March 1999

DS14196 EIA/TIA-232 5

Driver x 3

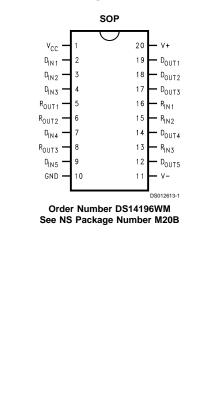
Receive

National Semiconductor

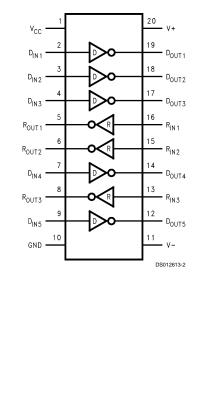
DS14196 EIA/TIA-232 5 Driver x 3 Receiver

General Description

The DS14196 is a five driver, three receiver device which conforms to the EIA/TIA-232-E and the ITU-T V.28 standards.


The flow-through pinout facilitates simple non-crossover board layout. The DS14196 provides a peripheral side one-chip solution for the common 9-pin serial RS-232 interface between data terminals and data communications equipment.

The DS14196 offers optimum performance when used with the DS14185 3 x 5 Driver/Receiver, a host side one-chip solution for the common 9-pin serial RS-232 interface between data terminals and data communications equipment.


Features

- Replaces two 1488s and one 1489
- Conforms to EIA/TIA-232-E and ITU-T V.28
- 5 drivers and 3 receivers
- Flow-through pinout
- Failsafe receiver outputs high when inputs open
- 20-pin wide SOIC package
- LapLink[®] compatible 230.4 kbps data rate
- Pin compatible with: SN75196, GD75323

Connection Diagram

Functional Diagram

LapLink® is a registered trademark of Travelling Software.

© 1999 National Semiconductor Corporation DS012613

www.national.com

Absolute Maximum Ratings (Note 1)

.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	+7V
Supply Voltage (V ⁺)	+15V
Supply Voltage (V ⁻)	–15V
Driver Input Voltage	0V to V_{CC}
Driver Output Voltage (Power Off)	±15V
Receiver Input Voltage	±25V
Receiver Output Voltage (R _{OUT})	0V to V_{CC}
Maximum Power Package Dissipa	ation @ +25°C
M Package	1524 mW
Derate M Package	12.2 mW/°C above 25°C

 Storage Temperature Range
 -65°C to +150°C

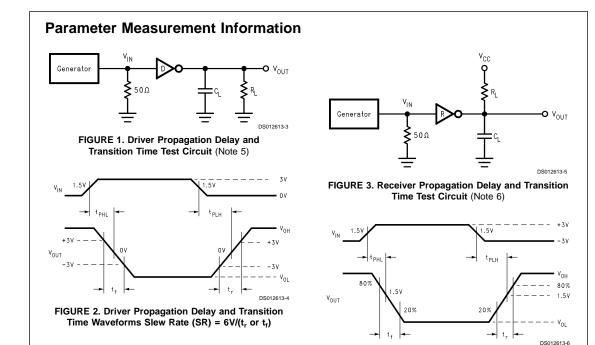
 Lead Temperature Range (Soldering, 4 sec.)
 +260°C

 ESD Ratings (HBM. 1.5 kΩ, 100 pF)
 ≥1.5 kV

Recommended Operating Conditons

	Min	Nom	Max	Units
Supply Voltage (V _{CC})	+4.75	+5.0	+5.25	V
Supply Voltage (V ⁺)	+9.0	+12.0	+13.2	V
Supply Voltage (V ⁻)	-13.2	-12.0	-9.0	V
Operating Free Air				
Temperature (T _A)	0	+25	+70	°C

Electrical Characteristics(Note 2) (Note 3)


