

ADC12L030/ADC12L032/ADC12L034/ADC12L038 3.3V Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold

General Description

The ADC12L030 family is 12-bit plus sign successive approximation A/D converters with serial I/O and configurable input multiplexers. These devices are fully tested with a single 3.3V power supply. The ADC12L032, ADC12L034 and ADC12L038 have 2, 4 and 8 channel multiplexers, respectively. Differential multiplexer outputs and A/D inputs are available on the MUXOUT1, MUXOUT2, A/DIN1 and A/DIN2 pins. The ADC12L030 has a two channel multiplexer with the multiplexer outputs and A/D inputs internally connected. On request, these A/Ds go through a self calibration process that adjusts linearity, zero and full-scale errors to less than $\pm \frac{1}{2}$ LSB each.

The analog inputs can be configured to operate in various combinations of single-ended, differential, or pseudo-differential modes. A fully differential unipolar analog input range (0V to +3.3V) can be accommodated with a single +3.3Vsupply. In the differential modes, valid outputs are obtained even when the negative inputs are greater than the positive because of the 12-bit plus sign two's compliment output data format

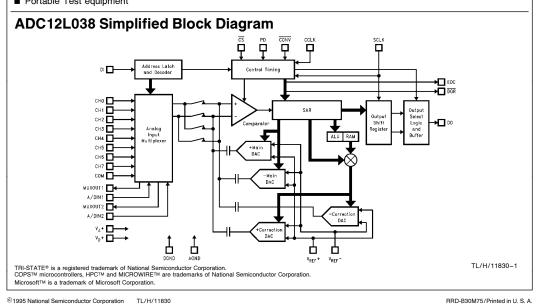
The serial I/O is configured to comply with NSC's MICRO-WIRE™ and Motorola's SPI standards. For complementary voltage references see the LM4040, LM4041 or LM9140 data sheets.

Applications

- Portable Medical instruments
- Portable computing
- Portable Test equipment

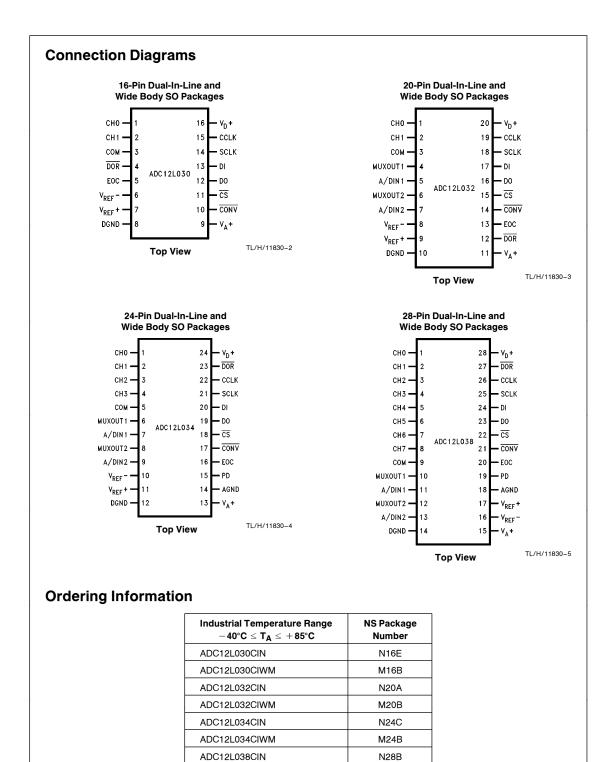
Features

- 0V to 3.3V analog input range with single 3.3V power supply
- Serial I/O (MICROWIRE and SPI Compatible)
- 2, 4, or 8 channel differential or single-ended multiplexer
- Analog input sample/hold function
- Power down mode
- Variable resolution and conversion rate
- Programmable acquisition time
- Variable digital output word length and format
- No zero or full scale adjustment required
- Fully tested and guaranteed with a 2.5V reference
- No Missing Codes over temperature


Key Specifications

- Resolution
- 12-bit plus sign conversion time
- 12-bit plus sign sampling rate
- Integral linearity error Single supply
- Power dissipation
- Power down

8.8 µs (min) 73 kHz (max) ±1 LSB (max) 3.3V ±10% 15 mW (max) 40 µW (typ)


12-bit plus sign

March 1995

RRD-B30M75/Printed in U. S. A.

ADC . 3 4 Self-Calibrating 12-Bit Plus Sign Serial I/O A/D Converters with MUX and Sample/Hold 12L030/ADC12L032/ADC12L034/ADC12L0

2

M28B

ADC12L038CIWM

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales

Defice/Distributors for availability and specifications.

Positive Supply Voltage ($V^+ = V_A^+ = V_D^+$)	6.5V
Voltage at Inputs and Outputs except CH0-CH7 and COM	$-$ 0.3V to V $^+$ +0.3V
Voltage at Analog Inputs CH0-CH7 and COM	GND $-5V$ to V $^+$ $+5V$
$ V_{A}^{+} - V_{D}^{+} $	300 mV
Input Current at Any Pin (Note 3)	\pm 30 mA
Package Input Current (Note 3)	\pm 120 mA
Package Dissipation at $T_A = 25^{\circ}C$ (Note 4)	500 mW
ESD Susceptability (Note 5) Human Body Model	1500V
Soldering Information N Packages (10 seconds)	260°C
SO Package (Note 6): Vapor Phase (60 seconds) Infrared (15 seconds)	215°C 220°C
Storage Temperature	-65° C to $+150^{\circ}$ C

Operating Ratings (Notes Operating Temperature Range ADC12L030CIN, ADC12L030CIWM, ADC12L032CIN, ADC12L032CIWM,	$T_{MIN} \leq T_A \leq T_{MAX}$
ADC12L034CIN, ADC12L034CIWM, ADC12L038CIN,	
	$40^{\circ}C \le T_A \le +85^{\circ}C$
Supply Voltage (V ⁺ = $V_A^+ = V_D^+$)	+3.0V to +5.5V
$ V_{A}^{+} - V_{D}^{+} $	\leq 100 mV
V _{REF} +	0V to V_A^+
V _{REF} ⁻	0V to V_{REF}^+
$V_{REF} (V_{REF}^+ - V_{REF}^-)$	1V to V_A^+
V _{REF} Common Mode Voltage Range	
$\frac{(V_{REF}^+ + V_{REF}^-)}{2}$	0.1 V_{A}^+ to 0.6 V_{A}^+
A/DIN1, A/DIN2, MUXOUT1 and MUXOUT2 Voltage Range	0V to V_A^+
A/D IN Common Mode Voltage Range	e
$\frac{(V_{IN}^+ + V_{IN}^-)}{2}$	0V to $V_{\mbox{\scriptsize A}}{}^+$

Converter Electrical Characteristics

The following specifications apply for V⁺ = V_A⁺ = V_D⁺ = +3.3 V_{DC}, V_{REF}⁺ = +2.500 V_{DC}, V_{REF}⁻ = 0 V_{DC}, 12-bit + sign conversion mode, $f_{CK} = f_{SK} = 5$ MHz, $R_S = 25\Omega$, source impedance for V_{REF}^+ and $V_{REF}^- \le 25\Omega$, fully-differential input with fixed 1.250V common-mode voltage, and 10(t_{CK}) acquisition time unless otherwise specified. **Boldface limits apply for** $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C$. (Notes 7, 8 and 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)
TATIC CON	IVERTER CHARACTERISTICS			•	
	Resolution with No Missing Codes			12 + sign	Bits (min)
+ILE	Positive Integral Linearity Error	After Auto-Cal (Notes 12, 18)	±1/2	± 1	LSB (max)
-ILE	Negative Integral Linearity Error	After Auto-Cal (Notes 12, 18)	±1/2	± 1	LSB (max)
DNL	Differential Non-Linearity	After Auto-Cal		± 1	LSB (max)
	Positive Full-Scale Error	After Auto-Cal (Notes 12, 18)	±1/2	± 2	LSB (max)
	Negative Full-Scale Error	After Auto-Cal (Notes 12, 18)	±1/2	± 2	LSB (max)
	Offset Error	After Auto-Cal (Notes 5, 18) $V_{IN}(+) = V_{IN}(-) = 1.250V$	±1/2	±2	LSB (max)
	DC Common Mode Error	After Auto-Cal (Note 15)	±2	± 3.5	LSB (max)
TUE	Total Unadjusted Error	After Auto-Cal (Notes 12, 13 and 14)	±1		LSB
	Resolution with No Missing Codes	8-bit + sign mode		8 + sign	Bits (min)
+INL	Positive Integral Linearity Error	8-bit + sign mode (Note 12)		± 1/2	LSB (max)
-INL	Negative Integral Linearity Error	8-bit + sign mode (Note 12)		± 1/2	LSB (max)
DNL	Differential Non-Linearity	8-bit + sign mode		±3/4	LSB (max)
	Positive Full-Scale Error	8-bit + sign mode (Note 12)		± 1/2	LSB (max)

 $\begin{array}{l} \textbf{Converter Electrical Characteristics} (\text{Continued}) \\ \text{The following specifications apply for V^+ = V_A^+ = V_D^+ = +3.3 V_{DC}, V_{REF}^+ = +2.500 V_{DC}, V_{REF}^- = 0 V_{DC}, 12\text{-bit } + \text{sign conversion mode, } f_{CK} = f_{SK} = 5 \text{ MHz}, R_S = 25\Omega, \text{ source impedance for } V_{REF}^+ \text{ and } V_{REF}^- \leq 25\Omega, \text{ fully-differential input with fixed } 1.250V \text{ common-mode voltage, and } 10(t_{CK}) \text{ acquisition time unless otherwise specified. Boldface limits apply for } \textbf{T}_A = \textbf{T}_J = \textbf{T}_{MIN} \text{ to } \textbf{T}_{MAX}; \text{ all other limits } T_A = T_J = 25^\circ\text{C}. (Notes 7, 8 \text{ and } 9) \end{array}$

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)
STATIC CO	NVERTER CHARACTERISTICS (Co	ontinued)			
	Negative Full-Scale Error	8-bit + sign mode (Note 12)		± 1/2	LSB (max)
	Offset Error	8-bit + sign mode, after Auto-Zero (Note 13) $V_{IN}(+) = V_{IN}(-) = + 1.250V$		± 1/2	LSB (max)
TUE	Total Unadjusted Error	8-bit + sign mode after Auto-Zero (Notes 12, 13 and 14)		±3/4	LSB (max
	Multiplexer Channel to Channel Matching		±0.05		LSB
	Power Supply Sensitivity Offset Error + Full-Scale Error - Full-Scale Error + Integral Linearity Error - Integral Linearity Error	$V^+ = +3.3V \pm 10\%$	±0.5 ±0.5 ±0.5 ±0.5 ±0.5	± 1 ± 1.5 ± 1.5	LSB (max LSB (max LSB (max LSB LSB LSB
	Output Data from "12-Bit Conversion of Offset" (see Table V)	(Note 20)		+ 10 - 10	LSB (max) LSB (min)
	Output Data from "12-Bit Conversion of Full-Scale" (see Table V)	(Note 20)		4095 4093	LSB (max LSB (min)
UNIPOLAR	DYNAMIC CONVERTER CHARACT	TERISTICS			
S/(N+D)	Signal-to-Noise Plus Distortion Ratio	$ \begin{array}{l} f_{IN} = 1 \; kHz, V_{IN} = 2.5 \; V_{PP} \\ f_{IN} = 20 \; kHz, V_{IN} = 2.5 \; V_{PP} \\ f_{IN} = 40 \; kHz, V_{IN} = 2.5 \; V_{PP} \end{array} $	69.4 68.3 65.7		dB dB dB
	-3 dB Full Power Bandwidth	$V_{IN} = 2.5 V_{PP}$, where S/(N+D) drops 3 dB	31		kHz
DIFFERENT	TIAL DYNAMIC CONVERTER CHAP	RACTERISTICS			
S/(N+D)	Signal-to-Noise Plus Distortion Ratio	$ \begin{array}{l} f_{IN} = 1 \; kHz, V_{IN} = \pm 2.5V \\ f_{IN} = 20 \; kHz, V_{IN} = \pm 2.5V \\ f_{IN} = 40 \; kHz, V_{IN} = \pm 2.5V \end{array} $	77.0 73.9 67.0		dB dB dB
	-3 dB Full Power Bandwidth	$V_{IN} = \pm 2.5V$, where S/(N+D) drops 3 dB	40		kHz

