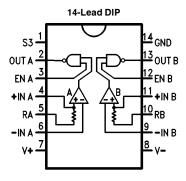


DS9622 Dual Line Receiver

General Description


The DS9622 is a dual line receiver designed to discriminate a worst case logic swing of 2V from a $\pm\,10V$ common mode noise signal or ground shift. A 1.5V threshold is built into the differential amplifier to offer a TTL compatible threshold voltage and maximum noise immunity. The offset is obtained by use of current sources and matched resistors.

The DS9622 allows the choice of output states with the input open, without affecting circuit performance by use of S3. A 130 Ω terminating resistor is provided at the input of each line receiver. An enable is also provided for each line receiver. The output is TTL compatible. The output high level can be increased to 12V by tying it to a positive supply through a resistor. The output circuits allow wired-OR operation

Features

- TTL compatible threshold voltage
- Input terminating resistors
- Choice of output state with inputs open
- TTL compatible output
- High common mode
- Wired-OR capability
- Enable inputs
- Logic compatible supply voltages

Connection Diagram

TL/F/9760-2

Top View

For Complete Military 883 Specifications, see RETS Datasheet.
Order Number DS9622ME/883,
DS9622MJ/883 or DS9622MW/883
See NS Package Number E20A, J14A or W14B

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} & \text{for Output High State} & -0.5 \text{V to} + 13.2 \text{V} \\ \text{V} - \text{to GND} & -0.5 \text{V to} - 12 \text{V} \\ \text{Enable to GND} & -0.5 \text{V to} + 15 \text{V} \\ \end{array}$

Operating Conditions

Voltage Applied to Outputs

	Min	Max	Units
Supply Voltage, V _{CC}	4.5	5.5	V
Temperature, T _A	-55	+ 125	°C

Electrical Characteristics (Notes 2, 3)

Input Voltage

Symbol	Parameter	Conditions		Min	Max	Units
V _{OL}	Output Voltage LOW	$V^{+} = S3 = 4.5V, V^{-} = -11V, \ V_{DIFF} = 2.0V, I_{OL} = 12.4 \text{ mA}, \ EN = Open$			0.4	V
V _{OH}	Output Voltage HIGH	$V^{+} = 4.5V, V^{-} = -9.0V,$ $S3 = 0V, V_{DIFF} = 1.0V,$ $I_{OH} = -0.2 \text{ mA, EN} = \text{Open}$		2.8		V
I _{CEX}	Output Leakage Current	$V^{+} = 4.5V, V^{-} = -11V,$ $S3 = 0V, V_{DIFF} = 1.0V,$ $V_{O} = 12V, EN = Open$			200	μΑ
los	Output Short Circuit Current (Note 4)	$V^{+} = 5.0V, V^{-} = -10V, \ V_{DIFF} = 1.0V, V_{O} = S3 = 0V, \ EN = Open$		-3.1	-1.4	mA
I _R (EN)	Enable Input Leakage Curent	$V^{+} = S3 = 4.5V, V^{-} = -11V,$ $I_{N} = Open, EN = 4.0V$			5.0	μΑ
I _F (EN	Enable Input Forward Current	$V^{+} = 5.5V, V^{-} = -9.0V$ $V_{I} = Open, EN = S3 = 0V$		-1.5		mA
I _F (+IN)	+ Input Forward Current	$V^{+} = 5.0V, V^{-} = -10V,$ $V_{l}^{+} = 0V, V_{l}^{-} = GND,$ EN = S3 = Open		-2.3		mA
I _F (-IN)	- Input Forward Curent	$V^{+} = S3 = 5.0V, V^{-} = -10V, \ V_{l}^{+} = GND, V_{l}^{-} = 0V, \ EN = Open$		-2.6		mA
V _{IL} (EN) Input Voltage LOW	$4.5V \le V^+ \le 5.5V$, -11V $\le V^- \le -9.0V$, EN = Open	+25°C		1.0	V	
		+ 125°C		0.7	V	
		-55°C		1.3	V	
V _{TH}	Differential Input Threshold Voltage	$4.5V, \le V^+ \le 5.5V, \\ -11V \le V^- \le -9.0V, \\ EN = Open$		1.0	2.0	V
V _{CM}	Common Mode Voltage	$V^{+} = 5.0V, V^{-} = -10V,$ $1.0V \le V_{DIFF} \le 2.0V$	25°C	-10	+10	٧
R _T	Terminating Resistance		25°C	91	215	Ω
1+	Positive Supply Current	$V^+ = S3 = V_1^+ = 5.5V,$	25°C		22.9	mA
1-	Negative Supply Current	$V^- = 11V, V_1^- = 0V$		-11.1		mA
VITCHING (CHARACTERISTICS T _A = 25°	C				
t _{PLH}	Propagation Delay to High Level	$V^{+} = 5.0V,$ $V^{-} = -10V,$	$R_L = 3.9 k\Omega$		50	ns
t _{PHL}	Propagation Delay to Low Level	$\begin{array}{c} \text{OV} \leq \text{V}_{\text{I}} \leq 3.0\text{V}, \\ \text{C}_{\text{L}} = 30 \text{ pF} \\ \text{(See Figure 1)} \end{array}$	$R_L = 390\Omega$		50	ns

 $\pm 15V$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

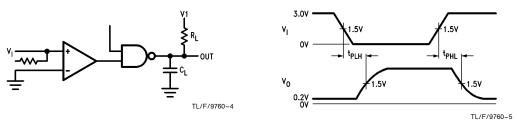
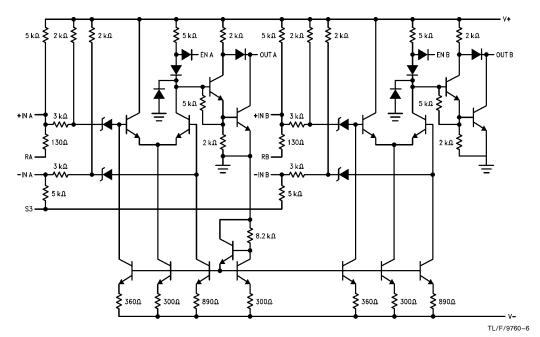
Note 2: Unless otherwise specified Min/Max limits apply across the -55° C to $+125^{\circ}$ C temperature range. All typicals are given for $V_{CC}=5V$ and $T_{A}=25^{\circ}$ C.

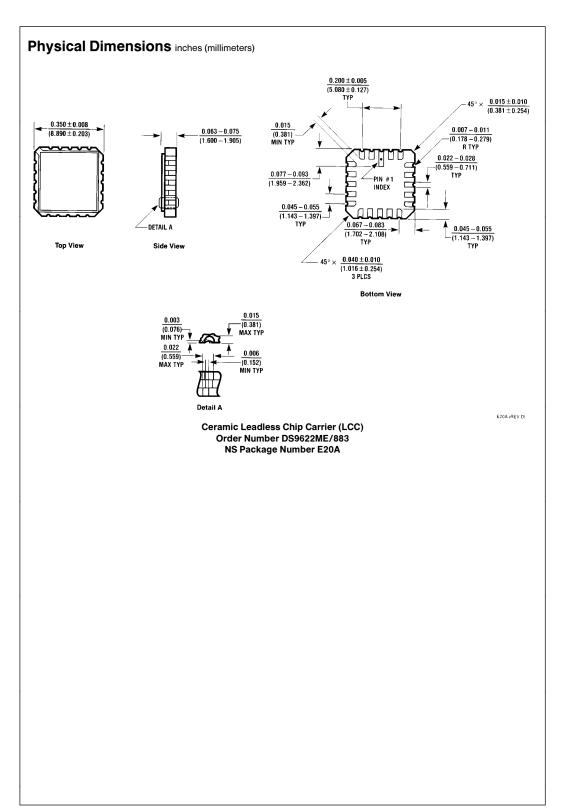
Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 4: Only one output at a time should be shorted.

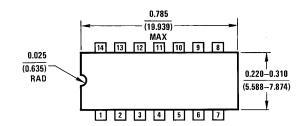
Note 5: Rating applies to ambient temperatures up to +125°C. Above 125°C ambient, derate linearity at 120°C/W.

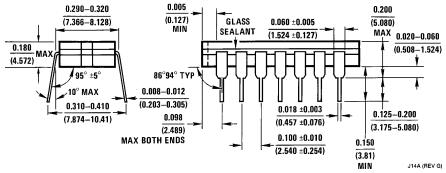
Switching Time Test Circuit and Waveforms

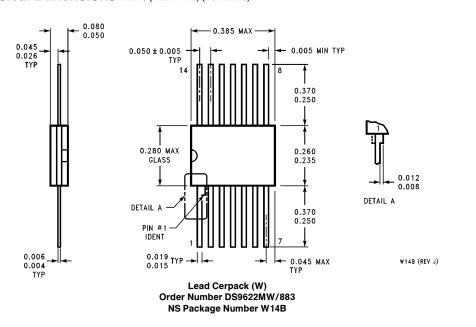

FIGURE 1

Equivalent Circuit




Typical Applications

When S3 is connected to V-, open inputs cause output to be high. When V+ = 5V, V- = -10V and S3 is connected to ground, open inputs cause output to be low.



Ceramic Dual-In-Line Package (J) Order Number DS9622MJ/883 NS Package Number J14A

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Europe
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 180-530 85 85
English Tel: +49 (0) 180-532 78 32
Français Tel: +49 (0) 180-532 93 58
Italiano Tel: +49 (0) 180-542 416 80

National Semiconductor National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd.
Tel: 81-043-299-2308
Fax: 81-043-299-2408

http://www.national.com