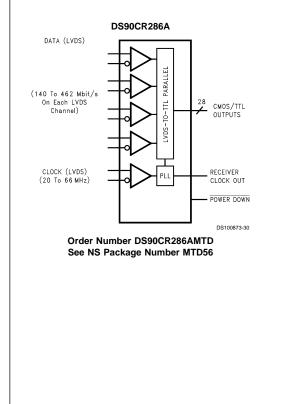
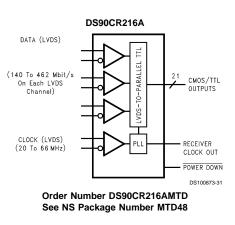
National Semiconductor

DS90CR286A/DS90CR216A +3.3V Rising Edge Data Strobe LVDS Receiver 28-Bit Channel Link—66 MHz, +3.3V Rising Edge Strobe LVDS Receiver 21-Bit Channel Link—66 MHz

General Description


The DS90CR286A receiver converts the four LVDS data streams (Up to 1.848 Gbps throughput or 231 Megabytes/ sec bandwidth) back into parallel 28 bits of CMOS/TTL data. Also available is the DS90CR216A that converts the three LVDS data streams (Up to 1.386 Gbps throughput or 173 Megabytes/sec bandwidth) back into parallel 21 bits of CMOS/TTL data. Both Receivers' outputs are Rising edge strobe.


This chipset is an ideal means to solve EMI and cable size problems associated with wide, high speed TTL interfaces.

Features

- 20 to 66 MHz shift clock support
- 50% duty cycle on receiver output clock
- Best-in-Class Set & Hold Times on RxOUTPUTs
- Rx power consumption <250 mW (typ) @66MHz Worst Case
- Rx Power-down mode <200µW (max)</p>
- ESD rating >7 kV (HBM), >700V (EIAJ)
- PLL requires no external components
- Compatible with TIA/EIA-644 LVDS standard
- Low profile 56-lead or 48-lead TSSOP package

Block Diagrams

DS90CR286A/DS90CR216A +3.3V Rising Edge .ink – 66 MHz, , +3.3V Rising Edge Data Strobe Data Strobe LVDS Receiver 28-Bit Channe LVDS **Receiver 21-Bit Channel** Link— 66 MHz

October 1998

 TRI-STATE® is a registered trademark of National Semiconductor Corporation

 © 1998 National Semiconductor Corporation
 DS100873

Absolute Maximum Ratings (Note 1)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.3V to +4V
CMOS/TTL Output Voltage	-0.3V to (V _{CC} + 0.3V)
LVDS Receiver Input Voltage	-0.3V to (V _{CC} + 0.3V)
Junction Temperature	+150°C
Storage Temperature	-65°C to +150°C
Lead Temperature (Soldering, 4 sec)	+260°C
Maximum Package Power Dissipation	n Capacity @ 25°C
MTD56 (TSSOP) Package:	
DS90CR286A	1.61 W
MTD48 (TSSOP) Package:	
DS90CR216A	1.89 W

Package Derating:	
DS90CR286A	12.4 mW/°C above +25°C
DS90CR216A	15 mW/°C above +25°C
ESD Rating	
(HBM, 1.5 kΩ, 100 pF)	> 7 kV
(EIAJ, 0Ω, 200 pF)	> 700V

Recommended Operating Conditions

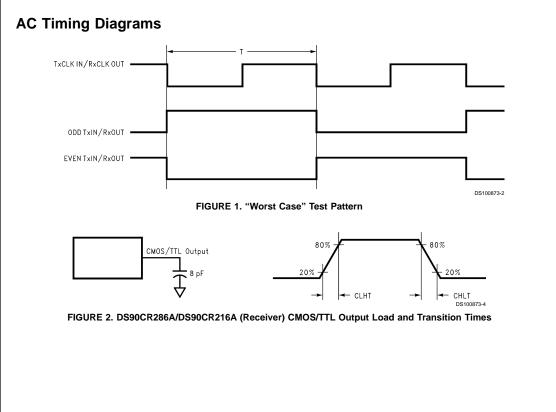
	Min	Nom	Max	Units
Supply Voltage (V _{CC})	3.0	3.3	3.6	V
Operating Free Air				
Temperature (T _A)	-10	+25	+70	°C
Receiver Input Range	0		2.4	V
Supply Noise Voltage (V_{CC})			100	mV_{PP}