Over recommended operating supply and temperature ranges unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
DEVICE	CHARACTERISTICS						
I _{cc}	V _{CC} Supply Current	No Load, All Inputs at	t +5V		15	22	mA
l+	V ⁺ Supply Current	No Load, All Driver	V ⁺ = +9V, V ⁻ = -9V		20	26	mA
		Inputs at 0.8V or	V ⁺ = +13.2V, V ⁻ = -13.2V		30	36	mA
I-	V ⁻ Supply Current	+2V. All Receiver Inputs at 0.8V or	V ⁺ = +9V, V ⁻ = -9V		-20	-26	mA
		2.4V.	V ⁺ = +13.2V, V ⁻ = -13.2V		-30	-36	mA
DRIVER	CHARACTERISTICS				L		
VIH	High Level Input Voltage			2.0			V
VIL	Low Level Input Voltage					0.8	V
I _{IH}	High Level Input Current	V _{IN} = 5V				10	μA
I _{IL}	Low Level Input Current	$V_{IN} = 0V$			-1.1	-1.5	mA
V _{он}	High Level Output Voltage	$R_{L} = 3 k\Omega, V_{IN} = 0.8^{\circ}$	V, V ⁺ = +9V, V ⁻ = -9V	6	7		V
		$R_{L} = 3 k\Omega, V_{IN} = 0.8V, V^{+} = +12V, V^{-} = -12V$		8	10		V
			V, V ⁺ = +13.2V, V ⁻ = -13.2V	10	11.5		V
V _{OL}	Low Level Output Voltage	$R_{L} = 3 k\Omega, V_{IN} = 2V,$	$V^{+} = +9V, V^{-} = -9V$		-7	-6	V
	$R_{L} = 3 k\Omega, V_{IN} = 2V, V^{+} = +12V, V^{-} = -12V$			-10	-8	V	
		$R_L = 7 k\Omega, V_{IN} = 2V,$	V ⁺ = +13.2V, V ⁻ = -13.2V		-11.5	-10	V
I _{os} +	Output High Short	V _{OUT} = 0V, V _{IN} = 0.8	SV	-6	-12	-18	mA
	Circuit Current (Note 4)						
I _{os} -	Output Low Short	$V_{OUT} = 0V, V_{IN} = 2.0V$		6	12	18	mA
	Circuit Current (Note 4)						
Ro	Output Resistance	$-2V \le V_{OUT} \le +2V, V$	$V^{+} = V^{-} = V_{CC} = 0V$	300			Ω
		$-2V \le V_{OUT} \le +2V, V^+ = V^- = V_{CC} = Open Circuit$		300			Ω
RECEIVE	ER CHARACTERISTICS						
V_{TH}	Input High Threshold	$V_{OUT} \le 0.4V, I_O = 3.2$	2 mA		2.1	2.4	V
	(Recognized as a High Signal)						
V _{TL}	Input Low Threshold	$V_{OUT} \ge 2.5V, I_O = -0.5 \text{ mA}$		0.7	1.0		V
	(Recognized as a Low Signal)						
R _{IN}	Input Resistance	$V_{IN} = \pm 3V$ to $\pm 15V$		3.0	3.8	7.0	kΩ
I _{IN}	Input Current	V _{IN} = +15V		2.1	4.0	5.0	mA
		V _{IN} = +3V		0.43	0.7	1.0	mA
		V _{IN} = -15V		-2.1	-4.0	-5.0	mA
		$V_{IN} = -3V$		-0.43	-0.7	-1.0	mA