Electrical Characteristics

The following specifications apply for V⁺ = V_A⁺ = V_D⁺ = +3.3 V_{DC}, V_{REF}⁺ = + 2.500 V_{DC}, V_{REF}⁻ = 0 V_{DC}, 12-bit + sign conversion mode, $f_{CK} = f_{SK} = 5$ MHz, $R_S = 25\Omega$, source impedance for V_{REF}^+ and $V_{REF}^- \le 25\Omega$, fully-differential input with fixed 1.250V common-mode voltage, and 10(t_{CK}) acquisition time unless otherwise specified. **Boldface limits apply for** $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C$. (Notes 7, 8 and 9)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)
REFERENCE	INPUT, ANALOG INPUTS AND MULTIPL	EXER CHARACTERISTICS			
C _{REF}	Reference Input Capacitance		85		pF
C _{A/D}	A/DIN1 and A/DIN2 Analog Input Capacitance		75		pF
	A/DIN1 and A/DIN2 Analog Input Leakage Current	$V_{IN} = +3.3V \text{ or}$ $V_{IN} = 0V$	±0.1	± 1.0	μA (max)
	CH0-CH7 and COM Input Voltage			GND - 0.05 V _A + + 0.05	V (min) V (max)
C _{CH}	CH0-CH7 and COM Input Capacitance		10		pF
C _{MUXOUT}	MUX Output Capacitance		20		pF
	Off Channel Leakage (Note 16) CH0-CH7 and COM Pins	On Channel = 3.3V and Off Channel = 0V	-0.01	-0.3	μA (min)
		On Channel = 0V and Off Channel = 3.3V	0.01	0.3	μA (max)
	On Channel Leakage (Note 16) CH0–CH7 and COM Pins	On Channel = $3.3V$ and Off Channel = $0V$	0.01	0.3	μA (max)
		On Channel = $0V$ and Off Channel = $3.3V$	-0.01	-0.3	μA (min)
	MUXOUT1 and MUXOUT2 Leakage Current	$V_{MUXOUT} = 3.3V \text{ or}$ $V_{MUXOUT} = 0V$	0.01	0.3	μA (max)
R _{ON}	MUX On Resistance	$V_{IN} = 1.65V$ and $V_{MUXOUT} = 1.55V$	1300	1900	Ω (max)
	R _{ON} Matching Channel to Channel	$V_{IN} = 1.65V$ and $V_{MUXOUT} = 1.55V$	5		%
	Channel to Channel Crosstalk	$V_{IN} = 3.3 V_{PP}$, f _{IN} = 40 kHz	-72		dB
	MUX Bandwidth		90		kHz

DC and Logic Electrical Characteristics

The following specifications apply for V⁺ = V_A⁺ = V_D⁺ = +3.3 V_{DC}, V_{REF}⁺ = +2.500 V_{DC}, V_{REF}⁻ = 0 V_{DC}, 12-bit + sign conversion mode, $f_{CK} = f_{SK} = 5$ MHz, $R_S = 25\Omega$, source impedance for V_{REF}^+ and $V_{REF}^- \le 25\Omega$, fully-differential input with fixed 1.250V common-mode voltage, and 10(t_{CK}) acquisition time unless otherwise specified. **Boldface limits apply for** $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}C$. (Notes 7, 8 and 9)

VIN(1) Log VIN(0) Log IIN(1) Log IIN(1) Log IIN(1) Log DO, EOC AND E VOUT(1) Log VOUT(1) Log IOUT TR + ISC Ou POWER SUPPL Dig ID+ Dig	W, DI, PD AND SCLK INPUT CHAR gical "1" Input Voltage gical "0" Input Voltage gical "0" Input Current gical "0" Input Current DOR DIGITAL OUTPUT CHARACT gical "1" Output Voltage gical "0" Output Source Current thput Short Circuit Source Current ttput Short Circuit Sink Current Y CHARACTERISTICS gital Supply Current	$V^{+} = 3.6V$ $V^{+} = 3.0V$ $V_{IN} = 3.3V$ $V_{IN} = 0V$ TERISTICS $V^{+} = 3.0V, I_{OUT} = -360 \ \mu\text{A}$ $V^{+} = 3.0V, I_{OUT} = -10 \ \mu\text{A}$ $V^{+} = 3.0V, I_{OUT} = 1.6 \ \text{mA}$ $V_{OUT} = 0V$ $V_{OUT} = 0V$ $V_{OUT} = 3.3V$ $V_{OUT} = 0V$ $V_{OUT} = V_{D}^{+}$ Awake	0.005 -0.005 -0.1 0.1 14 16	2.0 0.8 1.0 - 1.0 2.4 2.9 0.4 - 3.0 3.0 6.5 8.0	V (min) V (max) μA (max μA (min) V (min) V (min) V (max) μA (max μA (max mA (min) mA (min)
VIN(0) Log IN(1) Log IN(1) Log DO, EOC AND E VOUT(1) Log POUT TR + ISC Ou POWER SUPPL Dig ID+ Dig	gical "0" Input Voltage gical "1" Input Current gical "0" Input Current DOR DIGITAL OUTPUT CHARACT gical "1" Output Voltage gical "0" Output Voltage II-STATE Output Current ttput Short Circuit Source Current ttput Short Circuit Sink Current Y CHARACTERISTICS	$V^{+} = 3.0V$ $V_{IN} = 3.3V$ $V_{IN} = 0V$ TERISTICS $V^{+} = 3.0V, I_{OUT} = -360 \ \mu\text{A}$ $V^{+} = 3.0V, I_{OUT} = -10 \ \mu\text{A}$ $V^{+} = 3.0V, I_{OUT} = 1.6 \ \text{mA}$ $V_{OUT} = 0V$ $V_{OUT} = 0V$ $V_{OUT} = 3.3V$ $V_{OUT} = 0V$ $V_{OUT} = V_{D}^{+}$ Awake	-0.005 -0.1 0.1 14	0.8 1.0 - 1.0 2.4 2.9 0.4 - 3.0 3.0 6.5	V (max) μA (max μA (min) V (min) V (min) V (max) μA (max μA (max mA (min
IIN(1) Log IIN(0) Log DO, EOC AND E VOUT(1) Log VOUT(1) Log IOUT TR + ISC Ou - ISC Ou ID+ Dig	gical "1" Input Current gical "0" Input Current DOR DIGITAL OUTPUT CHARACT gical "1" Output Voltage gical "0" Output Voltage II-STATE Output Current Itput Short Circuit Source Current Itput Short Circuit Sink Current Y CHARACTERISTICS	$V_{IN} = 3.3V$ $V_{IN} = 0V$ TERISTICS $V^{+} = 3.0V, I_{OUT} = -360 \mu A$ $V^{+} = 3.0V, I_{OUT} = -10 \mu A$ $V^{+} = 3.0V, I_{OUT} = 1.6 mA$ $V_{OUT} = 0V$ $V_{OUT} = 0V$ $V_{OUT} = 3.3V$ $V_{OUT} = 0V$ $V_{OUT} = V_{D} +$ Awake	-0.005 -0.1 0.1 14	1.0 - 1.0 2.4 2.9 0.4 - 3.0 3.0 6.5	μA (max μA (min) V (min) V (min) V (max) μA (max μA (max mA (min
IIN(1) Log IIN(0) Log DO, EOC AND E VOUT(1) Log VOUT(1) Log IOUT TR + ISC Ou - ISC Ou ID+ Dig	gical "0" Input Current DOR DIGITAL OUTPUT CHARACT gical "1" Output Voltage gical "0" Output Voltage II-STATE Output Current ttput Short Circuit Source Current ttput Short Circuit Sink Current Y CHARACTERISTICS	$V_{IN} = 0V$ TERISTICS $V^{+} = 3.0V, I_{OUT} = -360 \ \mu A$ $V^{+} = 3.0V, I_{OUT} = -10 \ \mu A$ $V^{+} = 3.0V, I_{OUT} = 1.6 \ m A$ $V_{OUT} = 0V$ $V_{OUT} = 3.3V$ $V_{OUT} = 0V$ $V_{OUT} = V_{D} +$ Awake	-0.005 -0.1 0.1 14	- 1.0 2.4 2.9 0.4 - 3.0 3.0 6.5	μA (min) V (min) V (min) V (max) μA (max mA (max
VOUT(1) Log VOUT(1) Log VOUT(0) Log IOUT TR + ISC Ou - ISC Ou POWER SUPPL Dig	DOR DIGITAL OUTPUT CHARACT gical "1" Output Voltage gical "0" Output Voltage iI-STATE Output Current itput Short Circuit Source Current itput Short Circuit Sink Current Y CHARACTERISTICS	V + = 3.0V, $I_{OUT} = -360 \ \mu A$ V+ = 3.0V, $I_{OUT} = -10 \ \mu A$ V+ = 3.0V, $I_{OUT} = 1.6 \ m A$ V_{OUT} = 0V V_{OUT} = 0V V_{OUT} = 0V V_{OUT} = 0V V_{OUT} = V_D^+	-0.1 0.1 14	2.4 2.9 0.4 -3.0 3.0 6.5	V (min) V (min) V (max) μA (max μA (max mA (min
VOUT(1) Log VOUT(0) Log IOUT TR + ISC Ou - ISC Ou POWER SUPPL Dig	gical "1" Output Voltage gical "0" Output Voltage II-STATE Output Current Itput Short Circuit Source Current Itput Short Circuit Sink Current Y CHARACTERISTICS	$V^{+} = 3.0V, I_{OUT} = -360 \ \mu A$ $V^{+} = 3.0V, I_{OUT} = -10 \ \mu A$ $V^{+} = 3.0V, I_{OUT} = 1.6 \ m A$ $V_{OUT} = 0V$ $V_{OUT} = 3.3V$ $V_{OUT} = 0V$ $V_{OUT} = V_{D}^{+}$ Awake	0.1	2.9 0.4 - 3.0 3.0 6.5	V (min) V (max) μA (max μA (max mA (min
VOUT(0) Log IOUT TR + ISC Ou - ISC Ou POWER SUPPL ID+	gical "0" Output Voltage II-STATE Output Current Itput Short Circuit Source Current Itput Short Circuit Sink Current Y CHARACTERISTICS	$V^{+} = 3.0V, I_{OUT} = -10 \ \mu A$ $V^{+} = 3.0V, I_{OUT} = 1.6 \ m A$ $V_{OUT} = 0V$ $V_{OUT} = 3.3V$ $V_{OUT} = 0V$ $V_{OUT} = V_{D} +$ Awake	0.1	2.9 0.4 - 3.0 3.0 6.5	V (min) V (max) μA (max μA (max mA (min
IOUT TR + ISC Ou - ISC Ou POWER SUPPL ID+	II-STATE Output Current Itput Short Circuit Source Current Itput Short Circuit Sink Current Y CHARACTERISTICS	$V_{OUT} = 0V$ $V_{OUT} = 3.3V$ $V_{OUT} = 0V$ $V_{OUT} = V_D^+$ Awake	0.1	- 3.0 3.0 6.5	μΑ (max μΑ (max mA (min
+ I _{SC} Ou - I _{SC} Ou POWER SUPPL I _D + Dig	tput Short Circuit Source Current tput Short Circuit Sink Current Y CHARACTERISTICS	$V_{OUT} = 3.3V$ $V_{OUT} = 0V$ $V_{OUT} = V_D^+$ Awake	0.1	3.0 6.5	μΑ (max mA (min
-I _{SC} Ou POWER SUPPL I _D +	tput Short Circuit Sink Current Y CHARACTERISTICS	V _{OUT} = V _D + Awake			
POWER SUPPL	Y CHARACTERISTICS	Awake	16	8.0	mA (min
I _D + Dig					
	jital Supply Current				
I _A + Po		\overline{CS} = HIGH, Powered Down, CCLK on \overline{CS} = HIGH, Powered Down, CCLK off	1.1 600 12	1.5	mA (max μA μA
	sitive Analog Supply Current	Awake $\overline{CS} = HIGH$, Powered Down, CCLK on $\overline{CS} = HIGH$, Powered Down, CCLK off	2.2 10 0.1	3.0	mA (max μA μA
I _{REF} Re	ference Input Current	Awake $\overline{CS} = HIGH$, Powered Down	70 0.1		μA μA

AC Electrical Characteristics

The following specifications apply for V⁺ = V_A⁺ = V_D⁺ = +3.3 V_{DC}, V_{REF}⁺ = +2.500 V_{DC}, V_{REF}⁻ = 0 V_{DC}, 12-bit + sign conversion mode, t_r = t_f = 3 ns, t_{CK} = t_{SK} = 5 MHz, R_S = 25 Ω , source impedance for V_{REF}⁺ and V_{REF}⁻ ≤ 25 Ω , fully-differential input with fixed 1.250V common-mode voltage, and 10(t_{CK}) acquisition time unless otherwise specified. **Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C. (Note 17)**

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)
fск	Conversion Clock (CCLK) Frequency		10 1	5	MHz (max MHz (min
f _{SK}	Serial Data Clock SCLK Frequency		10 0	5	MHz (max Hz (min)
	Conversion Clock Duty Cycle			40 60	% (min) % (max)
	Serial Data Clock Duty Cycle			40 60	% (min) % (max)
tc	Conversion Time	12-Bit + Sign or 12-Bit	44(t _{CK})	44(t _{CK})	(max)
				8.8	μs (max)
		8-Bit + Sign or 8-Bit	21(t _{CK})	21(t _{CK})	(max)
				4.2	μs (max)
t _A	Acquisition Time (Note 19)	6 Cycles Programmed	6(t _{CK})	6(t _{СК}) 7(t _{СК})	(min) (max)
				1.2 1.4	μs (min) μs (max)
		10 Cycles Programmed	10(t _{CK})	10(t _{СК}) 11(t _{СК})	(min) (max)
				2.0 2.2	μs (min) μs (max
		18 Cycles Programmed	18(t _{CK})	18(t _{СК}) 19(t _{СК})	(min) (max)
				3.6 3.8	μs (min) μs (max
		34 Cycles Programmed	34(t _{CK})	34(t _{CK}) 35(t _{CK})	(min) (max)
				6.8 7.0	μs (min) μs (max
CAL	Self-Calibration Time		4944(t _{CK})	4944(t _{CK})	(max)
				988.8	μ s (max)
AZ	Auto-Zero Time		76(t _{CK})	76(t _{CK})	(max)
				15.2	μs (max)
SYNC	Self-Calibration or Auto-Zero Synchronization Time from DOR		2(t _{CK})	2(t _{CK}) 3(t _{CK})	(min) (max)
				0.40 0.60	μs (min) μs (max
DOR	DOR High Time when \overline{CS} is Low		9(t _{SK})	9(t _{SK})	(max)
	Continuously for Read Data and Software Power Up/Down			1.8	μs (max
CONV	CONV Valid Data Time		8(t _{SK})	8(t _{SK})	(max)
				1.6	μs (max)