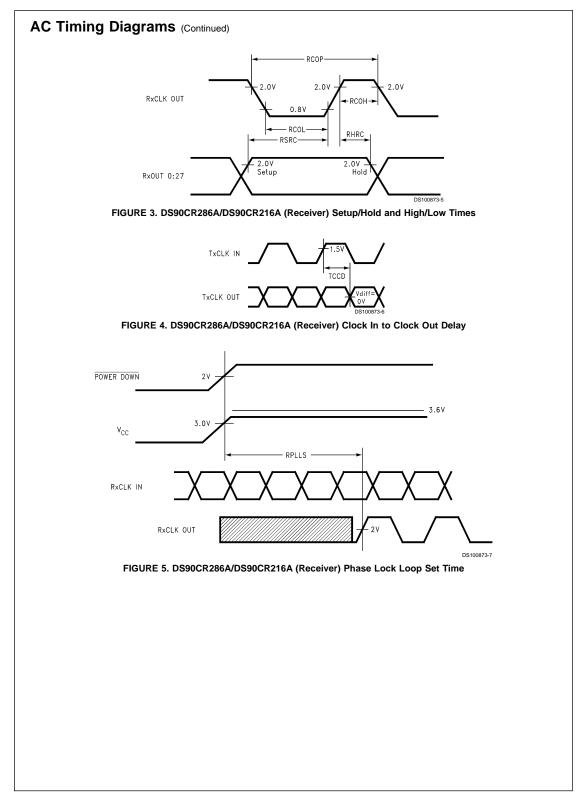
Electrical Characteristics

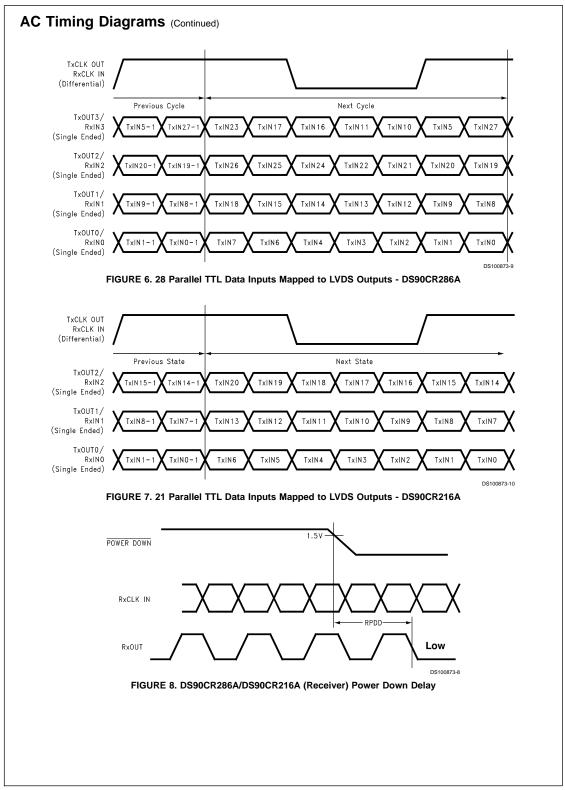
Over recommended operating supply and temperature ranges unless otherwise specified.

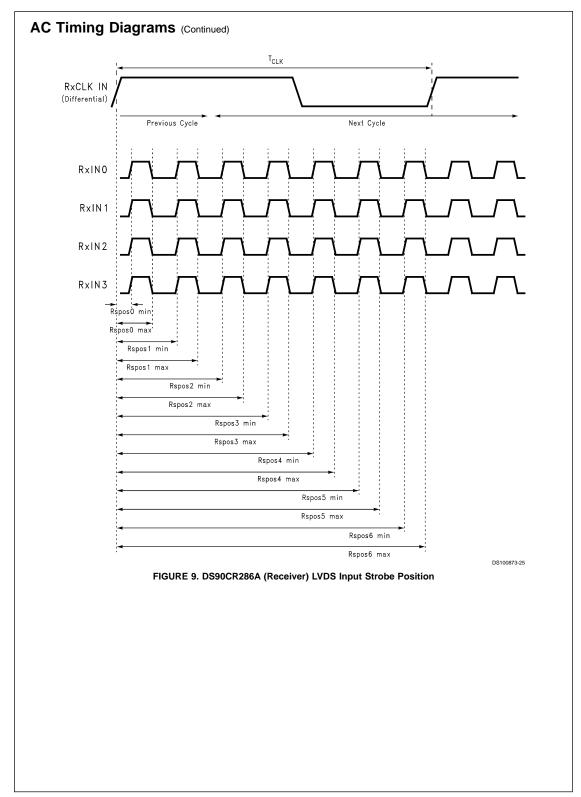
Symbol	Parameter	Condition	Min	Тур	Max	Units	
CMOS/T	TL DC SPECIFICATIONS	-					
V _{он}	High Level Output Voltage	I _{OH} = -0.4 mA		2.7	3.3		V
V _{OL}	Low Level Output Voltage	I _{OL} = 2 mA			0.06	0.3	V
l _{os}	Output Short Circuit Current	V _{OUT} = 0V	V _{OUT} = 0V		-60	-120	mA
LVDS RE	ECEIVER DC SPECIFICATIONS	•		·			
V _{TH}	Differential Input High Threshold	V _{CM} = +1.2V				+100	mV
V _{TL}	Differential Input Low Threshold						mV
I _{IN}	Input Current	$V_{IN} = +2.4V, V_{CC} = 3.6V$	/			±10	μA
		V _{IN} = 0V, V _{CC} = 3.6V				±10	μA
RECEIVE	R SUPPLY CURRENT	·					
ICCRW	Receiver Supply Current	C _L = 8 pF,	f = 33 MHz		49	65	mA
	Worst Case	Worst Case Pattern,	f = 37.5 MHz		53	70	mA
		DS90CR286A (Figures 1, 2)	f = 66 MHz		81	105	mA
ICCRW	Receiver Supply Current	C _L = 8 pF,	f = 33 MHz		49	55	mA
	Worst Case	Worst Case Pattern,	f = 37.5 MHz		53	60	mA
		DS90CR216A (Figures	f = 66 MHz		78	90	mA
10007		1, 2)					
ICCRZ	Receiver Supply Current	Power Down = Low			10	55	μA
	Power Down	Receiver Outputs Stay L	ow during				
		Power Down Mode					

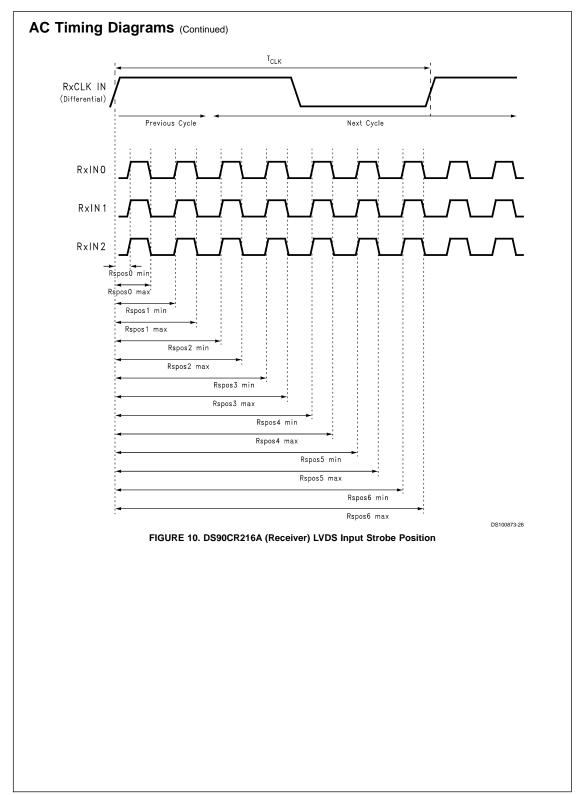
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

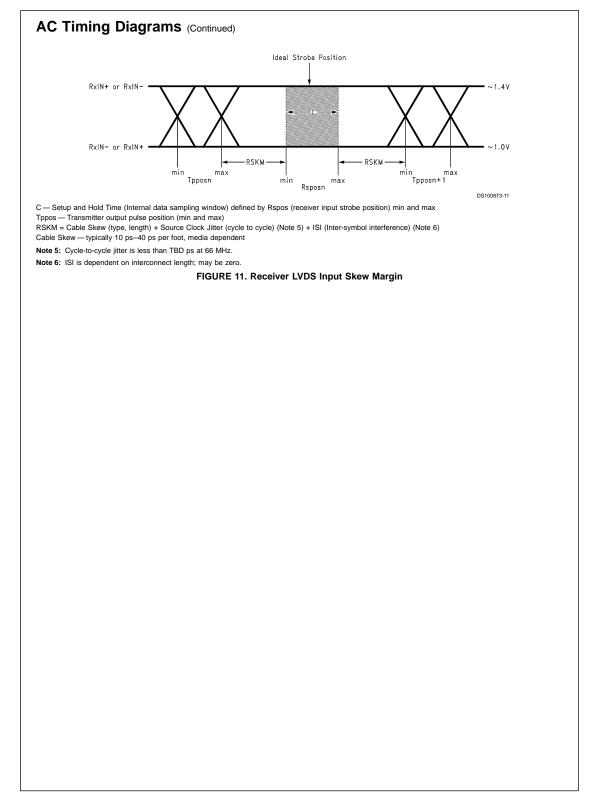

Note 2: Typical values are given for V_{CC} = 3.3V and T_A = +25C.

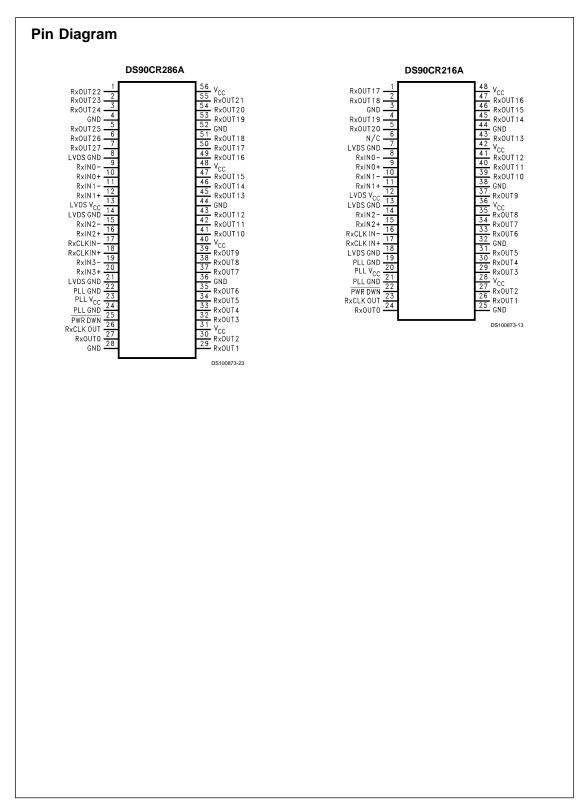

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground unless otherwise specified (except V_{OD} and ΔV _{OD}).

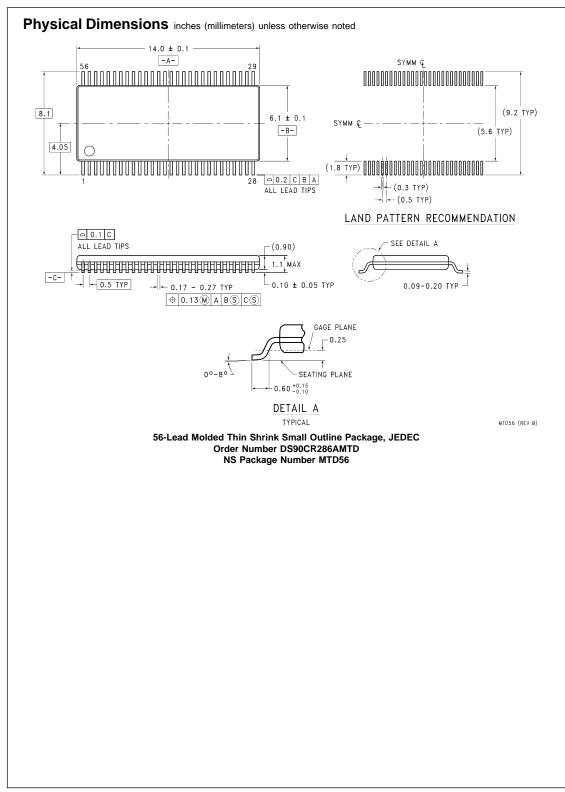

Symbol	Parameter			Тур	Max	Units
CLHT	CMOS/TTL Low-to-High Transition Time (Figure 2)			2	5	ns
CHLT	CMOS/TTL High-to-Low Transition Time (Figure 2)			1.8	5	ns
RSPos0	Receiver Input Strobe Position for Bit 0 (Figure 9, Figure 10)	f = 66 MHz	0.7	1.1	1.4	ns
RSPos1	Receiver Input Strobe Position for Bit 1		2.9	3.3	3.6	ns
RSPos2	Receiver Input Strobe Position for Bit 2		5.1	5.5	5.8	ns
RSPos3	Receiver Input Strobe Position for Bit 3		7.3	7.7	8.0	ns
RSPos4	Receiver Input Strobe Position for Bit 4		9.5	9.9	10.2	ns
RSPos5	Receiver Input Strobe Position for Bit 5	11.7	12.1	12.4	ns	
RSPos6	Receiver Input Strobe Position for Bit 6	13.9	14.3	14.6	ns	
RSKM	RxIN Skew Margin (Note 4) (Figure 11)	400			ps	
RCOP	RxCLK OUT Period (Figure 3)	15	Т	50	ns	
RCOH	RxCLK OUT High Time (Figure 3) f = 66 MHz		5.0	7.6	9.0	ns
RCOL	RxCLK OUT Low Time (Figure 3)		5.0	6.3	9.0	ns
RSRC	RxOUT Setup to RxCLK OUT (Figure 3)	4.5	7.3		ns	
RHRC	RxOUT Hold to RxCLK OUT (Figure 3)		4.0	6.3		ns
RCCD	RxCLK IN to RxCLK OUT Delay 25°C, V _{CC} = 3.3V (Figure 4)			5.0	7.5	ns
RPLLS	Receiver Phase Lock Loop Set (Figure 5)				10	ms
RPDD	Receiver Power Down Delay (Figure 8)				1	μs

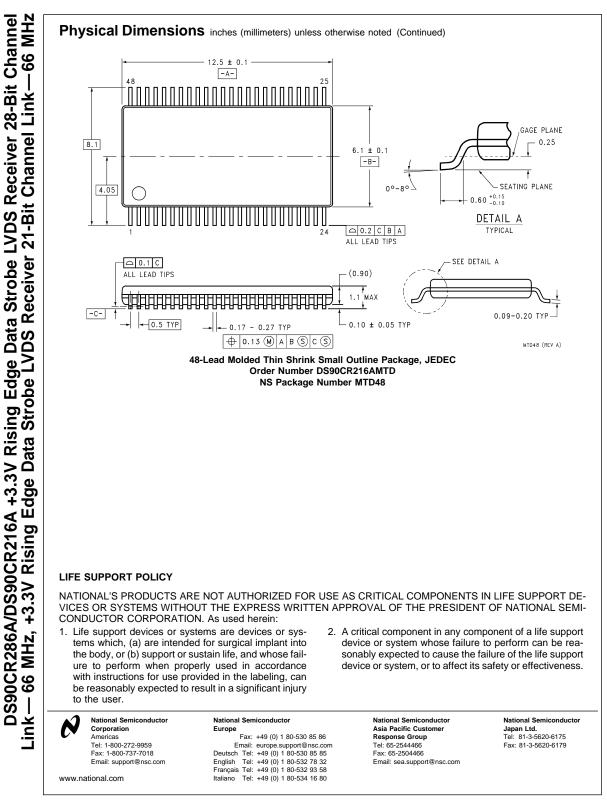

.


Note 4: Receiver Skew Margin is defined as the valid data sampling region at the receiver inputs. This margin takes into account the transmitter pulse positions (min and max) and the receiver input setup and hold time (internal data sampling window - RSPos). This margin allows for LVDS interconnect skew, inter-symbol interference (both dependent on type/length of cable), and clock jitter (less than 250 ps).






Pin Name	I/O	No.	Description
RxIN+	1	4	Positive LVDS differential data inputs.
RxIN–	1	4	Negative LVDS differential data inputs.
RxOUT	0	28	TTL level data outputs.
RxCLK IN+	1	1	Positive LVDS differential clock input.
RxCLK IN-	1	1	Negative LVDS differential clock input.
RxCLK OUT	0	1	TTL level clock output. The rising edge acts as data strobe.
PWR DOWN	1	1	TTL level input. When asserted (low input) the receiver outputs are low.
V _{cc}	1	4	Power supply pins for TTL outputs.
GND	1	5	Ground pins for TTL outputs.
PLL V _{CC}	1	1	Power supply for PLL.
PLL GND	1	2	Ground pin for PLL.
LVDS V _{CC}	1	1	Power supply pin for LVDS inputs.
LVDS GND	1	3	Ground pins for LVDS inputs.


DS90CR216A Pin Description—21-Bit Channel Link Receiver

· ·

Pin Name	I/O	No.	Description
RxIN+	I	3	Positive LVDS differential data inputs.
RxIN-	I	3	Negative LVDS differential data inputs.
RxOUT	0	21	TTL level data outputs.
RxCLK IN+	I	1	Positive LVDS differential clock input.
RxCLK IN-	I	1	Negative LVDS differential clock input.
RxCLK OUT	0	1	TTL level clock output. The rising edge acts as data strobe.
PWR DOWN	I	1	TTL level input. When asserted (low input) the receiver outputs are low.
V _{cc}	I	4	Power supply pins for TTL outputs.
GND	I	5	Ground pins for TTL outputs.
PLL V _{cc}	I	1	Power supply for PLL.
PLL GND	I	2	Ground pin for PLL.
LVDS V _{cc}	I	1	Power supply pin for LVDS inputs.
LVDS GND	I	3	Ground pins for LVDS inputs.

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.