Symbol	Parameter		Conditions	Min	Тур	Max	Units
RECEIVE	R CHARACTERISTICS						
V _{OH} High Level Output Voltage		I _{OH} = -0.5 mA, V _{IN} = -3V		2.6	4.0		V
(Note 7)	(Note 7)	$I_{OH} = -10 \ \mu A, \ V_{IN} = -3V$		4.0	4.9		V
	I _{OH} = -0.5 mA, V	$I_{OH} = -0.5 \text{ mA}, V_{IN} = \text{Open Circuit}$		4.0		V	
	I _{OH} = -10 μA, V _{IN}	I = Open Circuit	4.0	4.9		V	
V _{OL}	Low Level Output Voltage	I _{OL} = 3.2 mA, V _{IN}	$I_{OL} = 3.2 \text{ mA}, V_{IN} = +3V$		0.2	0.4	V
I _{OSR}	Short Circuit Current	V _{OUT} = 0V, V _{IN} =	0V (Note 4)	-1.7	-2.7	-4	mA
	CHARACTERISTICS				1.25		1
T _A = 25	iic –						
Symbol	Paramete	er	Conditions	Min	Тур	Max	Unit
	Propagation Delay High to Lo	NM/	$R_{L} = 3 k\Omega, C_{L} = 50 pF$	1	90	350	ns
t _{PHL}	10 , 0	,,,,	-		210	350	ns
t	Propagation Delay Low to High	h	(Flaures 1, 2)				
	Propagation Delay Low to Hig Rise/Fall Time (Note 8)	gh	(Figures 1, 2)		-		
	Rise/Fall Time (Note 8)	gh	(Figures 1, 2)		40	000	ns
t _r , t _f RECEIVE	Rise/Fall Time (Note 8)		(Figures 1, 2) $R_1 = 1.5 \text{ k}\Omega, C_1 = 15 \text{ pF}$		-	100	
t _r , t _f RECEIVE t _{РНL}	Rise/Fall Time (Note 8)	9W			40		ns
t _r , t _r RECEIVE t _{PHL} t _{PLH}	Rise/Fall Time (Note 8) R CHARACTERISTICS Propagation Delay High to Lo	9W			40	100	ns ns
t _r , t _f RECEIVE t _{PHL} t _{PLH} t _r	Rise/Fall Time (Note 8) ER CHARACTERISTICS Propagation Delay High to Lo Propagation Delay Low to High	9W	R_L = 1.5 kΩ, C_L = 15 pF (includes fixture plus probe),		40 40 70	100 160	ns ns ns
t _r , t _f RECEIVE t _{PHL} t _{PLH} t _r t _f Note 1: A should be Note 2: C specified. positive va Note 3: A	Rise/Fall Time (Note 8) R CHARACTERISTICS Propagation Delay High to Lo Propagation Delay Low to Hig Rise Time Fall Time bbsolute Maximum Ratings are those value operated at these limits. The table of Ele Current into device jins is defined as positi For current, minimum and maximum value alue is designated as maximum. For examult ultypicals are given for: V _{CC} = +5V, V ⁺ =	gh es beyond which the safety ctrical Characteristics specif ve. Current out of the device is are specified as an absolu pple, if –6V is a maximum, t	$R_L = 1.5 k\Omega$, $C_L = 15 pF$ (includes fixture plus probe), (<i>Figures 3, 4</i>) of the device cannot be guaranteed. They a les conditions of device operation. pins is defined as negative. All voltages are te value and the sign is used to indicate dire te value and the sign is used to indicate dire the typical value -6.8V is more negative.	referenced	40 40 70 40 9 nt to imply to ground	100 160 175 50 / that the unless ot	ns ns ns ns devices
tr, tr, RECEIVE tPHL tPLH tpLH tr, tr, Note 1: A should be Note 2: C specified. positive vz positive vz Note 3: A Note 4: C	Rise/Fall Time (Note 8) R CHARACTERISTICS Propagation Delay High to Lo Propagation Delay Low to Hig Rise Time Fall Time bbsolute Maximum Ratings are those value operated at these limits. The table of Ele Current, minimum and maximum value laue is designated as maximum. For examulate is designated as maximum. For examulat typicals are given for: V _{CC} = +5V, V ⁺ = Dnly one driver output shorted at a time.	es beyond which the safety ctrical Characteristics specif ve. Current out of the device is are specified as an absolu- ple, if -6V is a maximum, t +12V, V ⁻ = -12V, T _A = +28	$R_{L} = 1.5 k\Omega, C_{L} = 15 pF$ (includes fixture plus probe), (<i>Figures 3, 4</i>) of the device cannot be guaranteed. They a les conditions of device operation. pins is defined as negative. All voltages are te value and the sign is used to indicate dire te typical value -6.8V is more negative. SrC.	referenced ction. For vo	40 40 70 40 9 nt to imply to ground	100 160 175 50 / that the unless ot	ns ns ns ns devices
tr, tr, RECEIVE tPHL tPLH tr, tr, Note 1: A should be should be Note 2: C specified, positive va Note 3: C Note 3: C Note 5: C	Rise/Fall Time (Note 8) R CHARACTERISTICS Propagation Delay High to Lo Propagation Delay Low to Hig Rise Time Fall Time bsolute Maximum Ratings are those value operated at these limits. The table of Electorent into device pins is defined as positif For current, minimum and maximum value us designated as maximum. For examulat bypicals are given for: V _{CC} = +5V, V ⁺ = Dnly one driver output shorted at a time. Senerator characteristics for driver input: f	by gh es beyond which the safety ctrical Characteristics specific ve. Current out of the device is are specified as an absolu- ple, if -6V is a maximum, t +12V, $V^- = -12V$, $T_A = +22$ = 64 kHz (128 kbps), $t_r = t_r$	$R_L = 1.5 k\Omega$, $C_L = 15 pF$ (includes fixture plus probe), (<i>Figures 3, 4</i>) of the device cannot be guaranteed. They a les conditions of device operation. pins is defined as negative. All voltages are te value and the sign is used to indicate dire te value and the sign is used to indicate dire the typical value -6.8V is more negative.	referenced ction. For vo	40 40 70 40 9 nt to imply to ground	100 160 175 50 / that the unless ot	ns ns ns ns devices