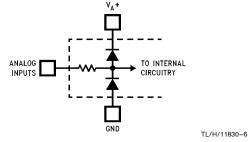
AC Electrical Characteristics (Continued) The following specifications apply for V⁺ = V_A⁺ = V_D⁺ = +3.3 V_{DC}, V_{REF}⁺ = +2.500 V_{DC}, V_{REF}⁻ = 0 V_{DC}, 12-bit + sign conversion mode, t_r = t_f = 3 ns, f_{CK} = f_{SK} = 5 MHz, R_S = 25 Ω , source impedance for V_{REF}⁺ and V_{REF}⁻ ≤ 25 Ω , fully-differential input with fixed 1.250V common-mode voltage, and 10(t_{CK}) acquisition time unless otherwise specified. Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C. (Note 17)

Symbol	Parameter	Conditions	Typical (Note 10)	Limits (Note 11)	Units (Limits)
t _{HPU}	Hardware Power-Up Time, Time from PD Falling Edge to EOC Rising Edge		250	700	μs (max
t _{SPU}	Software Power-Up Time, Time from Serial Data Clock Falling Edge to EOC Rising Edge		500	700	μs (max
t _{ACC}	Access Time Delay from CS Falling Edge to DO Data Valid		25	60	ns (max)
tSET-UP	Set-Up Time of $\overline{\text{CS}}$ Falling Edge to Serial Data Clock Rising Edge			50	ns (min)
^t DELAY	Delay from SCLK Falling Edge to CS Falling Edge		0	5	ns (min)
t _{1H} , t _{0H}	Delay from CS Rising Edge to DO TRI-STATE®	$R_{L} = 3k, C_{L} = 100 \text{ pF}$	70	100	ns (max
t _{HDI}	DI Hold Time from Serial Data Clock Rising Edge		5	15	ns (min
t _{SDI}	DI Set-Up Time from Serial Data Clock Rising Edge		5	10	ns (min
^t hdo	DO Hold Time from Serial Data Clock Falling Edge	$R_L = 3k, C_L = 100 \text{ pF}$	35	65 5	ns (max ns (min
t _{DDO}	Delay from Serial Data Clock Falling Edge to DO Data Valid		50	90	ns (max
t _{RDO}	DO Rise Time, TRI-STATE to High DO Rise Time, Low to High	$R_L=3k, C_L=100pF$	10 10	40 40	ns (max ns (max
t _{FDO}	DO Fall Time, TRI-STATE to Low DO Fall Time, High to Low	$R_{L} = 3k, C_{L} = 100 pF$	15 15	40 40	ns (max ns (max
t _{CD}	Delay from CS Falling Edge to DOR Falling Edge		50	80	ns (max
t _{SD}	Delay from Serial Data Clock Falling Edge to DOR Rising Edge		45	80	ns (max
C _{IN}	Capacitance of Logic Inputs		10		pF
COUT	Capacitance of Logic Outputs		20		pF

Electrical Characteristics (Continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: All voltages are measured with respect to GND, unless otherwise specified.


Note 3: When the input voltage (V_{IN}) at any pin exceeds the power supplies $(V_{IN} < GND \text{ or } V_{IN} > V_A^+ \text{ or } V_D^+)$, the current at that pin should be limited to 20 mA. The 120 mA maximum package input current rating limits the number of pins that can safely exceed the power supplies with an input current of 20 mA to four. Note 4: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_Jmax, θ_{JA} and the ambient temperature, T_A. The maximum allowable power dissipation at any temperature is $P_D = (T_Jmax - T_A)/\theta_A$ or the number given in the Absolute Maximum Ratings, whichever is lower. For this device, $T_Jmax = 150^{\circ}C$. The typical thermal resistance (Θ_{JA}) of these parts when board mounted follow:

(0/0	
Part Number	Thermal Resistance $ heta_{JA}$
ADC12L030CIN	53°C/W
ADC12L030CIWM	70°C/W
ADC12L032CIN	46°C/W
ADC12L032CIWM	64°C/W
ADC12L034CIN	42°C/W
ADC12L034CIWM	57°C/W
ADC12L038CIN	40°C/W
ADC12L038CIWM	50°C/W

Note 5: The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin.

Note 6: See AN450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in any post 1986 National Semiconductor Linear Data Book for other methods of soldering surface mount devices.

Note 7: Two on-chip diodes are tied to each analog input through a series resistor as shown below. Input voltage magnitude up to 5V above V_A^+ or 5V below GND will not damage this device. However, errors in the A/D conversion can occur (if these diodes are forward biased by more than 50 mV) if the input voltage magnitude of selected or unselected analog input go above V_A^+ or below GND by more than 50 mV. As an example, if V_A^+ is 3.0 V_{DC} , full-scale input voltage must be <3.05 V_{DC} to ensure accurate conversions.

Note 8: To guarantee accuracy, it is required that the V_A⁺ and V_D⁺ be connected together to the same power supply with separate bypass capacitors at each V⁺ pin.

Note 9: With the test condition for V_{REF} ($V_{REF}^+ - V_{REF}^-$) given as +2.500V the 12-bit LSB is 610 μ V and the 8-bit LSB is 9.8 mV.

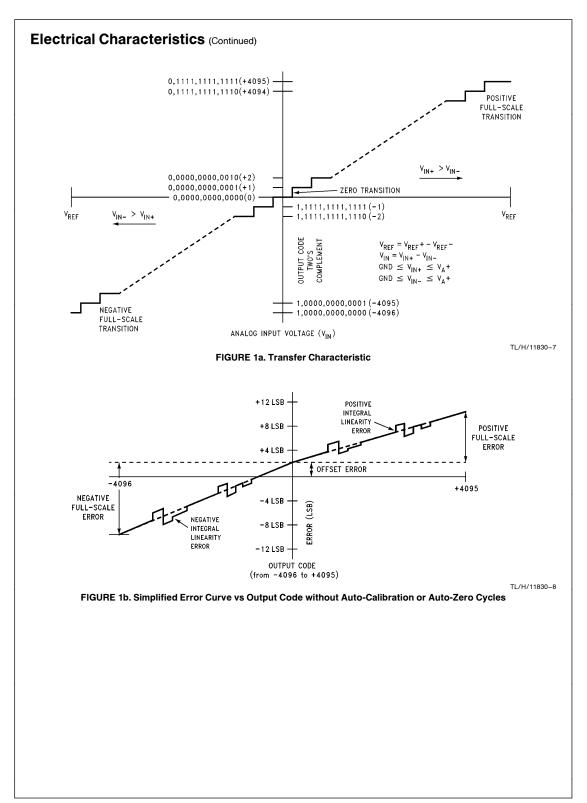
Note 10: Typicals are at T_J = T_A = 25°C and represent most likely parametric norm.

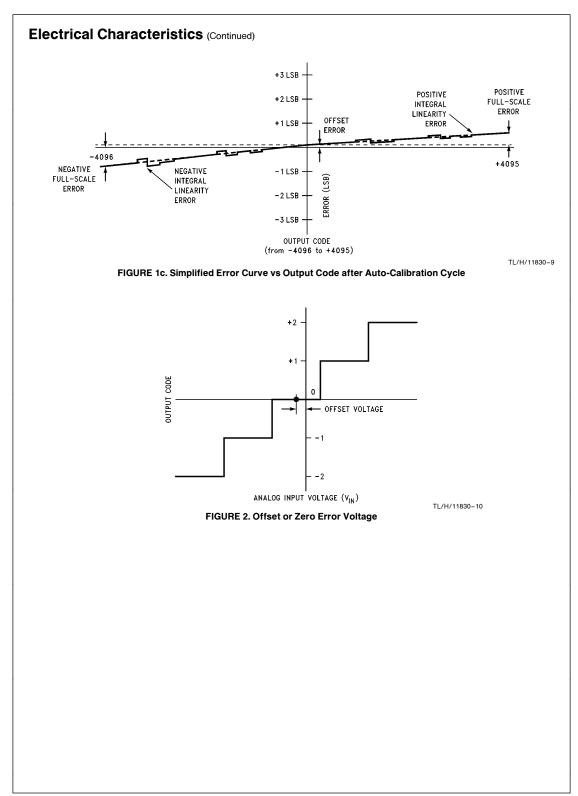
Note 11: Tested limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

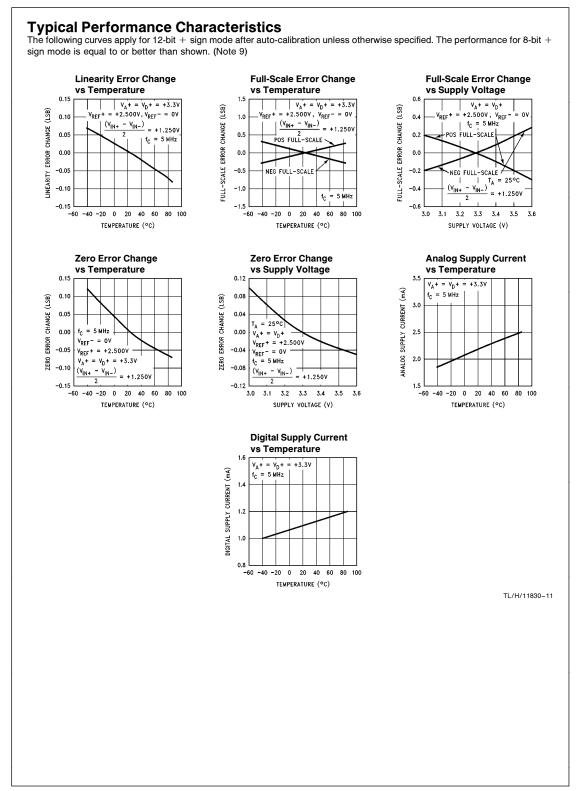
Note 12: Positive integral linearity error is defined as the deviation of the analog value, expressed in LSBs, from the straight line that passes through positive fullscale and zero. For negative integral linearity error, the straight line passes through negative full-scale and zero (see Figures 1b and 1c).

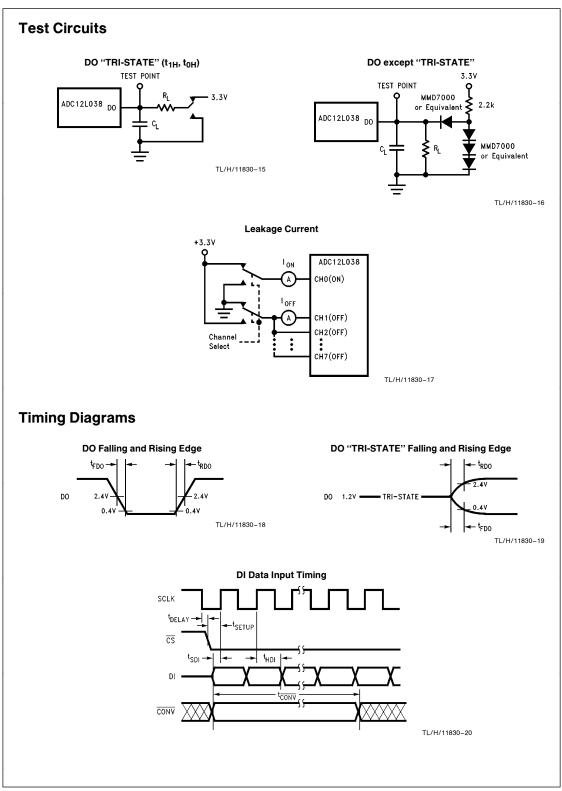
Note 13: Zero error is a measure of the deviation from the mid-scale voltage (a code of zero), expressed in LSB. It is the worst-case value of the code transitions between 1 to 0 and 0 to +1 (see Figure 2).

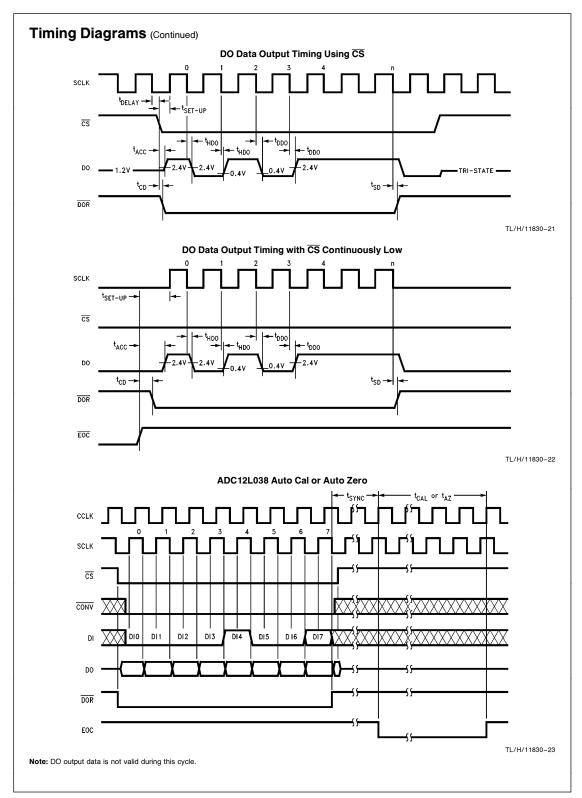
Note 14: Total unadjusted error includes offset, full-scale, linearity and multiplexer errors.

