. With

TRI-STATE Outputs

54ABT543

Octal Registered Transceiver with TRI-STATE® Outputs

General Description

The 'ABT543 octal transceiver contains two sets of D-type latches for temporary storage of data flowing in either direction. Separate Latch Enable and Output Enable inputs are provided for each register to permit independent control of inputting and outputting in either direction of data flow.

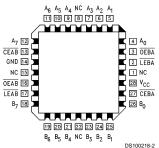
Features

■ Back-to-back registers for storage

- Bidirectional data path
- A and B outputs have current sourcing capability of 24 mA and current sinking capability of 48 mA
- Separate controls for data flow in each direction
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability
- Standard Military Drawing (SMD) 5962-9231401

Ordering Code:

Military	Package	Package Description		
	Number			
54ABT543J-QML	J24A	24-Lead Ceramic Dual-In-Line		
54ABT543W-QML	W24C	24-Lead Cerpack		
54ABT543E-QML	E28A	28-Lead Ceramic Leadless Chip Carrier, Type C		


Connection Diagrams

Pin Assignment for

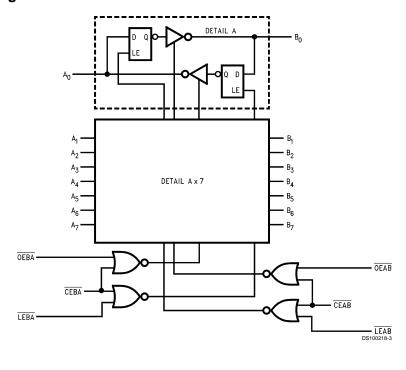
Pin Assignment for LCC

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Pin Descriptions

Pin Names	Description
OEAB, OEBA	Output Enable Inputs
TEAB, TEBA	Latch Enable Inputs
CEAB, CEBA	Chip Enable Inputs
A ₀ -A ₇	Side A Inputs or
	TRI-STATE Outputs
B ₀ -B ₇	Side B Inputs or
	TRI-STATE Outputs

Functional Description


The 'ABT543 contains two sets of D-type latches, with separate input and output controls for each. For data flow from A to B, for example, the A to B Enable ($\overline{\text{CEAB}}$) input must be low in order to enter data from the A port or take data from the B port as indicated in the Data I/O Control Table. With $\overline{\text{CEAB}}$ low, a low signal on ($\overline{\text{LEAB}}$) input makes the A to B latches transparent; a subsequent low to high transition of the $\overline{\text{LEAB}}$ line puts the A latches in the storage mode and their outputs no longer change with the A inputs. With $\overline{\text{CEAB}}$ and $\overline{\text{OEAB}}$ both low, the B output buffers are active and reflect the data present on the output of the A latches. Control of data flow from B to A is similar, but using the $\overline{\text{CEBA}}$, $\overline{\text{LEBA}}$ and $\overline{\text{OEBA}}$.

Data I/O Control Table

	Inputs		Latch Status	Output
CEAB	LEAB	OEAB		Buffers
Н	Х	Х	Latched	High Z
Х	Н	X	Latched	_
L	L	X	Transparent	_
Х	X	Н	_	High Z
L	X	L	_	Driving

- H = High Voltage Level
- L = Low Voltage Level
- X = Immaterial

Logic Diagram

www.national.com

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

 $\begin{array}{ll} \mbox{Storage Temperature} & -65\mbox{^{\circ}C to } +150\mbox{^{\circ}C} \\ \mbox{Ambient Temperature under Bias} & -55\mbox{^{\circ}C to } +125\mbox{^{\circ}C} \end{array}$

Junction Temperature under Bias

Ceramic –55°C to +175°C

 $\rm V_{\rm CC}$ Pin Potential to

Ground Pin -0.5V to +7.0V
Input Voltage (Note 2) -0.5V to +7.0V
Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Any Output

in the Disable or Power-Off State -0.5V to +5.5V in the HIGH State -0.5V to V_{CC}

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA) DC Latchup Source Current -500 mA Over Voltage Latchup (I/O) 10V

