent Current


Quiescent Current

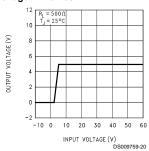

Output Capacitor ESR


Peak Output Current

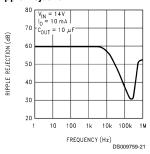
Peak Output Current

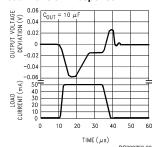


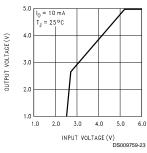
Current Limit

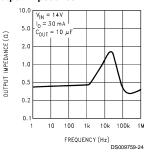


Typical Performance Characteristics (Continued)


Line Transient Response

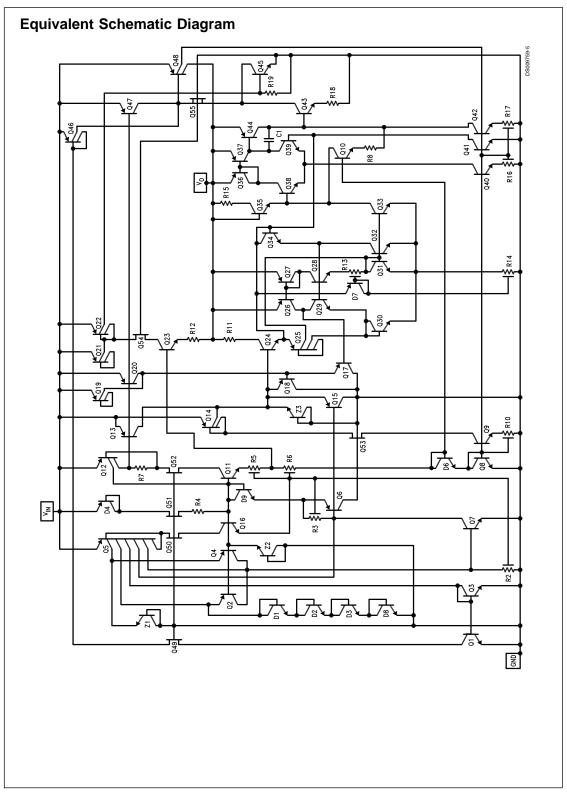

Output at Voltage Extremes

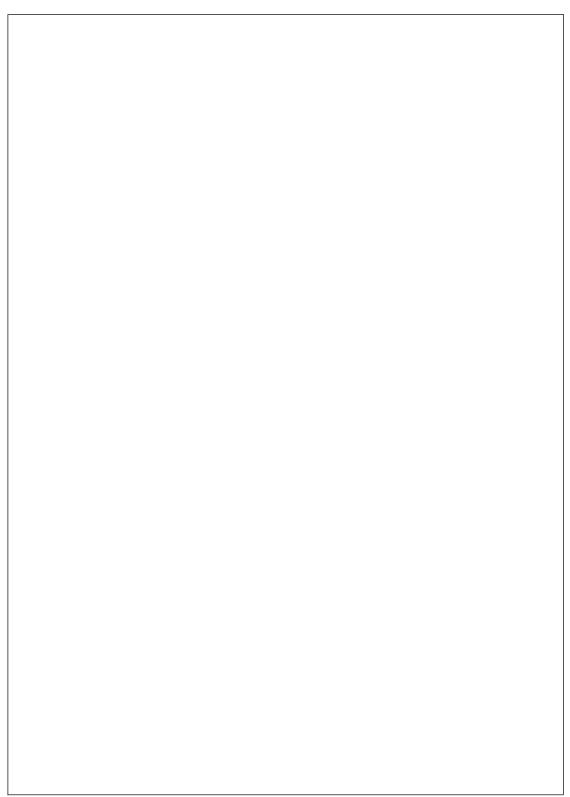

Ripple Rejection


Load Transient Response

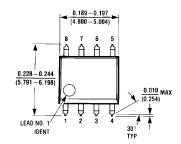
Low Voltage Behavior

Output Impedance

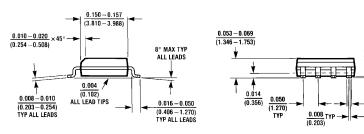

Applications Information

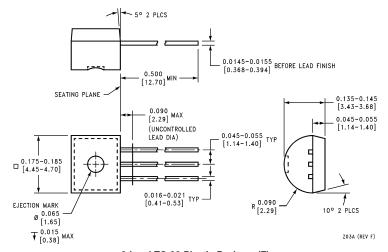

Unlike other PNP low dropout regulators, the LM2936 remains fully operational to 40V. Owing to power dissipation characteristics of the TO-92 package, full output current cannot be guaranteed for all combinations of ambient temperature and input voltage. As an example, consider an LM2936 operating at 25°C ambient. Using the formula for maximum allowable power dissipation given in (Note 3) , we find that $P_{\rm Dmax}$ = 641 mW at 25°C. Including the small contribution of the quiescent current to total power dissipation the maximum input voltage (while still delivering 50 mA output current) is 17.3V. The device will go into thermal shutdown if it attempts to deliver full output current with an input voltage of more than 17.3V. Similarly, at 40V input and 25°C ambient the LM2936 can deliver 18 mA maximum.

Under conditions of higher ambient temperatures, the voltage and current calculated in the previous examples will drop. For instance, at the maximum ambient of 125°C the LM2936 can only dissipate 128 mW, limiting the input voltage to 7.34V for a 50 mA load, or 3.5 mA output current for a 40V input.


While the LM2936 maintains regulation to 60V, it will not withstand a short circuit above 40V because of safe operating area limitations in the internal PNP pass device. Above 60V the LM2936 will break down with catastrophic effects on the regulator and possibly the load as well. Do not use this device in a design where the input operating voltage may exceed 40V, or where transients are likely to exceed 60V.

www.national.com


Physical Dimensions inches (millimeters) unless otherwise noted


 $\frac{0.004 - 0.010}{(0.102 - 0.254)}$

0.014 - 0.020 (0.356 - 0.508)

SEATING Plane

8-Lead Small Outline Molded Package (M) NS Package Number M08A

3-Lead TO-92 Plastic Package (Z) NS Package Number Z03A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86
Email: europe support@nsc.com
Deutsch Tel: +49 (0) 1 80-530 85 85
English Tel: +49 (0) 1 80-532 78 32
Français Tel: +49 (0) 1 80-532 93 58
Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179