COP8™ Development Tools

QUICKSTART FOR THE DEBUG MODULE

March 1998

COP8 Debug Module Development Tools

REVISION RECORD

REVISION RELEASE DATE SUMMARY OF CHANGES
A 03/98 First Release

The information contained in this guide is for reference only and is subject to
change without notice.

No part of this document may be reproduced in any form or by any means without
the prior written consent of National Semiconductor Corporation.

© Copyright National Semiconductor Corporation, 1998

COP8 is a trademark of National Semiconductor Corporation

PC is a trademark of International Business Machine Corporation
iceMaster is a trademark of MetaLink Corporation

Windows and Windows NT are trademarks of Microsoft Corporation
InstallShield is a registered trademark of InstallShield Corporation

COP8 Debug Module Development Tools

What you need

® Computer and monitor : 486 or higher PC™ with at least 8 MB
RAM (16 MB recommended), a hard disk with at least 20MB of
free disk space and a mouse

* Windows™ 95, Windows N, or Windows 3.11 running in
enhanced mode (The descriptions in the document will assume a
Windows 95environment)

® (Optional) Printer

®* A LED (Light Emitting Diode) and a resistor (at least 330 Ohms)

Installing ASMCOP/Linker/Lib, MetaLink
iceMaster™ Debugger, and WCOPS8 IDE

Begin by clearing the memory by exiting all tasks:
Identify any resident programs by lowering the mouse cursor to the
taskbar, clear any program by clicking on them and exiting them.
This is usually accomplished by clicking Bite|Exit .

Install ASMCOP/Linker/Lib
1. Insert the disk labeleASM/Linker/Libinto the floppy drive
2. Click the start button and select Run
3. At the windows prompt Open:
A) Type in ainstall (where a: is your floppy drive)
B) At the dos prompt: Source drive of installation disk [A]:,
Select a: (where a: is the drive in which the floppy is in)
C) At the dos prompt for Directory for COP8 [C:\cop]:,
Select c:\cop (where c: is the hard dr 2)
D) Depress the return key
4. The install program will now decompress the necessary files.
5. When done, type in "exit " and hit the <RETURN> key.

Install iceMaster-Debug Module-COP8
1. Insert the disk labeladeMaster-Debug Module-COHBisk1 into
your floppy drive
2. Click the start button and select Run

COP8 QUICKSTART

COP8 Debug Module Development Tools

3. At the windows prompt Open:
A) Type in a:\setup (where a: is your floppy drive)
B) Click Yes to the prompt "Install COP8 Emulator”
C) Change disk(s) as requested by InstallShield
D) Select a destination path and ClickNext
E) Click Next to add files to the Program Folder
F) Click Ok to the next three menus

Install WCOPS8 IDE

1. Insert the disk labelddKD WCOPS8 IDE Diskinto your floppy
drive
Click the start button and select Run
3. At the windows prompt Open:
A) Type in a:setup (where a: is your floppy drive)
B) Click Next when you are done reading the information window

N

4. A screen will appear asking for your name, company, and
the serial number on the label of the WCOP8 IDE disk. Type in all
the necessary information and when done tiekt.

5. A window will pop up asking for which type of installation to do.
A) Click on the space next to "Make new installation and overwrite
all old settings" if this is a new installation of WCOPS8 IDE.
B) ClickNext when done.

6. A window will ask for "Destination Location" which WCOP8 IDE
will be installed at.
A) Click orNext for the default path or click ddrowsefor a to
enter another destination path.
B) Click oiNext when done.

7. A window will ask for the type of Operation System in which
WCOPS8 IDE will be installed into.
A) Select the type of Operation System.
B) Click onNext when done.

8. A window pane will pop up asking which Program groups should
the WCOP8 icons be installed.
A) Select a program group
B) ClickNext when done.
C) Click orNext to decompress the files and finalize the install
process.
D) Click onEinish when done to exit the install program.

COP8 QUICKSTART

COP8 Debug Module Development Tools

At the end of the installation(s) you can verify that the correct files have been
installed by using Windows Explorer and comparing your installation to that

COP8 QUICKSTART

shown in Fig 1.