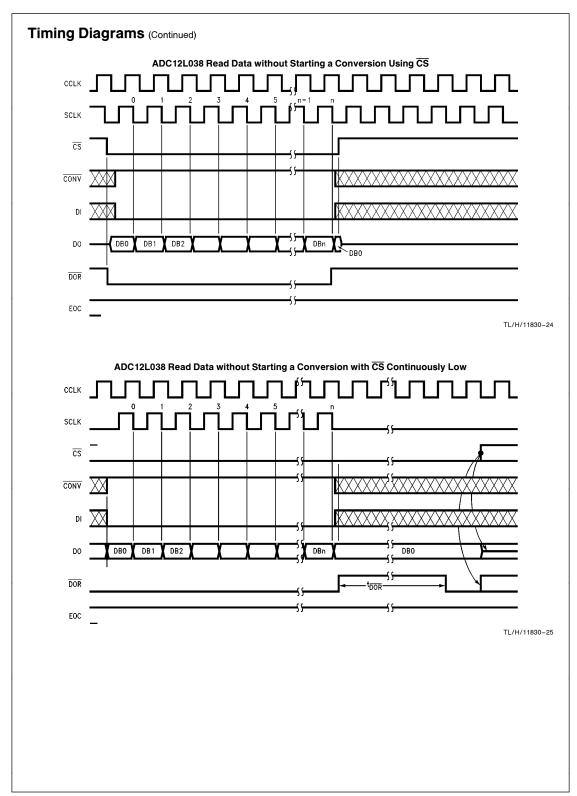

Note 15: The DC common-mode error is measured in the differential multiplexer mode with the assigned positive and negative input channels shorted together. Note 16: Channel leakage current is measured after the channel selection.

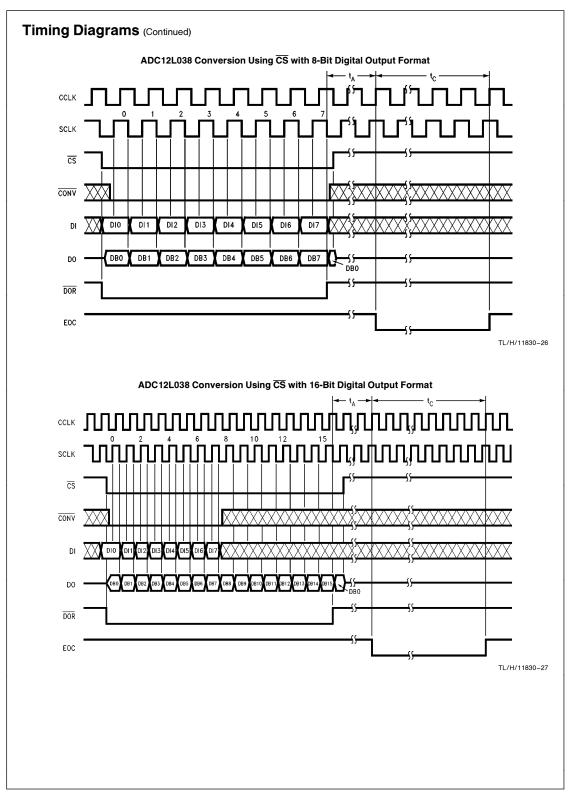

Note 17: Timing specifications are tested at the TTL logic levels, $V_{IL} = 0.4V$ for a falling edge and $V_{IH} = 2.4V$ for a rising edge. TRI-STATE output voltage is forced to 1.4V.

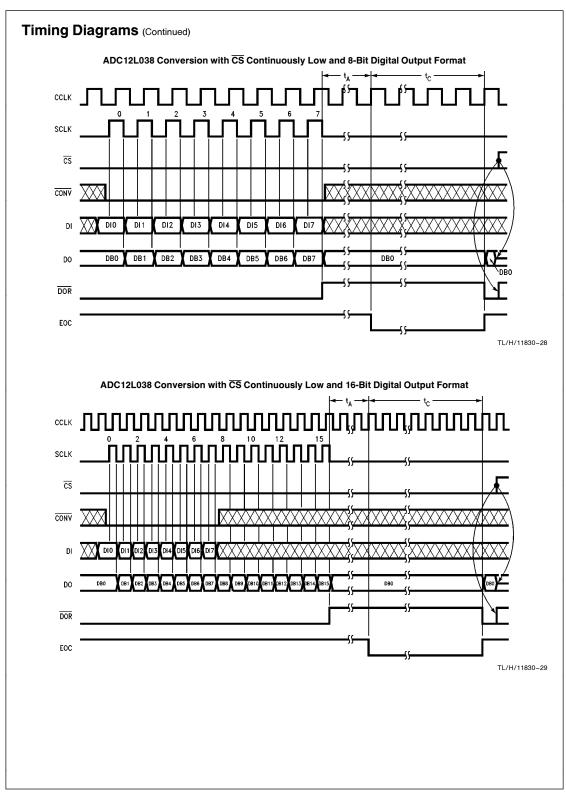

Note 18: The ADC12L030 family's self-calibration technique ensures linearity and offset errors as specified, but noise inherent in the self-calibration process will result in a maximum repeatability uncertainty of 0.2 LSB.

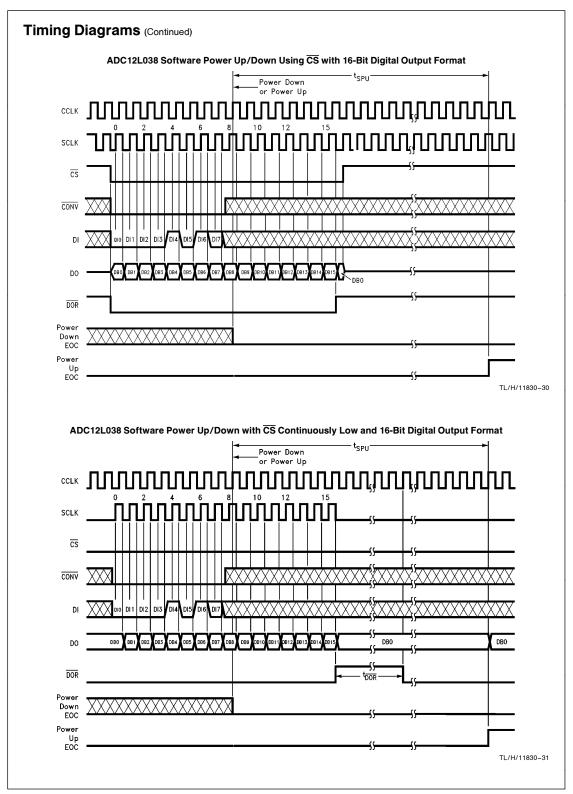

Note 19: If SCLK and CCLK are driven from the same clock source, then t_A is 6, 10, 18 or 34 clock periods minimum and maximum.

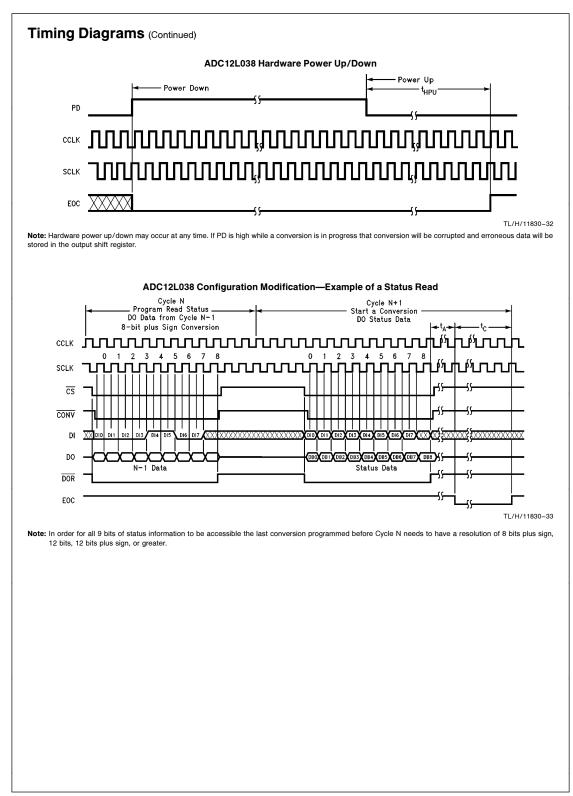

Note 20: The "12-Bit Conversion of Offset" and "12-Bit Conversion of Full-Scale" modes are intended to test the functionality of the device. Therefore, the output data from these modes are not an indication of the accuracy of a conversion result.

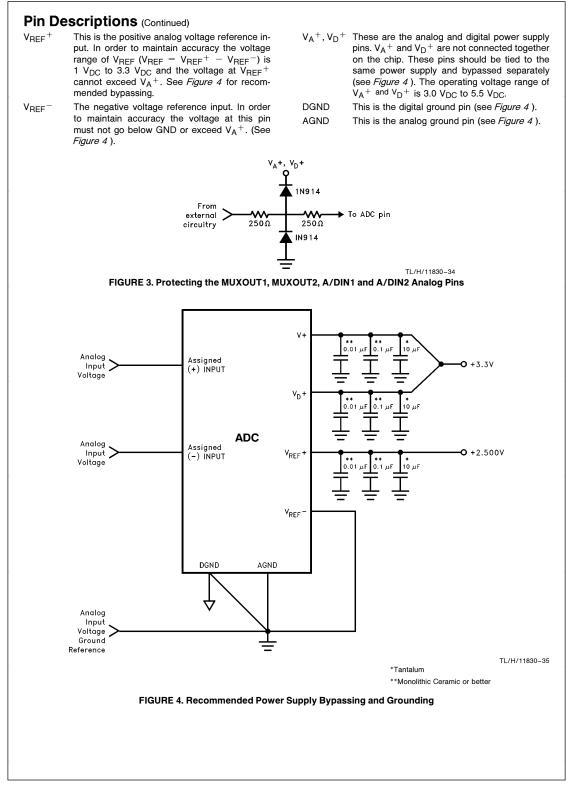












CCLK	The clock applied to this input controls the su-		maturely ended. The data in the output latches
	cessive approximation conversion time interval and the acquisition time. The rise and fall times of the clock edges should not exceed 1 µs.		may be corrupted. Therefore, when \overline{CS} is brought back low during a conversion in prog ress the data output at that time should be ig
SCLK	This is the serial data clock input. The clock applied to this input controls the rate at which the serial data exchange occurs. The rising edge loads the information on the DI pin into the multiplexer address and mode select shift register. This address controls which channel of the analog input multiplexer (MUX) is selected and the mode of operation for the A/D. With CS low the falling edge of SCLK shifts the data re-		nored. CS may also be left continuously low. If this case it is imperative that the correct number of SCLK pulses be applied to the ADC in order to remain synchronous. After the ADC suppl power is applied, it expects to see 13 cloc pulses for each I/O sequence. The number of clock pulses the ADC expects is the same a the digital output word length. This word length can be modified by the data shifted in on the DO pin. Table V details the data required.
	sulting from the previous ADC conversion out on DO, with the exception of the first bit of data. When \overline{CS} is low continuously, the first bit of the data is clocked out on the rising edge of EOC (and ef conversion). When \overline{CS} is togeted the	DOR	This is the data output ready pin. This pin is a active push/pull output. It is low when the corversion result is being shifted out and goes hig
	(end of conversion). When CS is toggled the falling edge of \overline{CS} always clocks out the first bit of data. \overline{CS} should be brought low when SCLK is low. The rise and fall times of the clock edges should not exceed 1 μ s.	CONV	to signal that all the data has been shifted out A logic low is required on this pin to prograr any mode or change the ADC's configuration a listed in the Mode Programming Table (Table V such as 12-bit conversion, 8-bit conversior
DI	This is the serial data input pin. The data ap- plied to this pin is shifted by the rising edge of SCLK into the multiplexer address and mode select register. Tables II through V show the as- signment of the multiplexer address and the mode select data.		Auto Cal, Auto Zero etc. When this pin is hig the ADC is placed in the read data only mode While in the read data only mode, bringing C low and pulsing SCLK will only clock out on D any data stored in the ADCs output shift regis ter. The data on DI will be neglected. A new
DO	The data output pin. This pin is an active push/ pull output when \overline{CS} is Low. When \overline{CS} is High this output is in TRI-STATE. The A/D conver- sion result (D0–D12) and converter status data are clocked out by the falling edge of SCLK on this circ. The word learth and format of this re-		conversion will not be started and the ADC w remain in the mode and/or configuration prev ously programmed. Read data only cannot b performed while a conversion, Auto-Cal of Auto-Zero are in progress.
	this pin. The word length and format of this re- sult can vary (see Table I). The word length and format are controlled by the data shifted into the multiplexer address and mode select regis- ter (see Table V).	PD	This is the power down pin. When PD is hig the A/D is powered down; when PD is low th A/D is powered up. The A/D takes a maximum of 700 μ s to power up after the command given.
EOC	This pin is an active push/pull output and indi- cates the status of the ADC12L030/2/4/8. When low, it signals that the A/D is busy with a conversion, auto-calibration, auto-zero or power down cycle. The rising edge of EOC signals the	CH0-CH7	These are the analog inputs of the MUX. channel input is selected by the address info mation at the DI pin, which is loaded on the rising edge of SCLK into the address register (see Tables II through IV).
CS	end of one of these cycles. This is the chip select pin. When a logic low is applied to this pin, the rising edge of SCLK shifts the data on DL into the address register.		The voltage applied to these inputs should no exceed V_A^+ or go below GND. Exceeding this range on an unselected channel will corrupt the reading of a selected channel.
	This low also brings DO out of TRI-STATE. With \overline{CS} low the falling edge of SCLK shifts the data resulting from the previous ADC conversion out	СОМ	This pin is another analog input pin. It is used a a pseudo ground when the analog multiplexer i single-ended.
	on DO, with the exception of the first bit of data. When \overline{CS} is low continuously, the first bit of the data is clocked out on the rising edge of EOC	MUXOUT1, MUXOUT2	These are the multiplexer output pins.
	(end of conversion). When \overline{CS} is toggled the falling edge of \overline{CS} always clocks out the first bit of data. \overline{CS} should be brought low when SCLK is low. The falling edge of \overline{CS} resets a conversion in progress and starts the sequence for a new conversion. When \overline{CS} is brought back low during a conversion, that conversion is pre-	A/DIN1, A/DIN2	These are the converter input pins. MUXOUT is usually tied to A/DIN1. MUXOUT2 is usuall tied to A/DIN2. If external circuitry is placed be tween MUXOUT1 and A/DIN1, or MUXOUT and A/DIN2 it may be necessary to protect these pins. The voltage at these pins should necessary V_A^+ or go below AGND (see Figure 3)