· ·

www.national.com

Pin Descriptions

Pin #	Pin	Description
	Name	
2, 3, 4, 7, 9	D _{IN}	Driver Input Pins
12, 14, 17, 18, 19	D _{OUT}	Driver Output Pins, RS-232 Levels
13, 15, 16	R _{IN}	Receiver Input Pins, RS-232 Levels
5, 6, 8	R _{OUT}	Receiver Output Pins
10	GND	Ground
20	V ⁺	Positive Power Supply Pin (+9.0 \leq V ⁺ \leq +13.2)
11	V-	Negative Power Supply Pin (-9.0 \leq V ⁻ \leq -13.2)
1	V _{cc}	Positive Power Supply Pin (+5V ±5%)

Applications Information

In a typical Data Terminal Equipment (DTE) to Data Circuit-Terminating Equipment (DCE) 9-pin de-facto interface implementation, 2 data lines and 6 control lines are required. The data lines are TXD and RXD. The control lines are RTS, DTR, DSR, DCD, CTS and RI.

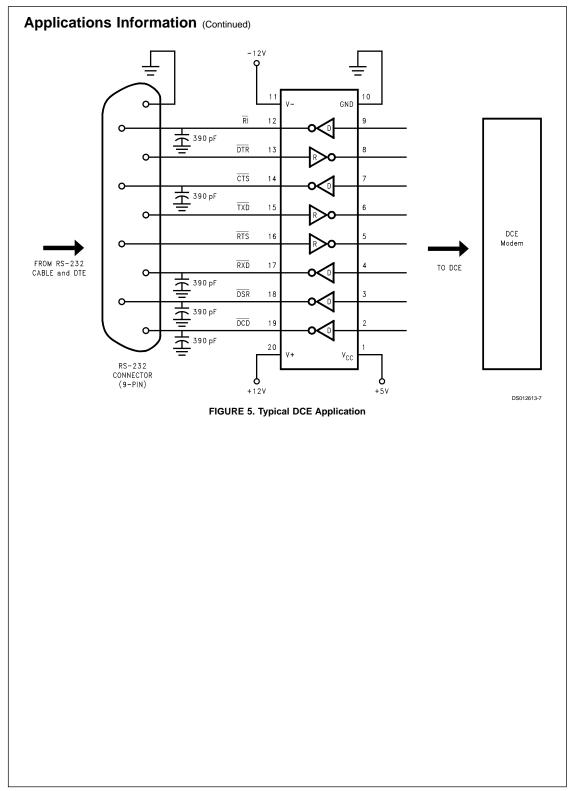
The DS14196 is a 5 x 3 Driver/Receiver and offers a single chip solutuion for this DTE interface. As shown in *Figure 5*, this interface allows for direct flow-thru interconnect. For a more conservative design, the user may wish to insert ground traces between the signal lines to minimize cross talk.

FAILSAFE RECEIVER OUTPUTS

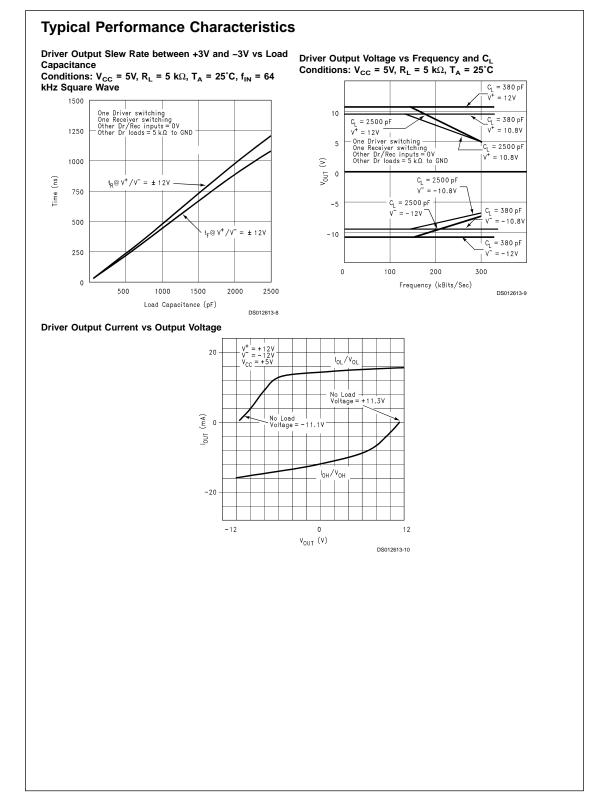
The DS14196 features failsafe receiver outputs. In failsafe mode, if the receiver input becomes zero or an open-circuit, the receiver output is pulled to a high level.

