May 1998 # DS3695/DS3695T/DS3696/DS3697 Multipoint RS485/RS422 Transceivers/Repeaters ### **General Description** The DS3695, DS3696, and DS3697 are high speed differential TRI-STATE® bus/line transceivers/repeaters designed to meet the requirements of EIA standard RS485 with extended common mode range (+12V to -7V), for multipoint data transmission. The driver and receiver outputs feature TRI-STATE capability. The driver outputs remain in TRI-STATE over the entire common mode range of +12V to –7V. Bus faults that cause excessive power dissipation within the device trigger a thermal shutdown circuit, which forces the driver outputs into the high impedance state. The DS3696 provides an output pin TS (thermal shutdown) which reports the occurrence of the thermal shutdown of the device. This is an "open collector" pin with an internal 10 k Ω pull-up resistor. This allows the line fault outputs of several devices to be wire OR-ed. Both AC and DC specifications are guaranteed over the 0° C to 70°C temperature and 4.75V to 5.25V supply voltage range. #### **Features** - Meets EIA standard RS485 for multipoint bus transmission and is compatible with RS-422 - 15 ns driver propagation delays with 2 ns skew (typical) - Single +5V supply - -7V to +12V bus common mode range permits ±7V ground difference between devices on the bus - Thermal shutdown protection - High impedance to bus with driver in TRI-STATE or with power off, over the entire common mode range allows the unused devices on the bus to be powered down - Combined impedance of a driver output and receiver input is less than one RS485 unit load, allowing up to 32 transceivers on the bus - 70 mV typical receiver hysteresis ### **Connection and Logic Diagrams** Top View RO 1 DS3696 8 VCC 7 DD/RI BUS DS010408-12 Order Number DS3695N, DS3695TN, DS3696N, or DS3697N See NS Package Number N08E Note 1: $\overline{\text{TS}}$ pin was $\overline{\text{LF}}$ (Line Fault) in previous datasheets and reports the occurrence of a thermal shutdown of the device. TRI-STATE® is a registered trademark of National Semiconductor Corporation. ### **Absolute Maximum Ratings** (Note 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications. Supply Voltage, V_{CC} 7V Control Input Voltages 7V Driver Input Voltage 7V **Driver Output Voltages** +15V/-10V Receiver Input Voltages (DS3695, DS3696) +15V/-10V Receiver Common Mode Voltage (DS3697) ±25V Receiver Output Voltage 5.5V Continuous Power Dissipation @ 25°C N Package 1.07W (Note 4) –65°C to +150°C Storage Temperature Range Lead Temperature (Soldering, 4 260°C ### **Recommended Operating Conditions** | Min | Max | Units | |------|-----------------|---------------------| | 4.75 | 5.25 | V | | -7 | +12 | V | | | | | | 0 | +70 | °C | | -40 | +85 | °C | | | 4.75
-7
0 | 4.75 5.25