B3 Exploring - E:\COP
File Edit “iew Toalz Help
B o @]| s]Ee|e] w] X 2
| Al Folders | Contents of 'EACOP
@ Deshtop = PEMoop axe | Cop88fclinc ﬁubcop.exe
L:_I hity Computer FAsmoop hip @ Cop38&es ng @ Libeop hip
- 3% Floppy (&) 9 Femread.me @ Copfffeb.inc E Lmhex.exe
[+ 5% Floppy (B:) 9 Femrel let @ Cop2$geg.ine Lncop.cfg
[H-i=p Wallace (C:) @ Copé.ine @ CopB88ek in: E Lncop.exe
D'"@ Fudio CONCOY) @ Cop&20.asm @ Cop8&dew inc @ Lncop.hip
- Zip 100 (E:) @ Cop&20.ing @ Cop&3ath.ine ﬁ Promcop.axe
-+ bachk
= g ”p 1) Copszot 1] Copsssgd.ine Runsamp bat
Cop
= 'D p 8 @ Copfila.asm @ Cop888gg.inc Sample.bat
= o
EH:IP Wioapt @ Cop820b.asm @ Copg88gw.inc E}{cm.exe
'D Example @ CopB20c.inc @ Cop888hg.inc Hero out
] Copadn ine 1) Copasskg ine
@ CopB40c.inc @ Copfacc.inc
'D Wstalink @ CopfG20.asm @ Copfsaa.inc
2] Cop#i20Lh] Copasab inc
-3 wnezsso %c psazn' %c pa i
: A| Cop ine A Copizac inc
Examples
&] Copanzo it) Copatze ine
] Copaszo.m] Coopoce £l
@ Co.ntrol Fanel @ CopfGdlinc @ Copaxx.h
% ;"Teurs " y @ Cop3720.inG: @ Copxxxlh
ial-Up Metuarking @ Co . ;
4 pa80.inG @ Copaaxx2 h
_____ I@i Recycle Bin L @ CopB3Sbe:.inc ﬁ Dumpeoff exe
@] Copasaeting [T Hexditf.exe
@ CopB%8cg.asm E Hexlm exe
@ Cop3#gcg.ine E Install exe
=l 2
|B1 abjestz) 281K (Disk fre= space: 10.4M8) -

Figure 1.

COP8 Debug Module Development Tools

Installing the Debug Module

1. Begin by identifying all the parts of the system. Locate the serial connection
cable, base unit, a power supply (there should be two for the Debug Module),
and a 40 pin ribbon cable with a header. The setup should look like Fig. 2.

110% Power Supply ~ Serial Cable Install Disks

220 Power Supply FBREEC b

Figure 2.

2. Connect the power supply module (110V or 220V) to the Debug Module.
Plug in the power supply but do not turn on the power yet!

3. Connect the serial cable to the PC and then connect the other end to the
Debug Module. This is shown in the Fig 3.

COP8 QUICKSTART

COP8 Debug Module Development Tools

COP8 QUICKSTART

Serial Port
Keyhoard Port i ‘iﬁ'_'//

__———Fower Supply

ﬁ 1107220 Yolts

Yideo Port

Metwork Port EFU Module

Serial Cable

Figure 3.
4. Install the ribbon cable with the 40 pin header onto the connector J20 on the
Debug Module.

5. Click on the Start menu, select Programs, select WCOPS8 IDE and the
program will start.

COP8 Debug Module Development Tools

COP8 QUICKSTART

The Quick Start Exercise

The sections which follow demonstrate the typical steps and procedures for
entering and modifying a program written for the COP8 Assembler, running the
Assembler and Linker, downloading the program into the Debug Module for
purposes of debugging and eliminating errors, and finally programming a COP
microcontroller EPROM or OTP part.

We make the assumption that you are somewhat familiar with embedded
microcontrollers, software text editors and assemblers, and some form of
debugging tool. By following this document closely you will be able to create
one example of a working set of firmware even if you’'ve never developed
software for a microcontroller. No previous experience with COP8
microcontrollers is required to understand and use the example program.

A Note on Developing Software

The first step in developing
application software is to carefully
specify the operational requirement
Flow-charts or some other technique
can be used to document the prograry
sequences in the software (such as
the one shown in Fig. 4) . Fig. 4is a
high level "idea chart" that we will
use for our exercise program. In
many cases new application software
is written by modifying existing
software. A sample program,
(main.asm) supplied with WCOP8
IDE, is used for our example. Using
Windows utilities (click and drag are
easiest) copy the example to your
quick project directory. WCOPS8
IDE allows you to organize software
development int@rojects. The
following briefly delineates the steps
to set up a project.

timer=0
counter=0

Delay
Subroutine

counter++
No N —
timer=0

3 sec have
elanased

Figure 4.

COP8 Debug Module Development Tools

COP8 QUICKSTART

~ WCOPS IDE
File Edit “iew Search Options

Qs LS

Open Project ...
Close Project

Save Eroject A5

Add Filels]...
Eemove File

Project Sefting=...

