

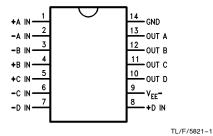
DS3680 Quad Negative Voltage Relay Driver

General Description

The DS3680 is a quad high voltage negative relay driver designed to operate over wide ranges of supply voltage, common-mode voltage, and ambient temperature, with 50 mA sink capability. These drivers are intended for switching the ground end of loads which are directly connected to the negative supply, such as in telephone relay systems.

Since there may be considerable noise and IR drop between logic ground and negative supply ground in many applications, these drivers are designed to operate with a high common-mode range ($\pm 20\mathrm{V}$ referenced to negative supply ground). Each driver has a common-mode range separate from the other drivers in the package, which pemits input signals from more than one element of the system.

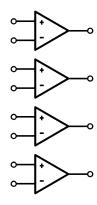
With low differential input current requirements (typically 100 μ A), these drivers are compatible with TTL, LS and CMOS logic. Differential inputs permit either inverting or non-inverting operation.


The driver outputs incorporate transient suppression clamp networks, which eliminate the need for external networks when used in applications of switching inductive loads. A fail-safe feature is incorporated to insure that, if the +IN input or both inputs are open, the driver will be OFF.

Features

- \blacksquare -10V to -60V operation
- Quad 50 mA sink capability
- TTL/LS/COMS or voltage comparator input
- High input common-mode voltage range
- Very low input current
- Fail-safe disconnect feature
- Built-in output clamp diode

Connection Diagram


Dual-In-Line Package

Top View

Order Number DS3680J, DS3680M or DS3680N See NS Package Number J14A, M14A, N14A

Logic Diagram

TL/F/5821-2

Truth Table

Differential Inputs	Outputs		
$V_{\text{ID}} \geq 2V$	On		
$V_{ID} \le 0.8V$	Off		
Open	Off		

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (GND to $V_{\mbox{\footnotesize{EE}}}-$, and Any F	Pin) -70V
Positive Input Voltage (Input to GND)	20V
Negative Input Voltage (Input to $V_{EE}-$)	-5V
Differential Voltage (+IN to $-IN$)	$\pm20V$
Inductive Load	L _L ≤5h
	$I_L \le 50 \text{ mA}$
Output Current	$-100~\mathrm{mA}$
Storage Temperature	-65°C to +150°C

Maximum Power Dissipation* at 25°C

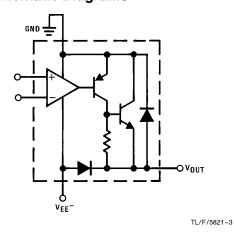
Cavity Package 1433 mW
Molded Dip Package 1398 mW
SO Package 1002 mW
Lead Temperature (Soldering, 4 seconds) 260°C

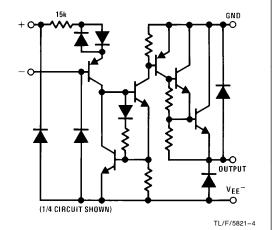
Recommended Operating Conditions

	Min	Max	Units	
Supply Voltage (GND to $V_{EE}-$)	-10	-60	V	
Input Voltage (Input to GND)	-20	20	V	
Logic ON Voltage (+IN)				
Referenced to −IN	2	20	V	
Logic OFF Voltage $(+IN)$				
Referenced to -IN	-20	8.0	V	
Temperature Range	-25	+85	°C	

Electrical Characteristics (Notes 2 and 3)

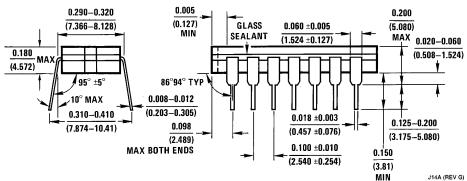
Symbol	Parameter	Conditions	Min	Тур	Max	Units
V_{IH}	Logic "1" Input Voltage		2.0	1.3		V
V_{IL}	Logic "0" Input Voltage			1.3	0.8	٧
I _{INH}	Logic "1" Input Current	$V_{IN} = 2V$ $V_{IN} = 7V$		40 375	100 1000	μA μA
I _{INL}	Logic "0" Input Current	$V_{IN} = 0.4V$ $V_{IN} = -7V$		-0.01 -1	-5 -100	μA μA
V_{OL}	Output ON Voltage	$I_{OL} = 50 \text{ mA}$		-1.6	-2.1	٧
I _{OFF}	Output Leakage	$V_{OUT} = V_{EE} -$		-2	-100	μΑ
I _{FS}	Fail-Safe Output Leakage	V _{OUT} = V _{EE} - (Inputs Open)		-2	-100	μΑ
I _{LC}	Output Clamp Leakage Current	V _{OUT} = GND		2	100	μΑ
V _C	Output Clamp Voltage	I _{CLAMP} = -50 mA Referenced to V _{EE} -		-2	-1.2	٧
V _P	Positive Output Clamp Voltage	I _{CLAMP} = 50 mA Referenced to GND		0.9	1.2	٧
I _{EE(ON)}	ON Supply Current	All Drivers ON		-2	-4.4	mA
I _{EE(OFF)}	OFF Supply Current	All Drivers OFF		-1	-100	μΑ
t _{PD(ON)}	Propagation Delay to Driver ON	$L = 1h, R_L = 1k,$ $V_{IN} = 3V Pulse$		1	10	μs
t _{PD(OFF)}	Propagation Delay to Driver OFF	$L = 1h, R_L = 1k,$ $V_{IN} = 3V Pulse$		1	10	μs

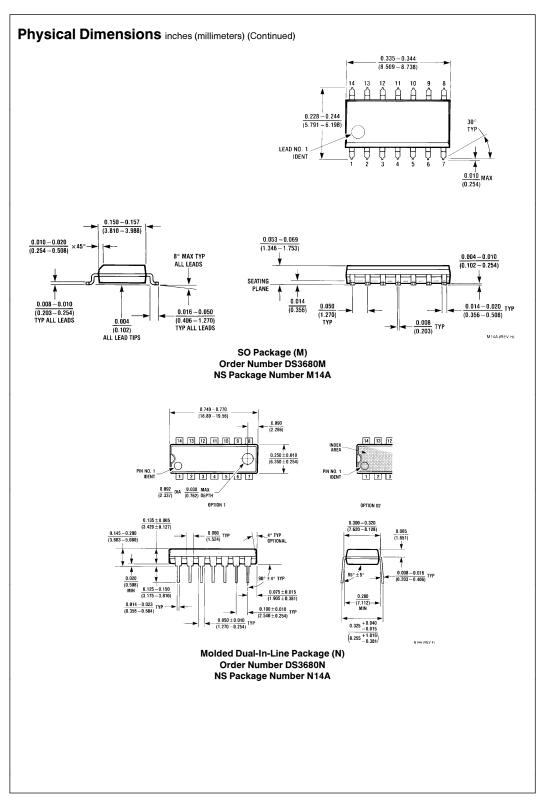

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range", they are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

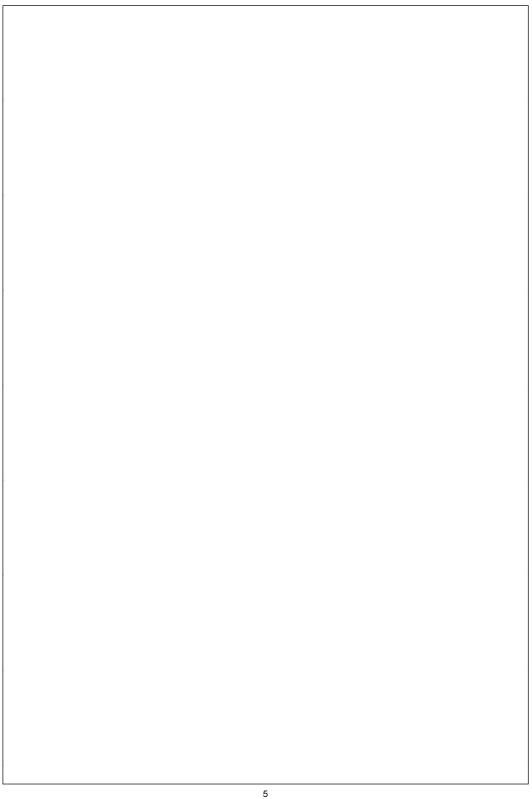

Note 2: Unless otherwise specified, the min/max limits of the table of "Electrical Characteristics" apply within the range of the table of "Operating Conditions". All typical values are given for $V_{EE}^-=52V$, and $T_A=25^{\circ}C$.

Note 3: All current into device pins shown as positive, out of the device as negative. All voltages are referenced to ground unless otherwise noted.


Derate cavity package 9.6 mW/°C above 25°C; derate molded dip package 11.2 mW/°C above 25°C; derate SO package 8.02 mW/°C above 25°C.


Schematic Diagrams




Physical Dimensions inches (millimeter)

Ceramic Dual-In-Line Package (J) Order Number DS3680J NS Package Number J14A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe

Europe Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tei: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408