Г

	able	es							TABL	E I. D	ata Ou	ıt For	mats							
D	O Fori	mate		DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8		DB10	DB11	DB12	DB13	DB14	DB15	DB16
			3 17																	
	M	H	Bits 13	X	X	X	X	Sign	MSB	10	9	8	7	6	5	4	3	2	1	LSB
			Bits 9	Sign		10	9	8	7	6	5	4	3	2	1	LSB				
with Sigr		_	Bits	Sign	MSB	6	5	4	3	2	1	LSB								
			Bits	LSB	1	2	3	4	5	6	7	8	9	10	MSB	Sign	х	Х	X	Х
			13 Bits	LSB	1	2	3	4	5	6	7	8	9	10	MSB	Sign				
			9 Bits	LSB	1	2	3	4	5	6	MSB	Sign								
			16 Bits	0	0	0	0	MSB	10	9	8	7	6	5	4	3	2	1	LSB	
		SB rst	12 Bits	MSB	10	9	8	7	6	5	4	3	2	1	LSB					
withc	out		8 Bits	MSB	6	5	4	3	2	1	LSB									
Sigr	n		16 Bits	LSB	1	2	3	4	5	6	7	8	9	10	MSB	0	0	0	0	
		SB irst	12 Bits	LSB	1	2	3	4	5	6	7	8	9	10	MSB					
			8 Bits	LSB	1	2	3	4	5	6	MSB									
X =	= High d	or Lov	w stat	е.																
							IA	BLE I	I. ADC	12L03	88 Muli	tiplex	er Add	ressing	9					
						Analo			ddres		88 Muli	tiplex			9	Mult	iplexer	r		
	MUX					;	g Cha and A	nnel A ssignr	ddres nent	sed	88 Muli	tiplex	A/C) Input	9	0	utput	r		
	MU) Addre				v	vith A/	g Cha and A 'DIN1	nnel A ssignr tied to	ddres nent MUXC	sed	38 Muli	tiplex	A/C Po			Oı Ch	utput annel		Мо	de
	Addre	ess	DI3	СН0	v a	with A/ and A/	g Cha and A DIN1	nnel A ssignr tied to tied to	ddres nent MUXC MUXC	Sed OUT1 OUT2			A/C Po) Input larity gnmen	t	Ou Ch Assig	utput annel gnmen		Мо	de
DIO L	Addre DI1 [ess DI2 L	L	CH0 +	v a	with A/ and A/ CH2	g Cha and A DIN1 DIN2 CH3	nnel A ssignr tied to tied to	ddres nent MUXC MUXC	sed			A/D Po Assig A/DIN) Input larity gnmen	t	Or Ch Assig JXOUT	utput annel gnmen 1 MUX	t 2 OUT2 1H1	Мо	de
010	Addre	ess DI2			CH1	with A/ and A/	g Cha and A DIN1	nnel A ssignr tied to tied to CH4 (ddres nent MUXC MUXC	Sed OUT1 OUT2			A/D Po Assi A/DIN) Input larity gnment I A/DI	t	Ou Ch Assig JXOUT CH0 CH2	annel gnmen 1 MUX	t COUT2 H1 H3	Мо	de
DIO L L	Addre	DI2	L H		CH1 -	with A/ and A/ CH2	g Cha and A DIN1 DIN2 CH3	nnel A ssignr tied to tied to CH4	Addres nent MUXC MUXC CH5 C	Sed OUT1 OUT2			A/D Po Assig A/DIN + +) Input larity gnment I A/DI	t	Ou Ch Assig JXOUT CH0 CH2 CH2 CH4 CH6	annel gnmen 1 MUX C C C C	t COUT2 H1 H3 H5 H7		
DIO L L L L L	Addre	DI2 L L H H L	L H L H L		CH1	with A/ and A/ CH2 +	g Cha and A (DIN1 (DIN2) CH3	nnel A ssignr tied to tied to CH4	Addres nent MUXC MUXC CH5 C	DUT1 DUT2 CH6 C			A/C Po Assig A/DIN ⁻ + + +) Input larity gnmen 1 A/DI - - - - +	t	Or Ch Assig JXOUT CH0 CH2 CH4 CH6 CH0	utput annel gnmen 1 MUX C C C C C C	t :OUT2 :H1 :H3 :H5 :H7 :H1	Mo	
DIO L L L L L L	Addre	DI2 L L H H L L	L H H L H		CH1 -	with A/ and A/ CH2	g Cha and A DIN1 DIN2 CH3	nnel A ssignr tied to tied to CH4	Addres nent MUXC MUXC CH5 C	DUT1 DUT2 CH6 C			A/E Po Assig A/DIN ⁻ + + + + - - -) Input larity gnment 1 A/DI + + +	t	Or Ch Assig JXOUT CH0 CH2 CH4 CH6 CH0 CH2	utput annel gnmen 1 MUX C C C C C C C	t OUT2 H1 H3 H5 H7 H1 H3		
DIO L L L L L	Addre	DI2 L L H H L	L H L H L		CH1 -	with A/ and A/ CH2 +	g Cha and A (DIN1 (DIN2) CH3	nnel A ssignr tied to tied to CH4	Addres nent MUXC MUXC CH5 C	sed 0UT1 0UT2 :H6 C +			A/E Po Assig A/DIN ⁻ + + + + -) Input larity gnmen 1 A/DI - - - - +	t	Or Ch Assig JXOUT CH0 CH2 CH4 CH6 CH0 CH2 CH2 CH4	utput annel gnmen 1 MUX C C C C C C C C C C C C C	t COUT2 H1 H3 H5 H7 H1 H3 H3 H5		
DIO L L L L L L L H	Addre	DI2 L H H L L H H H H L	L H L H L H L		CH1 -	vith A/ and A/ CH2 +	g Cha and A (DIN1 (DIN2) CH3	nnel A ssignr tied to tied to CH4	Addres nent MUXC MUXC CH5 C	sed 0UT1 0UT2 :H6 C +	- C	OM /	A/D Po Assig 4/DIN ⁻ + + + + - - - - - +) Input larity gnmen 1 A/DI 	t	CH0 CH2 CH0 CH2 CH4 CH6 CH0 CH2 CH4 CH6 CH2 CH4 CH6 CH0 CH2	annel gnmen 1 MUX C C C C C C C C C C C C C C C C C C C	t OUT2 H1 H3 H5 H7 H1 H3 H5 H7 OM		
DIO L L L L L L L H H	Addre	D12 L L H H L L H H L L L L L L L L L L L	L H L H L H L H	+	CH1 -	with A/ and A/ CH2 +	g Cha and A (DIN1 DIN2 CH3	nnel A ssignr tied to tied to CH4 (+	Addres nent MUXC MUXC CH5 C	sed 0UT1 0UT2 :H6 C +	- C	OM /	A/D Po Assig 4/DIN ⁻ + + + + - - - - + + +) Input larity gnment 1 A/DI 	t	00 Ch Assig JXOUT CH0 CH2 CH4 CH6 CH0 CH2 CH4 CH6 CH0 CH2 CH0 CH2	annel gnmen 1 MUX C C C C C C C C C C C C C C C C C C C	t OUT2 H1 H3 H5 H7 H1 H3 H5 H7 OM OM		
DIO L L L L L L H H H H	Addre	D12 L L H H L L H H L L H H H L L H H	L H L H L H L H L	+	CH1 -	vith A/ and A/ CH2 +	g Cha and A (DIN1 DIN2 CH3	nnel A ssignr tied to tied to CH4	Addresment MUXC MUXC CH5 C	sed DUT1 DUT2 H6 C ++	- C	OM /	A/DIN + + + - - - + + + + + + + + + + +) Input larity gnment 1 A/DI 	t	00 Ch Assig JXOUT CH0 CH2 CH4 CH6 CH0 CH2 CH4 CH6 CH0 CH2 CH4 CH0 CH2 CH4	atput annel gnmen 1 MUX C C C C C C C C C C C C C C C C C C C	t OUT2 H1 H3 H5 H7 H1 H3 H5 H7 OM OM OM OM		
DIO L L L L L L H H H H H	Addres DI1 [L L H H H H L L L L	DI2 L L H H L L H H H H H H H H H H		+	+	vith A/ and A/ CH2 +	g Cha and A (DIN1 DIN2 CH3	nnel A ssignr tied to tied to CH4 (+	Addresment MUXC MUXC CH5 C	sed 0UT1 0UT2 :H6 C +	- C	OM /	A/DIN + + + + - - - + + + + + + + + +	D Input larity gnment 1 A/DI + + + + + + + -	t	00 Ch Assig JXOUT CH0 CH2 CH4 CH6 CH0 CH2 CH4 CH6 CH0 CH2 CH4 CH0 CH2 CH4 CH6	atput annel gnmen 1 MUX C C C C C C C C C C C C C C C C C C C	t OUT2 H1 H3 H5 H7 H1 H3 H5 H7 OM OM OM OM OM		ential
DI0 L L L L L L L H H H H H	Addres DI1 [[[[[[[[[[[[[[[[[[[2555 D12 L H H H H H H H H H H H H		+	CH1 -	vith A/ and A/ CH2 +	g Cha and A DIN1 DIN2 CH3 (- +	nnel A ssignr tied to tied to CH4 (+	Addresment MUXC MUXC CH5 C	sed DUT1 DUT2 H6 C ++	- C		A/E Po Assig A/DIN + + + + + + + + + + + + + + + + + + +) Input larity gnment 1 A/DI + + + + + + + - - - - - - - -	t	00 Ch Assig JXOUT CH0 CH2 CH4 CH6 CH0 CH2 CH4 CH6 CH0 CH2 CH4 CH6 CH1	atput annel grmen 1 MUX C C C C C C C C C C C C C C C C C C C	t OUT2 H1 H3 H5 H7 H1 H3 H5 H7 OM OM OM OM OM OM	Differ	ential
DIO L L L L L L H H H H	Addres DI1 [L L L L H H H L L L L L L L L H H H H	DI2 L L H H L L H H H H H H H H H H		+	+	vith A/ and A/ CH2 +	g Cha and A (DIN1 (DIN2) CH3	nnel A ssignr tied to tied to CH4 (+	Addresment MUXC MUXC CH5 C	sed DUT1 DUT2 H6 C ++	CH7 C	OM /	A/DIN + + + + - - - + + + + + + + + +	D Input larity gnment 1 A/DI + + + + + + + -	t	00 Ch Assig JXOUT CH0 CH2 CH4 CH6 CH0 CH2 CH4 CH6 CH0 CH2 CH4 CH0 CH2 CH4 CH6	atput annel grmen 1 MUX C C C C C C C C C C C C C C C C C C C	t OUT2 H1 H3 H5 H7 H1 H3 H5 H7 OM OM OM OM OM	Differ	ential

MUX Addres	s	Analog Channel Addressed and Assignment with A/DIN1 tied to MUXOUT1 and A/DIN2 tied to MUXOUT2					Po	Input larity gnment	Ou Cha	plexer tput Innel nment	Mode	
DIO DI1	DI2	CH0	CH1	CH2	СНЗ	СОМ	A/DIN1	A/DIN2	MUXOUT1	MUXOUT2		
LLL LL LH	L H L H	+ -	- +	+	-+		+ - + - - + - +		CH0 CH2 CH0 CH2	CH1 CH3 CH1 CH3	Differential	
H L H L H H	L H L	+	+	+			+++++++		CH0 CH2 CH1	COM COM COM	Single-Ende	
н н	Н				+	-	+	-	СНЗ	СОМ		
			TAB	LE IV. A	DC12L0	32 and .	ADC12L03) Multiplexe	r Addressing			
MUX Address		and Ass with A/DIN1 tie			nel Addressed signment ed to MUXOUT1 ed to MUXOUT2			nput irity nment	Out Cha	Multiplexer Output Channel Assignment		
DI0 DI1	c	H0	C	H1	cc	м	A/DIN1	A/DIN2	MUXOUT1	MUXOUT2		
L L L H		+ -	-	- +			+ -	- +	CH0 CH0	CH1 CH1	Differential	
H L H H		+	+ -			+ +	_	CH0 CH1	COM COM	Single-Ende		