-7 +12 | ### **Electrical Characteristics** (Notes 3, 4) $0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +70^{\circ}\text{C},~4.75\text{V} < \text{V}_{\text{CC}} < 5.25\text{V}$ unless otherwise specified | Symbol | Paramet | ter | | Conditions | Min | Тур | Max | Units | |------------------------|---------------------------|-------------------|----------------------------------|---------------------------------------|------|-----|------|-------| | V _{OD1} | Differential Driver Outpo | ut | I _O = 0 | | | | 5 | V | | | Voltage (Unloaded) | | | | | | | | | V _{OD2} | Differential Driver Outpo | ut | (Figure 1) | (Figure 1) R = 50Ω; (RS-422) (Note 6) | | | | V | | | Voltage (with Load) | | | R = 27Ω; (RS-485) | 1.5 | | | V | | ΔV_{OD} | Change in Magnitude o | f Driver | | | | | | | | | Differential Output Volta | age for | | | | | 0.2 | V | | | Complementary Output | States | | | | | | | | V _{oc} | Driver Common Mode | Output Voltage | (Figure 1) | R = 27Ω | | | 3.0 | V | | $\Delta V_{OC} $ | Change in Magnitude o | f Driver | 1 | | | | | | | | Common Mode Output | Voltage | | | | | 0.2 | V | | | for Complementary Out | put States | | | | | | | | V _{IH} | Input High Voltage | | 1 | | 2 | | | V | | V _{IL} | Input Low Voltage | DI, | DE, | | | | 0.8 | V | | V _{CL} | Input Clamp Voltage | RE, E, | , RE /DE | I _{IN} = -18 mA | | | -1.5 | V | | I _{IL} | Input Low Current | | | V _{IL} = 0.4V | | | -200 | μA | | I _{IH} | Input High Current | 1 | | V _{IH} = 2.4V | | | 20 | μA | | I _{IN} | Input Current | DO/RI, DO /RI | V _{CC} = 0V or 5.25V | V _{IN} = 12V | | | +1.0 | mA | | | | RI, RI | RE /DE or DE = | V _{IN} = -7V | | | -0.8 | mA | | I _{OZD} | TRI-STATE Current | DO, DO | V _{CC} = 0V or 5.25 | V, E = 0V | | | ±100 | μA | | | DS3697 & DS3698 | | $-7V < V_O < +12$ | V | | | | | | V_{TH} | Differential Input Thresh | nold | -7V ≤ V _{CM} ≤ +12 | V | -0.2 | | +0.2 | V | | | Voltage for Receiver | | | | | | | | | ΔV_{TH} | Receiver Input Hysteres | sis | V _{CM} = 0V | | | 70 | | mV | | V_{OH} | Receiver Output High V | /oltage | I _{OH} = -400 μA | | 2.4 | | | V | | V_{OL} | Output Low Voltage | RO | I _{OL} = 16 mA (Note 6) | | | | 0.5 | V | | | | TS | I _{OL} = 8 mA | | | | 0.45 | V | | I _{OZR} | OFF-State (High Imped | ance) | V _{CC} = Max | | | | ±20 | μA | | | Output Current at Rece | iver | $0.4V \le V_O \le 2.4V$ | | | | | | | R _{IN} | Receiver Input Resistar | nce | -7V ≤ V _{CM} ≤ +12V | | 12 | | | kΩ | www.national.com ### Electrical Characteristics (Notes 3, 4) (Continued) $0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +70^{\circ}\text{C},~4.75\text{V}~<\text{V}_{\text{CC}} < 5.25\text{V}$ unless otherwise specified | Symbol | Parameter | (| Min | Тур | Max | Units | | |------------------|---------------------------------------|--------------------------------|-------------------------|-----|-----|-------|----| | I _{cc} | Supply Current | No Load | Driver Outputs Enabled | | 42 | 60 | mA | | | | (Note 6) | Driver Outputs Disabled | | 27 | 40 | mA | | I _{OSD} | Driver Short-Circuit Output Current | V _O = -7V (Note 6) | | | | -250 | mA | | | | V _O = +12V (Note 6) | | | | +250 | mA | | I _{OSR} | Receiver Short-Circuit Output Current | V _O = 0V | | | | -85 | mA | Note 2: "Absolute Maximum Ratings" are those beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation. Note 3: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified. Note 4: All typicals are given for V_{CC} = 5V and T_A = 25°C. Note 5: Derate linearly at 11.1 mW/°C to 570 mW at 70°C. Note 6: All limits for which Note 5 is applied must be derated by 10% for DS3695T and DS3696T. Other parameters remain the same for this extended temperature range device ($-40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$). # Switching