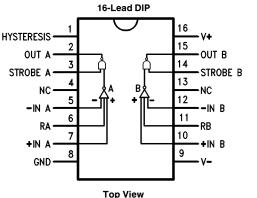
DS9627 Dual Line Receiver

General Description


The DS9627 is a dual-line receiver which meets the electrical interface specifications of EIA RS-232C and MIL-STD-188C. The input circuitry accommodates $\pm 25V$ input signals and the differential inputs allow user selection of either inverting or non-inverting logic for the receiver operation. The DS9627 provides both a selectable hysteresis range and selectable receiver input resistance. When pin 1 is tied to V^- , the typical switching points are at 2.6V and -2.6V, thus meeting RS-232-C requirements. When pin 1 is open, the typical switching points are at 50 μ A and -50 μ A, thus satisfying the requirements of MIL-STD-188C LOW level interface. Connecting the RA and/or RB pins to the (-) input yields an input impedance in the range of 3 $k\Omega$ to 7 $k\Omega$ and satisfies RS-232-C requirements; leaving RA and/or RB pins unconnected, the input resistance will be greater than 6 k Ω to satisfy MIL-STD-188C.

The output circuitry is TTL/DTL compatible and will allow "collector-dotting" to generate the wired-OR function. A TTL/DTL strobe is also provided for each receiver.

Features

- EIA RS-232-C input standards
- MIL-STD-188C input standards
- Variable hysteresis control
- High common mode rejection
- R control (5 k Ω or 10 k Ω)
- Wired-OR capability
- Choice of inverting and non-inverting inputs
- Outputs and strobe TTL compatible

Connection Diagram

TL/F/9761-1

Order Number DS9627MJ/883 See NS Package Number J16A

For Complete Military 883 Specifications, see RETS Data Sheet.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
Temperature (T _A)	-55	+ 125	°C

Electrical Characteristics

Hysteresis, -IN A, -IN B, RA and RB Open for MIL-STD-188C, unless otherwise specified (Notes 2 and 3)

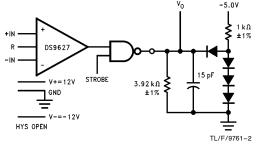
Symbol	Characteristics	Conditions		Min	Max	Units
V _{OL}	Output Voltage LOW	$V^{+} = 10.8V, V^{-} = -13.2V, \ V_{I}^{+} = 0.6V, I_{OL}^{-} = 6.4 \text{ mA}$			0.4	V
V _{OH}	Output Voltage HIGH	$V^{+} = 10.8V, V^{-} = -13.2V, \ V_{I}^{+} = 0.6V, I_{OH}^{-} = -0.5 \text{ mA}$		2.4		٧
los	Output Short Circuit Current (Note 4)	$V_{I}^{+} = 13.2V, V_{O}^{-} = -10.8V,$ $V_{I}^{+} = 0.6V, V_{O}^{-} = 0V$		-3.0		mA
I _{IH} (ST)	I _{IH} (ST) Input Current HIGH (Strobe)	$V^{+} = 10.8V,$ $V^{-} = -13.2V, V_{I}^{+} = 0.6V$	$V_{ST} = 2.4V$		40	μΑ
			$V_{ST} = 5.5V$		1.0	mA
R _I	Input Resistance	$V^{+} = 13.2V, V^{-} = -13.2V, -3.0V \le V_{I}^{+} \le 3.0V$		6.0		kΩ
I _{TH} +	Positive Threshold Current	$\pm 10.8 V \le V_{CC} \le \pm 13.2 V,$ $V_{O} = 2.4 V$			100	μΑ
I _{TH} -	Negative Threshold Current	$\begin{array}{c} \pm 10.8 V \leq V_{CC} \leq \pm 13.2 V, \\ V_O = 0.4 V \end{array}$		-100		μΑ
V _{IL} (ST)	Input Voltage LOW (Strobe)	$V_1^+ = -0.6V$			0.8	V
V _{IH} (ST)	Input Voltage HIGH (Strobe)	$V^{+} = 13.2V, V^{-} = -10.8V,$ $V_{I}^{+} = -0.6V$		2.0		V
I+	Positive Supply Current	$\pm 10.8 V \le V_{CC} \le \pm 13.2 V$ $V_1^+ = -0.6 V$			18	mA
I-	Negative Supply Current	$\pm 10.8 V \le V_{CC} \le \pm 13.2 V$ $V_1{}^+ = 0.6 V$		-16		mA

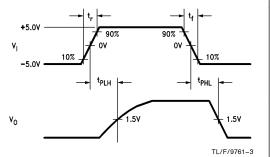
Electrical Characteristics + IN A and -IN B connected to ground, RA and RB connected to -IN A and -IN B and Hysteresis connected to V⁻ for RS-232C, unless otherwise specified

Symbol	Characteristics	Conditions	Min	Max	Units
R _I	Input Resistance	$3.0 \text{V} \leq \text{V}_{\text{I}} \leq 25 \text{V}$	3.0	7.0	kΩ
		$-3.0V \le V_{I} \le -25V$	3.0	7.0	kΩ
VI	Input Voltage		-2.0	2.0	V
$\overline{v_{TH+}}$	Positive Threshold Voltage			3.0	V
V _{TH} -	Negative Threshold Voltage		-3.0		٧

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified Min/Max limits apply across the -55° C to $+125^{\circ}$ C temperature range.