LapLink COMPATIBILITY

The DS14196 can easily provide 128 kbps data rate under maximum driver load conditions of C_L = 2500 pF and R_L = 3 k Ω , while power supplies are:

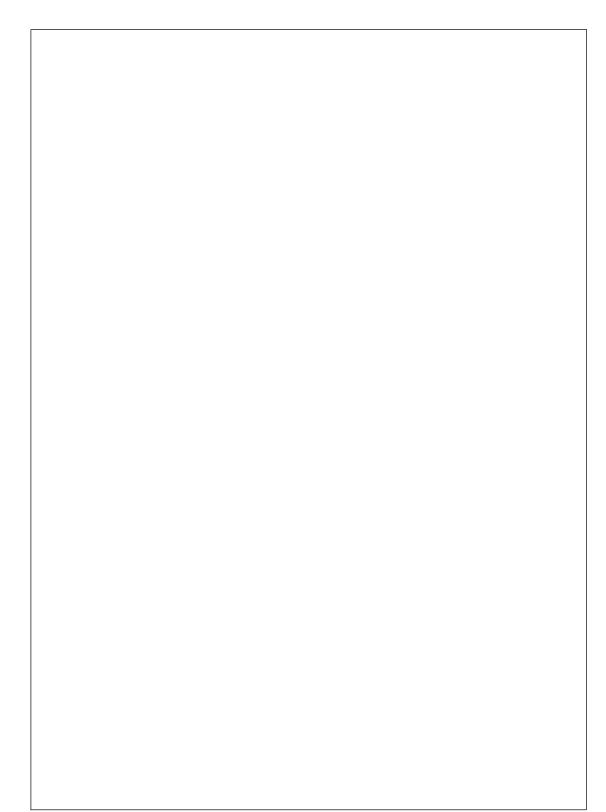

FIGURE 4. Receiver Propagation Delay and Transition Time Waveform

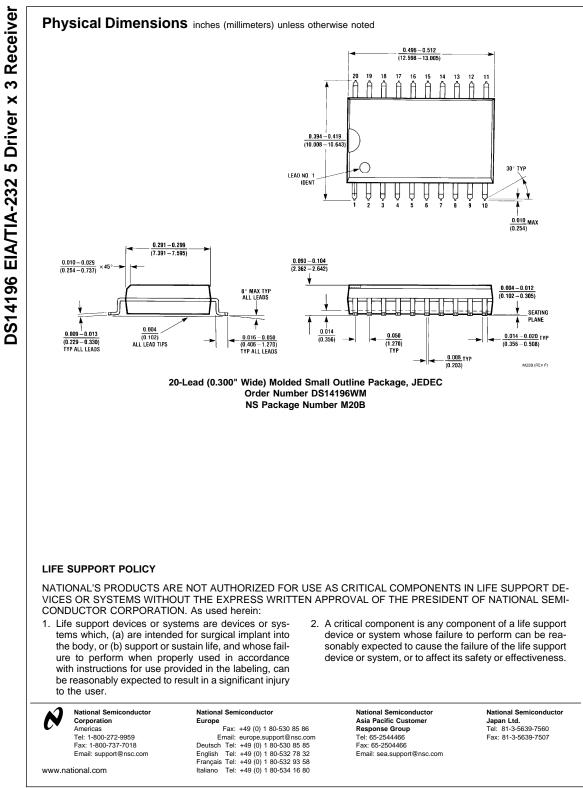
 $V_{\rm CC}$ = +4.75V, V⁺ = 10.8V, V⁻ = -10.8V


MOUSE DRIVING

A typical mouse can be powered from the drivers. Two driver outputs connected in parallel and set to V_{OH} can be used to supply power to the V⁺ pin of the mouse. The third driver output is set to V_{OL} to sink the current from the V⁻terminal. Refer to typical curves of V_{OUT}/I_{OUT} . Typical mouse specifications are:

10 mA at +6V 5 mA at -6V




www.national.com

www.national.com

6

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.