Characteristics (Notes 4, 7) $0^{\circ}C \le T_A \le +70^{\circ}C$, $4.75V < V_{CC} < 5.25V$ unless otherwise specified Receiver Switching Characteristics (Figures 2, 3, 4) | Symbol | ool Conditions Min | | Тур | Max | Units | |------------------------------------|---------------------------------|----|-----|-----|-------| | t _{PLH} | C _L = 15 pF | 15 | 25 | 37 | ns | | t _{PHL} | S1 and S2 | 15 | 25 | 37 | ns | | t _{PLH} -t _{PHL} | Closed | 0 | | | ns | | t _{PLZ} | C _L = 15 pF, S2 Open | 5 | 12 | 16 | ns | | t _{PHZ} | C _L = 15 pF, S1 Open | 5 | 12 | 16 | ns | | t _{PZL} | C _L = 15 pF, S2 Open | 7 | 15 | 20 | ns | | t _{PZH} | C _L = 15 pF, S1 Open | 7 | 15 | 20 | ns | ### **Driver Switching Characteristics** | Symbol Conditions Min Typ Max Units | | | | | | | | | | |---|------------------------------------|----|-----|-----|-------|--|--|--|--| | Symbol | Symbol Conditions | | Тур | Max | Units | | | | | | SINGLE ENDED CHARACTERISTICS (Figures 5, 6, 7) | | | | | | | | | | | t _{PLH} | $R_L DIFF = 60\Omega$ | 9 | 15 | 22 | ns | | | | | | t _{PHL} | $C_{L1} = C_{L2} = 100 \text{ pF}$ | 9 | 15 | 22 | ns | | | | | | t _{SKEW} t _{PLH} -t _{PHL} | | | 2 | 8 | ns | | | | | | t _{PLZ} | C _L = 15 pF, S2 Open | 7 | 15 | 30 | ns | | | | | | t _{PHZ} | C_L = 15 pF, S1 Open | | 15 | 30 | ns | | | | | | t _{PZL} | C _L = 100 pF, S2 Open | 30 | 35 | 50 | ns | | | | | | t _{PZH} | C _L = 100 pF, S1 Open | 30 | 35 | 50 | ns | | | | | | DIFFERENTIAL CHARACTERISTICS (Figures 5, 8) | | | | | | | | | | | t _r , t _f | $R_L DIFF = 60\Omega$ | 6 | 10 | 18 | ns | | | | | | | $C_{L1} = C_{L2} = 100 \text{ pF}$ | | | | | | | | | Note 7: Switching Characteristics apply for DS3695, DS3695T, DS3696, DS3697 only. # **AC Test Circuits and Switching Waveforms** FIGURE 1. Driver $\rm V_{\rm OD}$ and $\rm V_{\rm OC}$ FIGURE 2. Receiver Propagation Delay Test Circuit $\textbf{Note:} \ \ \text{Differential input voltage may be realized by grounding } \ \overline{\text{RI}} \ \ \text{and pulsing RI between +2.5V} \ \ \text{and } \ -2.5V.$ FIGURE 3. Receiver Input-to-Output Propagation Delay Timing FIGURE 4. Receiver Enable/Disable Propagation Delay Timing ## AC Test Circuits and Switching Waveforms (Continued) Note: Unless otherwise specified the switches are closed. FIGURE 5. Driver Propagation Delay and Transition Time Test Circuits Note: t_{PLH} and t_{PHL} are measured to the respective 50% points. t_{SKEW} is the difference between propagation delays of the complementary outputs. FIGURE 6. Driver Input-to-Output Propagation Delay Timing (Single-Ended) FIGURE 7. Driver Enable/Disable Propagation Delay Timing FIGURE 8. Driver Differential Transition Timing ### **Function Tables** # DS3695/DS3696 Transmitting | | Inputs | | Thermal Outputs | | puts | | |----|--------|----|-----------------|----|------|---------------| | RE | DE | DI | Shutdown | DO | DO | TS * | | | | | | | | (DS3696 Only) | | Х | 1 | 1 | OFF | 0 | 1 | Н | | X | 1 | 0 | OFF | 1 | 0 | Н | | X | 0 | X | OFF | Z | Z | Н | | X | 1 | Х | ON | Z | z | L | # DS3695/DS3696 Receiving | | Inputs | | Outputs | | | |----|------------|-----------------|---------|---------------|--| | RE | E DE RI–RI | | RO | TS * | | | | | | | (DS3696 Only) | | | 0 | 0 | ≥ +0.2V | 1 | Н | | | 0 | 0 | ≤ - 0.2V | 0 | Н | | | 1 | 0 | X | Z | Н | | ### **DS3697** | | Inputs | Thermal | Outputs | | | | | Outputs | |---|---------|----------|---------|---|---------------|--|--|---------| | E | RI-RI | Shutdown | DO DO | | RO | | | | | | | | | | (DS3697 Only) | | | | | 1 | ≥ +0.2V | OFF | 0 | 1 | 1 | | | | | 1 | ≤ -0.2V | OFF | 1 | 0 | 0 | | | | | 0 | Х | OFF | Z | Z | Z | | | | | 1 | ≥ +0.2V | ON | Z | Z | 1 | | | | | 1 | ≤ -0.2V | ON | Z | Z | 0 | | | | # **Typical Application** Note: Repeater control logic not shown, see AN-702. www.national.com X— Don't care condition Z— High impedance state * \overline{TS} is an "open collector" output with an on-chip 10 k Ω pull-up resistor that reports the occurrence of a thermal shutdown of the device. ### **Typical Performance Characteristics** Driver V_{OH} vs I_{OH} vs Temperature Driver $\rm V_{OH}$ vs $\rm I_{OH}$ vs $\rm V_{CC} Driver$ $\rm V_{OH}$ vs $\rm I_{OH}$ vs $\rm V_{CC}$ Driver V_{OL} vs I_{OL} vs Temperature Driver $V_{\rm OH}$ vs $I_{\rm OH}$ vs $V_{\rm CC}$ Driver Differential Propagation Delay vs Temperature Driver Differential Propagation Delay vs $V_{\rm CC}$ # Driver Single-Ended Propagation Delay vs Temperature Driver Single-Ended Propagation Delay vs V_{CC} Driver Transition Time vs Temperature # **Typical Performance Characteristics** (Continued) # Driver Transition Time $vs\;V_{CC}$ #### Cable Length vs Data Rate Supply Current vs Temperature Supply Current vs Power Supply Voltage $\begin{array}{l} \text{Driver I}_{\text{CC}} \text{ vs Switching} \\ \text{Frequency} \end{array}$ Driver Short Circuit Current vs Temperature Receiver V_{OH} vs I_{OH} vs Temperature Receiver V_{OH} vs I_{OH} vs V_{CC} ## **Typical Performance Characteristics** (Continued) # Receiver V_{OL} vs I_{OL} vs Temperature Receiver $V_{\rm OL}$ vs $I_{\rm OL}$ vs $V_{\rm CC}$ #### Receiver Differential Propagation Delay vs Temperature # Receiver Differential Propagation Delay vs V_{CC} #### Receiver Short Circuit Current vs Temperature #### Receiver Short Circuit Current vs Power Supply #### Receiver Non-Inverting Input Current vs Temperature #### Receiver Non-Inverting Input Current vs Power Supply Voltage #### Receiver Inverting Input Current vs Temperature # **Typical Performance Characteristics** (Continued) #### Receiver Inverting Input Current vs Power Supply Voltage #### Hysteresis and Differential Transition Voltage vs Temperature #### Hysteresis and Differential Transition Voltage vs V_{CC} www.national.com 10 ### Physical Dimensions inches (millimeters) unless otherwise noted 8-Lead Molded Dual-In-Line Package (N) Order Number DS3695N, DS3696N, DS3697N, or DS3695TN NS Package Number N08E #### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Corporation Americas Tel: 1-800-272-9959 Americas Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com www.national.com National Semiconductor Europe Fax: +49 (0) 1 80-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 1 80-530 85 85 English Tel: +49 (0) 1 80-532 78 32 Français Tel: +49 (0) 1 80-532 93 88 Italiano Tel: +49 (0) 1 80-534 16 80 National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466 Fax: 65-2504466 Email: sea.support@nsc.com National Semiconductor Japan Ltd. Tel: 81-3-5620-6175 Fax: 81-3-5620-6179