ADC12L038	DIO	DI1	DI2	DI3	DI4	DI5	DI6	DI7	rogramming		
ADC12L030	DIO	DI1	DI2	013	DI3	DI3	DIS	DI6			DO Format
ADC12L034 and ADC12L032	DIO	DI1	012		DI3	DI3	DI3	DI5	Mode Selected (Current)	I	(next Conversion Cycle)
	See	Tables	II, III or	٧IV	L	L	L	L	12 Bit Conversion	n	12 or 13 Bit MSB Fi
	See '	Tables	II, III or	٠IV	L	L	L	н	12 Bit Conversion	n	16 or 17 Bit MSB Fi
	See ⁻	Tables	II, III or	٠IV	L	L	н	L	8 Bit Conversion	ı	8 or 9 Bit MSB Fir
	L	L	L	L	L	L	н	н	12 Bit Conversion of Fu	II-Scale	12 or 13 Bit MSB F
	See	Tables	II, III or	٠IV	L	н	L	L	12 Bit Conversion	n	12 or 13 Bit LSB Fi
	See	Tables	II, III or	٠IV	L	Н	L	н	12 Bit Conversion	n	16 or 17 Bit LSB Fi
	See	Tables	II, III or	٠IV	L	Н	Н	L	8 Bit Conversion	ı -	8 or 9 Bit LSB Firs
	L	L	L	L	L	Н	н	н	12 Bit Conversion of 0	Offset	12 or 13 Bit LSB Fi
	L	Г	L	L	Η	L	L	L	Auto Cal		No Change
	L	L	L	L	Н	L	L	н	Auto Zero		No Change
	L	L	L	L	Н	L	н	L	Power Up		No Change
	L	L	L	L	Н	L	н	н	Power Down		No Change
	L	L	L	L	н	Н	L	L	Read Status Register		No Change
	L	L	L	L	Н	Н	L	н	Data Out without Sign		No Change
	н	L	L	L	Н	Н	L	н	Data Out with Sign		No Change
	L	L	L	L	н	н	н	L	Acquisition Time—6 CCLK Cycles		No Change
	L	н	L	L	н	н	н	L	Acquisition Time—10 CCLK Cycles		No Change
	Н	L	L	L	Н	н	н	L	Acquisition Time—18 CCI	LK Cycles	No Change
	н	н	L	L	н	н	н	L	Acquisition Time—34 CCI	sition Time—34 CCLK Cycles No C	
	L	L	L	L	Н	Н	н	н	User Mode		No Change
	н	x	х	x	н	н	н	н	Test Mode (CH1-CH7 become Active	e Outputs)	No Change
Note: The A/D X = Don		up with n				nvers	·		a, 12-bit + sign conversion, power a Only Mode Programmin Mode		it MSB first and user mod
				L	L		L	S	ee Table V for Mode		
				L	н		L		Only (Previous DO Format) No Conversion		
				н	x		L		Idle		
				Х	х		н		Power Down		
				X = Do	n't Care						

Tables	Tables (Continued)											
TABLE VII. Status Register												
Status Bit Location	DB0	DB1	DB2	DB3	DB4	DB5	DB6	DB7	DB8			
Status Bit	PU	PD	Cal	8 or 9	12 or 13	16 or 17	Sign	Justification	Test Mode			
	[Device Statu	S		DO C	Output Form	at Status					
Function	"High" indicates a Power Up Sequence is in progress	"High" indicates a Power Down Sequence is in progress	"High" indicates an Auto- Cal Sequence is in progress	"High" indicates an 8 or 9 bit format	"High" indicates a 12 or 13 bit format	"High" indicates a 16 or 17 bit format	"High" indicates that the sign bit is included. When "Low" the sign bit is not included.	When "High" the conversion result will be output MSB first. When "Low" the result will be output LSB first.	When "High" the device is in test mode. When "Low" the device is in user mode.			

Application Hints

1.0 DIGITAL INTERFACE

1.1 Interface Concepts

The example in *Figure 5* shows a typical sequence of events after the power is applied to the ADC12L030/2/4/8:

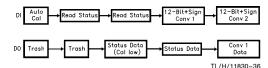
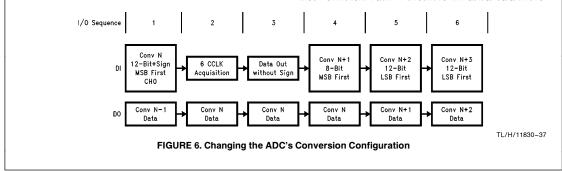


FIGURE 5. Typical Power Supply Power Up Sequence


The first instruction input to the A/D via DI initiates Auto Cal. The data output on DO at that time is meaningless and is completely random. To determine whether the Auto Cal has been completed, a read status instruction is issued to the A/D. Again the data output at that time has no significance since the Auto Cal procedure modifies the data in the output shift register. To retrieve the status information, an additional read status instruction is issued to the A/D. At this time the status data is available on DO. If the Cal signal in the status word is low Auto Cal has been completed. Therefore, the next instruction issued can start a conversion. The data output at this time is again status information. To keep noise from corrupting the A/D conversion, the status can not be read during a conversion. If CS is strobed and is brought low during a conversion, that conversion is prematurely ended. EOC can be used to determine the end of a conversion or the A/D controller can keep track in software of when it would be appropriate to communicate to the A/D again. Once it has been determined that the A/D has completed a conversion another instruction can be transmitted to the A/D. The data from this conversion can be accessed when the next instruction is issued to the A/D.

Note, when \overline{CS} is low continuously it is important to transmit the exact number of SCLK cycles, as shown in the timing diagrams. Not doing so will desynchronize the serial communication to the A/D (see Section 1.3).

1.2 Changing Configuration

The configuration of the ADC12L030/2/4/8 on power up defaults to 12-bit plus sign resolution, 12- or 13-bit MSB First, 10 CCLK acquisition time, user mode, no Auto Cal, no Auto Zero, and power up mode. Changing the acquisition time and turning the sign bit on and off requires an 8-bit instruction to be issued to the ADC. This instruction will not start a conversion. The instructions that select a multiplexer address and format the output data do start a conversion. *Figure* 6 describes an example of changing the configuration of the ADC12L030/2/4/8.

During I/O sequence 1 the instruction on DI configures the ADC12L030/2/4/8 to do a conversion with 12-bit + sign resolution. Notice that when the 6 CCLK Acquisition and Data Out without Sign instructions are issued to the ADC, I/O sequences 2 and 3, a new conversion is not started. The data output during these instructions is from conversion N which was started during I/O sequence 1. The Configuration Modification timing diagram describes in detail the sequence of events necessary for a Data Out without Sign, Data Out with Sign, or 6/10/18/34 CCLK Acquisition time mode selection. Table V describes the actual data neces

sary to be input to the ADC to accomplish this configuration modification. The next instruction, shown in *Figure 6*, issued to the A/D starts conversion N+1 with 8 bits of resolution formatted MSB first. Again the data output during this I/O cycle is the data from conversion N.

The number of SCLKs applied to the A/D during any conversion I/O sequence should vary in accord with the data out word format chosen during the previous conversion I/O sequence. The various formats and resolutions available are shown in Table I. In *Figure 6*, since 8-bit without sign MSB first format was chosen during I/O sequence 4, the number of SCLKs required during I/O sequence 5 is 8. In the following I/O sequence the format changes to 12-bit without sine MSB first; therefore the number of SCLKs required during I/O sequence 6 changes accordingly to 12.

1.3 CS Low Continuously Considerations

When $\overline{\text{CS}}$ is continuously low, it is important to transmit the exact number of SCLK pulses that the ADC expects. Not doing so will desynchronize the serial communications to the ADC. When the supply power is first applied to the ADC, it will expect to see 13 SCLK pulses for each I/O transmission. The number of SCLK pulses that the ADC expects to see is the same as the digital output word length. The digital output word length is controlled by the Data Out (DO) format. The DO format maybe changed any time a conversion is started or when the sign bit is turned on or off. The table below details out the number of clock periods required for different DO formats:

DO Format		Number of SCLKs Expected
8-Bit MSB or LSB First	SIGN OFF	8
	SIGN ON	9
12-Bit MSB or LSB First	SIGN OFF	12
	SIGN ON	13
16-Bit MSB or LSB first	SIGN OFF	16
	SIGN ON	17

If erroneous SCLK pulses desynchronize the communications, the simplest way to recover is by cycling the power supply to the device. Not being able to easily resynchronize the device is a shortcoming of leaving \overline{CS} low continuously. The number of clock pulses required for an I/O exchange may be different for the case when \overline{CS} is left low continuously vs. the case when \overline{CS} is cycled. Take the I/O sequence detailed in *Figure 5* (Typical Power Supply Sequence) as an example. The table below lists the number of SCLK pulses required for each instruction:

Instruction	CS Low Continuously	CS Strobed
Auto Cal	13 SCLKs	8 SCLKs
Read Status	13 SCLKs	8 SCLKs
Read Status	13 SCLKs	8 SCLKs
12-Bit + Sign Conv 1	13 SCLKs	8 SCLKs
12-Bit + Sign Conv 2	13 SCLKs	13 SCLKs

1.4 Analog Input Channel Selection

The data input on DI also selects the channel configuration for a particular A/D conversion (see Tables II, III, IV and V). In *Figure 6* the only times when the channel configuration could be modified would be during I/O sequences 1, 4, 5 and 6. Input channels are reselected before the start of each new conversion. Shown below is the data bit stream required on DI, during I/O sequence number 4 in *Figure 6*, to set CH1 as the positive input and CH0 as the negative input for the different versions of ADCs:

Part	DI Data									
Number	DI0	DI1	DI2	DI3	DI4	DI5	DI6	DI7		
ADC12L030	L	Н	L	L	н	L	Х	Х		
ADC12L032	L	Н	L	L	н	L	х	Х		
ADC12L034	L	н	L	L	L	н	L	Х		
ADC12L038	L	Н	L	L	L	L	Н	L		

Where X can be a logic high (H) or low (L).

1.5 Power Up/Down

The ADC may be powered down at any time by taking the PD pin HIGH or by the instruction input on DI (see Tables V and VI, and the Power Up/Down timing diagrams). When the ADC is powered down in this way the circuitry necessary for an A/D conversion is deactivated. The circuitry necessary for digital I/O is kept active. Hardware power up/down is controlled by the state of the PD pin. Software power up/ down is controlled by the instruction issued to the ADC. If a software power up instruction is issued to the ADC while a hardware power down is in effect (PD pin high) the device will remain in the power-down state. If a software power down instruction is issued to the ADC while a hardware power up is in effect (PD pin low), the device will power down. When the device is powered down by software, it may be powered up by either issuing a software power up instruction or by taking PD pin high and then low. If the power down command is issued during an A/D conversion, that conversion is disrupted. Therefore, the data output after power up cannot be relied on.

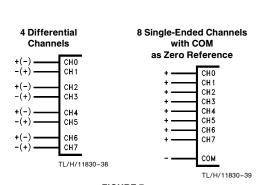
1.6 User Mode and Test Mode

An instruction may be issued to the ADC to put it into test mode. Test mode is used by the manufacturer to verify complete functionality of the device. During test mode CH0-CH7 become active outputs. If the device is inadvertently put into the test mode with \overline{CS} low continuously, the serial communications may be desynchronized. Synchronization may be regained by cycling the power supply voltage to the device. Cycling the power supply voltage will also set the device into user mode. If \overline{CS} is used in the serial interface, the ADC may be queried to see what mode it is in. This is done by issuing a "read STATUS register" instruction to the ADC. When bit 9 of the status register is high the ADC is in test mode: when bit 9 is low the ADC is in user mode. As an alternative to cycling the power supply, an instruction sequence may be used to return the device to user mode. This instruction sequence must be issued to the ADC using \overline{CS} .

The following table lists the instructions required to return the device to user mode:

Instruction				DID	Data			
manuction	DI0	DI1	DI2	DI3	DI4	DI5	DI6	DI7
TEST MODE	н	х	Х	х	н	н	н	Н
RESET	L	L	L	L	Η	Н	Н	L
TEST MODE	L	L	L	L	н	L	н	L
INSTRUCTIONS	L	L	L	L	н	L	Η	Н
USER MODE	L	L	L	L	Н	н	н	Н
Power Up	L	L	L	L	Н	L	Н	L
Set DO with or without Sign	H or L	L	L	L	H	Н	L	н
Set Acquisition Time	H or L	H or L	L	L	H	Н	Н	L
Start	н	н	н	н		н	н	н
a Conversion	or L	or L	or L	or L	L	or L	or L	or L

X = Don't Care


After returning to user mode with the user mode instruction the power up, data with or without sign, and acquisition time instructions need to be resent to ensure that the ADC is in the required state before a conversion is started.

1.7 Reading the Data Without Starting a Conversion

The data from a particular conversion may be accessed without starting a new conversion by ensuring that the $\overline{\text{CONV}}$ line is taken high during the I/O sequence. See the Read Data timing diagrams. Table VI describes the operation of the $\overline{\text{CONV}}$ pin.

2.0 DESCRIPTION OF THE ANALOG MULTIPLEXER

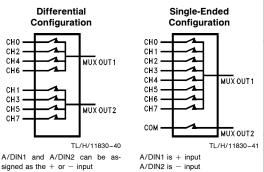

For the ADC12L038, the analog input multiplexer can be configured with 4 differential channels or 8 single ended channels with the COM input as the zero reference or any combination thereof (see *Figure 7*). The difference between the voltages on the V_{REF}⁺ and V_{REF}⁻ pins determines the input voltage span (V_{REF}). The analog input voltage range is 0 to V_A⁺. Negative digital output codes result when V_{IN}⁻ > V_{IN}⁺. The actual voltage at V_{IN}⁻ or V_{IN}⁺ cannot go below AGND.

FIGURE 7

CH0, CH2, CH4, and CH6 can be assigned to the MUX-OUT1 pin in the differential configuration, while CH1, CH3, CH5, and CH7 can be assigned to the MUXOUT2 pin. In the differential configuration, the analog inputs are paired as follows: CH0 with CH1, CH2 with CH3, CH4 with CH5 and CH6 with CH7. The A/DIN1 and A/DIN2 pins can be assigned positive or negative polarity.

With the single-ended multiplexer configuration CH0 through CH7 can be assigned to the MUXOUT1 pin. The COM pin is always assigned to the MUXOUT2 pin. A/DIN1 is assigned as the positive input; A/DIN2 is assigned as the negative input. (See *Figure 8*).