Recommended Operating Conditions

Free Air Ambient Temperature

Military -55°C to +125°C

Supply Voltage

DC Electrical Characteristics

Symbol	Parameter	ABT543			Units	V _{cc}	Conditions	
		Min	Тур	Max				
V _{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal	
V _{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal	
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA (Non I/O Pins)	
V _{OH}	Output HIGH Voltage 54ABT	2.5					$I_{OH} = -3 \text{ mA}, (A_n, B_n)$	
	54ABT	2.0			V	Min	$I_{OH} = -24 \text{ mA}, (A_n, B_n)$	
V _{OL}	Output LOW Voltage 54ABT			0.55	V	Min	$I_{OL} = 48 \text{ mA}, (A_n, B_n)$	
V _{ID}	Input Leakage Test	4.75			V	0.0	I _{ID} = 1.9 μA, (Non-I/O Pins)	
							All Other Pins Grounded	
I _{IH}	Input HIGH Current			5	μA	Max	V _{IN} = 2.7V (Non-I/O Pins)	
				3	μА	IVIAX	(Note 3)	
							V _{IN} = V _{CC} (Non-I/O Pins)	
I _{BVI}	Input HIGH Current Breakdown Test			7	μΑ	Max	V _{IN} = 7.0V (Non-I/O Pins)	
I _{BVIT}	Input HIGH Current			100	μA	Max	$V_{IN} = 5.5V (A_n, B_n)$	
	Breakdown Test (I/O)							
I _{IL}	Input LOW Current			-5	μA	Max	V _{IN} = 0.5V (Non-I/O	
				١	μπ	IVIGA	Pins)(Note 3)	
							V _{IN} = 0.0V (Non-I/O Pins)	
I _{IH} + I _{OZH}	Output Leakage Current			50	μΑ	0V-5.5V	$V_{OUT} = 2.7V (A_n, B_n);$	
							OEAB or CEAB = 2V	
$I_{IL} + I_{OZL}$	Output Leakage Current			-50	μΑ	0V-5.5V	$V_{OUT} = 0.5V (A_n, B_n);$	
							OEAB or CEAB = 2V	
los	Output Short-Circuit Current	-100		-275	mA	Max	$V_{OUT} = 0V (A_n, B_n)$	
I _{CEX}	Output HIGH Leakage Current			50	μΑ	Max	$V_{OUT} = V_{CC} (A_n, B_n)$	
I_{ZZ}	Bus Drainage Test			100	μA	0.0V	$V_{OUT} = 5.5V (A_n, B_n);$	
							All Others GND	
I _{CCLH}	Power Supply Current			50	μA	Max	All Outputs HIGH	
CCL	Power Supply Current			30	mA	Max	All Outputs LOW	
I _{ccz}	Power Supply Current			50	μA	Max	Outputs TRI-STATE	
							All Others at V _{CC} or GND	
Ісст	Additional I _{CC} /Input			2.5	mA	Max	$V_{I} = V_{CC} - 2.1V$	
							All Others at V _{CC} or GND	
I _{CCD}	Dynamic I _{CC} No Load						Outputs Open, CEAB	

DC Electrical Characteristics (Continued)

Symbol	Parameter		ABT543		ABT543		Units	V _{cc}	Conditions
		Min Typ Max							
	(Note 3)			0.18	mA/MHz	Max	and OEAB = GND, CEBA =		
							V _{CC} , One Bit Toggling,		
							50% Duty Cycle, (Note 4)		

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 3: Guaranteed but not tested.

Note 4: For 8-bit toggling. I_{CCD} < 1.4 mA/MHz.

DC Electrical Characteristics

Symbol	Parameter	Min	Max	Units	V _{cc}	Conditions $C_L = 50 \text{ pF},$ $R_L = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		1.1	V	5.0	T _A = 25°C (Note 5)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}		-0.45	V	5.0	$T_A = 25^{\circ}C(Note 5)$

Note 5: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output at LOW.

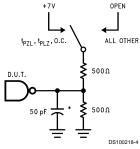
AC Electrical Characteristics

		54/	ABT		
		$T_A = -55^{\circ}$	C to +125°C]	Fig.
Symbol	Parameter	V _{CC} = 4	.5V-5.5V	Units	No.
		C _L =	50 pF		
		Min	Max		
t _{PLH}	Propagation Delay	1.6	6.4	ns	Figure 4
t _{PHL}	A_n to B_n or B_n to A_n	1.6	6.2		
t _{PLH}	Propagation Delay				
t _{PHL}	$\overline{\text{LEAB}}$ to B _n , $\overline{\text{LEBA}}$ to A _n	1.6	6.6	ns	Figure 4
	OEBA or OEAB to A _n or B _n	1.6	6.4		
t _{PZH}	Enable Time				
t _{PZL}	$\overline{\text{LEAB}}$ to B_n , $\overline{\text{LEBA}}$ to A_n	1.3	6.4	ns	Figure 6
	OEBA or OEAB to A _n or B _n	1.8	7.4		
t _{PHZ}	Disable Time	2.0	7.2	ns	Figure 6
t _{PLZ}	$\overline{\text{CEBA}}$ or $\overline{\text{CEAB}}$ to A_n or B_n	1.5	7.0		

www.national.com

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

AC Operating	Requirements
---------------------	--------------


		54/	ABT		
		$T_A = -55^{\circ}$	C to +125°C		Fig.
Symbol	Parameter	V _{CC} = 4.5V-5.5V		Units	No.
		C _L =	50 pF		
		Min	Max		
t _S (H)	Setup Time, HIGH or LOW	3.5		ns	Figure 7
t _S (L)	A _n or B _n to LEBA or LEAB	3.0			
t _H (H)	Hold Time, HIGH or LOW	2.0		ns	Figure 7
$t_H(L)$	A_n or B_n to \overline{LEBA} or \overline{LEAB}	2.0			
t _S (H)	Setup Time, HIGH or LOW	3.3		ns	Figure 7
t _S (L)	A_n or B_n to \overline{CEAB} or \overline{CEBA}	2.5			
t _H (H)	Hold Time, HIGH or LOW	2.0		ns	Figure 7
t _H (L)	A_n or B_n to \overline{CEAB} or \overline{CEBA}	2.0			
t _W (L)	Pulse Width, LOW	3.5		ns	Figure 5