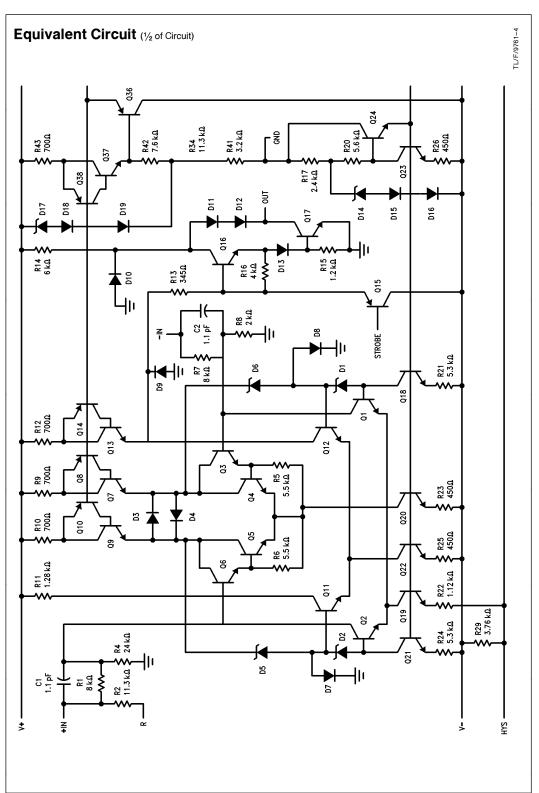

Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

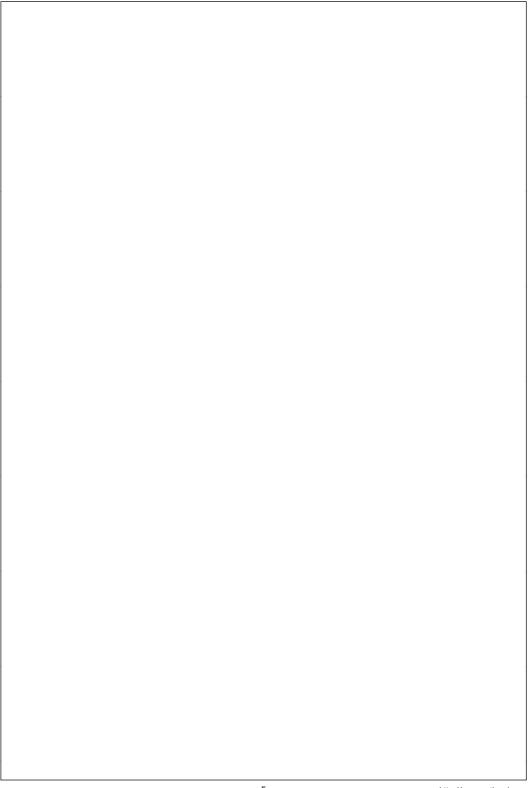

Note 4: Only one output at a time should be shorted.

Note 5: Rating applies to ambient temperatures up to +125°C. Above 125°C ambient, derate linearity at 120°C/W.

Electrical Characteristics $V_{CC} = \pm 12V$ for MIL-STD-188C and RS-232C, $T_A = 25^{\circ}C$

Symbol	Characteristics	Conditions	Min	Max	Units
t _{PLH}	Propagation Delay to High Level	(See Figure 1)		250	ns
t _{PHL}	Propagation Delay to Low Level	(See Figure 1)		250	ns





15 pF includes jig capacitance. All diodes are FD777 or equivalent.

PRR = 10 kHz $PW = 50 \mu \text{s}$

 $t_r = t_f = \overset{'}{5} \text{ ns}$ FIGURE 1. Switching Time Test Circuit and Waveforms

Physical Dimensions inches (millimeters) 0.220-0.310 0.037 ± 0.005 [0.94 ± 0.13] TYP 0.290-0.320 [7.37-8.13] 0.005 [0.13] GLASS SEALANT ₩IN TYP 0.020-0.060 TYP [0.51-1.52] 0.200 0.180 MAX [4.57] [5.08] MAX TYP 0.010 ± 0.002 [0.25 ± 0.05] TYP 0.150 MIN TYP * 0.125-0.200 TYP — [3.18-5.08] TYP — 0.080 MAX BOTH ENDS 90° ± 4° 95°±5° TYP 0.310-0.410 [7.87-10.41] J16A (REV I) 0.100 ± 0.010 [2.54 ± 0.25] Ceramic Dual-In-Line Package Order Number DS9627MJ/883 NS Package Number J16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

http://www.national.com

National Semiconductor Europe

Europe Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 180-530 85 85 English Tel: +49 (0) 180-532 78 32 Français Tel: +49 (0) 180-532 93 86 Italiano Tel: +49 (0) 180-534 16 80

National Semiconductor Hong Kong Ltd.

13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2308
Fax: 81-043-299-2408