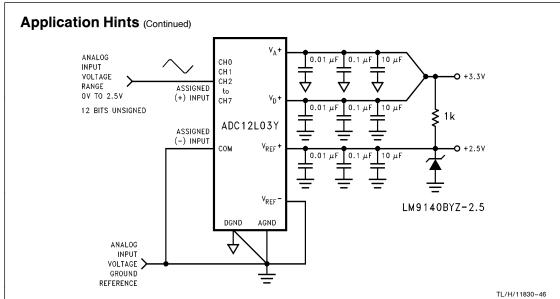
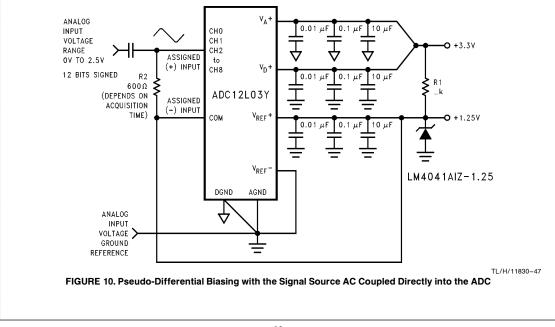


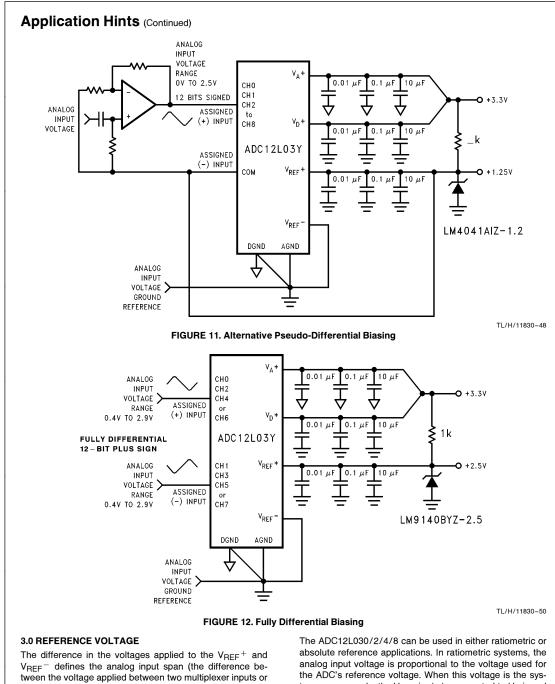
FIGURE 8

The Multiplexer assignment tables for the ADC12L030,2,4,8 (Tables II, III, and IV) summarize the aforementioned functions for the different versions of A/Ds.

2.1 Biasing for Various Multiplexer Configurations

Figure 9 is an example of biasing the device for single-ended operation. The sign bit is always low. The digital output range is 0 0000 0000 0000 to 0 1111 1111 1111. One LSB is equal to 610 μ V (2.5V/4096 LSBs).


FIGURE 9. Single-Ended Biasing

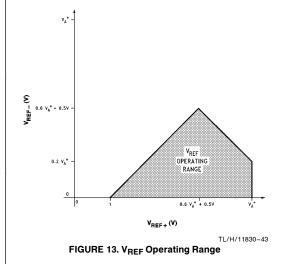

For pseudo-differential signed operation the biasing circuit shown in *Figure 10* shows a signal AC coupled to the ADC. This gives a digital output range of -4096 to +4095. With a 1.25V reference, as shown, 1 LSB is equal to $305 \ \mu$ V. Although the ADC is not production tested with a 1.25V reference linearity error typically will not change more than 0.3 LSB. With the ADC set to an acquisition time of 10 clock periods the input biasing resistor needs to be 600Ω or less. Notice though that the input coupling capacitor needs to be made fairly large to bring down the high pass corner. Increasing the acquisition time to 34 clock periods (with a

5 MHz CCLK frequency) would allow the 600Ω to increase to 6k, which with a 1 μF coupling capacitor would set the high pass corner at 26 Hz. The value of R1 will depend on the value of R2.

An alternative method for biasing pseudo-differential operation is to use the +2.5V from the LM9140 to bias any amplifier circuits driving the ADC as shown in *Figure 11*. The value of the resistor pull-up biasing the LM9140-2.5 will depend upon the current required by the op amp biasing circuitry.

Fully differential operation is shown in *Figure 12.* One LSB for this case is equal to (2.5V/4096) = 610 mV.

the voltage applied to one of the multiplexer inputs and analog ground), over which 4095 positive and 4096 negative codes exist. The voltage sources driving V_{REF}^+ or V_{REF}^must have very low output impedance and noise.


tem power supply, the $V_{\mbox{\scriptsize REF}}{}^+$ pin is connected to $V_{\mbox{\scriptsize A}}{}^+$ and V_{REF} is connected to ground. This technique relaxes the

system reference stability requirements because the analog input voltage and the ADC reference voltage move together. This maintains the same output code for given input conditions. For absolute accuracy, where the analog input voltage varies between very specific voltage limits, a time and temperature stable voltage source can be connected to the reference inputs. Typically, the reference voltage's magnitude will require an initial adjustment to null reference voltage induced full-scale errors.

Below are recommended references along with some key specifications.

Part Number	Output Voltage Tolerance	Temperature Coefficient (max)
LM4041CIM3-Adj	±0.5%	\pm 100ppm/°C
LM4040AIM3-2.5	±0.1%	\pm 100ppm/°C
LM9140BYZ-2.5	±0.5%	±25ppm/°C
LM368Y-2.5	±0.1%	±20ppm/°C

The reference voltage inputs are not fully differential. The ADC12L030/2/4/8 will not generate correct conversions or comparisons if V_{REF}⁺ is taken below V_{REF}⁻. Correct conversions result when V_{REF}⁺ and V_{REF}⁻ differ by 1V and remain, at all times, between ground and V_A⁺. The V_{REF} common mode range, (V_{REF}⁺ + V_{REF}⁻)/2, is restricted to (0.1 × V_A⁺) to (0.6 × V_A⁺). Therefore, with V_A⁺ = 3.3V the center of the reference ladder should not go below 0.33V or above 1.98V. *Figure 13* is a graphic representation of the voltage restrictions on V_{REF}⁺ and V_{REF}⁻.

4.0 ANALOG INPUT VOLTAGE RANGE

The ADC12L030/2/4/8's fully differential ADC generate a two's complement output that is found by using the equations shown below:

for (12-bit) resolution the Output Code =

$$\frac{({\sf V}_{\sf IN}{}^+ - {\sf V}_{\sf IN}{}^-)\,(4096)}{({\sf V}_{\sf REF}{}^+ - {\sf V}_{\sf REF}{}^-)}$$

for (8-bit) resolution the Output Code =

$$rac{(V_{IN}^{+} - V_{IN}^{-})}{(V_{BEE}^{+} - V_{BEE}^{-})}$$

Round off to the nearest integer value between -4096 to 4095 for 12-bit resolution and between -256 to 255 for 8-bit resolution if the result of the above equation is not a whole number.

Examples are shown in the table below:

V _{REF} +	V _{REF} -	V _{IN} +	V _{IN} -	Digital Output Code
+ 2.5V	+ 1V	+ 1.5V	0V	0,1111,1111,1111
+2.500V	0V	+ 2V	0V	0,1100,1100,1101
+ 2.500V	0V	+2.499V	+2.500V	1,1111,1111,1111
+2.500V	0V	0V	+2.500V	1,0000,0000,0000

5.0 INPUT CURRENT

At the start of the acquisition window (t_A) a charging current flows into or out of the analog input pins (A/DIN1 and A/DIN2) depending on the input voltage polarity. The analog input pins are CH0–CH7 and COM when A/DIN1 is tied to MUXOUT1 and A/DIN2 is tied to MUXOUT2. The peak value of this input current will depend on the actual input voltage applied, the source impedance and the internal multiplexer switch on resistance. With MUXOUT1 tied to A/DIN1 and MUXOUT2 tied to A/DIN2 the internal multiplexer switch on resistance is typically 1.6 kt. The A/DIN1 and MUXOUT2 mut on resistance is typically 750.

6.0 INPUT SOURCE RESISTANCE

For low impedance voltage sources (<600 Ω), the input charging current will decay, before the end of the S/H's acquisition time of 2 μs (10 CCLK periods with $f_C=5$ MHz), to a value that will not introduce any conversion errors. For high source impedances, the S/H's acquisition time can be increased to 18 or 34 CCLK periods. For less ADC resolution and/or slower CCLK frequencies the S/H's acquisition time may be decreased to 6 CCLK periods. To determine the number of clock periods (N_c) required for the acquisition time with a specific source impedance for the various resolutions the following equations can be used:

12 Bit + Sign $N_C = [R_S + 2.3] \times f_C \times 0.824$ 8 Bit + Sign $N_C = [R_S + 2.3] \times f_C \times 0.57$

Where f_C is the conversion clock (CCLK) frequency in MHz and R_S is the external source resistance in $k\Omega.$ As an exam-

ple, operating with a resolution of 12 Bits+sign, a 5 MHz clock frequency and maximum acquistion time of 34 conversion clock periods the ADC's analog inputs can handle a source impedance as high as 6 k Ω . The acquisition time may also be extended to compensate for the settling or response time of external circuitry connected between the MUXOUT and A/DIN pins.

The acquisition time (t_A) is started by a falling edge of SCLK and ended by a rising edge of CCLK (see Timing Diagrams). If SCLK and CCLK are asynchronous one extra CCLK clock period may be inserted into the programmed acquisition time for synchronization. Therefore with asnychronous SCLK and CCLK the acquisition time will change from conversion to conversion.

7.0 INPUT BYPASS CAPACITANCE

External capacitors (0.01 μ F–0.1 μ F) can be connected between the analog input pins, CH0–CH7, and analog ground to filter any noise caused by inductive pickup associated with long input leads. These capacitors will not degrade the conversion accuracy.

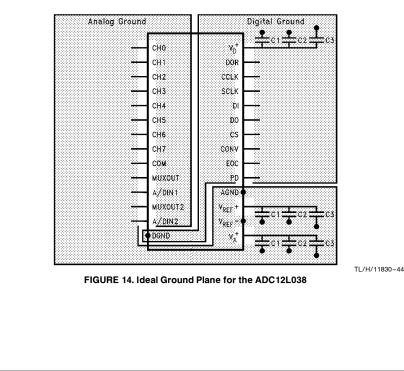
8.0 NOISE

The leads to each of the analog multiplexer input pins should be kept as short as possible. This will minimize input noise and clock frequency coupling that can cause conversion errors. Input filtering can be used to reduce the effects of the noise sources.

9.0 POWER SUPPLIES

Noise spikes on the V_A^+ and V_D^+ supply lines can cause conversion errors; the comparator will respond to the noise. The ADC is especially sensitive to any power supply spikes that occur during the auto-zero or linearity correction. The

minimum power supply bypassing capacitors recommended are low inductance tantalum capacitors of 10 μF or greater paralleled with 0.1 μF monolithic ceramic capacitors. More or different bypassing may be necessary depending on the overall system requirements. Separate bypass capacitors should be used for the V_A^+ and V_D^+ supplies and placed as close as possible to these pins.


10.0 GROUNDING

The ADC12L030/2/4/8's performance can be maximized through proper grounding techniques. These include the use of separate analog and digital ground planes. The digital ground plane is placed under all components that handle digital signals, while the analog ground plane is placed under all components that handle analog signals. The digital and analog ground planes are connected together at only one point, either the power supply ground or at the pins of the ADC. This greatly reduces the occurrence of ground loops and noise.

Shown in *Figure 14* is the ideal ground plane layout for the ADC12L038 along with ideal placement of the bypass capacitors. The circuit board layout shown in *Figure 14* uses three bypass capacitors: 0.01 μ F (C1) and 0.1 μ F (C2) surface mount capacitors and 10 μ F (C3) tantalum capacitor.

11.0 CLOCK SIGNAL LINE ISOLATION

The ADC12L030/2/4/8's performance is optimized by routing the analog input/output and reference signal conductors as far as possible from the conductors that carry the clock signals to the CCLK and SCLK pins. Ground traces parallel to the clock signal traces can be used on printed circuit boards to reduce clock signal interference on the analog input/output pins.

Application Hints (Continued) 12.0 THE CALIBRATION CYCLE

A calibration cycle needs to be started after the power supplies, reference, and clock have been given enough time to stabilize after initial turn on. During the calibration cycle, correction values are determined for the offset voltage of the sampled data comparator and any linearity and gain errors. These values are stored in internal RAM and used during an analog-to-digital conversion to bring the overall full-scale, offset, and linearity errors down to the specified limits. Full-scale error typically changes ± 0.4 LSB over temperature and linearity error changes even less; therefore it should be necessary to go through the calibration cycle only once after power up if the Power Supply Voltage and the ambient temperature do not change significantly (see the curves in the Typical Performance Characteristics).

13.0 THE AUTO-ZERO CYCLE

To correct for any change in the zero (offset) error of the A/D, the auto-zero cycle can be used. It may be necessary to do an auto-zero cycle whenever the ambient temperature or the power supply voltage change significantly. (See the curves titled "Zero Error Change vs Ambient Temperature" and "Zero Error Change vs Supply Voltage" in the Typical Performance Characteristics.)

14.0 DYNAMIC PERFORMANCE

Many applications require the A/D converter to digitize AC signals, but the standard DC integral and differential nonlinearity specifications will not accurately predict the A/D converter's performance with AC input signals. The important specifications for AC applications reflect the converter's ability to digitize AC signals without significant spectral errors and without adding noise to the digitized signal. Dynamic characteristics such as signal-to-noise (S/N), signal-to-noise + distortion ratio (S/(N + D)), effective bits, full power bandwidth, aperture time and aperture jitter are quantitative measures of the A/D converter's capability.

An A/D converter's AC performance can be measured using Fast Fourier Transform (FFT) methods. A sinusoidal waveform is applied to the A/D converter's input, and the transform is then performed on the digitized waveform. S/(N + D) and S/N are calculated from the resulting FFT data, and a spectral plot may also be obtained.