Capacitance

Symbol	Parameter	Тур	Units	Conditions: T _A = 25°C	
C _{IN}	Input Capacitance	5.0	pF	V _{CC} = 0V (non I/O pins)	
C _{I/O} (Note 6)	Output Capacitance	11.0	pF	$V_{CC} = 5.0V (A_n, B_n)$	

Note 6: $C_{I/O}$ is measured at frequency, f = 1 MHz, PER MIL-STD-883, METHOD 3012.

AC Loading

*Includes jig and probe capacitance

FIGURE 1. Standard AC Test Load

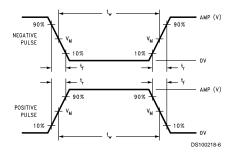


FIGURE 2. V_M = 1.5V Input Pulse Requirements

Ampli- tude	Rep. Rate	t _w	t _r	t _f
3V	1 MHz	500 ns	2.5 ns	2.5 ns

FIGURE 3. Test Input Signal Requirements

AC Loading (Continued)

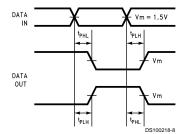


FIGURE 4. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

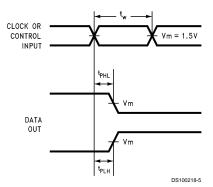


FIGURE 5. Propagation Delay, Pulse Width Waveforms

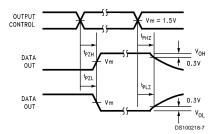


FIGURE 6. TRI-STATE Output HIGH and LOW Enable and Disable Times

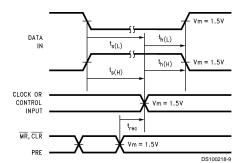
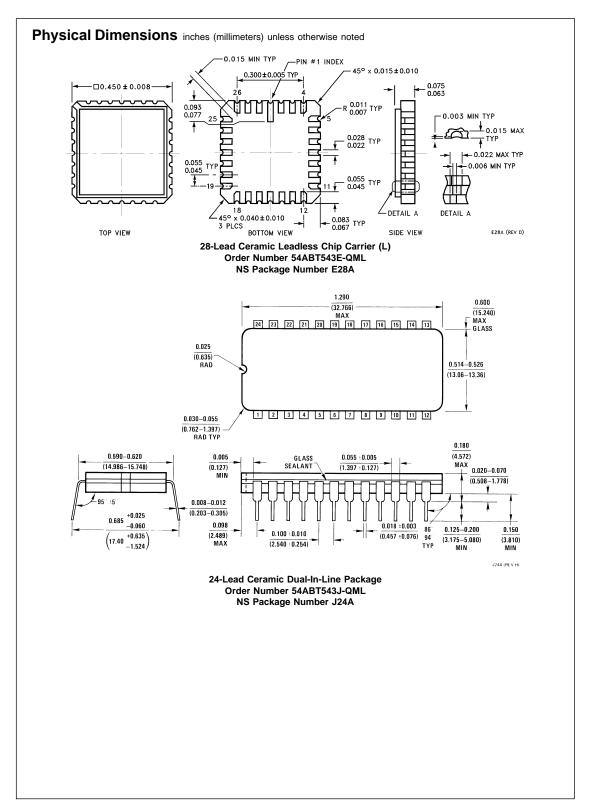
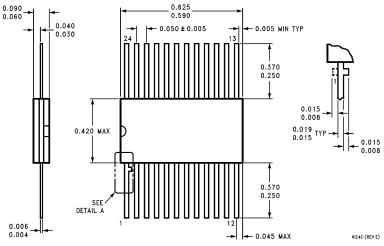




FIGURE 7. Setup Time, Hold Time and Recovery Time Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

24-Lead Ceramic Flatpak Package (F) Order Number 54ABT543W-QML NS Package Number W24C

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation Americas

Tel: 1-800-272-9959 Fax: 1-800-737-7018 Email: support@nsc.com

www.national.com

National Semiconductor Europe

Fax: +49 (0) 1 80-530 85 86 Fax: +49 (0) 1 80-530 85 86

Email: europe.support@nsc.com

Deutsch Tel: +49 (0) 1 80-532 85 85

English Tel: +49 (0) 1 80-532 78 32

Français Tel: +49 (0) 1 80-532 93 58 Italiano Tel: +49 (0) 1 80-534 16 80

National Semiconductor Asia Pacific Customer Response Group Fax: 65-2504466

Tel: 81-3-5620-6175 Fax: 81-3-5620-6179 Email: sea.support@nsc.com

National Semiconductor

Japan Ltd.