Rescan Far Tioals...

Figure 5.

Launch the WCOPS8 IDE by clicking on the Stslenu|Programs|WCOPS8

IDE. WCOPS8 IDE will scan the hard drive for ASMCOP/ LNCOP/PROMEOP
and ByteCraft's COPSCcompiler when it is ran for the first time. It will then
create the appropriate settings for your machine. Sete@ct|New Project

and, on the New Project window (Fig.5), locate the directory c:\cop8\project\
quick. At the File Name prompt type in main.prj. This will be the project name
of our lesson. Click OK, and the Project Files window appears (Fig. 6).

COP8 Debug Module Development Tools

. WCOPS IDE
File Edit “iew Search Options BEGE=S Debug Execute Window Help
» » [Hexy Project... o o
3 (] ‘ t 5a 23 | 5
D = I]D @ % Open Project... ’. “ m @

Cloze Project

Save Project As...

Eemoyve File

Project Settings...

Rescan For Tools...

“Project - ef\cop8'weopBiexampleimain.prj

Project
e\copBwoopBhexampletmain, pri
Praject files

4 Files ﬁlnformation !

| | | | Project: main.prj

Figure 6.

SelectProject|Add Files Select main.asm as the only file for this project. Click
OK, and the . The project main.prj has been created, and consists only of the
one file main.asm. Click on the main.asm icon, and edit the file so that it
corresponds to the listing in Appendix A, and save it.

COP8 QUICKSTART

10

COP8 Debug Module Development Tools
Stepl. Setup of the Circuit

The modified software, when executing on
your Debug Module, will blink an LED at
two different rates. The LED and a series
resistor are connected betweeg &hd one
of 2 PORT “D” I/O pins. Attach a clip lead
to the post TP6 which is ¥ This will be
used to obtain LED voltage. (See Fig. 7a

and 7b).
TP& Vo {(+5V)
1
= TP {Vec)
®20%% %m
[4 0 330 Ohm
v
¥
@ _
DP—r
J1-I0{iby GND
Figure 7b.
Figure 7a.

When the assembled circuit (Fig 7b.) is

connected, and the program is running, the | Status: Fiished |
LED attached at Debug Module J20-DO0 will
blink at approximately 1/2 second on, 1/2 | Infomation:

second off. When the LED is attached to Froject: &:\copBincap. mpletmain. pi

COP8 QUICKSTART

Debug Module J20-D it will blink at e
approximately 3 seconds on, 3 seconds off.
Rate will vary a bit depending on your Result
processor speed. Since the Debug Module | Fiefs lnked with success..
simulates fetching instructions over the serid
(RS-232) host port, the dominate timing
parameter is the baud rate.

Figure 8.

11

COP8 Debug Module Development Tools

Click on the main.asm icon. Seldetecute|Build or click on the build icon. A
window with the title Executing will pop up. WCOPS8 IDE will assemble, and if
there are no assembly errors link the program.

If there are assembly errors, an error map is displayed. If no error(s) occurred then
a display such as the one in Fig. 8 will be given.

Large embedded microprocessor projects frequently contain more than one file
(module) each of which is assembled separately. The Assembler outputs are then
linked together and tested as a whole. WCOPS8 IDE haake function that
assembles only the files that have changed, and then links the files to produce the
symbolic output ready for loading into the Debug Module or other MetaLink
emulation tool. For this feature sel&octecute|Makeor click on the make icon.

WCOP8 IDE provides for consolidation of all of these modulespaejact, and
includes several features for the orderly processing of these multiple modules. This
example, set up as a project even though the source is a single file module,
nevertheless illustrate the principles of project management. Chapter 8 in the
WCOP8 IDE User’s ManualJsing the WCOPS8 IDE in Project Mogdeovers these
additional features in detail.

Step 2. Debugging and Testing Software on the Debug Module

We will now setup WCOPS8 IDEo that it will recognize the MetalLink iceMaster
Debugger. Click oRroject|Project Settings.Double Click MetaLink tools. Click
onWindow COP8 Emulator. Click onBrowse button and locate where
MetaLink's debug program is located. A path/program name similar to
"e:\metalink\whp2380\whp2380.exe" should be found. A window similar to Fig. 9
will now be displayed.

Project Settings - quick.prj K

O S —
& HSC assambler quf&ws COPE Emulatol

< Byte Craft C compiler Metalink Windows COPS Emulator

= MetaL ink tools —
D0S EPU o vmetalinktiwhp2380whp2380 exe |

DOS Debug Module

DOS iceMASTER.

DOS iceDEMOjiceSIM
windows COP$ Emulator

~Command line parameters
[¥ Use command line parameters
& National COFF-flle (.cof)
€ Intel HEX-file (hex)

¥ Ok | | ¥ Cancel

| % |nheiit Project Settings..

Figure 9.

12

COP8 Debug Module Development Tools

COP8 QUICKSTART

Click on the box next to the sententést command line parameter$
Click on the selection National COFF - file (.cof) parameters
Click Ok when done.

Connect the ribbon cable with the header pins to the target hardware, in this
case the LED and resistor, to J20. (In a typical application, the supplied cable
will be used to connect between Debug Module J20 and the microprocessor
socket on the target hardware.) Power up the Debug Module and click on
Debug|Windows COP8 Emulatorto activate the Debug Module and the PC. A
window will pop up asking you to select a project directory . Select a directory
and clickOK. A Select Chipwindow will pop up. Select the 8SGR (40 - pin
configuration) as th&mulation Deviceand ClickOK. Another window will

pop up asking for a communications port (COM1-COM4) in which the Debug
Module is connected to. Click the appropriate COM port and €li€k The
specific device and com port information will be preserved and the user will not
have to re-enter information the next time he/she load up the same project
directory.

Step 3. Configuring the Debug Module

The Debug Module software generally
locates the serial port through the
configuration file used by the Debug
Module, and establishes the connection
between the PC and the Debug Module. If
there is a problem, use
Configure|Emulator to select the serial
port and baud rate. While the serial port is

usually set to the highest baud rate, it is sometimes necessary to set the baud rate
to a lower value to ensure reliable operation. Refer to the "troubleshooting”

section (pg. 5/6) of the Debug Module manual if you encounter any

configuration problems.

Step 4. File

SelectFile|Load so that the executable (in this case main.cof) can be entered
into the File Name box. At the prompt, “Merge into current application
environment?”, select no (merge allows multiple files to be loaded into memory
without pre-initialization to all 0x00 content).

13

COP8 Debug Module Development Tools

COP8 QUICKSTART

Note: By displaying main.asm in the edit window when selecting
Debug|Windows Emulator, the default directory used by the Debug
Module will be c:\cop8\ The full path for the executable, main.cof, need
not be entered into the File Name entry box.

Once loaded the Debug Module is ready to execute, and following your
directions, to test the example If you are optimistic you can simply click RUN
and see the result. By following the techniques described below you will learn to
use some of the testing features available using the Debug Module and
iceMaster debugger software.

14

COP8 Debug Module Development Tools

Step 6. Adding/Using a simple
Break/Trace

This section covers the basics for
setting, editing and removing
breakpoints. Breakpoints are
generally inserted at critical points

in the program to verify program
operation. Once started, the
microcontroller runs until the next
breakpoint is reached. The process is then frozen and the microcontroller’s
internal state is displayed for examination and possible change. When ready,
the process can be resumed (to run until the next breakpoint) or restarted.

W@ Source <1> =10 =]
File Options View Assemble SEE S Run-Util
0oon BCEEAD LD CNTRL#CAD ram[EE]=00 |
0003 BCEAES LD TMRILO#FHER L]
0on&é BCEBO3 LD TMR1HI#03
oona BCECF4 LD TIRALO#KF4
oonc BCEDDM LD TIRAHI #01
000F BCEGEZ Break Flags LD TIRBLO#ES
001z BCETO3 LD TIRBHL#X03
ao1s REIT 3,PORTGD ;@GD3_T1A
ootz sBIT 3,PORTGC ;@GCI_T1A
ooe LD o #11
a0ME SHIT 4 CHNTRL @T1Cc0
0021 o JSRL 0028
0024 0ARDO200 JSRL ¥0200
o027 Fa JP Hoo21
ooza DOFF LD FO#XFF
ooza co DREZ Fo
00zB FE JP K024
oo 2E RET
oozD oo INTR:
00ZE 00 INTR
00zF oo INTR
ao3n 0o INTR
o3 oo INTR
0032 oo INTR
o003 oo INTR
o034 oo INTR
00z oo INTR:
0036 00 INTR:
0037 oo INTR:
ooz 00 INTR
00z oo INTR
00z~ oo INTR
0o03e 00 INTR
0o3c 0o INTR
ooao oo INTR
ﬂQE nn INTR "
Figure 10.

The Debug Module also retains a trace of the most recent 100 frames that
occurred in the execution cycle. In addition to the trace, content of the internal
registers and stack, condition of the input/output ports, and memory content
(RAM and ROM) are also available.

A breakpoint is added by clicking on the code line, and then clickifigpggle-
Breakpoint. A breakpoint is enabled when a small square appears to the right
of the instruction address (Fig. 10). Using the Debug Module you can enable up
to 32k breakpoints . A breakpoint can be cleared by selecting the set breakpoint
and clicking on Toggle-Breakpoint a second time. Here we will add a breakpoint
at line 21 and line 24. Line 21 and Line 24 are where the subroutines are called.

15

COP8 QUICKSTART

COP8 Debug Module Development Tools

COP8 QUICKSTART

Step 7. Running the Code

Note that the Debug Module is an in-circsiitnulator as opposed to the more
common in-circuiemulator. While the in-circuit emulator runs in real time,

the in-circuit simulator is controlled by software, executes instructions one at a
time, and runs much slower (approximately 10 KHz). Instruction fetch and trace
are performed within the PC with the microcontroller code memory loaded cycle
by cycle over the serial port. Execution speed is primarily a function of baud
rate.

It is good practice to reset the microprocessor before starting the simulation.
This is done by selectingun|Reset|ProcessorSelectingRun|Go (function key

F4) causes the processor to run to the next breakpoint and stop.Fagifsb.

W Source <1> 4 [5
Eile Cptions View Assemble Toggle-Breakpaint Run-Until

0000 BCEEAD LD CNTRL #XAD ram[EE[=00 2l

0003 BCEAESB LD TMRILO #HER L

ooos BCEBD3 LD TMRIHI#03

0008 BCECF4 LD TIRALD #XF4

o000 BCEDOM LD TIRAHIFH01

000F BCEEBES LD TIRBLO#XES

o012 BCETO2 LD TIRBHI#X03

0015 BDD4EBR REIT 3 PORTGD ;@GD3_T1A

oo1e BDDA7B SBIT JPORTGC @GCI_TIA

o018 BCEF11 LD PEWE

001E BDEETC SBIT 4,CNTRL ,@T1C0

0021 0 ADOD2ZE JERL xooze w0022 SP=6F

0024 0 ADOZOO JERL ®oz00

ooz7 F9 JP ®oon

0028 DOFF LD FO#{FF

ooza co DREZ FO

0028 FE JP XO02ZA

oo2c 8E RET

070 nn IRITR
WATrace <1> 198 [
File Options iew Search

- 36 0000 3 LD CNTRL#FXAD =
- 33 0003 3 LD TMR1LO#{ES

- 30 0006 3 LD TMRIHI#03

- 27 0009 3 LD TIRALO#KF4

- 24 000C i LD T1RAHI 1

-2 nooF 3 LD T1RBLO #XES

- 18 0012 3 LD T1RBHI#X03

- 15 0014 4 RBIT 3PORTGD @GO3_T1A

-1 no1s 4 SBIT 3PORTGC [(@GC3_TIA

7 LR =] 3 LD PowW 11
4 001E 4 SBIT 4, CHTRL ,@T1Cco
--------------------- Instruction About to be Executed: -—------mesemmee
o021 JSRL x0028

ol 0]

Figure 10

SelectWindow|Trace to use the Debug Module trace facility. This allows the

user to view the instructions that have been executed prior to the breakpoint.
After arriving at the breakpoint and enabling Tvace function you should

have a window similar to that of Fig. 11. This is important when verifying
instruction execution based on branches within the program. An alternative
method of simulation is to step through the program one instruction at a time.
While this approach can be time consuming, it is possible to determine the step-
by-step status of the microcontroller. This is accomplished by selecting

Run|Step (function keyF7).

COP8 Debug Module Development Tools
A Note On Window Displays

Simulation results are shown in the Debug Module
window which is divided into five window panes:

Source, Core Registers, Registers, Status and RAM
Memory. Each window pane can be expanded so that
all information can be viewed. The user can also
adjust the size of the window panes to suit the data
viewing requirements.

The Source window pane shows the hexadecimal
machine code and the source assembly code, and
indicates the active breakpoints. The RAM window

pane shows data in the RAM memory. The Status
window pane presents the simulation data including breakpoint address and other
related data. The Registers window pane shows the data in the registers, the timers
and input/output ports. The Core Register window pane shows the accumulator,
stack pointer, B and X registers as well as the flags in the Program Status Word
(PSW).

Since the first few instructions in the example program set up timer registers,
results of these instructions can be verified in the Registers pane.

17

COP8 Debug Module Development Tools

Step 8. Misc. Section - Programming the
(E)PROM

This section contains the procedures for
programming the COP One Time
Programmable (OTP) and erasable
microprocessors supported by the Debu
Module. SelecFile|PROM
Programmer|Deviceto display the set of
COP devices that can be programmed by
the Debug

Module. Select the appropriate device
from the list.

A window similar to that of Fig. 12 should pop up to allow programming of the
COP microcontroller.

#HCOPS MetaLink ICE - COPBSAC (DM) I8 [=] E3)

[EI Configure Run Displayféfter BreakfMrace Window Help
i#1 Core Registers <1> [S[= 5

Load.

Unload bmble Toggle-Breakpoint Run-Uil s Opions
Store. s Qo
= LD TMR1LO #XER 8 E5
(it LD ThR HIZX D3 i a5

LD TIRALOAXF4 SP B

m LD T1RAHI#:01 HC)

L
T TIPNDA O
BDD4EB LoadFile | Source | CodeMemory | Configuration | _ Checkeum | TIENA D
BDDS7E EXFND 0
i ECON (Configuration/Device): 0x00/Uricad G ©
0030 ADO2BD Secuiity bit (Configuration/Device): Disabled/Unread
0027 F8 User Data [Configuration, 0%8001-038008): 0x00 0400 0x00 0400 0x00 0x00 0x00 0x00
0028 DOFF User Data [Device): Unread
on 20 o ——————
002c 8E
0020 00
002E 00 Install COP8S xx/COP87Lx (JB35) shunt on DM4 before programming.
002 00
0030 00 _
0031 00 ‘ Warning: Do not put a chip in progiamming sacket until told to do so. ‘
003z 00 P WH Registers <1> =1of]
0033 00 © Automalic e Ol
034 00 = Start Operation PORTFD 00 4
0035 00 O Manual PORTFC 00
0035 00 PORTFP FF
o3 0o WKEDG 00
003 00 TRTRE MIEN 00
003 00 INTR WMIPND FO
0038 00 INTR PORTLD 00
o0o3c 0o INTR _';‘ FORTLC 00
i | A PORTLP F5
WHRAM Memory <1> =] B || A Status <1> (B x]|PorTGD 00
Fle Options Yiew Data Elle Cptions PORTGC 00
oo m 02 BC EC 7B BE 58 FB 23 7B BO 6D DE 83 4A 62 ' X 2{] j PC: 0x0000 ﬂ Eg2¥gg EE
010 31 19 DD5G 26 BAES OF 6D 4E CEAE 4F CRGD 71 1. . V& mN. L G Break Address: 00000 oRTeq 00
020 324287 9C 39 77 42 ET 14 CT1D 30 11 16 48 23 28. . BwB 0. |FEE 0 L oRTGD £F
030 1F 13 38 77 5 7E 2E 6F 48 52 33 B4 BOBI 0COT . . . w_~. . HR3 R o
040 43 EAGF DDF3 DB 53 7F 77 75 42 75 40 CB6A 7B C 5. wuBUE L oRoLo 08
050 40 48 73 D 95 4F 70IB1 25 43 BA 30 76 BS B3 EA @Hs] . O} . %C. 0w | Emuiation Status: Hone CiRon o
060 E7 84 6C 47 55 DB DF 7F 33 G218 A6 11 10 DIA . . | GU 3 Trace Status: Emply oL o0
070 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF Trace Read: 0% Sor 00
080 FF_FF_FF_FF_FF FF FF_FF_FF FF FF FF FF FF FF FF - -
Al | = s MRIL FF o

Figure 12.

Clicking on the Configuration button will bring up another window (Fig 13.)
which will allow a detailed configuration of the microcontroller. For the 40 pin
devices, the configuration of the COP device must be finalized.

COP8 QUICKSTART

18

COP8 Debug Module Development Tools

COP8 QUICKSTART

Select Security, and then
choose Disable or Enable.
For testing purposes
choose Disable. The clock
option is chosen by
selectingClock Option.

For testing purposes
choose RC Oscillator. The
clock configuration on the

» PROM Programmer Configuration Options X
r Clock —Halt Mode _
¢ Crystal (internal bias resistor disabled) ! Enabled

7 Crystal [internal bias resistor enabled) ! Disabled Cancel I

@ Crystal
' External
' RC Dscillator

rPort E
(¥ Enabled
" Disabled

— Power On Reset BAM Size Security Watchdog
O {7 64 Bytes " Enabled | | Enabled
¥ Disabled | | Disabled

5 128 Bytes

target hardware will determine
the selection of External Oscillator, RC Oscillator or Crystal Oscillator. Enable
the POR (Power On Reset) circuit by clicking onBloaver On Reset|Babled.

Figure 13.

TheRAM size selection is not available for the SGR Debug Module. If the
program has not been loaded, then sdleatl to load the program into the

Debug Module so that the COP microprocessor can be programmed. This is not
necessary if the program has been loaded as part of the debugging process; the
otp will program from the same memory that was used by the debugger for

simulation.

Programming the COP microcontroller is accomplished by selecting
File|Programming|Automatic and clicking on thé&tart QOperation. This first
checks that the COP device is blank, programs the code, and Configuration
(ECON) and Signature registers, and verifies the programming by reading the
just programmed device and comparing the data to the file. Selecting
File|Programming|M anual|Eprom Program will program only the code space.

Click on the buttorstart Operation to begin programming our microcontroller.
Follow the directions on the pop up window. After programming Click on the
Exit button to get back to the main client window. The software will ask you to
remove the chip from the programming socket. Make sure the chip is not in the
socket. Leaving the chip in may cause damage to both the simulator board
and/or the surrounding circuit.

19

COP8 Debug Module Development Tools

COP8 QUICKSTART

After "burning" the microcontroller you can test the behavior of the code at full
speed. Replace the ribbon cable header with the newly burnt chip and apply a
clean 5 volts (preferably from a power supply.) Detach the clip from TP6 and
attach it to a supply VCC (+5V) and the microcontroller ground to that of
supply GND. Make sure that the /RESET line is tied high as to enable the POR
(Power On Reset) circuit. The setup should look similar to that of Fig. 14.

5V or TP&
oo
— e o =4
—Hcs Co e 330 01
k& 1
— Garso BIINT [oo—
3 aisK B/INT o
—| el BIINT [Sa—
—— GriTKD GOANT |Hq—
—5 | CHI /REZET |53 SE -
e GND
q a2
Fo o7 [ai—
0 3
- F1 06 [Si—
7 | F2 05 rZg— L
Fa 04 [oa—
3 FE]
 Fa oz S
2 Fs 0Z a—
| F& Of (o ™ |
F7 i R —
7 T}
W 7
L1 6 o
g A
| L L3 37
L 4 -

Step 9. Conclusion And Final Thoughts

The WCOPS8 IDEis a powerful software tool
for organizing the development of single and
multiple module programs for the COP8 family
of microprocessors. The Debug Module
emulator is an inexpensive tool for debugging
and testing COP8 software and verifying the
operation of the target hardware.

20

COP8 Debug Module Development Tools

Appendix A

Assembly Code For The QuickStart Lesson

* COMPANY : K&K Development *

* PROJECT WCOP8 IDE Test Assembler PrOJect *
* FILENAME : Main.asm

* VERSION :1.0 *,
-*

*-

;* This file is part of the test project that corﬁes *
;* with the WCOP IDE software. The only purpose of the *;
;* project is to serve as an example when explorlng the *;

* features of WCOP8 IDE.

-
* K&K Development makes no warranty, representation or *;

;* guarantee regarding the suitability of this prolect *
* for any particular purpose. ;

.chip COP888EG
.incld main.inc

; Set up memory location COUNTL as a register so that the
; instruction DRSZ (Decrement and Skip if Zero) can be used
; to test the result. See it used below.)

.sect REGISTER,REG
COUNT1: .dsh 1
; .endsect

; This tells this software module that there is a software
; subroutine in another module called "Subroutine”. Not used as part
; of the demo.

;.extrn Subroutine ;:Subr. from ext. module

; This section of code is given the name "codel". The first line of

; code, a call to a subroutine name "Subroutine" has been commented
; out since it is not used as part of the demonstration. The second

; instruction sets up Timer 1 to produce a rectangular pulse train

; on pin 3 of Port G. Instructions 3 and 4 initialize 16-bit Timer

; T1. The next 4 instructions initialize two 16-bit registers whose

; contents are alternately loaded into Timer each time it counts

; down to 0 and generates an interrupt. If both register were

; reloaded with the same value, a square wave output would be

; produced. (Indicated times are for real timer operation.)

.sect codel,rom

init:
; JSR Subroutine ;Call subr from ext. module
LD CNTRL,#B'10100000 ;PWM Mode, T1A Toggle

COPS8 QUICKSTART

21

COP8 Debug Module Development Tools

LD TMR1LO,#L(1000) ;1ms,tc=1us

LD TMR1HI,#H(1000)

LD T1RALO,#L(500) ;0.5 ms

LD T1RAHI,#H(500)

LD T1RBLO,#L(1000) ;1.0ms

LD T1RBHI,#H(1000)

RBIT 3,PORTGD ;set up Port G bit 3

SBIT 3,PORTGC ;as an output

LD PSW,#B'00010001 ;Enable global and timer q
;interrupts

SBIT 4,CNTRL ;Start Timer T1

Once started the software will loop through this section until
; halted. Operation of the DELAY and TOGGLE subroutines is described

; below.
WAIT:
JSR DELAY
JSR TOGGLE
JP WAIT
.endsect

jeereek|nterrupt handler(s)*

; This section, the timer interrupt handler software, is given the

; hame "intr", and is located at address OxFF. All interrupt

; software for the COP8 family must start at location oxFF. The

; exclusive OR instruction is used to toggle bit ; 0 of output port

; D. The timer pending flag, PSW bit 5, is set whenever a timer

; interrupt occurs, and must be cleared by the interrupt handler.

; Interrupts are disabled whenever an interrupt is detected. RETI is
; a special return instruction which re-enables the interrupts.

; Save the state of the registers before jumping to the Interrupt
; Service Routine

; Note: The COP uses a Vectored Interrupt Structure versus
; a polled interrupt structure

.sect intr,rom,abs=0xff
.=00FF ; Start at interrupt address
; This is needed to store

; the state of the CPU before
; the "jump" to the ISR

Save: PUSH A ; Push Accumulator contents onto
; stack
LD AB
PUSH A ; Push B pointer onto stack
LD AX

COP8 QUICKSTART

Assembly Code Continued

22

COP8 Debug Module Development Tools

COP8 QUICKSTART

Assembly Code Continued

PUSH A ; Push X pointer onto stack
VIS ; Vector to the appropriate
; interrupt routine

Restore: ; This is needed to re-store
; the state of the CPU before
; the "jump" to the ISR

POP A ; Pop X pointer from stack

X AX ; Restore X pointer

POP A ; Pop B pointer from the stack
X AB ; Restore B pointer

POP A ; Restore Accumulator contents
RETI

TimerlA_Service:

RBIT 5,PSW ;Reset Timer T1A pending flag
LD APORTD ;Input Port D
XOR A#001 ;Toggle bit 0, 1.5ms
X A,PORTD ;Output changed port bit
JP Restore

; These interrupts are not used in
; the program
NotUsed: ; They do nothing

JP Restore

.endsect

. ******Vector Tab I e*******

; This is the table which corresponds to the ISR(s) above
; There is a typical ISR table in page "3-4 Interrupts" of

; the feature family user's manual

; Make the edit to the table as required

.sect Interrupt_TABLE, ROM, ABS=0x1EOQ ; Vector Table
; Now Define where the interrupt are going
; be at. We start at location Ox1EO

.Addrw NotUsed
.Addrw NotUsed
.Addrw NotUsed
.Addrw NotUsed.
.Addrw NotUsed
.Addrw NotUsed
.Addrw NotUsed
.Addrw NotUsed
.Addrw NotUsed
.Addrw NotUsed
.Addrw NotUsed
.Addrw TimerlA_Service
.Addrw NotUsed
.Addrw NotUsed
.Addrw NotUsed
.Addrw NotUsed

23

COP8 Debug Module Development Tools
Assembly Code Continued

.endsect

; This section of code is given the name "delay". Register COUNTL1 is
; Is initialized to a count of OxFF. The DRSZ instruction decrements

; COUNT1, and compares the result to zero. If zero the jump

; instruction back to LABEL is skipped and the delay routine is

; exited.

.sect delay,rom

DELAY:
LD COUNTL1,#0FF
LABEL1:
DRSz COUNT1 ; Decrement COUNT1, skip if zero
JP LABEL1
RET
.endsect

This section of code is given the name "toggle", and is placed in
; ROM. The exclusive OR instruction is used to toggle bit 1
; of output port D. The DELAY subroutine inserts a time delay.

.sect toggle,rom

TOGGLE:
LD APORTD ;Input Port D
XOR A,#002 ;Toggle bit 1
X A,PORTD ;Output changed port bit
JSR DELAY ;Time delay
RET
.endsect
*kkkkkkkkkkkkkkkkkkkkk
.end init

COP8 QUICKSTART

24