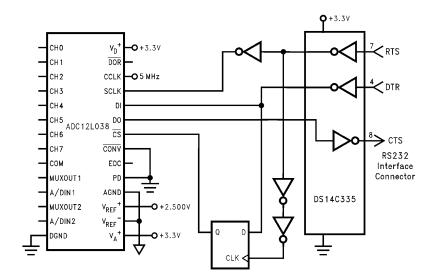
The A/D converter's noise and distortion levels will change with the frequency of the input signal, with more distortion and noise occurring at higher signal frequencies. This can be seen in the S/(N + D) versus frequency curves. These curves will also give an indication of the full power bandwidth (the frequency at which the S/(N + D) or S/N drops 3 dB).

Effective number of bits can also be useful in describing the A/D's noise performance. An ideal A/D converter will have some amount of quantization noise, determined by its resolution, which will yield an optimum S/N ratio given by the following equation:

$$S/N = (6.02 \times n + 1.8) dB$$

where n is the A/D's resolution in bits.

The effective bits of a real A/D converter, therefore, can be found by:


$$n(\text{effective}) = \frac{S/N(dB) - 1.8}{6.02}$$

As an example, this device with a \pm 2.5V, 10 kHz sine wave input signal will typically have a S/N of 78 dB, which is equivalent to 12.6 effective bits.

15.0 AN RS232 SERIAL INTERFACE

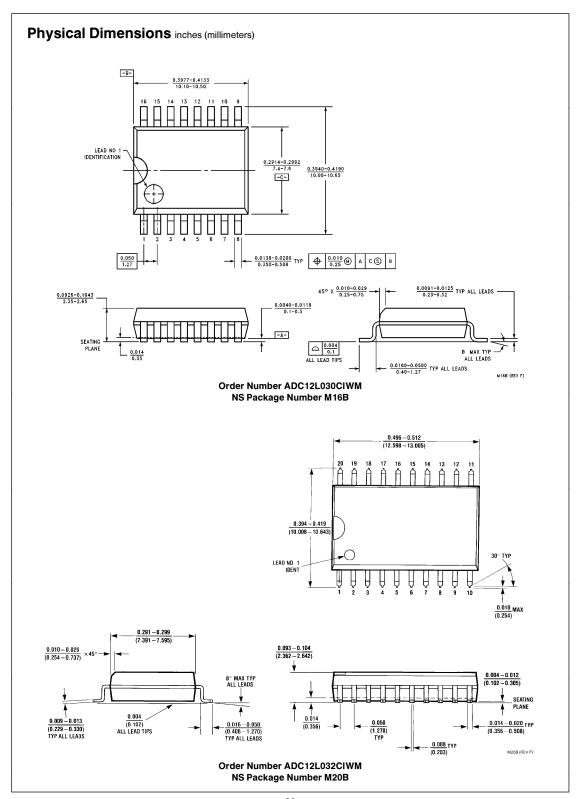
Shown below is a schematic for an RS232 interface to any IBM and compatible PCs. The DTR, RTS, and CTS RS232 signal lines are buffered via level translators and connected

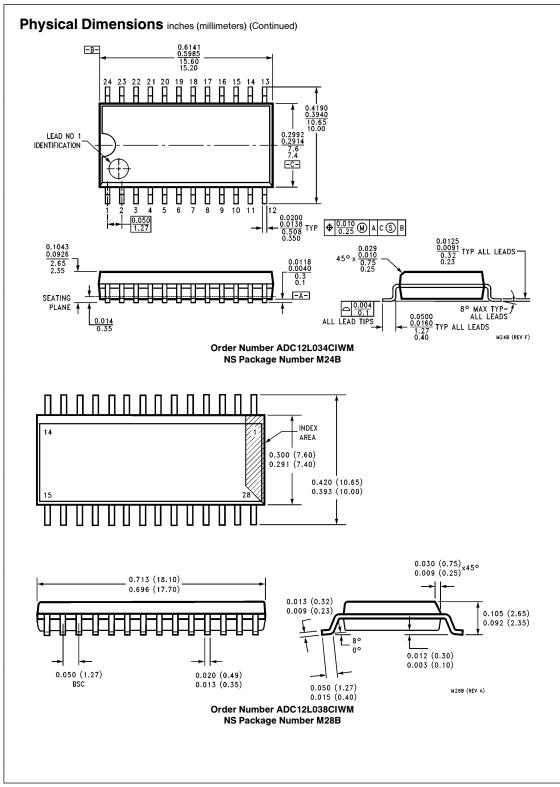
to the ADC12L038's DI, SCLK, and DO pins, respectively. The D flip flop drive the $\overline{\text{CS}}$ control line.

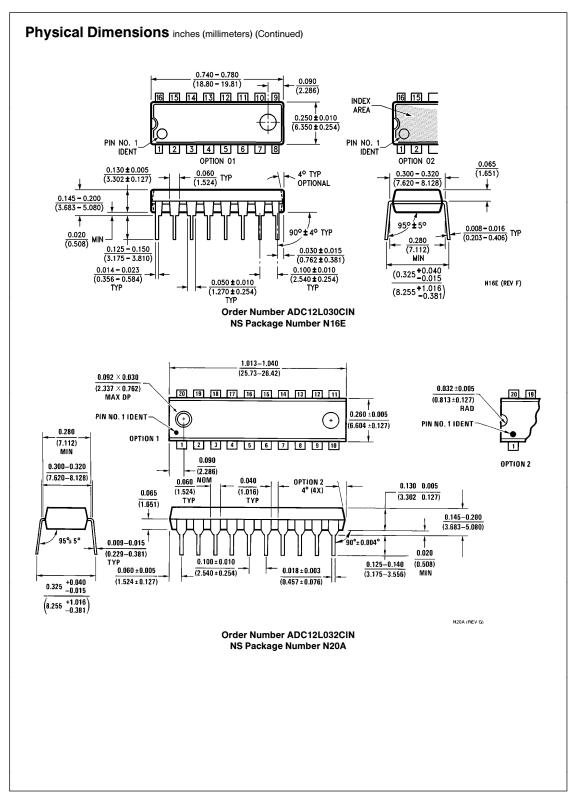
TL/H/11830-45

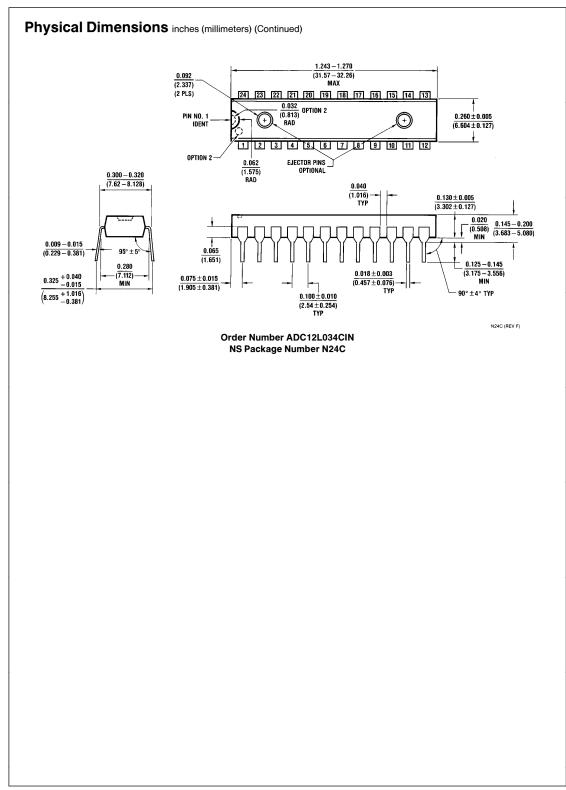
Note: V_A^+ , V_D^+ , and V_{REF}^+ on the ADC12L038 each have 0.01 μ F and 0.1 μ F chip caps, and 10 μ F tantalum caps. All logic devices are bypassed with 0.1 μ F caps. The DS14C335 has an internal DC-DC converter that generates the necessary TIA/EIA-232-E output levels from a 3.3V supply. There are four 0.47 μ F capacitors required for the DC-DC converter that are not shown in the above schematic.

The assignment of the RS232 port is shown below

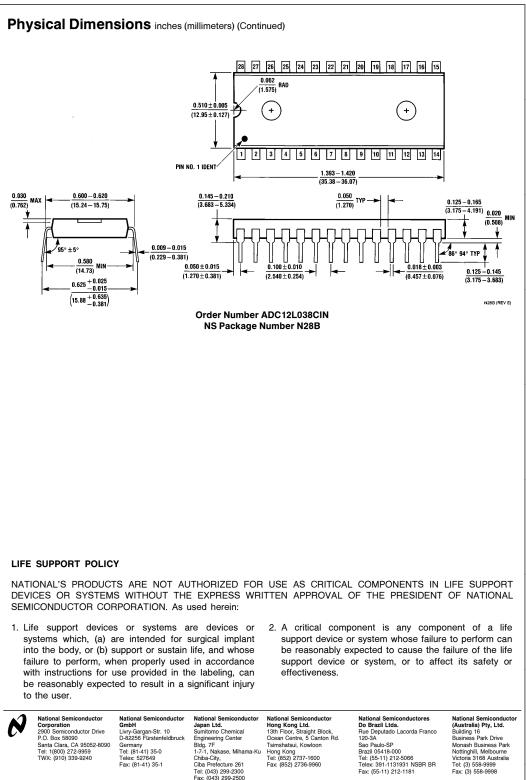

				B 6	B 5	B4	B 3	B2	B1	B0
COM1	Input Address	3FE	х	х	х	CTS	х	х	Х	Х
	Output Address	3FC	х	х	х	0	х	х	RTS	DTR


A sample program, written in Microsoft™ QuickBasic, is shown on the next page. The program prompts for data mode select instruction to be sent to the A/D. This can be found from the Mode Programming table shown earlier. The data should be entered in "1"s and "0"s as shown in the table with DIO first. Next the program prompts for the number of SCLKs required for the programmed mode select instruction. For instance, to send all "0"s to the A/D, selects CH0 as the + input, CH1 as the −input, 12-bit conversion, and 13-bit MSB first data output format (if the sign bit was not turned off by a previous instruction). This would require 13 SCLK periods since the output data format is 13 bits. The part powers up with No Auto Cal, No Auto Zero, 10 CCLK Acquisition Time, 12-bit conversion, data out with sign, 12- or 13-bit MSB First, power up, and user mode. Auto Cal, Auto Zero, Power UP and Power Down instructions do not change these default settings. The following power up sequence should be followed:


- 1. Run the program
- 2. Prior to responding to the prompt apply the power to the ADC12L038
- 3. Respond to the program prompts


It is recommended that the first instruction issued to the ADC12L038 be Auto Cal (see Section 1.1).

'variables DOL=Data Out word length, DI=Data string for A/D DI input, DO=A/D result string 'SET CS# HIGH OUT &H3FC, (&H2 OR INP (&H3FC)) 'set RTS HIGH 'SET DTR LOW OUT &H3FC, (&HFE AND INP (&H3FC)) OUT &H3FC, (&HFD AND INP (&H3FC)) 'SET RTS LOW OUT &H3FC, (&HEF AND INP (&H3FC)) 'set B4 low 10 LINE INPUT "DI data for ADC12038 (see Mode Table on data sheet)"; DI\$ INPUT "ADC12038 output word length (8,9,12,13,16 or 17)"; DOL 20 'SET CS# HIGH OUT &H3FC, (&H2 OR INF (&H3FC)) OUT &H3FC, (&HFE AND INF (&H3FC)) OUT &H3FC, (&HFE AND INF (&H3FC)) 'set RTS HIGH 'SET DTR LOW 'SET RTS LOW 'SET CS# LOW 'set RTS HIGH OUT &H3FC, (&H2 OR INP (&H3FC)) OUT &H3FC, (&H1 OR INP (&H3FC)) 'SET DTR HIGH OUT &H3FC, (&HFD AND INP (&H3FC)) 'SET RTS LOW D0\$="" 'reset D0 variable OUT &H3FC, (&H1 OR INP (&H3FC)) 'SET DTR HIGH OUT &H3FC, (&HFD AND INP (&H3FC)) 'SCLK low FOR N=1 TO 8 Temp\$=MID\$(DI\$,N,1) IF Temp\$="0"THEN OUT &H3FC, (&H1 OR INP(&H3FC)) ELSE OUT &H3FC, (&HFE AND INP (&H3FC)) END IF 'out DI OUT &H3FC, (&H2 OR INP (&H3FC)) 'SCLK high IF (INP (&H3FE) AND 16)=16 THEN D0\$=D0\$+"0" ELSE DO\$=DO\$+"1" END IF 'Input DO 'SET DTR HIGH OUT &H3FC, (&H1 OR INP (&H3FC)) OUT &H3FC, (&HFD AND INP (&H3FC)) 'SCLK low NEXT N IF DOL>8 THEN FOR N=9 TO DOL SET DTR HIGH OUT &H3FC,(&H1 OR INP (&H3FC)) OUT &H3FC,(&HFD AND INP (&H3FC)) 'SCLK low OUT &H3FC,(&H2 OR INP (&H3FC)) 'SCLK high IF (INP(&H3FE) AND &H16)=&H16 THEN D0\$=D0\$+"0" ELSE DO\$=DO\$+"1" END IF NEXT N END IF OUT &H3FC,(&HFA AND INP(&H3FC)) 'SCLK low and DI high FOR N=1 TO 500 NEXT N PRINT DO\$ INPUT "Enter "C" to convert else "RETURN" to alter DI data"; s\$ IF s\$="C" OR s\$="c" THEN GOTO 20 ELSE GOTO 10 END IF END



National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications