
COP8™

Assembler/Linker/Librarian
User’s Manual

 Literature Number 620896-003
November 1996





Assembler/Linker/Librarian User’s Manual

FOLD, STAPLE, AND MAIL November 1996

READER’S COMMENT FORM
In the interest of improving our documentation, National Semiconductor invites your
comments on this manual.

Please restrict your comments to the documentation. Technical Support may be contact-
ed at:

(800) 272-9959  (U.S.) U.S.,  Canada and South America
49 0-180-532 78 32 (Germany) Europe and Israel
852 737-1800 (Hong Kong) South East Asia, Australia, New Zealand and India
81-043-299-2309 Japan
(55-11) 212-5066 Brazil

Please rate this document according to the following categories. Include your comments
below.

EXCELLENT GOOD ADEQUATE FAIR POOR

Readability (style) ❒ ❒ ❒ ❒ ❒

Technical Accuracy ❒ ❒ ❒ ❒ ❒

Fulfills Needs ❒ ❒ ❒ ❒ ❒

Organization ❒ ❒ ❒ ❒ ❒

Presentation (format) ❒ ❒ ❒ ❒ ❒

Depth of Coverage ❒ ❒ ❒ ❒ ❒

Overall Quality ❒ ❒ ❒ ❒ ❒

NAME _______________________________________________DATE______________________

TITLE __________________________________________________________________________

COMPANY NAME/DEPARTMENT________________________________________________

ADDRESS_______________________________________________________________________

CITY____________________________________STATE_____________ZIP_________________

Do you require a response? ❒Yes ❒No      PHONE ________________________________

Comments: ______________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________

_________________________________________________________________________________



Please return this to:

In U.S.A.
(Including Canada and South America):

National Semiconductor Corporation
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA  95052-8090
Attn: Technical Publications, M/S E215

In South East Asia
(Including Australia, New Zealand and India):

National Semiconductor H.K. Ltd.
15th Floor, Straight Block
Ocean Centre
5 Canton Road
Tsim Sha Tsui East
Kowloon, Hong Kong
Attn: Business Center  Marketing
(f
In Europe
(Including Israel):

National Semiconductor GmbH
Livry-Garge-Stra. #10
D-82256 Fuerstenfeldbruck
Germany
Attn: Business Center  Marketing

In Japan

National Semiconductor Japan Ltd.
Sumitomo Chemical Engineering Building, 7F
1-7-1, Naskase, Mihama-Ku
Chiba-City, Ciba Prefecture 261
Japan
Attn: Business Center  Marketing
old)

Place
Stamp
Here



REVISION RECORD

REVISION RELEASE DATE SUMMARY OF CHANGES

A 09/92 First Release.
COP800™ Assembler/Linker/Librarian
User’s Manual
Publication Number 424421632-001A

B 08/93 Cleaned up and edited entire manual.

C 10/94 Added new parts to Appendix B.

-001 05/95 Added new parts to Appendix B.

-002 01/96 Added new parts to Appendix B.

-003 11/96 Added new parts to Appendix B.
ii



iii



PREFACE

This manual provides information on system programs that support the development of
COP8™ microcontroller applications. It is written for application developers who are us-
ing a chip in the COP8 microcontroller family in their embedded system.

Chapter 1 contains an overview of the COP8 development programs, ASMCOP, LNCOP,
and LIBCOP. It also describes the documentation conventions used in this manual.

Chapter 2 gives a detailed description of the COP8 cross-assembler, ASMCOP, including
inputs, instruction formats, directives, controls, and outputs.

Chapter 3 describes the COP8 Cross-Linker, LNCOP. Chapter 4 describes the COP8
Cross-Librarian, LIBCOP. Chapters 5, 6, and 7 describe four utility programs, DUMP-
COFF, PROMCOP, HEXLM, and LMHEX. Appendix A contains the ASCII character set
with its hexadecimal equivalent codes. Appendix B describes the supported COP8 chips
and default memory ranges.

ASMCOP is a cross-assembler for the National Semiconductor COP8 microcontrollers.
This manual describes the instruction formats, features, and directives of the ASMCOP
assembler. For a description of the instructions, see the COP8 Basic Family User’s Man-
ual, Literature Number 620895 and the COP8 Feature Family User’s Manual, Literature
Number 620897.

LNCOP is a cross-linker that links object files created by ASMCOP, to create an absolute
object file that can be down-loaded to a COP8 emulator.

LIBCOP is a cross-librarian that reads object modules produced by ASMCOP and com-
bines them into one file called a library for later use in other COP8 programs.

DUMPCOFF is a utility program used to display the COFF object files (generated by LN-
COP) in a readable form.

PROMCOP is a utility program used to convert the COFF object file into one or more out-
put files for the purpose of burning PROMS.

HEXLM and LMHEX utilities convert -LNCOP-hex files to National LM format, or LM
format to Intel-hex.

This manual assumes  you are already familiar with the host operating system. For ex-
ample, you need to know how files are named and used under the  operating system.  You
also need to be able to use an editor to produce symbolic files.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

COP8 is a trademark of National Semiconductor Corporation.
MS-DOS is a trademark of Microsoft Corporation.
iii



iv



CONTENTS
 Chapter 1  INTRODUCTION
1.1 OVERVIEW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-1
1.2 COP8 CROSS-ASSEMBLER (ASMCOP)  . . . . . . . . . . . . . . . . . . . .  1-2
1.3 COP8 CROSS-LINKER (LNCOP) . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2
1.4 COP8 CROSS-LIBRARIAN (LIBCOP) . . . . . . . . . . . . . . . . . . . . . .  1-2
1.5 COP8 COFF DISPLAY UTILITY (DUMPCOFF) . . . . . . . . . . . . . .  1-2
1.6 COP8 PROM UTILITY (PROMCOP)  . . . . . . . . . . . . . . . . . . . . . . .  1-2
1.7 HEX LM UTILITIES (HEXLM, LMHEX). . . . . . . . . . . . . . . . . . . .  1-3
1.8 DOCUMENTATION CONVENTIONS . . . . . . . . . . . . . . . . . . . . . .  1-3

1.8.1 General Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3
1.8.2 Conventions in Syntax Descriptions . . . . . . . . . . . . . . . . 1-3
1.8.3 Example Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4

 Chapter 2  CROSS-ASSEMBLER (ASMCOP)
2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1
2.2 INVOCATION AND OPERATION . . . . . . . . . . . . . . . . . . . . . . . . .  2-1

2.2.1 Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1
2.2.2 Assembler Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
2.2.3 Default Filenames and Extensions . . . . . . . . . . . . . . . . . 2-3
2.2.4 Include File Search Order . . . . . . . . . . . . . . . . . . . . . . . . 2-3
2.2.5 Help File Search Order . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2.2.6 Temporary File Directory  . . . . . . . . . . . . . . . . . . . . . . . . 2-4
2.2.7 Error Level Return  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4

2.3 ASSEMBLY LANGUAGE ELEMENTS . . . . . . . . . . . . . . . . . . . . .  2-4
2.3.1 Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2.3.2 Location Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5
2.3.3 Symbol and Label Construction  . . . . . . . . . . . . . . . . . . . 2-5
2.3.4 Operand Expression Evaluation . . . . . . . . . . . . . . . . . . . 2-6
2.3.5 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
2.3.6 Label Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
2.3.7 Operation Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16
2.3.8 Operand Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17
2.3.9 Comment Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17

2.4 ASSEMBLY PROCESS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-17
2.5 ASSIGNMENT STATEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-18
2.6 MACROS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-19

2.6.1 Defining a Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-19
2.6.2 Calling a Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-21
2.6.3 Using Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22
2.6.4 Concatenation Operator  . . . . . . . . . . . . . . . . . . . . . . . . . 2-23
2.6.5 Macro Local Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24
2.6.6 Conditional Expansion  . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
2.6.7 Macro-Time Looping  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-25
2.6.8 Nested Macro Calls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
2.6.9 Nested Macro Definitions  . . . . . . . . . . . . . . . . . . . . . . . . 2-26
2.6.10 Macro Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
 CONTENTS v



2.7 ERROR AND WARNING MESSAGES . . . . . . . . . . . . . . . . . . . . . .  2-26
2.7.1 Command Line Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-26
2.7.2 Assembly Time Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-27

2.8 THE ASSEMBLY LISTING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-35
2.9 DIRECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-35

2.9.1 .addr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-38
2.9.2 .addrw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-39
2.9.3 .byte, .db . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-40
2.9.4 .chip  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41
2.9.5 .contrl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-42
2.9.6 .do, .enddo, .exit, exitm . . . . . . . . . . . . . . . . . . . . . . . . . . 2-45
2.9.7 .doparm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-46
2.9.8 .dsb, .dsw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-47
2.9.9 .else . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48
2.9.10 .end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-49
2.9.11 .enddo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-50
2.9.12 .endif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-51
2.9.13 .endm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-52
2.9.14 .endsect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-53
2.9.15 .error, .warning  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-54
2.9.16 .exit, .exitm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-55
2.9.17 .extrn  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-56
2.9.18 .fb, .fw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-57
2.9.19 .form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-58
2.9.20 .if, .ifb .ifc, .ifdef, .ifnb, .ifndef, .ifstr, .else, .endif  . . . . . 2-59
2.9.21 .incld . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-62
2.9.22 .list  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-63
2.9.23 .local . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-65
2.9.24 .macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-66
2.9.25 .mdel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67
2.9.26 .mloc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-68
2.9.27 .opdef  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-69
2.9.28 .opt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70
2.9.29 .org  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-71
2.9.30 .outall, .out1, .out2, .out  . . . . . . . . . . . . . . . . . . . . . . . . . 2-72
2.9.31 .public . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-73
2.9.32 .sect, .endsect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-74
2.9.33 .set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-76
2.9.34 .space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-77
2.9.35 .title  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-78
2.9.36 .word, .dw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-79

2.10 ASSEMBLER CONTROLS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-80
2.10.1 Aserrorfile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-83
2.10.2 CHip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-84
2.10.3 Cnddirectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-85
2.10.4 Cndlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-86
2.10.5 Commentlines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-87
2.10.6 Complexrel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-88
2.10.7 Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-89
2.10.8 Crossref  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-90
2.10.9 Datadirectives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-91
vi CONTENTS



2.10.10 Define . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-92
2.10.11 Echo  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-93
2.10.12 Errorfile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-94
2.10.13 Formfeed  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-95
2.10.14 Headings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-96
2.10.15 Ilines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-97
2.10.16 Include  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-98
2.10.17 Listfile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-99
2.10.18 Localsymbols  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-100
2.10.19 Masterlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-101
2.10.20 Mcalls — Macro Calls  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-102
2.10.21 Mcomments — Macro Comments . . . . . . . . . . . . . . . . . . 2-103
2.10.22 Mdefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-104
2.10.23 Memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-105
2.10.24 Mexpansions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-106
2.10.25 Mlocal — Macro Local Symbols  . . . . . . . . . . . . . . . . . . . 2-107
2.10.26 Mobject — Macro Object . . . . . . . . . . . . . . . . . . . . . . . . . 2-108
2.10.27 Model—Memory Size Model  . . . . . . . . . . . . . . . . . . . . . . 2-109
2.10.28 Numberlines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-110
2.10.29 Objectfile  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-111
2.10.30 Pass  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-112
2.10.31 Plength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-113
2.10.32 Pwidth  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-114
2.10.33 Quick  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-115
2.10.34 Remove . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-116
2.10.35 Restore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-117
2.10.36 Save  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-118
2.10.37 Signedcompare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-119
2.10.38 Sizesymbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-120
2.10.39 Sym_debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-121
2.10.40 Tablesymbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-122
2.10.41 Tabs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-123
2.10.42 Undefine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-124
2.10.43 Uppercase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-125
2.10.44 Verify  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-126
2.10.45 Warnings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-127
2.10.46 Xdirectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-128

 Chapter 3  CROSS-LINKER (LNCOP)
3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-1
3.2 INVOCATION AND OPERATION . . . . . . . . . . . . . . . . . . . . . . . . .  3-1

3.2.1 Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.2.2 Default Configuration File  . . . . . . . . . . . . . . . . . . . . . . . 3-2
3.2.3 Linker Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3
3.2.4 Default Filenames and Extension  . . . . . . . . . . . . . . . . . 3-3
3.2.5 Library File Search Order . . . . . . . . . . . . . . . . . . . . . . . . 3-4
3.2.6 Help and Configuration File Search Order  . . . . . . . . . . 3-4
3.2.7 Temporary File Directory  . . . . . . . . . . . . . . . . . . . . . . . . 3-4
3.2.8 Error Level Return  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

3.3 MEMORY ALLOCATION AND LOAD MAP . . . . . . . . . . . . . . . . .  3-5
 CONTENTS vii



3.4 LINKER EXAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-7
3.5 LINKER ERRORS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-10
3.6 COMMANDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-16

3.6.1 Briefmap — Set Map Format  . . . . . . . . . . . . . . . . . . . . . 3-17
3.6.2 Crossref — Cross-Reference  . . . . . . . . . . . . . . . . . . . . . . 3-18
3.6.3 Debug — Debug Symbols  . . . . . . . . . . . . . . . . . . . . . . . . 3-19
3.6.4 Echo — Echo Command Files . . . . . . . . . . . . . . . . . . . . . 3-20
3.6.5 Extract, Extractsymbol — Extract Module from Library 3-21
3.6.6 File — Specify Linkfile  . . . . . . . . . . . . . . . . . . . . . . . . . . 3-22
3.6.7 Format — Specify Output Format  . . . . . . . . . . . . . . . . . 3-23
3.6.8 Ignoreerrors — Force Object File . . . . . . . . . . . . . . . . . . 3-24
3.6.9 Libdirectory — Specify Library Search Directory . . . . . 3-25
3.6.10 Libfile — Specify Library File to Search  . . . . . . . . . . . . 3-26
3.6.11 Load — Load Object File . . . . . . . . . . . . . . . . . . . . . . . . . 3-27
3.6.12 Localsymbols — Assembly Local Symbols . . . . . . . . . . . 3-28
3.6.13 Mapfile — Specify Map File  . . . . . . . . . . . . . . . . . . . . . . 3-29
3.6.14 Outputfile — Specify Output Object File . . . . . . . . . . . . 3-30
3.6.15 Pwidth — Specify Width of Map File . . . . . . . . . . . . . . . 3-31
3.6.16 Range — Specify Memory Ranges  . . . . . . . . . . . . . . . . . 3-32
3.6.17 Sect — Specify Section Address  . . . . . . . . . . . . . . . . . . . 3-34
3.6.18 Sizesect — Specify Section Size  . . . . . . . . . . . . . . . . . . . 3-35
3.6.19 Tablesymbols — Enable Symbol Table  . . . . . . . . . . . . . 3-36
3.6.20 Warnings — Display Warning Messages . . . . . . . . . . . . 3-37
3.6.21 Xdirectory — Exclude Standard Directories  . . . . . . . . . 3-38

 Chapter 4  CROSS-LIBRARIAN (LIBCOP)
4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-1
4.2 INVOCATION AND OPERATION . . . . . . . . . . . . . . . . . . . . . . . . .  4-1

4.2.1 Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1
4.2.2 Object Files and Module Names . . . . . . . . . . . . . . . . . . . 4-2
4.2.3 Library Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
4.2.4 Default Filenames and Extensions . . . . . . . . . . . . . . . . . 4-2
4.2.5 Help File Search Order . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2
4.2.6 Error Level Return  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

4.3 LIBRARY ERRORS  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-3
4.4 LIBRARY COMMANDS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-4

4.4.1 Add — Add Object Module  . . . . . . . . . . . . . . . . . . . . . . . 4-5
4.4.2 Backup — Create Backup Library  . . . . . . . . . . . . . . . . . 4-6
4.4.3 Delete — Delete Object Module  . . . . . . . . . . . . . . . . . . . 4-7
4.4.4 Echo — Echo Command Files . . . . . . . . . . . . . . . . . . . . . 4-8
4.4.5 List — List Library  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9
4.4.6 Replace — Replace Object Module  . . . . . . . . . . . . . . . . . 4-10
4.4.7 Update — Replace Object Module if Newer . . . . . . . . . . 4-11
4.4.8 Warnings — Display Warning Messages . . . . . . . . . . . . 4-12

 Chapter 5  COFF DISPLAY UTILITY (DUMPCOFF)
5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-1
5.2 OPERATION AND INVOCATION . . . . . . . . . . . . . . . . . . . . . . . . .  5-1

5.2.1 Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.2.2 Error Level Return  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2
viii CONTENTS



5.3 EXAMPLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-3
5.3.1 DUMPCOFF Sample1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3
5.3.2 DUMPCOFF /b /s /t /l main . . . . . . . . . . . . . . . . . . . . . . . 5-3
5.3.3 DUMPCOFF /e /h main . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5

 Chapter 6  PROM UTILITY (PROMCOP)
6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-1
6.2 INVOCATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-1

6.2.1 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1
6.2.2 Error Level Return  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

6.3 ERRORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-2

 Chapter 7  HEXLM, LMHEX UTILITIES
7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-1
7.2 LMHEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-1
7.3 HEXLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-2

 Appendix A ASCII CHARACTER SET IN HEXADECIMAL

 Appendix B CHIP ARGUMENTS AND DEFAULT RANGES

Index
 CONTENTS ix



Figures
Figure 1-1 COP8  Software Development Process  . . . . . . . . . . . . . . . . . . . . . .  1-1

Tables
Table 2-1 Arithmetic, Logical, and Relational Operators . . . . . . . . . . . . . . . .  2-9
Table 2-2 Operator Precedence Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-10
Table 2-3 Assembler Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-28
Table 2-4 Summary of Assembler Directives. . . . . . . . . . . . . . . . . . . . . . . . . .  2-36
Table 2-5 .CONTRL Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-43
Table 2-6 Code Alteration Based for JP, JMP, JMPL, JSR, and JSRL . . . . .  2-43
Table 2-7 List Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-64
Table 2-8 Summary of Assembler Controls . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-81
Table 3-1 Linker Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-11
Table 3-2 Summary of Linker Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-16
Table 4-1 Library Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-3
Table 4-2 Summary of Library Commands . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-4
Table B-1 Chip Arguments for Each Chip Family  . . . . . . . . . . . . . . . . . . . . . B-1
Table B-2 Default Ranges for Each Chip Family  . . . . . . . . . . . . . . . . . . . . . . B-2
x CONTENTS



Chapter 1

INTRODUCTION

1.1 OVERVIEW

This manual provides information on system programs that support the development of
COP8™ microcontroller applications on COP8 development systems. This manual does
not describe all necessary software; for example, it does not include information on a text
file editor, but such a program is necessary to develop input files for the COP8 cross-
assembler, ASMCOP.

The COP8 cross-assembler, ASMCOP, translates assembly source files into relocatable
object modules that contain instructions in binary machine language. These object
modules are linked using the COP8 cross-linker, LNCOP, to generate an absolute object
module; the absolute object module can be loaded into a COP8 emulator. The ASMCOP
object modules can also be combined into a library by using the COP8 cross-librarian,
LIBCOP. Figure 1-1 illustrates the software development process.

SOURCE
(ASSEMBLY)

ASMCOP
CROSS
ASSY

RELOCATABLE
OBJECT
MODULE

LNCOP
CROSS
LINKER

ABSOLUTE
OBJECT
MODULE

COP8
DEBUGGER

LIBCOP
LIBRARIAN

LIBRARY
OBJECT

FILES

COP8
EMULATOR

ASM-01

Figure 1-1 COP8 Software Development Process
INTRODUCTION  1-1



The following utilities are also provided:

• DUMPCOFF is a utility program used to display COFF object files (generated by
LNCOP) in a readable form.

• PROMCOP is a utility program used to convert a COFF object file into an Intel hex
output file for the purpose of burning PROMs.

• HEXLM and LMHEX utilities convert Intel-hex files to NSC LM format, or LM
format to Intel-hex.

1.2 COP8 CROSS-ASSEMBLER (ASMCOP)

The COP8 cross-assembler (ASMCOP) is a cross-assembler for the National
Semiconductor COP8 family of microcontrollers. ASMCOP translates symbolic input
files into object modules and generates an output listing of the source statements,
machine code, memory locations, error messages, and other information useful in
debugging and verifying programs.

Chapter 2 describes the format, features, and directives of the COP8 cross-assembler. See
the COP8 Basic Family User’s Manual and the COP888 Feature Family User’s Manual
for a description of the instructions.

1.3 COP8 CROSS-LINKER (LNCOP)

The COP8 cross-linker (LNCOP) links object files generated by ASMCOP. The result is
an absolute load module in one of various formats, such as Intel-hex, National “lm”
format, or COFF (Common Object File Format). The COFF file is accepted by COP8
debuggers.

1.4 COP8 CROSS-LIBRARIAN (LIBCOP)

The COP8 cross-librarian (LIBCOP) reads object modules produced by ASMCOP and
combines them into one file called a library. When linking other programs, the linker can
then search the library for modules defining any undefined external symbols.

1.5 COP8 COFF DISPLAY UTILITY (DUMPCOFF)

The COP8 COFF display utility (DUMPCOFF) displays the COFF object file in readable
form. Code, symbols, sections, and line information can be displayed optionally.

1.6 COP8 PROM UTILITY (PROMCOP)

The COP8 PROM utility, PROMCOP, converts the COFF object file into an Intel hex file
for the purpose of burning PROMs.
1-2 INTRODUCTION



1.7 HEX LM UTILITIES (HEXLM, LMHEX)

These utilities convert Intel-hex into NSC LM format or LM format into Intel-hex.

1.8 DOCUMENTATION CONVENTIONS

The follow documentation conventions are used in the text, syntax descriptions, and ex-
amples when describing commands and parameters.

1.8.1 General Conventions

Non-printing characters are indicated by enclosing a name for the character in angle
brackets <>. For example, <CR> indicates the RETURN key, <CTRL>B indicates the
character input by simultaneously holding down the control key(Ctrl) and pressing the
“B” key.

1.8.2 Conventions in Syntax Descriptions

The following conventions are used in syntax descriptions:

Spaces or blanks, when present, are significant; they must be entered as shown. Multiple
blanks or horizontal tabs may be used in place of a single blank.

{ } Large braces enclose two or more items of which one, and only one, must be
used. The items are separated from each other by a logical OR sign “|.”

[ ] Large brackets enclose optional items.

| Logical OR sign separates items of which one and only one may be used.

... Three consecutive periods indicate optional repetition of the preceding item.
If a group of items can be repeated, the group is enclosed in large parenthe-
ses “( ).”

 ,,, Three consecutive commas indicate optional repetition of the preceding
item. Items must be separated by commas. If a group of items can be repeat-
ed, the group is enclosed in large parentheses “( ).”

( ) Large parentheses enclose items which need to be grouped together for op-
tional repetition. If three consecutive commas or periods follow an item,
only that item may be repeated. The parentheses indicate that the group
may be repeated.

All other characters or symbols appearing in the syntax must be entered as shown.
Brackets, parentheses, or braces that must be entered are smaller than the symbols
used to describe the syntax. (Compare user-entered [ ], with [ ] which show optional
items.)
INTRODUCTION  1-3



1.8.3 Example Conventions

In interactive examples where both user input and system responses are shown, the ma-
chine output is shown in typewriter  type; user-entered input is shown in boldface
type.
1-4 INTRODUCTION



Chapter 2

CROSS-ASSEMBLER (ASMCOP)

2.1 INTRODUCTION

This chapter describes the inputs, format, directives, and outputs of the ASMCOP cross-
assembler. See the COP8 Basic Family User’s Manual and the COP8 Feature Family
User’s Manual for lists of instruction mnemonics and functions.

ASMCOP translates source files into object modules that contain instructions in binary
machine language. These object modules are linked with LNCOP to generate an absolute
object module; the absolute object module can be loaded into the COP8 emulator for
program debugging and emulation. The ASMCOP object modules may also be combined
into a library for later use in other programs by using LIBCOP.

To aid the programmer, the assembler optionally generates an output listing of the
source statements, machine code, memory locations, error messages, and other
information useful in debugging and verifying programs.

The assembler has a number of directives that control the operation of the assembler. For
example, the .TITLE directive controls the identifying title that the assembler prints on
the pages of the output listings; the .BYTE directive instructs the assembler to generate
data in memory bytes.

2.2 INVOCATION AND OPERATION

This section discusses the invocation of ASMCOP, assembler options, search order for
include and help files, and the default filenames and extensions. See the release letter for
installation instructions.

2.2.1 Invocation

For the MS-DOS operating system, the invocation line is as follows:

ASMCOP  (gives help information)

ASMCOP [options] asmfile[,asmfile[,...]] [options]
where: asmfile is the name of a program to assemble. Multiple files may be as-

sembled by joining them with a “,” for MS-DOS systems. Mul-
tiple source files are designed to allow the user to include
standard definition files without having to specify them in
each program. The default extension is .asm.
CROSS-ASSEMBLER (ASMCOP)  2-1



Invocation
options is a list of assembler options. If no options are specified the as-
sembler defaults are used. Section 2.2.2 describes the option
syntax.

NOTE: MS-DOS supports @cmdfile, where cmdfile contains additional invocation
line source filenames and/or options. This file has a default extension of
.cmd. For example, if the file a.cmd contains:

test /a

/o

and file b.cmd contains

/l=file

then the command

ASMCOP @a /e @b

is equivalent to

ASMCOP test /a /o /e /l=file

Any error detected on the invocation line causes the assembler to stop execution and
display the part in error with an appropriate message.

The following are example invocation lines for MS-DOS systems:

ASMCOP TEST /L=CON /NOOBJ/NOTABLE

The first command line assembles the file test.asm and outputs a listing to the console.
No object module or symbol table is produced.

ASMCOP JACK.SRC /CROSS /L

The second command line assembles the file jack.src in the current directory and outputs
a listing with cross-reference to the default file jack.lis. In addition, the object module is
written to the file jack.obj.

ASMCOP \DEMO\SAMPLE /D COUNT=6 /PW=120

The next example assembles the file sample.asm which resides in the directory demo. It
produces sample.obj, which is in the current directory. By default, it produces sample.lis
(errors only) in the current directory. The symbol COUNT is defined and given the value
6. Also, the page width is set to 120 characters.

ASMCOP \DEMO\SAMPLE /L=\DEMO\

The fourth example assembles the file sample.asm which resides in the directory demo.
It produces sample.obj, which is in the current directory. It produces sample.lis in the
directory demo.

ASMCOP MATH.DEF,MATH
2-2 CROSS-ASSEMBLER (ASMCOP)



Assembler Options
The last example shows two files being assembled as one assembly file. The program first
assembles math.def. When the end-of-file is reached, it then continues the assembly with
math.asm. By default, file math.obj is produced.

2.2.2 Assembler Options

An assembler invocation line option is an assembler control that is specified in a manner
consistent with the operating system.

The invocation line options for an MS-DOS operating system start with a slash(/), which
may be preceded or followed by a space. Assembler options are not case sensitive and may
be abbreviated to the minimum number of characters as specified in the control
descriptions. For example:

/CROSSREF / CNDL

See Section 2.10 for a description of all the assembler controls.

2.2.3 Default Filenames and Extensions

For those options that require a filename, the name may include a directory path. If it
consists of just a directory path, the default filename is used with that directory. The
default filename is the name of the last source file specified with any extension removed.

Default extensions depend on the operating system and how the file is specified on the
invocation line. For the MS-DOS operating system, a default extension is always placed
on a file unless one is explicitly specified.

If an output filename consists only of a directory, it should always be terminated by a “\”
on the MS-DOS operating system. If not, it is treated as a filename. Thus, /L=txt\
outputs the listing to file txt\cat.lis (assuming cat.asm is input file). /L=txt outputs the
listing to txt.lis.

2.2.4 Include File Search Order

When searching for a file specified on the .INCLD directive, directories are searched in
the following order:

1. Current directory

2. Directories specified by the /I option

3. Default directories

a. Directory specified by environment variable ASMCOP, if it exists

b. Directory specified by environment variable COP, if it exists

c. Directory \COP
CROSS-ASSEMBLER (ASMCOP)  2-3



Help File Search Order
If the /X option is specified, only the directories specified by the /I option are used.

Any filename that specifies an explicit directory is checked for only in that directory. No
other directories are searched.

2.2.5 Help File Search Order

When searching for the help file ASMCOP.hlp, directories are searched in the following
order:

1. Current directory

2. Default directories (as noted in Section 2.2.4)

2.2.6 Temporary File Directory

Temporary files are generated in the current directory, unless the environment variable
TMP specifies another directory, e.g., DOS command: set TMP=d:\. It is recommended to
specify TMP as a directory on a RAM drive, of size 256K.

Recommendations concerning the use of a RAM drive are contained in the
ASMREAD.ME file in your installation directory.

2.2.7 Error Level Return

If no errors occur, an error level of zero is returned. If errors occur, a nonzero error level
is returned (warnings are not considered errors).

2.3 ASSEMBLY LANGUAGE ELEMENTS

This section discusses the format used to write the following assembler statements.

• Character set

• Location counter

• Symbol and labels

• Expressions

• The four fields of assembly language statements:
2-4 CROSS-ASSEMBLER (ASMCOP)



Character Set
— label field

— operation field

— operand field

— comment field

The statement fields appear in the following order:

label field    operation field   operand field   comment field

Since the assembler accepts free-form statements, the user may disregard specific field
boundaries provided that the appropriate delimiters for each field are used (see
individual field descriptions). However, for clarity and readability, the use of field
boundaries is highly recommended.

2.3.1 Character Set

Each statement is written using the following characters:

Letters — A through Z (a through z)

Numbers — 0 through 9

Special Characters — ! $ % ' ( ) * + , - . / ; : < = > & # ? _ b

NOTE: Upper- and lowercase are distinct, and b indicates a blank.

2.3.2 Location Counter

Each program section has a separate location counter, and the counter is relative to the
start of that section. The assembler uses the location counter in determining where in
the current program section the current statement goes. For example, if the location
counter has the value X'24 (i.e., 24 hex) and the assembler encounters a 1-byte
instruction, the assembler assigns the instruction machine code to section address X'24
and increments the location counter by one, since the statement requires one byte of
memory. If the program section is relocatable, the linker assigns an absolute address to
the instruction.

The location counter symbol is a single dot (.). If the location counter symbol is used on
the right side of an assignment, the left symbol is assigned the current value of the
location counter. If the location counter symbol is on the left side of an assignment, the
value of the location counter is changed to the value of the right side of the assignment
statement.

2.3.3 Symbol and Label Construction

The following are the rules for symbol construction:
CROSS-ASSEMBLER (ASMCOP)  2-5



Operand Expression Evaluation
1. The first character of a symbol must be either a letter, a question mark (?), an
underline (_), a dollar sign ($), or a period (.).

2. All other characters in the symbol may be any alphanumeric character, dollar
sign ($), question mark (?), or underline (_).

3. The first 64 characters are used by the assembler (the SIZESYMBOL control
may reduce the number).

4. Symbols that start with a dollar sign are local symbols and are only defined
in a local region. (See Section 2.9.23.)

5. Symbols are case sensitive.

Symbols and labels are used to provide a convenient name for values and addresses. The
rules for constructing symbol names and the rules for constructing label names are the
same; only use distinguishes a symbol from a label. Section 2.3.6 describes how values
are assigned to labels. Sections 2.5 and 2.9.33 describe how values are assigned to
symbols.

2.3.4 Operand Expression Evaluation

The expression evaluator in the assembler evaluates an expression in the operand field
of a source program. The expressions are composed of combinations of terms and
operators.

Terms

Terms in an expression are:

• numbers in decimal, hexadecimal, octal, or binary
• string constants
• labels and symbols
• location counter symbol

Each term isdescribed by four attributes: value, relocation type, memory type and size.
The relocation type is either absolute or relocatable. An absolute term is one in which the
value is completely known during assembly. A relocatable term is defined as a label
within a relocatable section (see Section 2.9.32), a symbol equated to another relocatable
expression, or a symbol declared with the .EXTRN directive. The value of a relocatable
term is the offset of the label from the start of the section or the external value. Both of
these values must be determined by the linker.

Examples: LOOPloop$_? legal symbols

?1

_1

$1
2-6 CROSS-ASSEMBLER (ASMCOP)



Operand Expression Evaluation
The memory type of a term indicates whether the term represents a BASE, RAM,
EERAM, REG, SEG, SEGB or ROM address. This is also specified by use of the .SECT or
.EXTRN directives. In addition, the memory type of a term may be null in the case of an
absolute term. The size attribute of a term is null, byte or word. A term has the byte
attribute if it is the label on a .DB, .DSB, or .FB directive, or it is specified as byte on a
.EXTRN or .SET directive or = (assignment). A term has the word attribute if it is the
label on a .DW, .DSW, or .FW directive, or it is specified as word on the .EXTRN or .SET
directive or = (assignment).

An expression has the same attributes as a term. These attributes are taken from the
terms that comprise the expression, and only certain combinations of terms are valid in
an expression. The relocation type of an expression is derived from its terms as follows
(aterm is absolute, rterm is relocatable, op represents any operator, cop represents any
conditional operator, e.g., >=):

rterm = rterm + aterm

rterm = rterm - aterm

rterm = aterm + rterm

aterm = aterm op aterm

aterm = rterm - rterm

aterm = rterm cop rterm

In the last two cases, the terms must be relocatable within the same section. Any other
expression is considered to have a complex relocation type and must be resolved by the
linker.

The memory or size type of an expression is derived from its terms in a manner similar
to the relocation type. If type is an expression with memory or size type and number is
an absolute (non-label) value, then the following rules apply:

type = type + number

type = type - number

type = number + type

Any other combinations of memory or size types are considered null. Also, a complex
expression is considered to have a null size type.

The notation for the various types of terms is detailed later in this section.

Operators

Operators in an expression are:

• arithmetic operators

• logical operators
CROSS-ASSEMBLER (ASMCOP)  2-7



Operand Expression Evaluation
• relational operators

• upper- and lower-byte extraction operators

• untype operator

The arithmetic operators are the usual +, -, *, /, MOD, SHL, SHR, ROL, and ROR. The
logical operators are NOT, AND, OR and XOR. The available relational operators are EQ,
NE, GT, LT, GE and LE. The ampersand (&) is the untype operator. The upper- and lower-
byte extraction operators are HIGH and LOW. Table 2-1 lists the operators, function and
whether the operator is unary or binary. Some operators have optional syntax for
compatibility with older assemblers. Table 2-2 lists the precedence order for the
evaluation of the operators; a higher precedence operator is evaluated before a lower
precedence operator.

Parentheses are permitted in expressions. Parentheses in expressions override the
normal order of evaluation; the expression(s) within the parentheses are evaluated
before the outer expressions.

The assembler recognizes twelve types of terms. They are listed with their notations in
the following sections.

Decimal Constant Terms

A decimal constant term is a decimal number that optionally begins with “D'” or “d'.”
Leading zero is not permitted for decimal, except for simple case of constant 0.

Examples:       3, 234, -10, D'3.

Hexadecimal Constant Terms

A hexadecimal constant term is a hexadecimal number that starts with “X'” or “x'” or “H'”
or “h'” or “0X” or “0x” or 0. An optional “H” or “h” is permitted at the end.

Examples:       X'23A, H'23A, 0x23A, 023A, 023AH.

Octal Constant Terms

An octal constant term is an octal number that starts with “O'” or “o'” or “Q'” or “q'.”

Examples:       O'27, Q'27.

Binary Constant Terms

A binary constant term is a binary number that starts with “B'” or “b'.”

Examples:       B'011, B'0111011.
2-8 CROSS-ASSEMBLER (ASMCOP)



Operand Expression Evaluation
Table 2-1 Arithmetic, Logical, and Relational Operators

Operator Optional Function Type

+ Addition Unary or Binary

- Subtraction Unary or Binary

* Multiplication Binary

/ Division Binary

MOD Modulo Binary

SHL Shift Left Binary

SHR Shift Right Binary

ROL Rotate Left Binary

ROR Rotate Right Binary

NOT % Logical NOT Unary

AND & Logical AND Binary

OR ! Logical OR Binary

XOR Logical XOR Binary

LT < “Less Than” Binary

EQ = “Equal To” Binary

GT > “Greater Than” Binary

LE <= “Less Than or Equal To” Binary

GE >= “Greater Than or Equal To” Binary

NE <> “Not Equal To” Binary

& Untype Unary

LOW L Lower 8 bits Unary

HIGH H High 8 bits Unary

B_SECT Beginning of section Unary

E_SECT End of section Unary
CROSS-ASSEMBLER (ASMCOP)  2-9



Operand Expression Evaluation
Table 2-2 Operator Precedence Value

Operator Precedence Value

) 0 (lowest)

OR, ! 1

XOR 1

AND, & 2

NOT, % 3

LT, < 4

GT, > 4

EQ, = 4

NE, <> 4

LE, <= 4

GE, >= 4

+ 5

- 5

/ 6

* 6

MOD 6

SHL 6

SHR 6

ROL 6

ROR 6

LOW, L 7

HIGH, H 7

( 8

UNARY - 9 (highest)

UNARY + 9
2-10 CROSS-ASSEMBLER (ASMCOP)



Operand Expression Evaluation
String Constant Terms

A string constant term is a one or two character string enclosed in single quotation
marks.

Examples:       'Z', '$', '23', '', '''', ''''''.

The null string '' is evaluated as 0. Within a string, single quotation marks are indicated
by two quotation marks. The string '''' is the single quotation mark string, and '''''' is the
double quotation mark string.

String constants are represented internally by the appropriate 8-bit ASCII code (the
most significant bit is zero).

The following escape codes may be used in a string constant to represent the value
shown:

Any lowercase character may also be specified as uppercase (e.g., \b and \B are the
same).

Label Terms

A label term is described in Section 2.3.6 under the label field description.

Symbol Terms

A symbol term consists of a single symbol. The symbol has been given a value by either
an assignment statement (Section 2.5) or by the .SET directive (Section 2.9.33).

Examples: '' is replaced by 0
'A' is replaced by 041
'AB' is replaced by 04142

\a 0x7 bell
\b 0x8 backspace
\f 0xC formfeed
\n 0xA linefeed
\r 0xD carriage return
\t 0x9 horizontal tab
\v 0xB vertical tab
\0 0 null
' 0x27 quote
\" 0x22 double quote
\\ 0x5C reverse slash
CROSS-ASSEMBLER (ASMCOP)  2-11



Operand Expression Evaluation
Location Counter Terms

The location counter term is a single dot (.). The dot represents the location counter and,
if it appears within an expression, it is replaced by the current value of the location
counter.

Example:        JP .

Lower Half and Upper Half Terms

A lower-half term is represented by LOW expression. An upper-half term is represented
by HIGH expression. When the assembler encounters these terms in an expression, it
replaces it with either the lower or the upper eight bits of the value of the expression.

Examples: HIGH X'172F is replaced by X'17

LOW X'172F is replaced by X'2F

Size Type

The size type may be removed from a term with the & operator. For example, if

BYT = 7:BYTE

then &BYT has the value 7 and its size type is null.

B_SECT and E_SECT Operators

The B_SECT and E_SECT operators are used to obtain the beginning address of a
relocatable section and the ending address of a relocatable section plus one. This section
must be declared in this module, if it exists externally. (See the .SECT directive Section
2.9.32.) Each has a format of

B_SECT (section name)

E_SECT (section name)

Example: LD A,#E_SECT(ONE) - B_SECT(ONE)

loads register A with the length of section ONE.

Numbers

Numbers are represented internally in the assembler in 16-bit two’s complement
notation. The range for numbers in this representation is -32768 (X'8000) to +32767
(X'7FFF) for signed numbers and 0 to 65535 for unsigned numbers.
2-12 CROSS-ASSEMBLER (ASMCOP)



Operand Expression Evaluation
Expressions

An expression may consist of a single term, as shown in the following:

Examples: 5
X'3C
'Q'
SUB
.
HIGH(X'3CF)
LOW(SUB)

Alternatively, an expression may consist of two or more terms combined using the
operators shown in Table 2-1.

Examples: 36 + SUB
X'3F0-10
X'7F AND 'Q'
3*5 OR XYZ
(NOT SUB)/2

NOTE: All expression evaluations treat the terms as unsigned numbers; for exam-
ple, -1 is treated as value X'FFFF.

The magnitude of the expression must be compatible with the memory storage available
for the expression. For example, if the expression is to be stored in an 8-bit memory word,
then the value of the expression must not exceed X'FF.
CROSS-ASSEMBLER (ASMCOP)  2-13



Addressing
2.3.5 Addressing

This section shows the syntax of the various instruction addressing modes. The following
labels are used in the examples in this section:

.SECT example, RAM

WRD1: .DSW 1

BYT1: .DSB 3

NUM = 6

NOTE: WRD1 has the word attribute and BYT1 has the byte attribute; NUM is of
type null. These attributes only have meaning in a debugger; the assembler
treats word, byte, and null attributes the same.

Direct Addressing

A direct operand is specified.

Immediate Addressing

An immediate operand is specified with a #. Values must be in range –256 to 255; –256
is treated as 0, –1 as 255.

Register Indirect Addressing

A register indirect operand is specified by [reg], where reg is X or B.

Register Indirect Addressing, Auto Increment/Decrement

A register indirect operand with auto increment is specified by [B+]; [X+]. Auto
decrement uses – instead of +.

Example: LD A,WRD1+2 ; load contents of byte at address WRD1+2
LD A,BYT1+1 ; load contents of byte at address BYT1+1

Example: LD A,#BYT1+2 ; load A immediate
ADD A,#1 ; add immediate to A

Example: LD A,[B] ; B indirect
LD A,[X] ; X indirect

Example: LD A,[X+] ; reg indirect, auto increment
LD A,[B-] ; reg indirect, auto decrement
2-14 CROSS-ASSEMBLER (ASMCOP)



Label Field
Branch Addressing

The operand of one of the branch type instructions (JP, JMP, JMPL, JSR or JSRL) must
be a null type expression, and the operand is normally defined in a section that has the
ROM attribute. Assume you have the following program fragment:

Then:

Operand Size

The assembler normally generates the minimal instruction size possible for each
instruction. There may be cases in which you want the instruction to be the maximum
size for ease of debugging. In these cases, the > operator is provided to force the
maximum size for each operand. This operator can appear only at the start of the
operand.

2.3.6 Label Field

The label field is optional and has two uses. Most frequently, the field contains a symbol
used to identify a statement referenced by other statements. Symbols used in this way
are labels. Alternatively, the field contains a symbol whose value is set by the assignment
operator. For more information on the second use, see Section 2.5.

When the assembler encounters a label, it assigns the current value of the location
counter to the label. A colon (:) is used to delimit (terminate) each label in the label field.
(When the label is used in the operand field of an instruction, the colon is omitted.)

The rules for label name construction are the same as the rules as for any symbol. Refer
to Section 2.3.3.

A label referencing an instruction need not be on the same line as the instruction. This
allows the programmer, when writing source code, to devote a separate line with
comments to labels, providing clearer documentation of the program and allowing for
easier editing of the source code.

.SECT ONE,RAM
DAT: .DSB 1

.SECT TWO,ROM
BYT: .DB 2
LBL: LD A,DAT

JMP LBL ; is valid instruction
JMP BYT ; is an error, operand type must be null
JMP DAT ; is a error, operand is RAM type
JMP &BYT ; valid now, byte type removed by &

Example: JP >label ; 3 bytes
LD >B,#0 ; 3 bytes
CROSS-ASSEMBLER (ASMCOP)  2-15



Operation Field
CAUTION

Read the following before using labels on a blank line.

The assembler always processes labels on a line after it processes any following fields.
Therefore, when a label appears on the same line as an assignment statement which
alters the location counter, the label is assigned the location counter value after the
location counter is altered. A label on a preceding line in this case is not the same value.

2.3.7 Operation Field

The operation field contains an identifier that indicates what type of statement is on the
line. The identifier may be an instruction mnemonic or an assembler directive. The
operation field is required, except in lines that consist of only a label and/or comment.

In an instruction statement, the operation field contains the mnemonic name of the
desired instruction.

In a directive statement, the operation field contains a period (.) immediately followed by
the name of the desired directive.

Example: .END

See Section 2.9 for the valid directive names.

Example: .=01000H ; set location counter to 01000H
; label SUB is assigned 01000H

SUB:
NOP
.
.
.
.

Example: .=01001H ; set location counter to 01001H
SUB: ; label SUB is 01001H

SUB4: .=01010 ; label SUB4 is assigned 01010H

Example: label operation
SUB: NOP
2-16 CROSS-ASSEMBLER (ASMCOP)



Operand Field
In an assignment statement, the operation field contains an equal sign (=). See Section 2.5.

One or more blanks terminate the operation field.

2.3.8 Operand Field

The operand field contains entries that identify data to be acted upon by the operation
defined in the operation field, e.g., source or target address for the movement of data, or
immediate data for storage or adding to another value.

Some statements do not require use of the operand field. For those that do, the operand
field usually consists of one or two expressions (the second expression is separated from
the first by a comma.) Expressions can be composed of numbers, string constants, labels
and symbols combined with arithmetic, logical and relational operators. Section 2.3.4
describes in detail the types of terms used in expressions, the permitted operators, and
the order of evaluation used for expressions with more than one operator.

2.3.9 Comment Field

Comments are optional descriptive notes printed on the assembler output listing for
programmer reference and documentation. Comments should be included throughout
the source program to explain subroutine linkages, data formats, algorithms used,
formats of inputs processed, and so forth. A comment may follow a statement on the same
line, or the comment may be entered on one or more separate statement lines. The
comment has no effect on the assembled object module file.

The following conventions apply to comments:

• A comment must be preceded by a semicolon (; ).

• All ASCII characters, including blanks, may be used in comments.

2.4 ASSEMBLY PROCESS

The assembler performs its functions by reading through the assembly language
statements sequentially from top to bottom, generating the machine code and a program
listing as it proceeds. Since it reads statements sequentially, a special problem occurs in
most assemblers which must be overcome. If the assembler encounters the statement

JMP CLEAR

before it encounters the label CLEAR, it is unable to generate machine code for that
instruction. This problem is solved by making the assembler perform two “passes”
through the assembly language statements.

Pass 1 of the assembler does not generate an object module or a listing. Its purpose is to
assign values to labels and symbols. The assembler assigns labels by using an internal
counter called the location counter. Each program section has a separate location counter,
CROSS-ASSEMBLER (ASMCOP)  2-17



ASSIGNMENT STATEMENTS
which indicates where the current instruction/data is in relation to the start of the
section. Each time the assembler encounters an instruction, the location counter is
incremented by the size of the instruction. As the assembler encounters program labels,
the labels are assigned the current value of the location counter. As each symbol is
encountered, the symbol is saved with its value.

During pass 2, the assembler generates the object module and/or listing, as specified by
the invocation line. It uses the table of label/symbols to generate machine code values for
instructions. It also uses the location counter to determine the section address that each
instruction should occupy. The linker does the final job of assigning where each program
section will go and generating the absolute object file.

Although two passes solve the problem previously mentioned, they do not solve it in the
optimal fashion. If a microprocessor has two forms of a jump instruction, one that has an
8-bit range and one that has a 16-bit range, it is up to you to choose the appropriate form
of the instruction. However, if the program changes, then some short jumps must be
made into long ones and vice versa. Also, in many assemblers,  instructions that
reference data have only one opcode, and in the case of forward references there is no
choice but to use the long form of the instruction. This is because when the assembler
first sees the operand it does not know its size.

Unlike most assemblers, this one has the ability to perform more than two passes and,
therefore, can optimize any instructions that use a forward reference. The PASS control
allows you to set the number of passes. In this case, the assembler may go through the
standard pass-1 phase many times to determine the final value of each label.

Throughout this manual, two-pass mode refers to the assembler performing two passes.
Optimize mode refers to the assembler performing three or more passes. By default, the
assembler operates in optimize mode.

2.5 ASSIGNMENT STATEMENTS

Syntax: [label:] symbol = expression[; comments]
[label:] symbol = expression:BYTE [; comments]
[label:] symbol = expression:WORD [; comments]

The assignment statement assigns the value and all other attributes of the expression on
the right of the equal sign to the symbol on the left of the equal sign. The assignment
statement does not generate machine code. It simply assigns the expression to a symbol.
When the symbol is used in an instruction statement operand field, the assigned value is
used in code generation. The size attribute is passed to the debugger through the COFF
file. :BYTE or :WORD may be optionally used to assign a size to the symbol. If used, it
will override the size of the expression. The & operator may be used to force a null
expression. :BYTE may also be specified as :B and :WORD as :W.

Example: Y=5 ; assign the value 5 to Y.
B1=6:BYTE ; B1 is a byte expression with a value of 6
2-18 CROSS-ASSEMBLER (ASMCOP)



MACROS
The assignment statement may also refer to the current value of the location counter.
The location counter symbol (“.”) may appear on both sides of the assignment statement
equal sign. If it appears on the left, it is assigned the value of the expression to the right
side of the equal sign. In that case, the expression on the right must be defined during the
first pass so that the pass 1 label assignments may be made.

A symbol may be assigned only one value during an assembly with an assignment
statement. Attempting to redefine the value of the symbol will result in an error message.
The .SET directive, however, allows symbol values to be redefined during an assembly
(see Section 2.9.33.)

Some memory reference symbols are predefined, and may not be redefined. These are the
registers SP, A, B, and X.

2.6 MACROS

Macros simplify the assembly process. Duplicative or similar sequences of assembly
language statements can be inserted into the program source code instead of  manually
entering them into the program each time they are required. Once defined, a macro will
automatically, during assembly time, place repetitive code or similar code with changed
parameters into the assembler source code when called by its macro name. The following
sections explain the process of defining and calling macros, with and without parameters,
and describe how to use assembler directives related to macro generation.

Using macros, a programmer can gradually build a library of basic routines. Variables
unique to particular programming applications can be defined in and passed to a
particular macro when called by main programs. Such macros can be automatically
included in the assembly source code using the .INCLD directive (Section 2.9.21).

2.6.1 Defining a Macro

The process of defining a macro involves preparing statements that perform the following
functions:

• Assign a name to the macro

• Declare any parameters to be used

• Write the assembler statements it contains

• Establish its boundaries

Macros must be defined before they are used in a program. Macro definitions within an
assembly do not generate code. Code is generated only when macros are called by the
main program. Macro definitions are formed as follows:

Examples: .=X'1020 ; set location counter to address X'1020
; this is same as .ORG X'1020

LOC = . ; save current location counter value in “LOC”
CROSS-ASSEMBLER (ASMCOP)  2-19



Defining a Macro
.MACRO mname[,parameters]
     .
     .
     .

macro body

     .
     .
     .

.ENDM

where:

.MACRO is the directive mnemonic that initiates the macro definition. It
must be terminated by a blank.

The mname is the name of the macro. It is legal to define a macro with the
same name as an already existing macro, in which case the latest definition
is used.  Previous definitions are, however, retained in the macro definition
table; if the existing macro is deleted by the .MDEL directive, the previous
definition becomes active. If mname is the same name as an instruction mne-
monic, the macro definition is used in place of the normal instruction assem-
bly.

The main program calls the macro using the macro name. The name must ad-
here to the rules given for symbols in Section 2.3.3.

Parameters is the optional list of parameters used in the macro definition.
Each parameter must adhere to symbol rules in Section 2.3.3. Parameters are
delimited from mname and successive parameters by commas.

The following are examples of legal and illegal .MACRO directives:

The macro body is a sequence of assembly language statements and may con-
sist of simple text, text with parameters, and/or macro-time operators.

The .ENDM signifies the end of the macro and must be used to terminate
macro definitions.

Simple Macros

The simplest form of macro definition is one with no parameters or macro operators. The
macro body is simply a sequence of assembly language statements which are substituted

Legal Illegal Reason Illegal

.MACRO MAC,A,B .MACRO SUB,*AB Special character used

.MACRO $ADD,OP1,OP2 .MACRO 1MAC First character is numeric
2-20 CROSS-ASSEMBLER (ASMCOP)



Calling a Macro
for each macro call. These identical macro calls are inefficient if called repetitively within
the same assembly program; a repeatedly used series of assembly language statements
within a program should be coded as a subroutine. However, simple macros with no
variables are useful in compiling a library of basic routines to be used within different
programs. They allow the programmer to simply call the macro within the program
rather then to repeatedly code all the macro body statements into each program when
needed.

Macros with Parameters

The previous macro could be made more flexible by adding parameters to the macro
definition. Parameters allow the programmer to specify what is being loaded and stored.

2.6.2 Calling a Macro

Once a macro is defined, it may be called by a program to generate code. A macro is called
by placing the macro name in the operation field of the assembly language statement,
followed by the actual values of the parameters to be used (if any). The following form is
used for a macro call:

mname [parameters]
where: mname is the name previously assigned in the macro definition

parameters refer to the optional list of input parameters.  When a macro is
defined without parameters, the parameter list is omitted
from the call.

Example: ; MACRO "IND1" stores one indirectly into
; memory using B register

.MACRO IND1 ; begin macro definition
LD     A,#1
X     A,[B]
.ENDM

Example: ; MACRO "LOAD" loads DEST with
; SOURCE

.MACRO LOAD,DEST,SOURCE ; DEST is destination,
; SOURCE is source

LD     A,SOURCE
X     A,DEST
.ENDM
CROSS-ASSEMBLER (ASMCOP)  2-21



Using Parameters
A call to the simple IND1 macro, previously defined, is expanded as follows:

NOTE: The macro call (IND1), the expanded macro opcodes, and source code will
appear on the assembler listing if the appropriate controls are enabled. The
macro call statement (IND1) itself does not generate code.

2.6.3 Using Parameters

The power of a macro can be increased by the use of optional parameters. The parameters
allow variable values to be declared when the macro is called. For example, the
parameter version of IND1 is LOAD, which can be used to load memory utilizing various
addressing modes:

When parameters are included in a macro call, the following rules apply to the parameter
list:

1. One comma and/or one or more blanks delimit parameters.

2. A semicolon terminates the parameter list and starts the comment field.

3. Single quotes (') may be included as part of a parameter except as the first
character.

4. A parameter may be enclosed in single quotation marks ('), in which case the
quotes are removed and the string is used as the parameter.  This function al-
lows blanks, commas, or semicolons to be included in the parameter. To include
a quotation mark in a quoted parameter, include two quotation marks ('').

5. Missing or null parameters are treated as strings of zero length.

Source Program Assembled Program

. .

IND1 generates IND1

  . LD     A,#1

  . X     A,[B]

Source Program Assembled Program

  .   .

LOAD [B],#1 LOAD [B],#1

  . LD   A,#1

  . X   A,[B]

  .   .

  .   .
2-22 CROSS-ASSEMBLER (ASMCOP)



Concatenation Operator
Parameters Referenced by Number

The macro operator @ references the parameter list in the macro call. When used in an
expression, it is replaced by the number of parameters in the macro call. For example,
the following .IF directive causes the conditional code to be expanded if there are more
than ten parameters in the macro call:

.IF @>10

When used with a constant or symbol (not a macro definition parameter), the @ operator
references the individual parameters in the parameter list. The following example
demonstrates how this function may define and call a macro to establish a program
memory table:

This technique eliminates the need for naming each parameter in the macro definition,
which is particularly useful to deal with  long parameter lists. With the @ parameter
count operator, it is possible to create macros that  have a variable number of parameters.

NOTES:  1. The @ operator is replaced during macro expansion in comments; ordi-
nary macro parameters are not.

2. A .DOPARM loop acts as a macro, and the above description of the @ op-
erator also applies.

2.6.4 Concatenation Operator

The “^” macro operator is used for concatenation. The “^” is removed and the strings on
each side of the operator are compressed together after parameter substitution. If the

.MACRO X

.WORD  @1,@2,@3 ; first, second, third arguments

.WORD  @Q ; Qth argument

.ENDM

Macro call Generated Code

Q=3 Q=3

 .     .

X 3,4,5 X 3,4,5

. .WORD 3,4,5 ; first, second, third arguments

. .WORD 5 ; Qth argument
CROSS-ASSEMBLER (ASMCOP)  2-23



Macro Local Symbols
right string is a defined absolute null symbol (not a macro definition parameter), the
decimal value of the symbol is used; if “^^” is used, the hex value of the symbol is used.

Another example of this operation is shown in Section 2.6.7.

2.6.5 Macro Local Symbols

When a label is defined within a macro, a duplicate definition results from the second and
each subsequent call of the macro. This problem can be avoided by using the .MLOC
directive to declare labels local to the macro definition. The .MLOC directive may occur
at any point in a macro definition, but it must precede the first occurrence of the
symbol(s) it declares local. Any symbol used before the .MLOC will not be recognized as
local. Local macro labels (symbols) appear as ZZdddd, where dddd is a particular
decimal number.

Example: .MACRO LABEL,X
R^X: .WORD X   ; X is macro parameter
R^Q: .WORD Q   ; Q is defined symbol
R^^Q: .WORD Q

.ENDM

Macro call Generated code(without comments)
  Q=11 Q=11
    . .
  LABEL 0 LABEL 0
    . R0:  .WORD 0
    . R11:  .WORD Q

R0x000B:  .WORD Q

Example: ; BLOCK MOVE
; SOURCE is source, DEST is destination,
; DESTEND is last dest addr

.MACRO MOVE,SOURCE,DEST,DESTEND
LD X,#SOURCE
LD B,#DEST
.MLOC BMV

BMV:
LD A,[X+]
X A,[B+]
IFBNE #DESTEND+1
JMP BMV

.ENDM
Source Program Generated Code
  .   .
MOVE  4000,40,47 MOVE 4000,40,47
  . LD X,#4000
2-24 CROSS-ASSEMBLER (ASMCOP)



Conditional Expansion
2.6.6 Conditional Expansion

The conditional assembly directives allow the user to generate different lines of code
from the same macro simply by varying the parameter values used in the macro calls.
These directives are described in Section 2.9.20.

Example: ; if add flag <>0, add X to A; else subtract X from A
.MACRO ADDSUB ADDFLG,X
.IF ADDFLG
ADD A,#X
.ELSE
ADD A,# -X
.ENDIF
.ENDM

2.6.7 Macro-Time Looping

The following examples show the use of the .DO, .ENDDO, and .EXIT directives. The
macro CTAB generates a constant table from 0 to MAX where MAX is a parameter of the
macro call. Each word has DY: label, where Y is the decimal value of the data word:

  . LD B,#40
  . ZZ0000:
  . LD A,[X+]
  . X A,[B+]

IFBNE #47+1
 . JMP ZZ0000
  .   .
MOVE  5000,50,57 MOVE 5000,50,57
  . LD X,#5000
  . LD B,#50
  . ZZ0001:
  . LD A,[X+]
  . X A,[B+]

IFBNE #57+1
  . JMP ZZ0001

.MACRO CTAB,MAX

.SET Y,0

.DO MAX+1
D^Y: .WORD Y

.SET Y,Y+1

.ENDDO

.ENDM

Source assembly Assembled code
CROSS-ASSEMBLER (ASMCOP)  2-25



Nested Macro Calls
2.6.8 Nested Macro Calls

Nested macro calls are allowed; that is, a macro definition may contain a call to another
macro. When a macro call is encountered during macro expansion, the state of the macro
currently being expanded is saved and expansion begins on the nested macro. Upon
completing expansion of the nested macro, expansion of the original macro resumes. The
allowed  number of levels of nesting depends on the sizes of the parameter lists, but at
least ten is typical.

A logical extension of a nested macro call is a recursive macro call; that is, a macro that
calls itself. This is allowed, but care must be taken not to generate an infinite loop.

2.6.9 Nested Macro Definitions

A macro definition can be nested within another macro. Such a macro is not defined until
the outer macro is expanded and the nested .MACRO statement is executed. This allows
the creation of special-purpose  macros based on the outer macro parameters and, when
used with the .MDEL directive, allows a macro to be defined only within the range of the
macro that uses it.

2.6.10 Macro Comments

Normally all lines within a macro definition are stored with the macro. However, any text
following “;;” is removed before being stored. A line that starts with “;;” is completely
removed from the macro definition. These lines  appear on the listing of the macro
definition; they do not appear on an expansion.

2.7 ERROR AND WARNING MESSAGES

Assembler errors are divided into command line errors and assembly time errors.

. .
CTAB 2 CTAB 2
. .SET Y,0
. D0: .WORD Y
. .SET Y,Y+1
. D1: .WORD Y
. .SET Y,Y+1
. D2: .WORD Y
. .SET Y,Y+1
2-26 CROSS-ASSEMBLER (ASMCOP)



Command Line Errors
2.7.1 Command Line Errors

For a command line error, the message is displayed after the invocation line. Some
command line errors appear with an error number; these are described in Section 2.7.2.
The other command line errors are:

Error on File System file error.

File Conflict The filename shown is being used multiple times
as an output file, or an output filename is the
same as the source filename.

File Not Found The filename shown cannot be found. Possibly
the wrong extension has been assumed or it re-
sides in a different directory.

Disk or Directory is full No more room exists to create an output file.

No Source File The command line must contain at least the
source filename.

Source File can’t be a Device The source file must be a disk file. It cannot be a
device such as the console (CON).

Expected an option An option must start with a /; filenames must be
separated by commas.

Can’t nest indirect files An indirect file (@file) cannot be nested inside an-
other indirect file.

2.7.2 Assembly Time Errors

When an error or warning message occurs, the “^” symbol points at, or just after, the
place where the error occurred.

Each assembly time error is shown with its number, message, and the conditions that
cause the error (see Table 2-3). Errors are formatted as follows:

# message

where: # is the error number.

message is the error message that is displayed on the output listing.

Example: LD A,#258
^

ERROR 12, Value Out of Range
CROSS-ASSEMBLER (ASMCOP)  2-27



Assembly Time Errors
Table 2-3 Assembler Errors

Message
Number Message and Causes

1 Invalid or Missing Opcode
    number is next token after label
    delimiter after label is not comment or EOL
    opcode has bad terminator

2 Undefined Opcode
    opcode token not in opcode tables

3 Symbol error
    delimiter is first character on line
    invalid local symbol

5 Duplicate Label/Symbol
    duplicate label
    symbol already defined
    .SET symbol already defined as a non .SET symbol
    external symbol in .PUBLIC
    external symbol already defined
    duplicate formal parameter

7 Undefined Symbol
    undefined symbol
    .PUBLIC symbol not defined
    macro not defined in .MDEL

9 Syntax error
    bad operator
    illegal op combination

11 Invalid Numeric
    number not valid for radix

12 Value Out of Range
    byte value out of range or relocatable
    .DS value too big
    alignment > section maximum address
    .SECT directive option value out of range

13 Invalid Register
2-28 CROSS-ASSEMBLER (ASMCOP)



Assembly Time Errors
14 Missing or Bad Symbol
    .PUBLIC, .EXTRN, not a symbol
    option in .SECT not a symbol or after = not a symbol
    formal parameter not a symbol
    bad operand or .MDEL

15 Missing Operand
    missing instruction or directive operand

16 Missing or Bad Separator
    .IFSTR, error in string
    bad actual parameter
    macro string operator error
    missing separator between formal parameters

17 Missing or Bad Delimiter

18 Invalid Operand
    .EXTRN type is invalid
    bad .SECT option or hit terminator looking for option
    .MDEL directive operand is bad
    missing EQ or NE in .IFSTR

19 Multiple Externals
    two externals in a non-complex expression

20 Two Operands in Sequence
    expression has two operands without an intervening operator

22 Missing String delimiter
    string type operand missing the terminating delimiter

23 Invalid Keyword Usage

24 Nesting error
    too many conditional levels
    multiple .ELSE’s in conditional block
    conditional block still open at end of program
    too many relocatable sections
    too many macro calls
    open conditional block on macro exit
    too many .INCLD levels

25 Questionable Operand Combination
    combination of operands not valid for the instruction

Table 2-3 Assembler Errors

Message
Number Message and Causes
CROSS-ASSEMBLER (ASMCOP)  2-29



Assembly Time Errors
26 Forward Reference

28 Relocation Usage error
    operand that must be absolute is relocatable
    relocatable operand combination invalid for operator

29 Value requires LOW/HIGH to be treated as an 8-bit value.
   16 bit relocatable value

30 Invalid External Usage
    .= or .ORG contains external
    = operand is external but not the only token
    .END is external

31 Branch Out of Range
    JP, JMP, or JSR operand is out of range.

32 Trailing Characters
Extra characters have been found at the end of this line; check wheth-
er it should be a comment.

33 Phase error
The label had a different value during pass 1.  The location counter is
set to the label value.  Some instructions must have varied in size be-
tween passes; use VERIFY control to check.

34 String in Expression or too Large
    String should not appear in expression.

35 Unrecognized Control

36 “NO” not Valid for Control
    This control is not allowed to use NO.

37 Can’t have Primary Control
A primary control can be used only on the command line or at begin-
ning of program.

38 Bad File Name
    The filename in this control is invalid.

39 Can only be on Command Line
    This control is valid only on the command line.

40 Not used

41 Default section size specified by .Chip Directive exceeded
    Chip table specifies default ranges.

Table 2-3 Assembler Errors

Message
Number Message and Causes
2-30 CROSS-ASSEMBLER (ASMCOP)



Assembly Time Errors
42 Source File can’t be a Device
    The file specified in an .INCLD must be a file.

43 File Not found

44 Invalid Local symbol usage
    The local symbol has the wrong format or a bad numeric.

45 Section error
    .= or .ORG has a relocatable operand that doesn’t match the current
    program section.

JP, JMP, or JSR address in different section

46 Options don’t match previous usage
An option used on the .SECT directive doesn’t match the options from
a previous usage.  These options are ignored.

47 Opcode Usage error
    .ELSE, .ENDIF not in conditional
    .MLOC, .EXIT, .ENDM used outside of macro

48 Invalid Character in Expression
    An expression has a character that can’t be part of an expression.

49 Attribute Conflict
The attributes specified on the .SECT directive conflict.  For example,
both ABS and REL can’t be specified for section.

50 User Error
    User specified via .ERROR directive.

51 User Warning
    User specified via .WARNING directive.

52 Invalid Processor Usage
    This instruction is invalid for the processor.

53 Invalid Index Register
    The index register is invalid for instruction.

54 Expression too Big
    The complex expression is too large for the assembler to process.

55 Invalid Complex Usage
    This operand may not be complex.

Table 2-3 Assembler Errors

Message
Number Message and Causes
CROSS-ASSEMBLER (ASMCOP)  2-31



Assembly Time Errors
56 Too Many Parameters
Only 125 formal parameters can be defined; there are more actual pa-
rameters than formals for this macro.

58 Instruction or Directive not valid in Section
Object code may not be generated in a section with this section type.

59 Absolute Value Required
    An operand of this instruction or directive must be absolute.

60 Ambiguous Control
An invocation line or control line option (control) is not unique.  Spec-
ify additional letters for the option.

62 Expression outside of Section.
   Expression outside section type range.

63 JP .+1 converted to NOP.
   These constructions are equal.

65 Duplicate .OPT
   Duplicate .OPTs for same number give error.

66 Branch out of 4K Block.
Can’t use use jumps >4k for same section for SMALL or MEDIUM
memory models.

67 Undefined Macro.
   First, define macro; then call it.

68 Section size cannot be greater 4K for SMALL or MEDIUM memory
model
   Don’t violate 4K block size.

69 Bit 7 of PORTGD set.
Microcontroller will enter HALT mode if bit 7 in the GPORT (0xD4)
is set.

71 Branch past 0x7FFF
   Can’t use jumps to address which is >0x7FFF.

72 Missing Section Type.
   Don’t miss section type.

73 Start Address must be placed at zero.
   Label in the.END directive must be at address zero.

Table 2-3 Assembler Errors

Message
Number Message and Causes
2-32 CROSS-ASSEMBLER (ASMCOP)



Assembly Time Errors
74 Symbol name is directive
   Directive used as symbol name.

200 Invalid Alignment for Section or Directive
The directive can’t be in a section of this alignment.

204 Invalid Alignment for Section or Directive
    Same as 200 but this is a warning.

205 Section not Specified
A .SECT directive must be used before any object code or storage can
be allocated.

206 Divide by 0.

208 Missing Options, Defaults will be used
On a .SECT directive, at least the section name and ROM/RAM/
EERAM/REG/SEG/SEGB/BASE must be specified.

214 DEBUGGER DIRECTIVE: Too Many Dimensions
Too many dimensions have been specified on the .DIM directive.
(For future use only.)

215 DEBUGGER DIRECTIVE:Invalid Storage Class
The value on the .SCL directive is invalid.
(For future use only.)

216 DEBUGGER DIRECTIVE:Definition not in effect or didn’t finish last
one

A debugging directive has been specified, but a .DEF directive has
not been specified. Another .DEF directive has been read but a
.ENDEF did not finish the last one.
(For future use only.)

221 Evaluation limit exceeded
     For evaluation software only. (See evaluation release letter.)

222 Directive already specified
     Directive may be specified only once.

223 String is truncated
     String truncated to maximum length.

224 An absolute section starts at zero
If no address given on absolute section, defaults to zero. Use abs=ad-
dress to change.

Table 2-3 Assembler Errors

Message
Number Message and Causes
CROSS-ASSEMBLER (ASMCOP)  2-33



Assembly Time Errors
225 Constant Truncated
     Constant is truncated to 16 bits.

226 Program Counter backed up
A error indicating that there is a possibility of overlapping code.

227 .DS directive used in ROM section
A warning indicating that uninitialized data space was defined in
ROM.

238 Chip must appear before any .sect
   The .chip directive should precede .sect directive.

239 Invalid Chip type
   The .chip directive has illegal chip name.

241 Data cannot be accessed as code
   Accessing non-ROM as code space.

242 Code cannot be accessed as data
   Accessing ROM as data space.

244 Rom address greater 0x7FFF
   Can’t exceed maximum ROM address.

251 Section type not valid for this chip
   Using memory type not valid for this chip.

253 Use Range command in linker
   The .range and .maxrom directives do not exist for ASMCOP.

254 Section Inpage overflow
   Inpage section size should be <255.

255 Symbol may not be reserved name
Do not use the names of predefined registers (e.g., X, SP, B) and oper-
ators (e.g., XOR) as a symbol name.

Memory full, Type x
     Too many symbols, macros, etc.

Table 2-3 Assembler Errors

Message
Number Message and Causes
2-34 CROSS-ASSEMBLER (ASMCOP)



THE ASSEMBLY LISTING
2.8 THE ASSEMBLY LISTING

The listing contains program assembly language statements together with line numbers
and page numbers, error messages, and a list of the symbols used in the program.

The listing of assembly language statements that generate machine code includes the
hexadecimal address of memory locations used for the statement and the contents of
these locations. Relocatable addresses are shown as offsets from the start of the section.
To the left of the instruction, an “R” indicates a relocatable argument in this instruction,
“X” indicates an external argument, “C” indicates a complex argument and “+” indicates
macro expansion.

The assembler listing optionally includes an alphabetical listing of all symbols used in
the program together with their values, absolute or relocatable type, word or byte or null
type, section memory type, and public or external type.

Optionally, a cross-reference of all symbol usage by source line number is given; the
defining line number is preceded by a “-” dash.

The total number of errors and warnings, if any, is printed with the listing. Errors and
warnings associated with assembly language statements are flagged with descriptive
messages on the appropriate statement lines.

The opcode checksum, opcode byte count, input file, output file, chip type (see directive
.chip, Section 2.9.4), and memory model (see control model, Section 2.10.27) are shown
at end of listing. Note that the opcode checksum does not reflect the final opcode
checksum, if any relocatable opcodes exist.

2.9 DIRECTIVES

Directive statements control the assembly process and may generate data in the object
program. The directive name may be preceded by one label and may be followed by a
comment. The directive’s name occupies the operation field. Some directives require an
operand field expression.

Assembler directive statements and their functions are summarized in Table 2-4. All
directive statements begin with a period.
CROSS-ASSEMBLER (ASMCOP)  2-35



DIRECTIVES
Table 2-4 Summary of Assembler Directives

Directive Function

.ADDR 8-bit address generation Section 2.9.1

.ADDRW 16-bit address generation Section 2.9.2

.BYTE 8-bit data generation Section 2.9.3

.CHIP Specify member of COP8 family Section 2.9.4

.CONTRL Automatic code alteration control Section 2.9.5

.DB 8-bit data generation Section 2.9.3

.DO Macro loop directive Section 2.9.6

.DOPARM Macro loop directive Section 2.9.7

.DSB Reserve 8-bit data Section 2.9.8

.DSW Reserve 16-bit data Section 2.9.8

.DW 16-bit data generation Section 2.9.36

.ELSE Conditional assembly directive Section 2.9.20

.END End of source program; reset address Section 2.9.10

.ENDDO Macro loop end Section 2.9.6

.ENDIF Conditional assembly directive Section 2.9.20

.ENDM End macro Section 2.9.13

.ENDSECT End program section Section 2.9.32

.ERROR User error message Section 2.9.15

.EXIT Macro loop exit Section 2.9.6

.EXITM Macro loop termination Section 2.9.6

.EXTRN Externally defined symbols Section 2.9.17

.FB Fill bytes Section 2.9.18

.FW Fill words Section 2.9.18

.FORM Output listing top-of-form Section 2.9.19

.IF Conditional assembly directive Section 2.9.20

.IFB Conditional assembly directive Section 2.9.20

.IFC Conditional assembly directive Section 2.9.20
2-36 CROSS-ASSEMBLER (ASMCOP)



DIRECTIVES
.IFDEF Conditional assembly directive Section 2.9.20

.IFNB Conditional assembly directive Section 2.9.20

.IFNDEF Conditional assembly directive Section 2.9.20

.IFSTR Conditional assembly directive Section 2.9.20

.INCLD Include disk file source code Section 2.9.21

.LIST Listing output control Section 2.9.22

.LOCAL Establish a new local symbol region Section 2.9.23

.MACRO Macro directive Section 2.9.24

.MDEL Macro delete directive Section 2.9.25

.MLOC Macro local directive Section 2.9.26

.OPDEF Define opcode Section 2.9.27

.OPT Define chip options Section 2.9.28

.ORG Set location counter Section 2.9.29

.OUT Message to console Section 2.9.30

.OUT1 Message to console Section 2.9.30

.OUT2 Message to console Section 2.9.30

.OUTALL Message to console Section 2.9.30

.PUBLIC Public symbols Section 2.9.31

.SECT Define program section Section 2.9.32

.SET Assign values to symbols Section 2.9.33

.SPACE Space n lines on output listing Section 2.9.34

.TITLE Identification of program Section 2.9.35

.WARNING User warning message Section 2.9.15

.WORD 16-bit data generation Section 2.9.36

Table 2-4 Summary of Assembler Directives

Directive Function
CROSS-ASSEMBLER (ASMCOP)  2-37



.addr
2.9.1 .addr

Syntax: [label:] .ADDR expression [,expression]...[; comments]

Description: The .ADDR directive generates eight bits as specified by one or more ex-
pressions in the operand field of this directive and places them in succes-
sive memory locations. These expressions are usually labels and are used
as address pointers by the COP8 JID (Jump Indirect) instruction which
transfers program control to the contents of the address generated by
the .ADDR directive. The lower 8 bits of each expression is stored in
memory; the JID, .ADDR, and expression must all be in the same page.
Otherwise, an error message will be generated.

It is highly recommended that the JID, associated .ADDR, and labels all
be placed in a section with the inpage attribute (see .SECT directive,
Section 2.9.32). This will guarantee that proper error checking is done.
.ADDR may be used in an absolute or PAGE aligned relocatable section
without the inpage attribute; however, the assembler cannot check that
the JID is in the proper page.

Whenever an .ADDR expression evaluates to an address which is not in
the same page as the .ADDR, an error is generated.

NOTE: If the JID is at the last byte of a 256-byte ROM block, the
ROM accessed is in the next 256-byte block.

Example: Create an address pointer table to be used by the JID instruction.

.SECT EXAMPLE, ROM, INPAGE
JMPI: ADD A, # LOW (OFFSET) ; add offset to table

JID
OFF-
SET:

.ADDR TBL1, TBL2, TBL3

TBL1: ; TBL1 code
...
TBL2: ; TBL2 code
...
TBL3: ; TBL3 code

.ENDSECT
2-38 CROSS-ASSEMBLER (ASMCOP)



.addrw
2.9.2 .addrw

Syntax: [label:] .ADDRW expression [,expression]...[; comments]

Description: The .ADDRW directive generates consecutive 16-bit words of address
data for each given expression. It is used for VIS address tables. If the
directive has a label, it refers to the address of the first data word.

NOTE: The .ADDRW directive stores words in byte order, high byte to low byte.
This is the correct order for VIS address tables and is the opposite byte or-
der of the .WORD directive.

Example: .SECT EXAMPLE, ROM, ABS=0FF
VIS ; place vis at 0ff
.ENDSECT
.SECT INTERRUPT, ROM, ABS=01E0 ;vector table at 01e0
.ADDRW LABEL
.ADDRW LABEL1
CROSS-ASSEMBLER (ASMCOP)  2-39



.byte, .db
2.9.3 .byte, .db

Syntax: [label:] .BYTE expression[,expression...][; comments]
[label:] .DB expression[,expression...][; comments]

Description: The .BYTE and .DB directives generate consecutive 8-bit bytes of data
for each given expression. If the directive has a label, it refers to the ad-
dress of the first byte. The value of each expression must be in the range
–256 to +255 where –256 is treated as 0, –1 as 255. The value of the ex-
pression may be interpreted either as signed or unsigned. The .BYTE
and .DB directives are valid only in a ROM type section. Any label will
be assigned the byte type.

The hexadecimal value of ASCII characters may be stored in memory us-
ing the .BYTE (and .DB) directive and an operand expression specifying
character strings or their hexadecimal equivalents. (See Appendix A.)

NOTE: A single quotation mark in a string is represented by two
quotation marks. An ASCII character may also be specified
using the escape characters described in Section 2.3.4.

Example 1 stores the hexadecimal number FF in a byte of memory.

Example 2 stores two hexadecimal numbers in consecutive bytes in
memory.

Examples 3 and 4 store the ASCII string (DON’T) in consecutive bytes
of memory.

Examples: 1. .BYTE X'FF
2. T: .BYTE MPR-10, X'FF
3. .BYTE 'DON''T'
4. .DB X'44,X'4F,X'4E,X'27,X'54
2-40 CROSS-ASSEMBLER (ASMCOP)



.chip
2.9.4 .chip

Syntax: [label:] .CHIP string [ ; comments]

Description: The .CHIP directive specifies the member of the COP8 family. Valid
string arguments are the chip name with or without leading “COP”;
ANYCOP is a special generic chip name which permits a common in-
struction subset of all chips to be assembled.

Only one .CHIP directive is allowed and must appear before any code.

NOTE: The .chip directive informs the assembler as to instruction
set and ROM/RAM ranges. Appropriate error checking is
done. The chip name is also passed to linker who provides
final range checking. See Appendix B for valid chip names
and default ranges.

Note that the CHIP control (Section 2.10.2) will override
any .CHIP directive.

The linker disallows linking of object modules or libraries
with conflicting chip types except that type ANYCOP will
link with any other type.

Example: .CHIP 820 ; specify 820
.CHIP COP888cg ; specify 888cg
.CHIP ANYCOP ; specify instruction subset
CROSS-ASSEMBLER (ASMCOP)  2-41



.contrl
2.9.5 .contrl

Syntax: [label:] .CONTRL expression [; comments]

Description: The .CONTRL directive controls automatic code alteration by the  as-
sembler on instructions.  This directive either decreases the number of
bytes of the instruction (to optimize code), or increases the number of
bytes of the JP, JMP and JSR instructions to avoid a range  error.  Note
that in two-pass mode,  the assembler can alter only those instructions
which have their operand defined during pass 1, which excludes for-
ward-reference operands.  This is because the assembler must know the
size of the instruction on pass 1. In optimize mode, the assembler can al-
ways choose the optimal size for these instructions.

The .CONTRL directive also allows maximum code size for all instruc-
tions to be selected for ease of patching code during debugging. The in-
structions all have maximum size operand fields,  so any valid operand
can be patched-in during debugging.

Control of the various options depends upon the three least-significant
bits of the evaluated expression in the operand field (the expression
must be defined during pass 1).  Table 2-5 shows the options available,
their associated bit weights and assembler default values. Table 2-6
shows the possible code alterations that may occur for the jump instruc-
tions.

The .CONTRL directive may be used throughout the program  to enable
or disable the alteration of code.  Normally, it is desirable to disable code
alteration of the   instructions only during a block of code which must re-
main a fixed size (for example,  a critical timing loop).

This directive takes precedence over any multi-pass optimization. Thus,
if code reduction is disabled, no optimization will take place regardless
of the number of passes.

For further code optimization notes, see Section 2.4.

Example: .CONTRL 0 ; disable all code alteration
. ; fixed size code block
.
.

.CONTRL 3 ; re-enable code alteration
2-42 CROSS-ASSEMBLER (ASMCOP)



.contrl
Table 2-5 .CONTRL Options

Control
Function

Bit
Positions

Binary
Value

3-bit
Hex

Value
Description

Reduce Code 0 0 0 Suppress reduce code

(Optimize) 1 1 *Enable reduce code

Increase Code 1 0 0 Suppress increase code

(Prevent range errors) 1 2 *Enable increase code

Maximum Code 2 0 0 *Enable bit 0,1 values

(For debug patching) 1 4 Force maximum code

* indicates default.

Table 2-6 Code Alteration Based for JP, JMP, JMPL, JSR, and JSRL

Coded
Instruction

Operand In
JP Range

(1-byte Opcode
Result)

Operand In
JMP Range

(2-byte Opcode
Result)

Operand In
JMPL Range

(3-byte Opcode
Result)

JP X + +

JMP – X +

JMPL – – X

Operand In
JSR Range

Operand In
JSRL Range

JSR N/A X +

JSRL N/A – X

NOTE: Bit 2 of .CONTRL must = 0

– is possible result if reduce code (bit 0) = 1

+ is possible result if increase code (bit 1) = 1

X is unchanged result, possible whether bit 0, bit 1 = 1 or 0
CROSS-ASSEMBLER (ASMCOP)  2-43



.contrl
Example: ; default .CONTRL in effect
; (code alteration enabled)

BCKWRD: ; label
RET

; note that following references to
; BCKWRD are not forward-references

JMP BCKWRD ; reduced to single byte (JP)
JP BCKWRD ; no change (JP)

; note that following references to
; FORWRD are forward references
; assembler cannot alter these in two-
; pass mode but can in optimize mode

JMP FORWRD ; no change (JMP) in two-pass, else (JP)
JP FORWRD ; no change (JP)

FORWRD:
2-44 CROSS-ASSEMBLER (ASMCOP)



.do, .enddo, .exit, exitm
2.9.6 .do, .enddo, .exit, exitm

Syntax: [label:] .DO count [; comments]
[label:] .ENDDO [; comments]
[label:] .EXIT [; comments]
[label:] .EXITM [; comments]

Description: These directives are used to delimit a block of statements that are re-
peatedly assembled. The number of times the block will be assembled is
specified by the .DO directive count value.  The following is the format of
a .DO – .ENDDO block:

Example: .DO count
.
.
.
source
.
.
.
.ENDDO

The .EXIT directive is used to terminate a .DO – .ENDDO block before
the count is exhausted.  This directive allows the current pass through
the loop to finish and then terminates looping.  The .EXIT directive is
commonly used in conjunction with a conditional test within a macro
loop. The test will exit from the loop if a variable is equal to a particular
value.  In such cases, the .DO count value is not crucial,  provided it ex-
ceeds the maximum number of times the .DO  loop will be required or
expected to be executed  for a particular macro definition or for possible
macro calls.

.EXITM is similar to .EXIT, except .EXIT allows the macro expansion to
continue until the end of the macro is reached, while .EXITM terminates
the macro expansion immediately.

Example: .DO count
   .
   .
   .
.IF cond
.EXIT
.ENDIF
.ENDDO
CROSS-ASSEMBLER (ASMCOP)  2-45



.doparm
2.9.7 .doparm

Syntax: [label:] .DOPARM formal,list [; comments]

Description: The .DOPARM directive repeats a macro block a number of times de-
pending upon the number of parameters in list. During each expansion,
the formal parameter is replaced by the next actual parameter in the
list. The list may be empty, in which case one expansion takes place with
a null actual parameter. Parameters in the list are treated like macro ac-
tual arguments and may be enclosed in quotation marks.

This expands to:

Example: .DOPARM P1,FLAG1,FLAG2,FLAG3
LD P1,#0
.ENDDO

LD FLAG1,#0
LD FLAG2,#0
LD FLAG3,#0
2-46 CROSS-ASSEMBLER (ASMCOP)



.dsb, .dsw
2.9.8 .dsb, .dsw

Syntax: [label:] .DSB size [; comments]
[label:] .DSW size [; comments]

Description: These directives allocate a block of storage whose contents is undefined.
Size is the size in bytes for .DSB, in words for .DSW. Size must be defined
during pass 1. A label on a .DSB is given the byte attribute. A label on a
.DSW is given the word attribute.

NOTE: These directives give a warning for ROM sections.

Example: BYT: .DSB 5 ; 5-bytes
WRD: .DSW 5 ; 5 words (10-bytes)
CROSS-ASSEMBLER (ASMCOP)  2-47



.else
2.9.9 .else

See .IF, .IFB, .IFC, .IFDEF, .IFNB, .IFNDEF, .IFSTR, .ELSE, and .ENDIF: (Conditional
Assembly) directives, Section 2.9.20.
2-48 CROSS-ASSEMBLER (ASMCOP)



.end
2.9.10 .end

Syntax: [label:] .END [reset label] [; comments]

Description: The .END directive marks the physical end of the source program. Any
assembly source statement appearing after this directive is ignored. The
optional reset label following .END indicates the start address for the
program; the label must be at a start of a section (which the linker places
at address zero). The reset label  must be in the current module and must
be of type ROM. If the program consists of multiple modules, only one
can contain a reset label.

An included source file (see .INCLD directive) may optionally contain a
.END directive, which is treated as an end-of-file but does not end the as-
sembly. A reset label must not appear on the .END in an include file.

Example: .sect code, rom
START: .

. ; source code

. ; START is starting address of program

.END START ; end of program
CROSS-ASSEMBLER (ASMCOP)  2-49



.enddo
2.9.11 .enddo

See .DO, .ENDDO, .EXIT, and .EXITM Directives — Macro Time Looping, Section 2.9.6.
2-50 CROSS-ASSEMBLER (ASMCOP)



.endif
2.9.12 .endif

See .IF, .IFC, .IFB, .IFDEF, .IFNB, .IFNDEF, .IFSTR, .ELSE, and .ENDIF: (Conditional
Assembly) directives, Section 2.9.20.
CROSS-ASSEMBLER (ASMCOP)  2-51



.endm
2.9.13 .endm

Syntax: [label:] .ENDM [; comments]

Description: The .ENDM directive marks the end of a macro definition.  All macros
must end with the .ENDM directive.

The optional label is in the macro definition, but the comment is not.

See Section 2.6.1 for more examples.

Example: .MACRO EXMP
  . ; macro definition code
  source
  .
.ENDM ; end of macro
2-52 CROSS-ASSEMBLER (ASMCOP)



.endsect
2.9.14 .endsect

See .SECT and .ENDSECT Directives — Program Section Directives, Section 2.9.32.
CROSS-ASSEMBLER (ASMCOP)  2-53



.error, .warning
2.9.15 .error, .warning

Syntax: [label:] .ERROR ['string'] [; comments]
[label:] .WARNING ['string'] [; comments]

Description: The .ERROR directive generates an error message and an assembly er-
ror that is included in the count at the end of the program. The .WARN-
ING directive generates a warning message that is included in the
warning count. These directives are useful for parameter checking.

Example: .IF VALUE<16 ; test value to see <16
LD A,#VALUE ; if so, generate instruction
.ELSE
.ERROR 'value>=16' ; else generate error
.ENDIF
2-54 CROSS-ASSEMBLER (ASMCOP)



.exit, .exitm
2.9.16 .exit, .exitm

See .DO, .ENDDO, .EXIT, and .EXITM Directives — Macro Time Looping, Section 2.9.6.
CROSS-ASSEMBLER (ASMCOP)  2-55



.extrn
2.9.17 .extrn

Syntax: [label:] .EXTRN symbol [:type] [:secttype] [,symbol[:type]
[:secttype] ...]

Description: The .EXTRN specifies symbols that are defined public in other modules,
with the .PUBLIC directive, but used in this module. The external is giv-
en the byte or word attribute by specifying :BYTE (or :B) or :WORD (or
:W). If no type is specified, the size attribute is null. The default section
type of an external is the same as the section in which it is defined. This
section type may be overridden by specifying :BASE, :RAM, :EERAM,
:REG, :SEG; :SEGB, and :ROM; these section types are explained for
.SECT directives.

For best error checking and most efficient code, externals should be giv-
en the same byte/word type and section type as the public symbol. Local
symbols (symbols which start with $) may not be used with .EXTRN.

NOTE: It is highly recommended to place absolute value symbols (e.g., Q=2:WORD
or Z=3) in an include file and include the file in an assembly rather than
pass the symbols externally using .EXTRN. If .EXTRN is used with an ab-
solute value, the appropriate sect type should be used with it, e.g., :BASE
for value 0–0f, :REG for value f0–ff, no sect type for other values. Even so,
the .EXTRN value may generate less efficient code than an absolute value.

Example: Module 1
; word type, ROM type
.EXTRN Z:ROM:WORD
.SECT CODE,ROM
; byte type, ROM type
.EXTRN Q:BYTE
; no size type, ROM type (label)
.EXTRN LABEL
LD A, Q
JMP LABEL

Module 2
.PUBLIC Z, LABEL, Q
.SECT CODE,ROM
; word type, ROM section type
Z: .DW 2
; byte type, ROM section type
Q: .DB 3
; no size type, ROM section type (label)
LABEL: NOP
2-56 CROSS-ASSEMBLER (ASMCOP)



.fb, .fw
2.9.18 .fb, .fw

Syntax: [label:] .FB size , fill

[label:] .FW size , fill

Description: These directives allocate a block of memory which is size of bytes or
words in length. Size must be absolute and defined during pass 1.

Fill specifies the value to which each byte or word in the block is set. This
value may be absolute or relocatable, but may not be complex. An error
is indicated if the value does not fit within a byte for .FB (range -256 to
255).

The label refers to the address of the first byte of data. For .FB, the label
is assigned byte type. For .FW, the label is assigned word type.

.FB and .FW are valid only in ROM type section.

Only one line of data will appear on the output listing.

Examples: INIT: .FB 0x100,0 ; set 0x100 bytes to zero
TOP: .FW 20,0xfff ; 20 words filled with 0xfff
CROSS-ASSEMBLER (ASMCOP)  2-57



.form
2.9.19 .form

Syntax: [label:] .FORM ['string'][; comments]

Description: The .FORM directive spaces forward to the top of the next page of the
output listing (it performs a form feed). The optional string is printed as
the third line of the page header on each page until a .FORM directive
containing a new string is encountered.

If the assembler generates a top-of-form because the listing page is full
and then immediately encounters a .FORM directive, the assembler
does not generate a top-of-form for the directive.

Example: .FORM 'BCD ARITHMETIC ROUTINES'
2-58 CROSS-ASSEMBLER (ASMCOP)



.if, .ifb .ifc, .ifdef, .ifnb, .ifndef, .ifstr, .else, .endif
2.9.20 .if, .ifb .ifc, .ifdef, .ifnb, .ifndef, .ifstr, .else, .endif

Syntax: [label:] .IF expression[; comments]
[label:] .ELSE [; comments]
[label:] .ENDIF [; comments]
OR

[label:] .IFSTR string1 operator string2 [; comments]
[label:] .ELSE [; comments]
[label:] .ENDIF [; comments]
OR

[label:] .IFB argument[; comments]
[label:] .ELSE [; comments]
[label:] .ENDIF [; comments]
OR

[label:] .IFNB argument [; comments]
[label:] .ELSE [; comments]
[label:] .ENDIF [; comments]
OR

[label:] .IFDEF symbol [; comments]
[label:] .ELSE [; comments]
[label:] .ENDIF [; comments]
OR

[label:] .IFNDEF symbol [; comments]
[label:] .ELSE [; comments]
[label:] .ENDIF [; comments]

Description: The conditional assembly directives selectively assemble portions of a
source program based on the operand field of the directive statement. All
source statements between a .IF, .IFC, .IFSTR, .IFB, .IFNB, .IFDEF or
.IFNDEF directive and its associated .ENDIF are defined as a .IF-.EN-
DIF block. These blocks may be nested 99 levels deep.
CROSS-ASSEMBLER (ASMCOP)  2-59



.if, .ifb .ifc, .ifdef, .ifnb, .ifndef, .ifstr, .else, .endif
The .ELSE directive can be optionally included in a .IF-.ENDIF block.
The .ELSE directive divides the block into two parts. The first part of the
source-statements block is assembled if the .IF expression is not equal to
zero; otherwise, the second part is assembled. When the .ELSE directive
is not included in a block, the block is assembled only if the .IF expression
is not equal to zero. If an error is detected in the expression, the assem-
bler assumes a false value (zero). The expression must be defined during
pass 1 (not containing a forward referenced value.)

The .IFSTR directive is optionally called .IFC. It allows conditional as-
sembly based on character strings rather than the value of an expres-
sion. The string1 and string2 are the character strings to be compared.
The operator is the relational operator between strings. Two operators
are allowed:  EQ (equal) and NE (not equal). If the relational operator is
satisfied, the lines following the .IFSTR are assembled until a .ELSE or
.ENDIF directive.

The primary application of the .IFSTR is to compare a macro parameter
value with a specific string, for example:

.IFSTR @3 NE INT     ; see if third macro argument is string “INT”.

String1 or string may be enclosed within quotation marks, if the string
contains special characters such as a blank. For example:

.IFSTR 'ADD X' EQ '@1'

A quotation mark within this type of string is specified by two quotation
marks. For example:

.IFSTR @2 NE 'don''t'

The .IFB and .IFNB directives allow conditional assembly based on
whether the operand is blank (.IFB) or non-blank (.IFNB). A comment
field, as the only item following the directive, is considered a blank oper-
and.

The .IFDEF and .IFNDEF directives allow conditional assembly based
on whether the symbol is defined (.IFDEF) or undefined (.IFNDEF). The
operand must consist of a single symbol, and the symbol is considered
undefined if it is a forward reference.

Listing of conditional assembly code is controlled by the .LIST directive.

Labels may optionally appear on a conditional directive line. Section
2.6.6 describes the use of conditionals in macros.
2-60 CROSS-ASSEMBLER (ASMCOP)



.if, .ifb .ifc, .ifdef, .ifnb, .ifndef, .ifstr, .else, .endif
Two examples of the use of the conditional assembly directives are:

Examples: 1. Two-part conditional assembly:
.IF COMPR
. ; Assembled if COMPR non-zero.
.
.
.ELSE
.
. ; Assembled if COMPR is equal to zero.
.
.ENDIF

2. Nested .IF-.ENDIF block:
.IF SMT
. ; Assembled if SMT is not zero.
.
.
.ELSE
. ; Assembled if SMT is equal to
. ; zero.
.
.IF OBR
. ; Assembled if OBR is not zero
. ; and SMT is equal to zero.
.
.ENDIF
. ; Assembled if SMT is
. ; equal to zero.
.
.ENDIF
CROSS-ASSEMBLER (ASMCOP)  2-61



.incld
2.9.21 .incld

Syntax: [label:] .INCLD filename [; comments]

Description: The .INCLD directive includes the assembler statements in the file file-
name as part of the code being assembled.

The file must be a symbolic file; the default file extension is determined
for the source file on the invocation line.

If the included lines are to be listed, the proper control line must be in
the source code. See .LIST directive, Section 2.9.22.

More exactly, the .INCLD directive causes the assembler to read source
code from the specified file until an end-of-file mark (or .END directive)
is reached. Then it again starts reading source code from the assembly
input file.

.INCLD directives may be nested 100 deep.

The directory search order is described in Section 2.2.4.

Example: .INCLD BCDADD ; include BCDADD.ASM file.
2-62 CROSS-ASSEMBLER (ASMCOP)



.list
2.9.22 .list

Syntax: [label:] .LIST expression [; comments]

Description: The .LIST directive controls listing of the source program. This includes
a listing of assembled code in general, a listing of unassembled source
lines contained in a .IF-.ENDIF block, a listing of code generated by the
.INCLD directive, a listing of macro code, and a listing of warning mes-
sages.

The .LIST directive is equivalent to specifying several controls at once.
The directive is maintained for compatibility with older assemblers.

Control of the various list options depends upon the seven least-signifi-
cant bits of the evaluated expression in the operand field (bits 6 through
0). Table 2-7 shows the options available, their associated bit weights,
and equivalent controls. See Section 2.10 for a description of these con-
trol functions.

Options may be combined to produce the desired listing.

Examples: 1. Full Master listing:
.LIST 1

2. Suppress listing:
.LIST 0
CROSS-ASSEMBLER (ASMCOP)  2-63



.list
Table 2-7 List Options

Control
Function

Bit
7-bit

Hex Value

Equivalent
Controls

(Section 2.10)Positions Binary
Value

Master List 0 0 00 #NOMASTERLIST

1 01 #MASTERLIST

.IF-.ENDIF Block List 1 0 00 #NOCNDLINES
#NOCNDDIRECTIVES

1 02 #CNDLINES
#CNDDIRECTIVES

Macro List
1. Macro calls only

3,2 00 00 #MCALLS
#NOMEXPANSIONS
#MOBJECT

2. Macro calls and
expanded code

10 08 #MCALLS
#MEXPANSIONS
#MOBJECT

3. Macro calls and all
expansion

11 0C #MCALLS
#MEXPANSIONS
#NOMOBJECT

Full Data List 4 0 00 #NODATADIRECTIVES

1 10 #DATADIRECTIVES

Include File List 5 0 00 #NOILINES

1 20 #ILINES

Warning List 6 0 00 #NOWARNINGS

1 40 #WARNINGS
2-64 CROSS-ASSEMBLER (ASMCOP)



.local
2.9.23 .local

Syntax: [label:] .LOCAL [; comments]

Description: The .LOCAL directive establishes a new program section for local labels
(labels beginning with a dollar sign [$]). All local labels between two .LO-
CAL directive statements have their values assigned to them only with-
in that particular section of the program. Note that a .LOCAL directive
is assumed at the beginning and the end of a program; thus, one .LOCAL
directive within a program divides the program into two local sections.
Up to 255 .LOCAL directives may appear in one assembly.

Local symbols may not be used as publics or externals.

Example: $X: .WORD 1 ; first label $X
.LOCAL ; establish new local symbol section

$X: .WORD 1 ; second label $X, no confusion since
; they are in different “LOCAL” blocks
CROSS-ASSEMBLER (ASMCOP)  2-65



.macro
2.9.24 .macro

Syntax: [label:] .MACRO mname[,parameters] [; comments]

Description: The .MACRO directive names a macro and signifies the start of the mac-
ro definition.

The mname is the name of the macro. The name must conform to the def-
inition of a symbol; see Section 2.3.3. The parameters are used in the
macro definition. Each parameter must also conform to the symbol defi-
nition rules.

See Section 2.6.1 for a description of macro definition. Note that the op-
tional label and comment on the directive line are not included in the
macro definition.
2-66 CROSS-ASSEMBLER (ASMCOP)



.mdel
2.9.25 .mdel

Syntax: [label:] .MDEL mname[,mname]... [; comments]

Description: The .MDEL directive deletes the macro definition and restores the pre-
vious macro definition of the same name (if any).

Example: .MACRO INC ; first macro def
LD A,[X+]
.ENDM
.MACRO INC ; second macro def of same name
LD A,[B+]
.ENDM
.MDEL INC ; INC is now first defined macro
CROSS-ASSEMBLER (ASMCOP)  2-67



.mloc
2.9.26 .mloc

Syntax: [label:] .MLOC symbol[,symbol]... [; comments]

Description: When a label is defined within a macro, a duplicate definition results
with the second and each subsequent call of the macro. This problem can
be avoided by using the .MLOC directive to declare labels local to the
macro definition.

Refer to Section 2.6.5 for an example of the .MLOC directive.
2-68 CROSS-ASSEMBLER (ASMCOP)



.opdef
2.9.27 .opdef

Syntax: [label] .OPDEF mname, opcode

Description: Opdef assigns another name, mname, to the specified opcode. This name
can then be used just like the original opcode. Of course, the original op-
code is still available. Opcode may be a standard opcode, a previously de-
fined macro, or a symbol defined in a previous .OPDEF.

Examples: .OPDEF IRP,.DOPARM ; note that even though .DOPARM is a
; directive, IRP doesn't
; require a leading period.
CROSS-ASSEMBLER (ASMCOP)  2-69



.opt
2.9.28 .opt

Syntax: [label:] .OPT expression, expression [; comments]

Description: The .OPT directive is for future use. It specifies which mask-program-
mable options were selected for the COP8. The first expression indicates
the option number; the second expression indicates the value to be as-
signed to the specified option number. Values for the first expression (op-
tion numbers) must be within the range 1 through 68; values for the
second expression (option values) must be within the range 0 through
255.

The assembler places the .OPT directive information in the load module
output file.

Example: .OPT   1,3      ; Specify option 1=3
2-70 CROSS-ASSEMBLER (ASMCOP)



.org
2.9.29 .org

Syntax: [label:] .ORG expression [; comments]

Description: The .ORG directive is used to set the program counter to a new value.
Any bytes skipped have an indeterminate value.

The expression must not contain any forward references and must be ei-
ther absolute, or relocatable in the same section as the current program
counter. The optional label is set to the value of the new program
counter.

A .ORG expression is equivalent to a .= expression.

In an absolute section (see Section 2.9.32, .SECT directive), the program
counter may not be set to a value lower than that specified on the .SECT
directive.

Example: .ORG 0100 ; section program counter = 0100
CROSS-ASSEMBLER (ASMCOP)  2-71



.outall, .out1, .out2, .out
2.9.30 .outall, .out1, .out2, .out

Syntax: [label:] .OUTALL 'string' [; comments]
[label:] .OUT1 'string' [; comments]
[label:] .OUT2 'string' [; comments]
[label:] .OUT 'string' [; comments]

Description: These directives write a message to the console. The .OUT1 is performed
only during pass 1 of the assembly, .OUT2 during pass 2, and .OUT on
both passes. The .OUTALL may be used to output a message on all pass-
es of the assembler, including all optimization passes.

The operand field contains the message to be output.

Example: .OUT1 'Pass 1'
.OUT 'ARG contains bad value'
2-72 CROSS-ASSEMBLER (ASMCOP)



.public
2.9.31 .public

Syntax: [label:] .PUBLIC symbol[,symbol...]

Description: This directive specifies which symbols to make available to other mod-
ules. In the other module, a .EXTRN directive is used. A symbol may be
any value defined in this module. Local symbols (symbols which start
with $) may not be used with .PUBLIC.

Example: .PUBLIC DOG
DOG:  .DW 2
CROSS-ASSEMBLER (ASMCOP)  2-73



.sect, .endsect
2.9.32 .sect, .endsect

Syntax: [label:] .SECT name, [memory [,REL] [,align][,INPAGE]] [;com-
ments]
[label:] .SECT name, [memory ,COMMON [,align][,INPAGE]] [;comments]
[label:] .SECT name, [memory, ABS=addr[,INPAGE]][;comments]
[label:] .ENDSECT [;comments]

where: name Specifies section name. This can be any valid symbol name.

memory ROM  is read-only memory and holds code/constant
data.

RAM  is read-write memory and holds data.

BASE is RAM, range 0 to f.

EERAM is RAM range 080 to 0bf.

REG is RAM range 0f0 to 0ff.

SEG is RAM above 0ff.

SEGB is base area of SEG, address xx00 to xx0f.

REL REL is relocatable (default).

align Specifies the align type and, if relocatable, the boundary on
which the loader places the relocatable section. This may
be:

byte any address (default)

page address divisible by 0x100

block address divisible by 0x1000

COMMON COMMON is same as REL, except that sections of the
same name in two or more modules will overlay each other.
The size of the section is size of the largest.

ABS ABS is absolute. An address is specified, e.g., ABS=0x1000.
This sets the program counter to this address and also indi-
cates the lowest value the program counter may have in
this section.

INPAGE INPAGE is used to guarantee that the entire section falls
within a page, exclusive of the last byte of the page, i.e., the
range xx00 to xxfe. This guarantees that a JID or LAID
instruction along with associated data falls within a page.
See .ADDR directive (Section 2.9.1) for an example.
2-74 CROSS-ASSEMBLER (ASMCOP)



.sect, .endsect
Description: This directive defines a program section. It specifies a section name and
attributes. If this is the first use of the section, its location counter is set
to zero. If the section has already been used, its location counter is set to
its previous value. The section names and attributes are used by the
linker to combine similarly named sections from other modules.

If only the section name is given, the attributes from the first definition
of that section name are used. A section name may not be defined again
with different attributes.

The .ENDSECT is optionally used to end a program section and restore
the previous section (otherwise, the next .SECT ends a section and de-
fines a new one).

NOTES:  1. A .SECT directive must appear at the start of a module before first data
or code usage.

2. The assembler generates a general instruction addressing mode for any
BASE or REG address whose offset is outside the BASE (0 to F) or REG
(F0 to FF) range. This is the only way correct code is assured. For exam-
ple:

For the first LD, the offset of L1 from the start of section B1 is 0  so a one
byte instruction is generated. The second LD has an offset of –1; after
linking, L1-1 could actually have the value –1 thus a two-byte instruc-
tion is generated. The final LD has an offset of 0 so a one-byte instruction
is generated.

Example: .SECT CSECT,ROM ; define CSECT section
.DB 2
.SECT DSECT,RAM ; define DSECT section
.DSB 1
.ENDSECT ; end DSECT section
.DW 2 ; back to CSECT section

.SECT B1,BASE
L1: .DSB 1
L2: .DSB 2

.SECT CODE,ROM
LD B,#L1 ; 1 byte instruction
LD B,#L1-1 ; 2 byte instruction
LD B,#L2-1 ; 1 byte instruction
CROSS-ASSEMBLER (ASMCOP)  2-75



.set
2.9.33 .set

Syntax: [label:] .SET symbol, expression[:type][; comments]

Description: The .SET directive is used to assign values to symbols. In contrast to an
assignment statement, a symbol assigned a value with the .SET direc-
tive can be assigned a new value at any place within an assembly lan-
guage program.

The optional type may be specified as byte (:BYTE or :B) or word
(:WORD or :W) and assigns this type to the symbol. Use of type overrides
the type of the expression.

NOTE: A .SET symbol may be set to a forward-referenced operand
only the first time the .SET symbol is defined. Following
definitions with forward-referenced operands generate er-
rors.

Example: .SET A1,0 ; set A1=0
.SET A1,100 ; set A1=100
.SET B1,50 ; set B1=50
.SET C1,A1-25*B1/4 ; set C1=A1-25*B1/4
.SET D1,A1:BYTE ; set D1= to value 100 with byte type
2-76 CROSS-ASSEMBLER (ASMCOP)



.space
2.9.34 .space

Syntax: [label:] .SPACE expression [; comments]

Description: The .SPACE directive inserts a number of blank lines into the output
listing. The number of lines inserted is specified by the expression in the
operand field. If the HEADINGS control is on, the number of blank lines
inserted will not exceed the end of the current page.

Example: .SPACE 20 ; skip 20 lines.
CROSS-ASSEMBLER (ASMCOP)  2-77



.title
2.9.35 .title

Syntax: [label:] .TITLE [symbol][,'string'][; comments]

Description: The .TITLE directive identifies the output listing in which it appears
with an optional symbolic name and an optional title string. If more than
one .TITLE directive is used, the last one encountered specifies the sym-
bolic name and string. The symbolic name consists of any character up
to the comma. Single quotation marks (') must appear at the beginning
and end of the character string. A single quotation mark in the string is
represented by two quotation marks ('').

Example: .TITLE TBLKP, 'TABLE LOOKUP'

uses TBLKP on the first header line. 'TABLE LOOKUP' appears as the
second header line.

.TITLE   ,'DATA TABLE'

uses default module name. 'DATA TABLE' appears as the second header
line.

NOTE: .TITLE must appear as the first source line if the header of
the first page is to contain symbol and string.
2-78 CROSS-ASSEMBLER (ASMCOP)



.word, .dw
2.9.36 .word, .dw

Syntax: [label:] .WORD expression[,expression...] [; comments]
[label:] .DW expression[,expression...] [; comments]

Description: The .WORD and .DW directives generate consecutive 16-bit words of
data for each given expression. If the directive has a label, it refers to the
address of the first word. The program section must be ROM type. Any
label is assigned the word type.

Example 1 stores the hexadecimal number FF in a word of memory.

Example 2 stores three 16-bit values in consecutive words in memory.

To store ASCII strings in consecutive bytes, use the .BYTE directive,
Section 2.9.3.

NOTE: The .WORD, .DW directive stores words in byte order, low byte to high byte.
This is not correct for VIS address table; use .ADDRW directive which
stores in opposite order.

Examples: 1. .WORD  0FF
2. T: .DW  MPR-10,0FFFF,'AB'
CROSS-ASSEMBLER (ASMCOP)  2-79



ASSEMBLER CONTROLS
2.10 ASSEMBLER CONTROLS

This section describes the controls that may be used in the source program on a control
line or used on the invocation line as an option. The syntax of their usage as an option is
described in Section 2.2.2.

A control line is indicated by a # in column 1 of the source line, followed by any of the
following controls separated by white space. Comments may be included on  a control line
by using a semicolon followed by the comment. The “;”  terminates the control line.

A control name may be abbreviated to the number of letters shown in  capital letters in
the descriptions. For example, MASTERLIST may be also  specified as MASTER, MA, or
even M. However, MC gives an error, since it is uncertain whether  MCALLS or
MCOMMENTS is wanted. Many of the controls may also  have the prefix NO. In this
case, the rest of the name may be  abbreviated as normal. Control names are not case-
sensitive.

A control may be classified as primary, general or invocation line only. Primary controls
are those that can be set only on the invocation line or at the beginning of the program
before any other statements, except for other control lines or comments. General controls
may be specified anywhere and can be respecified at any time. Thus, the usual source
program structure is:

#MASTERLIST ;general is okay up here

; comment okay between primary controls

#HEADINGS ;turn on headings

; instruction follows

          NOP

; at this point only general controls will be valid

A few of the controls are shown as “invocation line only.” This, of course, means they are
valid only on the program invocation line and cannot be used within the program.

A general control may be saved and restored by the SAVE and RESTORE controls.

Invocation line controls are masters and override the same control in the program source.
Thus, NOMASTERLIST on the invocation line overrides #MASTERLIST in the source.

Assembler controls and functions, described in this section, are summarized in Table 2-8.
2-80 CROSS-ASSEMBLER (ASMCOP)



ASSEMBLER CONTROLS
Table 2-8 Summary of Assembler Controls

Control Function

[NO]Aserrorfile[=file] [NO]Create a source file with errors Section 2.10.1

CHip=string Specify member of COP8 family Section 2.10.2

[NO]CNDDirectives [NO]List of conditional directives Section 2.10.3

[NO]CNDLines [NO]List lines of conditional code Section 2.10.4

[NO]COMMentlines [NO]List comment lines Section 2.10.5

[NO]COMPlexrel [NO]Complex relocation Section 2.10.6

[NO]CONstants [NO]List constants in symbol table Section 2.10.7

[NO]Crossref [NO]Cross-reference table in listing file Section 2.10.8

[NO]DAtadirectives [NO]List all lines of object code Section 2.10.9

Define=symbol[=value] Define a symbol Section 2.10.10

[NO]ECho [NO]Echo command file to the console Section 2.10.11

[NO]Errorfile[=file] [NO]Error file Section 2.10.12

[NO]Formfeed [NO]Form feeds Section 2.10.13

[NO]Headings [NO]Heading on each list page Section 2.10.14

[NO]ILines [NO]List include file Section 2.10.15

Include=directory Additional include search directory Section 2.10.16

[NO]Listfile[=file] [NO]List file Section 2.10.17

[NO]LOcalsymbols [NO]Local symbols in object file Section 2.10.18

[NO]Masterlist [NO]List of source lines in list file Section 2.10.19

[NO]MCAlls [NO]List of macro call statements Section 2.10.20

[NO]MCOmments [NO]Macro comments saved in definition Section 2.10.21

[NO]MDefinitions [NO]List of macro definition Section 2.10.22

[NO]MEMory Use memory for optimization Section 2.10.23

[NO]MExpansions [NO]List macro expansion lines Section 2.10.24

[NO]MLocal [NO]Macro local symbols in symbol table Section 2.10.25

[NO]MObject [NO]List macro object lines only Section 2.10.26
CROSS-ASSEMBLER (ASMCOP)  2-81



ASSEMBLER CONTROLS
MODel=model Memory Model Section 2.10.27

[NO]Numberlines [NO]Number list lines by source file Section 2.10.28

[NO]Objectfile[=file] [NO]Object file Section 2.10.29

PAss=number Number of passes assembler performs Section 2.10.30

PLength=number Number of lines per page Section 2.10.31

PWidth=number Number of characters per line Section 2.10.32

Quick Fast list only Section 2.10.33

[NO]Remove [NO]Remove source file error lines Section 2.10.34

REStore Restore state of controls that were saved Section 2.10.35

SAve Saves state of general controls Section 2.10.36

[NO]SIGnedcompare [NO]Comparisons using signed arithmetic Section 2.10.37

SIZesymbol=number Specifies maximum symbol size Section 2.10.38

SYm_debug Generate source debugging information Section 2.10.39

[NO]Tablesymbols [NO]Symbol table in list file Section 2.10.40

[NO]TABS [NO]Tabs in list file Section 2.10.41

Undefine=symbol Undefine a symbol Section 2.10.42

[NO]UPpercase [NO]Convert symbols to upper-case Section 2.10.43

[NO]Verify [NO]List all passes of assembler Section 2.10.44

[NO]Warnings [NO]List warning messages Section 2.10.45

[NO]Xdirectory [NO]Search only specified Include directo-
ries

Section 2.10.46

Table 2-8 Summary of Assembler Controls

Control Function
2-82 CROSS-ASSEMBLER (ASMCOP)



Aserrorfile
2.10.1 Aserrorfile

Syntax: [NO]Aserrorfile [=filename]

Description: This control causes the program to create a source error file. This file
contains all the lines that are in the source program plus error messages
for those lines containing errors. You can then edit this file and quickly
fix the errors, as both the source statements and errors are combined.
Normally, the user then runs this file through the assembler using the
REMOVE control with ASERRORFILE specified again. An error-free
source file can then be created. The class is invocation line only. The de-
fault is NOASERRORFILE. If filename is not specified, the source file-
name is used with the default extension. The default filename extension
is .ase.

NOTE: The generated error lines start with ;!*** if the line in error
is found in the source file. (The source file is the last input
file specified on the invocation line.) The error lines start
with ;!+++ if the line is not in the source file (e.g., in include
file or part of macro expansion); the line in error is also
shown preceded by ;!+++.

ERRORFILE (Section 2.10.12) is used to generate a file
containing only errors.

Example: A ; uses file sourcefile.ase
ASE=MAIN.NEW
CROSS-ASSEMBLER (ASMCOP)  2-83



CHip
2.10.2 CHip

Syntax: CHip=string

Description: The CHIP control specifies the member of the COP8 family. Valid string
arguments are the same as for the .CHIP directive (see Section 2.9.4).
The class is invocation line only.

NOTE: See notes for .CHIP directive (Section 2.9.4).

Example: CHIP=820 ;specify 820 instruction set
CHIP=COP888cg ;specify COP888cg instruction set
CH=ANYCOP ;specify instruction subset
2-84 CROSS-ASSEMBLER (ASMCOP)



Cnddirectives
2.10.3 Cnddirectives

Syntax: [NO]CNDDirectives

Description: This control enables/disables the listing of conditional directives (e.g.,
.IF, .ELSE, and .ENDIF).  It is overridden by the NOCNDLINES control.
Thus, while NOCNDDIRECTIVES can be used to disable listing all con-
ditional directives, CNDD does not list those lines suppressed by
NOCNDLINES. The default is NOCNDDIRECTIVES. The class is gen-
eral.
CROSS-ASSEMBLER (ASMCOP)  2-85



Cndlines
2.10.4 Cndlines

Syntax: [NO]CNDLines

Description: CNDLINES lists lines of code that are not assembled because of condi-
tional assembly.  NOCNDLINES inhibits the listing of these lines. The
default is NOCNDLINES. The class is general.
2-86 CROSS-ASSEMBLER (ASMCOP)



Commentlines
2.10.5 Commentlines

Syntax: [NO]COMMentlines

Description: This control allows you to include comment lines or not in the output list-
ing.  It is provided to allow the user to get a quick listing. Note that a
blank line is considered a comment. The default is COMMENTLINES.
The class is general.
CROSS-ASSEMBLER (ASMCOP)  2-87



Complexrel
2.10.6 Complexrel

Syntax: [NO]COMPlexrel

Description: This control enables/disables complex relocation(see Section 2.3.4). In
most cases, the user isn’t concerned about this control.  However, in pro-
grams in which it is known that there are no complex expressions, it is
useful for error-checking purposes to use NOCOMPLEXREL. It is the
unusual program that requires complex expressions. The default is
COMPLEXREL. The class is general.

NOTE: Complex relocation is any relocation expression, other than
rterm + constant, rterm – constant, or rterm – rterm where
rterm is relocatable. For example, rterm * 2 is complex.
2-88 CROSS-ASSEMBLER (ASMCOP)



Constants
2.10.7 Constants

Syntax: [NO]CONstants

Description: Many programs define hundreds of constant symbols (e.g.,  CR=13), and
typically a .INCLD file is used to include the definitions of these symbols.
Normally all symbols, including these, are listed in a symbol or cross-ref-
erence table.  NOCONSTANTS can be used to ignore these constant
symbols in the symbol/cross-reference table, effectively “cleaning up” the
listing. If LOCALSYMBOLS is in effect, NOCONSTANTS also inhibits
constant symbols from being placed into the object module.  Note that a
constant symbol is different from a label defined in an absolute section.
The default is CONSTANTS. The class is primary.
CROSS-ASSEMBLER (ASMCOP)  2-89



Crossref
2.10.8 Crossref

Syntax: [NO]Crossref

Description: CROSSREF causes a cross-reference table to be included in the output
listing. This table consists of each symbol and its value along with the
line numbers of where it is defined, and used. The line number where it
is defined is preceded by a “-” on the listing. CROSSREF overrides TA-
BLESYMBOLS. The default is NOCROSSREF. The class is primary.
2-90 CROSS-ASSEMBLER (ASMCOP)



Datadirectives
2.10.9 Datadirectives

Syntax: [NO]DAtadirectives

Description: Some data generation directives display more than one line of object
code in the listing file. DATADIRECTIVES allows all of these lines to be
listed while NODATADIRECTIVES causes only the first line to be list-
ed. The default is DATADIRECTIVES. The class is general.

NOTE: The .FW and .FB directives display at most one line of ob-
ject code.
CROSS-ASSEMBLER (ASMCOP)  2-91



Define
2.10.10 Define

Syntax: Define=symbol[=value]

Description: This control is used to define a symbol from the invocation line.  This
could then be used within the program to create different versions, etc.
The conditional assembly directive, .IFDEF or .IFNDEF, can also detect
if the symbol has been defined.  If no value is specified for the symbol, it
is assigned a value of 1. The symbol name is case-sensitive. The class is
invocation line only.

Example: DEF=LOOPCOUNT=10 ; set LOOPCOUNT to 10
D=VERSION2 ; set VERSION2 to default of 1
2-92 CROSS-ASSEMBLER (ASMCOP)



Echo
2.10.11 Echo

Syntax: [NO]ECho

Description: This control specifies whether an MS-DOS command file (i.e., @file) is
echoed to the console. ECHO only applies to commands that follow it.
The default is NOECHO. The class is invocation line only.
CROSS-ASSEMBLER (ASMCOP)  2-93



Errorfile
2.10.12 Errorfile

Syntax: [NO]Errorfile [=filename]

Description: This control specifies the name of a file to which errors are written. ER-
RORFILE without the filename option uses the source filename with the
default extension .err. NOERRORFILE indicates that no error file is to
be used. The default is ERRORFILE to the console (unless the listing file
is also the console). The class is invocation line only.

Example: ERR=MAIN ; errors to main.err
2-94 CROSS-ASSEMBLER (ASMCOP)



Formfeed
2.10.13 Formfeed

Syntax: [NO]Formfeed

Description: FORMFEED puts a form-feed character between pages.  NOFORM-
FEED uses blank lines to move between pages.  The number of blank
lines is dependent upon the page length. The default is FORMFEED.
The class is primary.
CROSS-ASSEMBLER (ASMCOP)  2-95



Headings
2.10.14 Headings

Syntax: [NO]Headings

Description: Normally the output listing is divided into pages whose size is specified
by the PLENGTH control.  Each page is separated by a form feed or by
the appropriate number of line feeds.  The top of each page has a header
that contains the page number, title, and date.  NOHEADING puts no
page breaks in the output listing.  The PLENGTH control is ignored, no
headers appear, and all lines are listed continuously. The default is
HEADINGS. The class is primary.
2-96 CROSS-ASSEMBLER (ASMCOP)



Ilines
2.10.15 Ilines

Syntax: [NO]ILines

Description: ILINES lists lines read from .INCLD files. The default is NOILINES.
The class is general.
CROSS-ASSEMBLER (ASMCOP)  2-97



Include
2.10.16 Include

Syntax: Include = directory

Description: Normally, when using the .INCLD directive, the program looks in the
current and default directories to find a file without an explicit directory
name (refer to Section 2.2.4). If not found, it flags an error.  This control
enables the program to search other devices and/or directories to find the
file. Multiple directories may be searched by specifying each on a sepa-
rate INCLUDE control. The class is invocation line only.

Example: I=C:\ ; check root directory on drive C:
I=. . ; check parent directory
2-98 CROSS-ASSEMBLER (ASMCOP)



Listfile
2.10.17 Listfile

Syntax: [NO]Listfile [=filename]

Description: LISTFILE causes the program to write the listing to the file specified.
LISTFILE with no filename uses the default extension with the source
filename.  NOLISTFILE inhibits any listing from being created.  In this
case, the default is that all errors are displayed on the console. (Refer to
Section 2.10.12.) The default is LISTFILE with only error lines appear-
ing in the file. If LISTFILE is specified, the file contains all lines not in-
hibited by other options. The default filename extension is .lis. The class
is invocation line only.

Example: LIST=N ; creates file n.lis
L=CON ; list to con (MS-DOS console)
CROSS-ASSEMBLER (ASMCOP)  2-99



Localsymbols
2.10.18 Localsymbols

Syntax: [NO]LOcalsymbols

Description: LOCALSYMBOLS causes all symbols to be put into the object module
and thus be made available for the linker symbol or cross-reference ta-
ble. If LOCALSYMBOLS is not used, only those symbols declared PUB-
LIC are available to the linker. The default is NOLOCALSYMBOLS. The
class is primary.

NOTE: For very large programs, when LOCALSYMBOLS assem-
bly control is used, the large number of symbols may exceed
the available memory during link time. Even if there is
enough memory, the link may be very slow. It is recom-
mended to limit number of assemblies with LOCALSYM-
BOL control.
2-100 CROSS-ASSEMBLER (ASMCOP)



Masterlist
2.10.19 Masterlist

Syntax: [NO]Masterlist

Description: MASTERLIST enables the listing of the source lines in the list file.  NO-
MASTERLIST causes only error lines to be placed into the listing file.
NOMASTERLIST overrides all other list directives. The default is MAS-
TERLIST. The class is general.

In order to generate a full listing, you must also specify the /LIST option
on the invocation line. See Section 2.10.17.
CROSS-ASSEMBLER (ASMCOP)  2-101



Mcalls — Macro Calls
2.10.20 Mcalls — Macro Calls

Syntax: [NO]MCAlls

Description: MCALLS allows the listing of macro call statements while NOMCALLS
inhibits them. The default is MCALLS. The class is general.
2-102 CROSS-ASSEMBLER (ASMCOP)



Mcomments — Macro Comments
2.10.21 Mcomments — Macro Comments

Syntax: [NO]MCOmments

Description: NOMCOMMENTS suppresses all comments within a macro definition.
When this macro is expanded, the comments do not appear.  These com-
ments do appear on the output listing as part of the macro definition. A
macro double-comment, e.g., ;;COMMENT, never appears in a macro ex-
pansion.  This control allows all comments to be removed.  Blank lines
are considered comments. The default is MCOMMENTS. The class is
general.
CROSS-ASSEMBLER (ASMCOP)  2-103



Mdefinitions
2.10.22 Mdefinitions

Syntax: [NO]MDefinitions

Description: MDEFINITIONS allows the listing of a macro definition, whereas NOM-
DEFINITION inhibits it.  A macro definition consists of all lines from a
.MACRO, .DOPARM, or .DO directive to its matching .ENDM or .END-
DO. The default is MDEFINITIONS. The class is general.
2-104 CROSS-ASSEMBLER (ASMCOP)



Memory
2.10.23 Memory

Syntax: [NO]MEMory

Description: MEMORY allows memory to be used for optimization. NOMEMORY
uses temporary files for optimization; this need be used only if you get
an ”out of memory” error during assembly. Default is MEMORY. The
class is invocation line only.
CROSS-ASSEMBLER (ASMCOP)  2-105



Mexpansions
2.10.24 Mexpansions

Syntax: [NO]MExpansions

Description: MEXPANSIONS causes all macro expansion lines to be listed. NOMEX-
PANSIONS suppresses the macro expansion lines.  A macro expansion
consists of those lines that are generated by a macro call, a .DO, or a
.DOPARM directive.  The macro call line is listed dependent on the
MCALLS control. The default is NOMEXPANSIONS. The class is gen-
eral.
2-106 CROSS-ASSEMBLER (ASMCOP)



Mlocal — Macro Local Symbols
2.10.25 Mlocal — Macro Local Symbols

Syntax: [NO]MLocal

Description: MLOCAL causes “local macro” symbols to be included in a symbol or
cross-reference table.  In addition, these symbols are placed into the ob-
ject module if LOCALSYMBOLS(see Section 2.10.18) is in effect. The de-
fault is NOMLOCAL. The class is primary.
CROSS-ASSEMBLER (ASMCOP)  2-107



Mobject — Macro Object
2.10.26 Mobject — Macro Object

Syntax: [NO]MObject

Description: NOMOBJECT allows all lines of a macro expansion to be listed. MOB-
JECT lists only those macro lines that generate object code. This is very
useful for those macros that contain many conditional statements but
only a few instructions.  This control is overridden by NOMEXPAN-
SIONS(see Section 2.10.24). The default is NOMOBJECT. The class is
general.
2-108 CROSS-ASSEMBLER (ASMCOP)



Model—Memory Size Model
2.10.27 Model—Memory Size Model

Syntax: MODel=s[mall]|m[edium]|l[arge]

Description: MODEL specifies an alternative memory model to the default specified
by the .CHIP directive(see Section 2.10.2). By default, all chips are small
memory model, except if ROM size is >4K then LARGE memory model
is used.

If program size is <4K, SMALL model should always be used; no 3-byte
JMPL or JSRL are generated. If program size is >4K, either MEDIUM
or LARGE should be used. MEDIUM requires all ROM sections to not
cross 4K boundaries (LNCOP will enforce this). Jumps between ROM
sections are 3-byte jumps; jumps within sections are one or two bytes.
LARGE places no restrictions on ROM section placement, but all jumps
(except 1-byte jumps) are three bytes. You can build all modules with
MEDIUM and link, then with LARGE and link, to see which is more ef-
ficient program size. In general, many small code sections are more effi-
cient in MEDIUM model; large code sections are more efficient in
LARGE model.

NOTE: All assembly modules should be built with the same model.
The memory model is shown at the end of the listing.
CROSS-ASSEMBLER (ASMCOP)  2-109



Numberlines
2.10.28 Numberlines

Syntax: [NO]Numberlines

Description: NONUMBERLINES causes each line in the output listing to have the
next sequential line number.  However, because of macros or .INCLD
files, the line number may not reflect the actual position in the source
file.  While this is useful for a cross-reference table, it may not be for oth-
er purposes. NUMBERLINES causes each source line to have the same
line number as its position in the file.  In this case, lines from macro ex-
pansions or .INCLD files do not have line numbers. The default is NUM-
BERLINES. The class is primary.
2-110 CROSS-ASSEMBLER (ASMCOP)



Objectfile
2.10.29 Objectfile

Syntax: [NO]Objectfile [=filename]

Description: OBJECTFILE causes the program to write the object module to the spec-
ified file.  OBJECTFILE with no filename uses the default extension
with the source filename. NOOBJECTFILE inhibits any object module
from being created. The default is OBJECTFILE. The default filename
extension is .obj. The class is invocation line only.

Example: O=DISPLAY ; uses file display.obj
NOOBJ ; no object module
CROSS-ASSEMBLER (ASMCOP)  2-111



Pass
2.10.30 Pass

Syntax: PAss = {number|ALL}

Description: PASS specifies the number of passes through the source code that the as-
sembler should perform.  An argument of ALL causes the assembler to
perform the minimum number of passes necessary to optimize the size
of the code.  A count of 0, 1 or 2 causes the assembler to perform a stan-
dard two-pass assembly.  Any other value causes the assembler to per-
form that number of passes (this may result in phase errors; it is best to
specify ALL for pass>2). The default is ALL. The class is invocation line
only.

NOTE: It is rarely necessary to use pass=2, as the optimization
time is minimal. The .CONTRL directive(see Section 2.9.5)
can be used to selectively turn off optimization for sections
of code.
2-112 CROSS-ASSEMBLER (ASMCOP)



Plength
2.10.31 Plength

Syntax: PLength = number

Description: PLENGTH specifies the number of lines for each page in the listing file.
This is the physical length of the page, not the number of lines that will
appear on the page.  Thus, a printer using 8 lines/inch specifies
PLENGTH=88 using standard 11-inch paper.  Values between 11 and
255 can be specified. The default is 66. The class is primary.

PLENGTH is overridden by the NOHEADINGS control.

Example: PL=60
CROSS-ASSEMBLER (ASMCOP)  2-113



Pwidth
2.10.32 Pwidth

Syntax: PWidth = number

Description: This control sets the number of characters per line that are printed on
the output listing.  Characters past this position are ignored.  This is also
used as the position to which the page number and date are aligned in
the header. Values between 64 and 255 can be specified. Although some
terminals are 80 characters wide, writing a CR-LF in the 80th spot caus-
es a subsequent blank line to appear.  In this case, you should use 79 as
the width. The default is 79 and the class is primary.

Example: PW=100
2-114 CROSS-ASSEMBLER (ASMCOP)



Quick
2.10.33 Quick

Syntax: Quick

Description: Specify QUICK to get a fast,  errors-only assembly.  QUICK causes NO-
MASTERLIST, NOLISTFILE, NOOBJECTFILE, NOASERRORFILE,
NOTABLESYMBOLS, and NOCROSSREF to be in effect.  It also en-
ables ERRORFILE, which defaults to the console.  If any of the above
controls are used after QUICK, they can be turned on again.  In most
cases, you can enter the source file to assemble followed by the QUICK
control. The class is invocation line only.

Example: Q ; just errors to console
QUICK OBJ ; also get object file
CROSS-ASSEMBLER (ASMCOP)  2-115



Remove
2.10.34 Remove

Syntax: [NO]Remove

Description: When a source error file is created by ASERRORFILE control(see Sec-
tion 2.10.1), all errors are flagged with an “error string” at the beginning
of the error message line(s). You can then edit this file to correct the er-
rors, while leaving the “error string” lines. If this file is subsequently pro-
cessed by the assembler, REMOVE can be used to ignore these “error
string” lines so that the assembly proceeds normally. If there is still an
error, it appears on an error line. The default is NOREMOVE. The class
is primary.

NOTE: See ASERRORFILE control (Section 2.10.1) for definition
of “error string.”
2-116 CROSS-ASSEMBLER (ASMCOP)



Restore
2.10.35 Restore

Syntax: REStore

Description: This control restores the state of the controls that were saved with the
SAVE control(see Section 2.10.36).  An error is flagged if RESTORE is
used without a previous SAVE. The class is general, although RESTORE
is not normally used on the invocation line.
CROSS-ASSEMBLER (ASMCOP)  2-117



Save
2.10.36 Save

Syntax: SAve

Description: This control saves the state of general controls, except for SAVE and RE-
STORE themselves. SAVE’s can be nested to eight levels.  The state of
these controls can be restored with the RESTORE control. The typical
use is to save the state of the MASTERLIST flag before calling a macro
that turns off the listing. After the macro, RESTORE is used to set the
MASTERLIST flag to its starting state. The class is general, although
SAVE is normally not used on the invocation line.
2-118 CROSS-ASSEMBLER (ASMCOP)



Signedcompare
2.10.37 Signedcompare

Syntax: [NO]SIGnedcompare

Description: NOSIGNEDCOMPARE causes all expressions containing conditional
operators (i.e., GT, GE, LT, or LE) to be evaluated using unsigned arith-
metic.  SIGNEDCOMPARE evaluates these expressions using signed
arithmetic. The default is NOSIGNEDCOMPARE. The class is general.
CROSS-ASSEMBLER (ASMCOP)  2-119



Sizesymbol
2.10.38 Sizesymbol

Syntax: SIZesymbol = number (6-64)

Description: SIZESYMBOL specifies the maximum symbol size.  All symbols are
stored as variable lengths, so there is usually no need to change the max-
imum symbol size.  However, in certain cases, such as for compatibility
with older assemblers, you may need to limit symbols to a maximum
size.  In this case, only the maximum number of characters are used to
represent the symbol, the rest are ignored. The default is 64 and the
class is primary.
2-120 CROSS-ASSEMBLER (ASMCOP)



Sym_debug
2.10.39 Sym_debug

Syntax: SYm_debug

Description: SYM_DEBUG causes the assembler to generate source line and symbol-
ic debugging information in the object module. This information is then
available to the COP8 linker which can process it to create a COFF file
with debugging  information. The COFF file can be used by the COP8 de-
buggers.

Debugging information is generated for all symbols, except for multiple
occurrences of “local labels” (labels which start with $), in which case
only the first occurrence is handled. Symbols by default are marked stat-
ic unless explicitly declared public or  external.

The class is invocation line only.
CROSS-ASSEMBLER (ASMCOP)  2-121



Tablesymbols
2.10.40 Tablesymbols

Syntax: [NO]Tablesymbols

Description: NOTABLESYMBOLS specifies that no symbol table is listed, whereas
TABLESYMBOLS creates a symbol table listing. This control is overrid-
den by the CROSSREF control.  Note that NOMASTERLIST(see Section
2.10.19) does not override TABLESYMBOLS. The default is NOTABLE-
SYMBOLS. The class is primary.
2-122 CROSS-ASSEMBLER (ASMCOP)



Tabs
2.10.41 Tabs

Syntax: [NO]TABS

Description: TABS specifies that tabs should be retained in the output listing, where-
as NOTABS causes tabs to be expanded into the appropriate number of
blanks.  Tab stops are at every 8 columns.  TABS is useful in reducing
the size of the output listing and (possibly) increasing the printing
speed. The default is NOTABS. The class is primary.
CROSS-ASSEMBLER (ASMCOP)  2-123



Undefine
2.10.42 Undefine

Syntax: Undefine=symbol

Description: UNDEFINE is used to undefine a symbol that was defined by the DE-
FINE control(see Section 2.10.10).  Note that it cannot be used to unde-
fine a symbol defined in the source program. The class is invocation line
only.

Example: U=COUNT
2-124 CROSS-ASSEMBLER (ASMCOP)



Uppercase
2.10.43 Uppercase

Syntax: [NO]UPpercase

Description: UPPERCASE causes all lower-case characters to be converted to upper-
case in symbols and opcodes.  This does not affect characters used in
strings.  NOUPPERCASE allows symbols using upper- and lower-case to
be considered differently.  For example, ABCD and abcd are different
symbols if NOUPPERCASE is in effect.  All assembler keywords and op-
codes can be any combination of upper- and lower-case.  Thus, NOP, nop,
and NoP are all recognized as an opcode, regardless of the state of this
control. The default is NOUPPERCASE. The class is primary.
CROSS-ASSEMBLER (ASMCOP)  2-125



Verify
2.10.44 Verify

Syntax: [NO]Verify

Description: VERIFY causes an output listing to be generated during each pass of the
assembler.  This is mainly used to examine the effect of multi-pass opti-
mization or to determine how phase errors occurred. The default is
NOVERIFY. The class is primary.
2-126 CROSS-ASSEMBLER (ASMCOP)



Warnings
2.10.45 Warnings

Syntax: [NO]Warnings

Description: WARNINGS causes any warning messages to be included in the output
listing.  NOWARNINGS inhibits the messages. The default is WARN-
INGS. The class is general.
CROSS-ASSEMBLER (ASMCOP)  2-127



Xdirectory
2.10.46 Xdirectory

Syntax: [NO]Xdirectory

Description: Normally, when searching for an include file, the current, default, and
any directories specified via the INCLUDE control are searched. XDI-
RECTORY causes only those directories specified by the INCLUDE con-
trol to be searched.  This allows files in another directory that have the
same name as those in the current directory to be accessed. The default
is NOXDIRECTORY. The class is invocation line only.
2-128 CROSS-ASSEMBLER (ASMCOP)



Chapter 3

CROSS-LINKER (LNCOP)

3.1 INTRODUCTION

This chapter describes the operation of the COP8 Linker, LNCOP. LNCOP reads object
modules produced by   ASMCOP and combines them into an absolute object file that may
be executed on the processor. This file is also suitable for use by a debugger or emulator.

The object modules may reside in a file or be obtained from a library produced by
LIBCOP. See Chapter 4 for detailed information on the library.

A load map is also produced that shows how memory is allocated. Memory allocation is
under complete control of the user. In addition, a symbol table or cross-reference table
may be obtained.

3.2 INVOCATION AND OPERATION

This section discusses invocation of LNCOP, the default configuration file, search order
for library and help files, and default filenames and extensions. See the release letter for
installation instructions.

3.2.1 Invocation

The invocation of the Linker for the MS-DOS system is as follows:

LNCOP (gives help)

LNCOP [options] objfile[,objfile[,...]] [options]
where: objfile is the name of an object module or library to link. Multiple

files may be linked by joining them with a “,”. Default ex-
tension is .obj.

The Linker determines the file type from the file contents.
Only those modules in the library that satisfy undefined ex-
ternals are loaded. Thus, the order of the libraries when
used in this manner is important. To use a library, the com-
plete filename is given. No default extension is assumed.
For another way to specify libraries, see the LIBFILE com-
mand, which searches standard directories.

options is an optional list of Linker commands described in Section
3.2.3. If no options are specified, the Linker defaults, de-
scribed in Section 3.6, are used.
CROSS-LINKER (LNCOP)  3-1



Default Configuration File
NOTE: MS-DOS supports @cmdfile, where cmdfile contains additional invocation
line object filenames and/or options. This file has a default extension of
.CMD. For example, if the file a.cmd contains:

test

/table

and file b.cmd contains

/o=testdata

then the command

LNCOP @a /e @b

is equivalent to

LNCOP test /table /e /o=testdata

Also see FILE control, for alternative to cmdfiles.

Any error detected on the invocation line causes the Linker to stop execution and display
the part in error with an appropriate message.

The following are sample invocation lines for an MS-DOS system:

LNCOP  TEST  /NOOUTPUTFILE /TABLE /MAP=CON

LNCOP  MOD1,MOD2  /CROSS /BRIEF /MAP

LNCOP  \DEMO\SAMPLE /SECT data=0x40

The first command line links the file test.obj and outputs the load map with a symbol
table to the console. No output object file is produced.

The second command line links the object modules mod1.obj and mod2.obj and places the
output object file into mod1.cof. A cross-reference table is produced and the brief form of
the map is used. The map is written to file mod1.map.

The next example links the file sample.obj, which resides in directory demo. It produces
sample.cof in the current directory. A section, called data, in the object module is assigned
a starting address of 0x40.

3.2.2 Default Configuration File

Upon startup, the Linker reads a default configuration file named lncop.cfg. This file
search order is the same as the help file order search (see Section 3.2.6). If it is missing,
a warning message is issued and the following “built-in” default configuration is used:

Format=cof
3-2 CROSS-LINKER (LNCOP)



Linker Options
The default ranges are specified by the .CHIP directive in ASMCOP. These defaults can
be changed to match user requirements. The default configuration file uses the same
commands and syntax as a /file file (see /file option).

Example: Special configuration file to specify ranges for a future chip.

Format=cof

Range=BASE=(0x00:0x0F)

Range=RAM=(0x0:0x7F)

Range=EERAM=(0x80:0xBF)

Range=REG=(0xF0:0xFB)

Range=SEG=(0x100:0x17F,0x200:0x27F)

Range=SEGB=(0x100:0x10F, 0x200:0x20F)

Range=ROM=(0x0:0x1FFF)

3.2.3 Linker Options

An option is a Linker command specified on the invocation line.

The Linker invocation line options for MS-DOS systems start with a /, which may be
preceded and followed by a blank space. Linker options are not case-sensitive and may
be abbreviated to the minimum number of characters as specified in the command
descriptions. For example:

/CROSSREF / MAP

See Section 3.6 for all Linker commands.

3.2.4 Default Filenames and Extension

For those options that require a filename, you may specify a filename with a full path
name, or you may specify just a directory path; in this case, the default filename is used
with that directory. The default filename is the name of the first object file specified with
any extension removed.

For MS-DOS systems, a default extension is always placed on a file unless one is
explicitly specified.

If an output filename consists only of a directory, it should be terminated by a “\” on
MS-DOS systems. If not, it is treated as a filename. Thus, /M=txt\ outputs the map to
file txt\cat.map (assuming cat.obj is the input file). /M=txt outputs the map to txt.map.
CROSS-LINKER (LNCOP)  3-3



Library File Search Order
3.2.5 Library File Search Order

When searching for a file specified by the /LIBFILE option, directories are searched in
the following order:

1. current directory

2. directories specified by the /LIBDIRECTORY option

3. default directories

a. directory specified by environment variable LNCOP, if it exists

b. directory specified by environment variable COP, if it exists

c. directory \COP

If the /X option is specified, only directories in category 2 above are used.

Any filename that contains an explicit directory is checked for only in that directory. No
other directories are searched.

3.2.6 Help and Configuration File Search Order

When searching for the help file, LNCOP.HLP, and configuration file, LNCOP.CFG,
directories are searched in the following order:

1. current directory

2. default directories (as noted in Section 3.2.5).

3.2.7 Temporary File Directory

Temporary files are generated in the current directory, unless the environment variable
TMP specifies another directory, e.g., DOS command: set TMP=d:\. It is recommended to
specify TMP as a directory on a RAM drive, of size 256K.

3.2.8 Error Level Return

If no errors occur, an error level of zero is returned. If errors occur, a nonzero error level
is returned (warnings are not considered errors).
3-4 CROSS-LINKER (LNCOP)



MEMORY ALLOCATION AND LOAD MAP
3.3 MEMORY ALLOCATION AND LOAD MAP

The Linker places each section in memory based on the attributes of the section and the
memory that is available, which is specified by the RANGE command(see Section 3.6.16)
or by default. Each section has the following attributes:

memory type BASE, RAM, EERAM, REG, SEG, SEGB, or ROM
(see Section 2.9.32, .SECT directive)

size determined from object modules

absolute section is specified as absolute in assembler

fixed starting address is specified by the SECT command(see Section
3.6.17)

ranged memory range is specified by the SECT command

Memory is allocated section by section. Typically, there is no way to control the order in
which sections are allocated. However, sections are processed in the order in which they
become known to the Linker. A section is known when it appears in a SECT command or
is processed in an object module.

Sections are allocated in the following order:

1. Each absolute or fixed section is placed in memory at its specified address.
This includes placing the start section at zero. The memory required for the
section must be a part of memory made available through the RANGE com-
mand(see Section 3.6.16).

2. Each ranged section is placed in memory within the specified range. This
range must lie within a portion of memory specified by the RANGE command.

3. All remaining sections are allocated as follows: As each section is processed,
the ranges for its memory type are examined to find enough free space to al-
locate the section. Each range is examined in order. The first space large
enough to contain the section is used. At this point, the memory allocated is
marked “used.” If not enough memory is available to allocate the section, an
error message is displayed. INPAGE sections must be placed between ad-
dress xx00 and xxFE (see assembly .SECT directive, Section 2.9.32). For
SMALL and MEDIUM memory models, ROM sections must not cross 4K
boundaries (see assembly MODEL control, Section 2.10.27).

The load map shows the following information (see Section 3.4 for example):

• The Range Definitions show the memory ranges specified by the /RANGE option
(Section 3.6.16) or by the default.

• The Memory Order Map shows the starting and ending addresses of each contig-
uous range of memory. It also indicates the type of memory.

• The Memory Type Map shows how memory is allocated but is organized by the
type of memory. Within each type, the allocation is shown in memory order.
CROSS-LINKER (LNCOP)  3-5



MEMORY ALLOCATION AND LOAD MAP
• The Total Memory Map shows allocation of all ROM and all RAM.

• The Section Table, which is listed by the /NOBRIEFMAP option(see Section 3.6.1),
shows each section in the link, along with its starting and ending address. The sec-
tion attributes are also displayed. The modules that comprise each section are dis-
played under the section names along with its addresses.

• Display of:

— Checksum of all ROM bytes

— Number of ROM bytes used

— Output filename

— Memory model

— Chip family name

If there is an overlap between sections, this is indicated in the Memory Order Map by the
message ** memory overlap **  next to the overlapping section(s).

If sections do not fit in memory, their address is shown in the Section Table as “_ _ _ _ .”
Also, no object code is generated for these sections.
3-6 CROSS-LINKER (LNCOP)



LINKER EXAMPLE
3.4 LINKER EXAMPLE

The following is a very simple example. Two modules were assembled and their object
module was processed by the Linker. First, the two source programs are shown followed
by the Linker commands used to process them, followed by the Linker outputs.

File 1 has a module name of SAMPLE1, while file 2 has one of SAMPLE2. It is important
to give each assembly module a different name, since this is used in the Linker load map.
The default is to use the filename.

The following commands are used to generate the COFF file. Note that local option of
assembler is used to show all non-public symbols in the Linker cross-reference.

ASMCOP sample1/local

ASMCOP sample2/local

LNCOP sample1,sample2 /crossref

The Linker outputs the following load map(see Section 3.3 for description):

Assembly file 1. SAMPLE1.ASM Assembly file 2. SAMPLE2.ASM

.chip 820
;public code label
.public p1
;external data
.extrn
regdata:reg,ramdata:ram
;local base data
.sect otherdata,base
basedata: .dsb 1
;routine
.sect code,rom
p1:
ld a,regdata
add a,ramdata
add a,basedata
ret
.end

.chip 820
;public data
.public regdata,ramdata
;external code label
.extrn p1:rom
.sect data,reg
regdata: .dsb 1
.sect moredata,ram
ramdata: .dsb 1
;start of program
.sect code,rom
start:
jsr p1
jp .
.end start
CROSS-LINKER (LNCOP)  3-7



LINKER EXAMPLE
-- Range Definitions --

BASE    0000:000F
ROM     0000:03FF
RAM     0000:002F
RAM     REG
REG     00F0:00FB
REG     00FF:00FF

-- Memory Order Map --

   Code Space
0000  000B   ROM

   Data Space
0000  0000   BASE
0001  0001   RAM
00F0  00F0   REG

-- Memory Type Map --

BASE
  0000  0000
  [size = 0001]

RAM
  0001  0001
  [size = 0001]

REG
  00F0  00F0
  [size = 0001]

EERAM
  [size = 0000]

SEG
  [size = 0000]

SEGB
  [size = 0000]

ROM
  0000  000B
  [size = 000C]
3-8 CROSS-LINKER (LNCOP)



LINKER EXAMPLE
-- Total Memory Map --

TOTAL RAM = BASE + RAM + REG + EERAM + SEG + SEGB
  0000  0000
  0001  0001
  00F0  00F0
  [size = 0003]

TOTAL ROM = ROM
  0000  000B
  [size = 000C]

-- Section Table --

start end    attributes       Section
                                Module

0000  0000   BASE  BYTE       OTHERDATA
0000  0000                      SAMPLE1
0000  000B   ROM   BYTE       CODE
0000  0002                      SAMPLE2
0003  000B                      SAMPLE1
00F0  00F0   REG   BYTE       DATA
00F0  00F0                      SAMPLE2
0001  0001   RAM   BYTE       MOREDATA
0001  0001                      SAMPLE2

basedata  0000 Byte BASE  Local
    -SAMPLE1
 p1        0003 Null ROM
    -SAMPLE1    SAMPLE2
 ramdata   0001 Byte RAM
    -SAMPLE2    SAMPLE1
 regdata   00F0 Byte REG
    -SAMPLE2    SAMPLE1
 start     0000 Null ROM   Local
    -SAMPLE2

Checksum:     0x05D0
Byte Count:   0x000C (12)
Output File:  sample1.cof
Memory Model: Small
Chip:         820
CROSS-LINKER (LNCOP)  3-9



LINKER ERRORS
3.5 LINKER ERRORS

Table 3-1 lists of the loader messages. These are divided into command line errors, link
errors, link warnings, and object module errors. Object module errors are caused by a bad
object file; you should check the filename and/or assemble and link again.
3-10 CROSS-LINKER (LNCOP)



LINKER ERRORS
Table 3-1 Linker Errors
 (Sheet 1 of 5)

Error Description

Command Errors

Invalid Command The command specified is an invalid Linker
command.

Ambiguous Command This command abbreviation can be more than
one command.

File Not Found The object or library file on the invocation line
cannot be found. Maybe the wrong extension
is assumed or the file is in a different direc-
tory.

Invalid File Name The file specified is an invalid filename.

Invalid Section Name The section name on the SECT command is
invalid.

Invalid Numeric The number contains a digit invalid for the
radix.

Missing Operand The operand not found.

Invalid or missing Memory Type Memory type must be ROM, RAM, BASE,
EERAM, REG, SEG, or SEGB.

Invalid or missing range Bad argument on the range command.

Low address range > High address The lower address must be given first.

Invalid Object Type or Option Invalid FORMAT option.

“NO” not valid for command Command cannot use NO.

No Object file specified No file found.

File Conflict Output file matches an input file. Change out-
put filename option.

Can't nest indirect files Don't nest cmdfiles.

Expected an option Missing “/” sign on the command line.

No Symbol specified No symbol was specified on an
EXTRACTSYMBOL command.

Invalid Symbol Invalid symbol was specified on an
EXTRACTSYMBOL command.

Not Valid for Absolute Section Can't use /sect option for Absolute section.

Symbol/Module not found in
library(s)

Can't find Symbol/Module specified by
EXTRACT or EXTRACT-SYMBOL command.
CROSS-LINKER (LNCOP)  3-11



LINKER ERRORS
Files Nested Too Deep /File files may be nested to depth of 100.

File Conflict for Post Processing Pro-
gram

The name of the /output option will cause an
error during Post Processing.

No such file or directory Wrong syntax for /outputfile option.

File is not a library Incorrect library name is specified.

Can't find Help File LNCOP does not find file lncop.hlp.

Link Errors

Public, external byte, word type mis-
match

External does not match public in byte or
word type.

Duplicate PUBLIC Symbol The symbol shown has already been defined as
a PUBLIC in a previous object module.

No .END Address has been Specified No input module has a reset address (see the
assembler .END directive).

Section Mismatch A section with the same name from two differ-
ent modules. Reassemble one of the modules
after changing the attributes or rename the
section.

Base page reference not on basepage Result of basepage expression >0F Hex.

Undefined external No public definition for external symbol.

Undefined Section The specified section has been used on a SECT
command but never appeared in an object
module. Probably a misspelled name.

No Ranges Left For Section There is not enough memory available via the
Range definitions to allocate all object mod-
ules (see load map).

Multiple .END Addresses have been
specified

Only 1 reset address is allowed (see the
assembler .END directive).

File is not a Library Bad filename or file corrupted.

Conflicting .CHIP name The .CHIP strings in different modules must
agree (see Section 2.9.4).

Divide by 0 External or relocatable expression contains
divide by zero.

File Conflict for Post Processing Pro-
gram

The name of the /output option will cause an
error during Post Processing (i.e., processing
by PROMCOP).

Table 3-1 Linker Errors
 (Sheet 2 of 5)

Error Description
3-12 CROSS-LINKER (LNCOP)



LINKER ERRORS
Can’t find program The program required to post process the
COFF output file was not found in the current
directory, the directory LNCOP is in, or a
directory in the PATH.

Error accessing program There is some error executing the program
required to post process the COFF output file.

Start Address Must be place at zero Start address from assembler must be placed
at zero.

No code at ROM location zero ROM section should have at least one instruc-
tion.

Overlapping Memory Have overlapping memory for different section
type or for different sections with the same
memory type.

JMP across 4K boundary Can't jump >4K for relocatable sections with
non-large model.

ROM must be less than 0x8000 Don't exceed the maximum address of ROM.

Data in range 0xC0-0xEF Reserved range.

Data in range 0xFC-0xFE Don't overwrite registers A, B, X, or SP.

BASE must be in range 0x0-0xF BASE must be in that range.

RAM must be less than 0x100 RAM must be in that range.

REG out of range 0xF0-0xFF REG must be in that range.

SEG must be greater than 0xFF SEG must be in that range.

EERAM must be in range 0x80-0xBF EERAM must be in that range.

Object Module not Valid for proces-
sor

Don't use for LNCOP an object file created by
ASMHPC.

Chip Other than Anycop must be
specified

We can't link files that assembly only with
/chip=Anycop.

Section crosses 4K boundary Error should be given if section placed across
4K boundary in non-large model.

Memory Full, Program Terminated,
Type:

Too many symbols, models, etc.

Base or register value out of range Don't use wrong value for Base or register
variable.

External BASE or SEGB value not
in range xx00 to xx0F

Symbol defined as BASE or SEGB type must
be in that range.

Table 3-1 Linker Errors
 (Sheet 3 of 5)

Error Description
CROSS-LINKER (LNCOP)  3-13



LINKER ERRORS
External REG value not in range
0xF0 to 0xFF

Symbol defined as REG type must be in that
range.

Link Warnings

Public, external byte, word type mis-
match

External does not match public in byte or
word type.

BASE public used as non-BASE
external

The public symbol declared in the BASE sec-
tion, not used as BASE external. This may
generate inefficient code.

BASE external used with non-BASE The usage of external may generate a link
error.

Absolute section defined with SECT
command

The SECT command is ignored for absolute
sections.

Default configuration file not found The file lncop.cfg is not in search path (see
Section 3.2.6).

Mixed Memory Models Object files were created with different assem-
bly MODEL control. Largest model used.

Public and extrn do not match in sec-
tion type

Don't use the same variable as public and
extrn with different section type.

BASE/SEGB External used with
non-BASE/SEGB public

Mixing BASE/SEGB and non-BASE/SEGB
section type.

BASE/SEGB public used with non-
BASE/SEGB external

Mixing BASE/SEGB and non-BASE/SEGB
section type.

REG external used with non-REG
PUBLIC

Mixing REG and non-REG section type.

REG public used as non-REG exter-
nal

Mixing REG and non-REG section type.

Object Module Errors

Bad Object Module This file is not recognized as a valid object
module created by the assembler. Probably the
wrong filename.

Record Disp out of Range Bad relocation record. Probably bad file.

Invalid Relocation CMD Bad object module relocation record. Probably
bad file.

Missing Module Header The first record of the object module is not
valid. Perhaps the wrong file was read.

Table 3-1 Linker Errors
 (Sheet 4 of 5)

Error Description
3-14 CROSS-LINKER (LNCOP)



LINKER ERRORS
Multiple Headers The object module contains two header
records. Must be a corrupted file.

SYNC Error Something happened to this file or the system
between pass 1 and pass 2 of the loader. Try to
load program again.

Bad Section ID A section ID in the object module is out of
range.

Record out of order A record in the object module is in the wrong
place.

Checksum Error An object record has a checksum error. Reas-
semble the file.

Invalid Record Type An object module is invalid.

Read Past Record The record length didn’t correspond with the
information record.

Bad Object Symbol A symbol in the object module is invalid.

Bad Library File A library file contains invalid information.
Recreate the library.

Table 3-1 Linker Errors
 (Sheet 5 of 5)

Error Description
CROSS-LINKER (LNCOP)  3-15



COMMANDS
3.6 COMMANDS

This section describes the Linker commands, giving the command name, arguments, and
default state. Table 3-2 is a summary of the Linker commands discussed in this section.

All commands may be given an invocation line, command file (@file), or in linkfile (/FILE)
file. Commands on invocation line or in @file start with /.

Table 3-2 Summary of Linker Commands

COMMAND FUNCTION

[NO]BRiefmap [NO]Brief load map Section 3.6.1

[NO]Crossref [NO]Cross-reference table in output map file Section 3.6.2

[NO]Debug [NO]Debug symbols to object Section 3.6.3

[NO]Echo [NO]Echo command file Section 3.6.4

Extract=(lib=module) Extract modules from libraries Section 3.6.5

Extractsymbol=
(lib=symbol)

Extract modules from libraries based on sym-
bol name

Section 3.6.5

FIle=linkfile Specifies linkfile command file Section 3.6.6

Format=type Specifies format of output object module Section 3.6.7

[NO]Ignoreerrors [NO]Force object file Section 3.6.8

LIBDirectory=directory
LD=directory

Search other directories for libraries Section 3.6.9

LIBFile=file
LF=file

Library files Section 3.6.10

Load=(files) Load modules Section 3.6.11

[NO]LOCALSymbols [NO]Assembly local symbols to map Section 3.6.12

[NO]Mapfile[=file] [NO]Map file Section 3.6.13

[NO]Outputfile[=file] [NO]Absolute object module Section 3.6.14

PWidth=width Set width of map file Section 3.6.15

Range=type=(ranges) Specifies ranges for section type Section 3.6.16

Sect=section=addr Specifies address or range of section Section 3.6.17

SIzesect=section=size Specifies section size Section 3.6.18

[NO]Tablesymbols [NO]List symbol table Section 3.6.19

[NO]Warnings [NO]Output warning messages Section 3.6.20

[NO]Xdirectory [NO]Search only LIBDirectory directories Section 3.6.21
3-16 CROSS-LINKER (LNCOP)



Briefmap — Set Map Format
3.6.1 Briefmap — Set Map Format

Syntax: [NO]BRiefmap

Description: This command allows you to get a full or brief load map. BRIEFMAP re-
moves the “Section Table” (see Section 3.3) from the load map.

A full map (NOBRIEF) consists of the full map, as shown in Section 3.4.
Default is NOBRIEFMAP.
CROSS-LINKER (LNCOP)  3-17



Crossref — Cross-Reference
3.6.2 Crossref — Cross-Reference

Syntax: [NO]Crossref

Description: CROSSREF causes a cross-reference table to be included in the output
map file. This table consists of each symbol and its value along with the
names of the module in which it is defined and all the modules in which
it is used. Non-global symbols are shown in the table, if passed by the
assembler (see Section 2.10.18). The module, in which the symbol is de-
fined, is preceded by a “-” on the listing. Default is NOCROSSREF.

CROSSREF overrides TABLESYMBOLS. A cross-reference listing is not
generated if NOMAPFILE is in effect.

NOTE: See note on LOCALSYMBOLS, Section 2.10.18.
3-18 CROSS-LINKER (LNCOP)



Debug — Debug Symbols
3.6.3 Debug — Debug Symbols

Syntax: [NO]Debug

Description: This command passes debugger symbols selectively by module to the
COFF file. Therefore, it is not necessary to recompile and assemble to
control which modules pass symbols to the COFF file. Default is
DEBUG.

Example: LNCOP file1.obj,file2.obj, /NODEBUG file3.obj, /DEBUG file4.obj

If all objects are built with symbols (/sym option for compiler or assem-
bler) then only symbols for file1, file2, and file4 are passed to the COFF
file.
CROSS-LINKER (LNCOP)  3-19



Echo — Echo Command Files
3.6.4 Echo — Echo Command Files

Syntax: [NO]Echo

Description: ECHO displays all lines read from an MS-DOS command file (@filena-
me) or linkfile (/File=filename). ECHO only applies to commands that
follow it. The default is NOECHO.
3-20 CROSS-LINKER (LNCOP)



Extract, Extractsymbol — Extract Module from Library
3.6.5 Extract, Extractsymbol — Extract Module from Library

Syntax: Extract=(library [,library,...] =module[,module,...])
Extractsymbol=(library[,library,...] =symbol[,symbol,...])

Description: For EXTRACT, the name of each module in the library is checked against
those specified on the command; if a match is found, that module is load-
ed. For EXTRACTSYMBOL, each PUBLIC symbol in each module in the
library is checked against the symbols specified in the command; if a
match is found in a module, that module is loaded.

If the only modules linked are obtained from EXTRACT commands, then
the default file names for output files are obtained from the first EX-
TRACT library.

Example: ; get some trig routines
EXTRACT= (mathlib=sine,cosine,tan)
; extract the module containing the symbol buffer which
; was created by the compiler
EXTRACTSYMBOL=(mylib = _buffer)

NOTE: EXTRACT and EXTRACTSYMBOL force a module to be
linked even if it is not required to satisfy any externals, un-
like LIBFILE.
CROSS-LINKER (LNCOP)  3-21



File — Specify Linkfile
3.6.6 File — Specify Linkfile

Syntax: FIle = linkfile

Description: The FILE command specifies the name of a linkfile from which the Link-
er commands are read. The default extension is .FIL.

Linkfiles are recommended as an alternative to command files (@file).
The main advantage of linkfiles is that the commands are operating sys-
tem independent.

Commands in a linkfile are specified without a leading /, and only one
command per line. Comment lines may start with ;.

Linkfiles may be nested to a depth of 100.

Example: FILE = link.fil

where link.fil is

FORMAT=HEX

LIBFILE=LIBRARY

;RANGES

RANGE=ROM=(0:02000)

RANGE=BASE=(0:0f)

RANGE=RAM=(0:07F)

RANGE=REG=(0F0:0FB,0FF)
3-22 CROSS-LINKER (LNCOP)



Format — Specify Output Format
3.6.7 Format — Specify Output Format

Syntax: Format = type [= options]

Description: This command specifies the format of the output object module. Type,
along with options, may be one of the following:

Any number of characters that uniquely identify the command argu-
ments may be used for an argument. Thus hex can also be specified as
he or h. The format type may be specified in either upper or lower-case.

Except for lm format, a COFF file is always generated, then converted to
another format if appropriate.

Example: F=hex
F=coff=strip

lm for National Semiconductor load module for-
mat.

hex
[=[no]fill[=value]]

for an Intel hex format. By default, unused
bytes are filled with zero. Nofill or fill value can
be optionally given.

coff [=strip] for a COFF (Common Object File Format) for-
mat. A COFF object module may contain sym-
bols and, thus, is normally used for symbolic
debugging purposes. The default is to put the
symbolic information in the object module. The
optional strip argument may be used to keep
the information out of the object module.
CROSS-LINKER (LNCOP)  3-23



Ignoreerrors — Force Object File
3.6.8 Ignoreerrors — Force Object File

Syntax: [NO]Ignoreerrors

Description: IGNOREERRORS forces an output file whenever possible even if link
errors occur. This command should be used with caution because the out-
put file may not execute properly; carefully note all errors. Default is
NOIGNOREERRORS.
3-24 CROSS-LINKER (LNCOP)



Libdirectory — Specify Library Search Directory
3.6.9 Libdirectory — Specify Library Search Directory

Syntax: LIBDirectory = directory, LD = directory

Description: Normally, when the LIBFILE command is used, the program looks in the
current and default directories to find the library (refer to Section 3.2.5).
If not found, it flags an error. This command enables the program to
search other directories to find the file. A file that has an explicit direc-
tory is checked only in that directory, no others are searched.

Multiple directories may be searched; each is specified with a separate
LIBDIRECTORY command.

NOTE: A LIBDIRECTORY command only specifies library search directories for
the LIBFILE commands which follow it on the invocation line (or in com-
mand file).

Example: LD=C:\ ; check root directory on drive C:

LD=.. ; check parent directory
CROSS-LINKER (LNCOP)  3-25



Libfile — Specify Library File to Search
3.6.10 Libfile — Specify Library File to Search

Syntax: LIBFile = library, LF = library

LIBFile=(library [,library . . .][=symbol, symbol, . . .])

Description: This command specifies library files that are used to resolve any unde-
fined externals. If a library module contains a PUBLIC symbol that
matches an unresolved external, that module is automatically loaded by
the Linker. The library search is performed at the end of the linking pro-
cess. Multiple libraries are searched in the order specified. If optional
symbols are specified on command, then libraries are only searched for
those symbols.

To search a library at some other point in the load process, the library
file must be specified on the invocation line, as described in Section 3.2.1.

The default extension for a library file is .lib.

Example: LF=MATH /LF=FLOAT

LIBFILE=(MATH, FLOAT = SIN, COS)
3-26 CROSS-LINKER (LNCOP)



Load — Load Object File
3.6.11 Load — Load Object File

Syntax: Load=(module[,module, . . .])

Description: This command loads the specified object files. If the file specified is a li-
brary, then any modules within the library that satisfy an entry point
are loaded at this time.

This command is only needed in a linkfile (see FILE command), because
filenames may be specified alone on the invocation line.

Example: ; this is a linkfile, note that parentheses are not required around files
; load utility programs into bank
LOAD=BINHEX,ASCBIN,FLOAT
; load some others
LOAD=HELPER
CROSS-LINKER (LNCOP)  3-27



Localsymbols — Assembly Local Symbols
3.6.12 Localsymbols — Assembly Local Symbols

Syntax: [NO]LOCalsymbols

Description: This command passes assembler local symbols selectively by module to
the Linker cross-reference appearing in the .MAP file. Therefore, it is no
longer necessary to reassemble to control which modules pass these
symbols to the Linker cross-reference.

Example: LNCOP file1.obj,file2.obj /NOLOCAL file3.obj /LOCAL file4.obj /CR

If all objects are assembled with LOCALSYMBOL option (see assembler
LOCALSYMBOL option in Section 2.10.18), then only the assembler lo-
cal symbols for file1, file2, and file4 are passed to the cross-reference in
the .MAP file.
3-28 CROSS-LINKER (LNCOP)



Mapfile — Specify Map File
3.6.13 Mapfile — Specify Map File

Syntax: [NO]Mapfile [= file]

Description: File specifies the name of the file to which the load map and any symbol
table or cross-reference table will be written. If NOMAPFILE is speci-
fied, then no map is produced. MAPFILE without a filename causes the
map to be written to the first object filename with an extension of .map.
The default is MAPFILE. The default filename extension is .MAP.

The BRIEF command is used to specify the kind of map.

Example: NOMAP

M=test ; map to file test.map
CROSS-LINKER (LNCOP)  3-29



Outputfile — Specify Output Object File
3.6.14 Outputfile — Specify Output Object File

Syntax: [NO]Outputfile [=file]

Description: File specifies the name of the file to which the absolute object module,
produced by the Linker, will be written. If NOOUTPUTFILE is specified,
then no file is produced. The default is OUTPUTFILE with default file-
name.

The format of the output file as well as its default extension is given by
the FORMAT command. OUTPUTFILE without a filename causes the
output to be written to the first object filename, with an extension de-
pending upon the FORMAT command. A format of LM uses an extension
of .lm, a format of COFF uses .cof as an extension, and a format of HEX
uses .hex as an extension.

Example: O ; default output file

O=test.abs ; output to file test.abs
3-30 CROSS-LINKER (LNCOP)



Pwidth — Specify Width of Map File
3.6.15 Pwidth — Specify Width of Map File

Syntax: PWidth = number

Description: This control sets the number of characters per line that are printed in
the map file. Characters beyond this position are ignored. This is also
used as the position to which the date is aligned in the header. Values
are from 64 to 255. Although some terminals are 80 characters wide,
writing a CR-LF in the 80th spot causes a subsequent blank line to ap-
pear. In this case, the user should use 79. The default is 79. The class is
primary.

Example: PW=100
CROSS-LINKER (LNCOP)  3-31



Range — Specify Memory Ranges
3.6.16 Range — Specify Memory Ranges

Syntax: Range=memtype= ranges

where: memtype indicates the memory type and may be BASE, RAM,
EERAM, REG, SEG, SEGB, or ROM.

ranges is one or more memory ranges. Multiple ranges must be
separated by commas. In MS-DOS, multiple ranges must
be enclosed within parentheses. Each range must be in the
form:

low address:high address

or

type

Description: The RANGE command allows you to indicate those areas of memory that
are available to the program. The Linker attempts to place all sections,
both relocatable and absolute, in this memory. Any memory not defined
in a RANGE command cannot be used by the program.

If an address range is given, it implies that the “memtype” for the com-
mand may reside in this part of memory. Type specifies a memory type
just like “memtype” and implies that the range may also consist of the
ranges for the memory type given by type. The default is dependent on
the chip.

Refer to Section 3.3 for additional information.

Example 1 tells the Linker that REG code can reside only between
0xf0:0xf6 and 0xff.

Example 2 says to put any RAM data into the range 0x0:0x2f. If no room
exists, then use the range specified for memory type REG.

Examples: 1. RANGE=REG=(0xf0:0xf6,0xff)

2. R=RAM=(0x0:0x2f,REG)
3-32 CROSS-LINKER (LNCOP)



Range — Specify Memory Ranges
NOTES:  1. A new RANGE command overrides a previous one, e.g.,

R=ROM=(0:01fff)
R=ROM=(0:0fff)

defines range 0:0fff. The keyword NULL may be used to re-
move previously defined range, e.g.,

R=ROM=(0:01fff)

R=ROM=(NULL)

disables ROM range.

2. For MS-DOS, inside a command file (@file), a RANGE
command may be continued over several lines by plac-
ing a minus sign (–) at the end of each continued line.
This is useful if there are a large number of ranges on
one RANGE command. A line may ONLY be continued
before or after a range, e.g., NOT in the middle of a
range. A valid example is:

RANGE=ROM16=(0:0fff,-

01000:01fff,02000:02fff,03000:03fff,04000:04fff,–

05000:05fff)
CROSS-LINKER (LNCOP)  3-33



Sect — Specify Section Address
3.6.17 Sect — Specify Section Address

Syntax: Sect=name= addr, Sect=name= range, Sect=name= section

Description: This command specifies a starting address or address range for the relo-
catable section “name.” If addr is used, this section is placed in memory
at the given address. If range is used, the section is allocated within that
range of addresses. If a previous section name is given, the address or
range used for that section is used for this one.

NOTE: SECT command places sections independent of the range definitions. Refer
to Section 3.3 for additional information.

Example: s=one=0x566 ; section one starts at 0x566

s=two=0x200:0x300 ; section two must reside in this range

S=three=two ; section three is also between 0x200:0x300
3-34 CROSS-LINKER (LNCOP)



Sizesect — Specify Section Size
3.6.18 Sizesect — Specify Section Size

Syntax: SIzesect=name=size

Description: This command allows you to specify the size of relocatable section
“name.” This section would typically be a stack, whose size would be ac-
cessed with the B_SECT (name) and E_SECT (name) assembly opera-
tors. All sections may only have their size increased.

The section is considered relocatable and is allocated like all other sec-
tions. Its starting address can be specified with the SECT command.

It is an error if this section does not exist in one of your object modules.

Example: SIZE=stack=0x40
CROSS-LINKER (LNCOP)  3-35



Tablesymbols — Enable Symbol Table
3.6.19 Tablesymbols — Enable Symbol Table

Syntax: [NO]Tablesymbols

Description: NOTABLESYMBOLS specifies that no symbol table will be listed in the
map file, whereas TABLESYMBOLS creates a symbol table listing. Non-
global symbols are shown in the table, if passed by the assembler (see
Localsymbols, Section 2.10.18). This command is overridden by the
CROSSREF control. The default is NOTABLESYMBOLS.

A symbol table listing is not generated if NOMAPFILE is in effect.

NOTE: See note on LOCALSYMBOLS, Section 2.10.18.
3-36 CROSS-LINKER (LNCOP)



Warnings — Display Warning Messages
3.6.20 Warnings — Display Warning Messages

Syntax: [NO]Warnings

Description: WARNINGS causes any warning messages to be included in the map
file. NOWARNINGS inhibits the messages. The default is WARNINGS.
CROSS-LINKER (LNCOP)  3-37



Xdirectory — Exclude Standard Directories
3.6.21 Xdirectory — Exclude Standard Directories

Syntax: [NO]Xdirectory

Description: Normally, when searching for a library file specified by LIBFILE, the
current, default, and any directories specified via the LIBDIRECTORY
command are searched. XDIRECTORY causes only those directories
specified by the LIBDIRECTORY command to be searched. This allows
files in another directory that have the same name as those in the cur-
rent directory to be accessed. The default is NOXDIRECTORY.

NOTE: A XDIRECTORY command only applies to LIBFILE commands which fol-
low it on the invocation line (or in command file).
3-38 CROSS-LINKER (LNCOP)



Chapter 4

CROSS-LIBRARIAN (LIBCOP)

4.1 INTRODUCTION

This chapter describes the operation of the COP8 Librarian, LIBCOP.

LIBCOP reads object modules produced by ASMCOP and combines them into one file
called a library. The Linker can then search a library for any public symbols that match
undefined external symbols. If a symbol is found, the Linker reads its object module.
Thus, one or more from a group of standard routines may be included in a program by
forming the group into a library.

4.2 INVOCATION AND OPERATION

This section discusses invocation of LIBCOP, search order for help files, default filenames
and extensions. See the release letter for installation instructions.

4.2.1 Invocation

The invocation of the Librarian, LIBCOP, for MS-DOS systems is as follows:

LIBCOP (gives help)

LIBCOP [options] libfile [name [,name...]] [options]
where: libfile is the name of a library to process. If it does not already exist,

then a new library is created. Default extension is .lib.

name is a list of one or more object files that are processed by LIB-
COP. Default extension is .obj.

options is a list of library commands described in Section 4.4.

NOTE: MS-DOS supports @cmdfile, where cmdfile contains additional invocation
line object filenames and/or options. This file has a default extension of
.cmd.

Any error detected on the invocation line causes the Librarian to stop execution and
display the part in error with an appropriate message.

The following are sample invocation lines for MS-DOS systems:

LIBCOP FLOAT SINE,COSINE /REPLACE
LIBCOP TEST   DATASET /DELETE
CROSS-LIBRARIAN (LIBCOP)  4-1



Object Files and Module Names
The first command line replaces the modules SINE and COSINE in the library float.lib
by object files sine.obj and cosine.obj.

The second command line deletes the module DATASET from the library test.lib.

4.2.2 Object Files and Module Names

An object file is generated by ASMCOP. This file usually has an extension of .obj. The
module name by which the Librarian stores these files in a library is the same as the
filename without the extension. Thus, an object file of tangent.obj has a module name of
tangent within the library. Names of modules added to a library are case-sensitive.

4.2.3 Library Options

The invocation line options for MS-DOS systems start with a /, which may be preceded
and followed by a blank space. Library options are not case-sensitive and may be
abbreviated to the minimum number of characters as specified in the command
descriptions. For example:

/ADD / Backup

See Section 4.4 for all the library commands.

4.2.4 Default Filenames and Extensions

Default extensions depend on the operating system and how the file is specified on the
invocation line. For MS-DOS systems, a default extension is always placed on a file
unless one is explicitly specified.

If an output filename consists of just a directory, it should always be terminated by a “\”
on MS-DOS systems; if not, it is treated as a filename. Thus, /L=txt\e outputs the listing
to file txt\cat.lis (assuming cat.lib is the input file). /L=txt outputs the listing to txt.lis.

4.2.5 Help File Search Order

When searching for a help file, directories are searched in the following order:

1. current directory

2. default directories

a. directory specified by environment variable LIBCOP, if it exists
b. directory specified by environment variable COP, if it exists
c. directory \COP
4-2 CROSS-LIBRARIAN (LIBCOP)



Error Level Return
4.2.6 Error Level Return

If no errors occur, an error level of zero is returned. If errors occur, a nonzero error level
is returned (warnings are not considered errors).

4.3 LIBRARY ERRORS

Except for those messages listed under Command Warnings in Table 4-1, all other error
conditions cause the Librarian to stop operation with no changes to the library file being
operated on. For object errors, reassemble and try again.

Table 4-1 Library Errors

Error Description

Command Errors

Invalid Command The command specified is an invalid Librarian
command.

Expected an option Missing “/” on the command line.

File Not Found The object file cannot be found. Maybe a wrong
extension is assumed or it is in a different directory.

Duplicate Module Name An attempt to ADD a module to a library which
already contains a module with this name.

File is not an Object Module The specified file is not an object module.

File is not a Library The specified file does not look like a library.

Already specified library
operation

Only one library operation may be specified for
each execution.

No Library Specified No library has been specified on the invocation
line.

No Library Operation specified Need option.

No Modules to Operate on An operation other than LIST has been specified,
but no modules have been given on which to operate.

Duplicate PUBLIC symbol The specified symbol duplicates a PUBLIC symbol
in another module.

Cannot create library file Library file or backup file cannot be created.
Check filename.

“NO” not valid for command Command cannot use NO.
CROSS-LIBRARIAN (LIBCOP)  4-3



Error Level Return
4.4 LIBRARY COMMANDS

This section describes the library commands. The descriptions show the command name,
arguments, and default state. Table 4-2 is a summary of the library commands.

Only one of the primary commands, ADD, DELETE, LIST, REPLACE, or UPDATE may
appear on the invocation line at a time.

Object module not valid for pro-
cessor

Object module is probably HPC object module.

Library not valid for processor Library is probably HPC library.

Command Warnings

Module not Found An attempt to delete a module that is not in the
library.

Object Errors

Bad Object Record Something is wrong with the object module file.

Checksum Error An object record has a checksum error. Reassem-
ble the file.

SYNC Error File or system changed pass 1 to pass 2. Try to
link program again.

Invalid relocation CMD An object module relocation command does not
have a valid value.

Table 4-2 Summary of Library Commands

Command Function

Add Place specified object file(s) in library Section 4.4.1

[NO]Backup [NO]Backup library file Section 4.4.2

Delete Remove module from library Section 4.4.3

[NO]Echo [NO]Echo command file Section 4.4.4

List[=file] List all modules in library Section 4.4.5

Replace Replace specified object file(s) in library Section 4.4.6

Update Replace object file(s) with object file with a later date Section 4.4.7

Table 4-1 Library Errors

Error Description
4-4 CROSS-LIBRARIAN (LIBCOP)



Error Level Return
[NO]Warnings [NO]Output warning messages Section 4.4.8

Table 4-2 Summary of Library Commands

Command Function
CROSS-LIBRARIAN (LIBCOP)  4-5



Add — Add Object Module
4.4.1 Add — Add Object Module

Syntax: Add

Description: This command causes the Librarian to place the specified object file(s)
into the library. If the module already exists in the library, an error is
displayed. An object module has the default extension .obj.

Example: LIBCOP lib1   mod1,mod2,mod3 /add

This adds files mod1.obj, mod2.obj and mod3.obj to the library lib1.lib.
The library is created if it doesn’t already exist. The modules will have
module names of mod1, mod2, and mod3.
4-6 CROSS-LIBRARIAN (LIBCOP)



Backup — Create Backup Library
4.4.2 Backup — Create Backup Library

Syntax: [NO]Backup

Description: The Librarian always creates a new library to avoid any possible damage
to the old library. The old library is then renamed with a default exten-
sion of .bak. NOBACKUP can be used to request that no backup library
be created. In any case, any error causes the library to remain un-
changed. The default is BACKUP.
CROSS-LIBRARIAN (LIBCOP)  4-7



Delete — Delete Object Module
4.4.3 Delete — Delete Object Module

Syntax: Delete

Description: DELETE causes the object modules specified to be removed from the li-
brary. A warning is given if the module does not exist in the library.

Example: LIBCOP math add,sub /delete

NOTE: The module name is the same as the filename containing the object
file without an extension.
4-8 CROSS-LIBRARIAN (LIBCOP)



Echo — Echo Command Files
4.4.4 Echo — Echo Command Files

Syntax: [NO]Echo

Description: ECHO displays all lines read from a command file. A command file is
specified by @filename. ECHO only applies to commands that follow it.
The default is NOECHO.
CROSS-LIBRARIAN (LIBCOP)  4-9



List — List Library
4.4.5 List — List Library

Syntax: List [= file]

Description: LIST displays a list of all modules in the library. This list is written to
the specified file. If no file is given, it goes to the console. The default file
extension is .lis.
4-10 CROSS-LIBRARIAN (LIBCOP)



Replace — Replace Object Module
4.4.6 Replace — Replace Object Module

Syntax: Replace

Description: This command tells the Librarian to replace the specified object file(s) in
the library. If the module already exists in the library, it is replaced. If
not, the new module is added to the library.

This command is similar to ADD, but it is not an error if the module ex-
ists in the library.

Example: LIBCOP lib1   mod1,mod2,mod3 /replace
CROSS-LIBRARIAN (LIBCOP)  4-11



Update — Replace Object Module if Newer
4.4.7 Update — Replace Object Module if Newer

Syntax: Update

Description: This command tells the Librarian to replace the specified object file(s) in
the library, if the new object file has a later date than the one in the li-
brary. A module that does not already exist in the library is added to it.

Example: LIBCOP lib1   mod1,mod2,mod3 /update
4-12 CROSS-LIBRARIAN (LIBCOP)



Warnings — Display Warning Messages
4.4.8 Warnings — Display Warning Messages

Syntax: [NO]Warnings

Description: WARNINGS causes any warning messages to be included in the output
listing. NOWARNINGS inhibits the messages. The default is WARN-
INGS.
CROSS-LIBRARIAN (LIBCOP)  4-13



Warnings — Display Warning Messages
4-14 CROSS-LIBRARIAN (LIBCOP)



Chapter 5

COFF DISPLAY UTILITY (DUMPCOFF)

5.1 INTRODUCTION

DUMPCOFF is a utility program used to format and display the information in a
Common Object Format File (COFF) file. This is the type of file output by LNCOP, the
COP8 Linker, and used by the COP8 Debugger program.

The typical user will want to examine the object code, symbols, or line number
information in the COFF file. However, command line options are provided to display
more detailed information. This could include COFF header information, symbols used
internally by the tool set, and others. In some cases, the information displayed requires
an understanding of the internal COFF format (see the Specification for COFF for the
National Semiconductor HPC and COP8 Microcontrollers, available from National
Semiconductor Corporation).

5.2 OPERATION AND INVOCATION

The invocation line is as follows:

DUMPCOFF (gives help)

DUMPCOFF [options] coffile [options]

where: coffile is a Linker COFF file to process. The default extension is .cof.

options is one or more of the following program options:

/b /e /h /l /s /t

5.2.1 Options

Options may be specified before and/or after the COFF filename. Each option consists of
a  “/” followed by the option letter. Multiple options need not be separated by blanks, e.g.,
/t/s is valid. The option letters may be upper or lower case. The following are sample
invocation lines:

DUMPCOFF /e graphics

DUMPCOFF control /T /S

DUMPCOFF /b/h system
COFF DISPLAY UTILITY (DUMPCOFF)  5-1



/b

The /b option displays the .BNKINFO section. This is a special COFF section created by
the Linker. It includes information on the sections, modules, and ranges used in the
program. There is always one bank called SHARED.

If the /h option is also used, the data for this section is displayed as raw data.

Note, a section in the COFF file has no relationship with a program section created by
the compiler or assembler.

/e

The /e option enables all the other options except the /h option. Thus /e is equivalent to
specifying /b/l/s/t on the command line.

/h

The /h option displays information that is usually “hidden;” it consists of information that
would be of use to people writing programs that process a COFF file. The information
displayed requires some knowledge of the internal COFF format.

/l

The /l option displays the line number entries. Line number entries only exist if the
assembler generated them using the appropriate command line options.

/s

The /s option displays symbolic information contained in the file. When used with the /h
option, assembler-generated symbols that are not normally included are also displayed.

/t

The /t option causes the data bytes contained in each COFF text section to be displayed
in both hex and ASCII.

5.2.2 Error Level Return

If no errors occur, an error level of zero is returned. If errors occur, a nonzero error level
is returned (warnings are not considered errors).
5-2 COFF DISPLAY UTILITY (DUMPCOFF)



5.3 EXAMPLES

The Linker example in Section 3.4 is used, except that /Sym option is used to generate
symbolic information for COFF.

The programs were assembled with the following commands:

ASMCOP sample1/sym

ASMCOP sample2/sym

The programs were then linked as follows:

LNCOP  sample1,sample2

The following is the output of DUMPCOFF using various command line options as
shown. Note that the link placed files into two different banks. The program signon
header is not shown for the examples.

NOTE: The following examples may change somewhat due to future changes in As-
sembler, Linker, e.g., section names or code generated may change.

5.3.1 DUMPCOFF Sample1

With no options specified the default display is shown below. It consists of:

1. Name of the file.

2. The file header, which in this case shows only the date the file was created. If
the /h option had been used additional information would have been shown.

3. The COFF section information. These sections which are different from sec-
tions in the assembler, consists of contiguous bytes of data starting at the ad-
dress shown. Paddr and Vaddr are always the same. The section name is
always .text.

File: sample1.cof
File Header

Creation Date: Aug 28 13:24:02 1992

Section: .text
Paddr: 0x00000000, Vaddr: 0x00000000
Size of raw data: 0x0000000c

5.3.2 DUMPCOFF /b /s /t /l main

This set of options displays everything in the file except those items that are included by
the /h option. You can do the same thing with the /e option. The display consists of:

1. Name of the file.

2. The file header, which in this case shows only the date the file was created. If
the /h option was used, additional information is shown.
COFF DISPLAY UTILITY (DUMPCOFF)  5-3



3. The bank information. This part of the output shows the program ranges and
sections; one bank is called “SHARED.” The ranges declared during the link,
or the default ranges if none were declared, are shown. These are identical to
those shown on the Linker load map.

Next, the section and modules are shown along with their start and end ad-
dresses, and section attributes. The attributes are the same as on the load
map with the addition of the type of section. This can be CODE, or DATA.

The module names are shown in the section they reside in. This is identical
to the load map. If a module name is preceded by an “*,” it indicates that sym-
bolic information is available for the module in the COFF file. This could be
assembler generated symbolic information.

4. The COFF sections are displayed again, except this time the raw data for the
section is also shown.

5. If there are any line numbers in the file, they are displayed after the first .text
section as shown below. The line numbers are listed on a function by function
basis. Note that the line numbers are relative to the start of the function, not
an absolute line number of the file.

6. Finally, the symbol table is shown, listing the local function symbols. Local
and global symbols are grouped separately and shown bank by bank.

File: sample1.cof
File Header

Creation Date: Aug 28 13:24:02 1992

===================================================================

Bank: SHARED
      ROM     0000:03FF
      RAM     0000:002F
      RAM     REG
      REG     00F0:00FB
      REG     00FF:00FF
      BASE    0000:000F

-- Sections --

start end    attributes           Section
                                    Module

0000  0000   BASE  BYTE  DATA      OTHERDATA
0000  0000                         *SAMPLE1
0000  000B   ROM   BYTE  CODE      CODE
0000  0002                         *SAMPLE2
0003  000B                         *SAMPLE1
00F0  00F0   REG   BYTE  DATA      DATA
00F0  00F0                         *SAMPLE2
0001  0001   RAM   BYTE  DATA      MOREDATA
5-4 COFF DISPLAY UTILITY (DUMPCOFF)



0001  0001                         *SAMPLE2

Section: .text
Paddr: 0x00000000, Vaddr: 0x00000000
Size of raw data: 0x0000000c

Raw Data:
00000000 30 03 ff 9d f0 bd 01 84 bd 00 84 8e              0...p=..=...
Line Number Entries

Function: .sect_CODE_1
    2 at address 0x00000003
    3 at address 0x00000005
    4 at address 0x00000008
    5 at address 0x0000000b

Function: .sect_CODE_1
    2 at address 0x00000000
    3 at address 0x00000002

*** Symbol Table - Local Symbols

Bank: SHARED
File: sample1.asm
absolute static int .sect_CODE_1() with value 0x00000003
absolute static unsigned char basedata with value 0x00000000

File: sample2.asm
absolute static int .sect_CODE_1() with value 0x00000000
label start at address 0x00000000

*** Symbol Table - Global Symbols

Bank: SHARED

absolute extern unsigned char regdata with value 0x000000f0
absolute extern unsigned char ramdata with value 0x00000001
label p1 at address 0x00000003

5.3.3 DUMPCOFF /e /h main

This is the same as the previous example except that the /h option was specified to
display any normally “hidden” information.

1. The file header now shows additional information. It indicates the number of
sections in the file and the number of symbols. It also shows some flags, which
are described in the COFF manual.

2. The optional header is shown next. This is also described in the COFF man-
ual. The only fields in the optional header used by the COP8 software are the
magic number, the version number, and the starting address.
COFF DISPLAY UTILITY (DUMPCOFF)  5-5



3. On the first line of each bank entry, some index numbers are shown. These
are the starting and ending symbol table index numbers for the local and glo-
bal symbols, respectively. The symbol table index numbers are shown in the
symbol table display. The final number preceded by a # is the index number
of the start of any line number entries for this bank. A minus one indicates
no entries.

4. For the section display, there is some additional information shown such as
“Flags.” This is described in the COFF manual.

5. For the symbol table entries, each entry is now shown with its symbol table
index number on the left of each entry. These values are in hexadecimal. An
index number containing a “+” indicates that this entry contained an auxilia-
ry symbol entry which took up the next entry. Hence the next index number
is two larger.

There are some symbols shown in the symbol table, e.g., .bf and .ef, that did
not appear in the previous example. These are assembler generated symbols
used for debugging purposes. The use of these types of symbols are explained
in the COFF manual.

File: sample1.cof
File Header

Creation Date: Aug 28 13:24:02 1992
Magic Number: COP8MAGIC (0542o)
Number of Sections: 2
Number of Symbols: 31
Size Of Optional Header: 40 (bytes)
Flags: RELFLG,EXEC,AR32WR

Optional Header
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00 00 00 00 00 00 00 00                          ........

===================================================================

Bank: SHARED   index:  0x0/0x1b  0x1c/0x1e  #0
      ROM     0000:03FF
      RAM     0000:002F
      RAM     REG
      REG     00F0:00FB
      REG     00FF:00FF
      BASE    0000:000F

-- Sections --

start end    attributes           Section
                                    Module

0000  0000   BASE  BYTE  DATA      OTHERDATA
0000  0000                         *SAMPLE1
5-6 COFF DISPLAY UTILITY (DUMPCOFF)



0000  000B   ROM   BYTE  CODE      CODE
0000  0002                         *SAMPLE2
0003  000B                         *SAMPLE1
00F0  00F0   REG   BYTE  DATA      DATA
00F0  00F0                         *SAMPLE2
0001  0001   RAM   BYTE  DATA      MOREDATA
0001  0001                         *SAMPLE2

Section: .BNKINFO
Paddr: 0x00000000, Vaddr: 0x00000000
Size of raw data: 0x0000017c
Flags: REG
No line number records

Raw Data:
00000000 00 00 00 00 38 32 30 20 20 20 20 20 00 00 00 00  ....820     ....
00000010 00 00 00 00 b2 01 00 00 00 00 00 00 f8 01 00 00  ....2.......x...
00000020 00 00 00 00 53 48 41 52 45 44 00 00 02 00 00 00  ....SHARED......
00000030 ff 03 03 00 00 00 2f 00 03 05 00 00 00 00 05 00  ....../.........
00000040 f0 00 fb 00 05 00 ff 00 ff 00 01 00 00 00 0f 00  p.{.............
00000050 ff 00 00 00 00 00 00 00 53 41 4d 50 4c 45 31 00  ........SAMPLE1.
00000060 53 41 4d 50 4c 45 32 00 4f 54 48 45 52 44 41 54  SAMPLE2.OTHERDAT
00000070 41 00 43 4f 44 45 00 44 41 54 41 00 4d 4f 52 45  A.CODE.DATA.MORE
00000080 44 41 54 41 00 00 00 00 04 01 00 00 11 01 00 00  DATA............
00000090 00 00 00 00 f4 00 00 00 00 00 00 00 07 00 00 00  ....t...........
000000a0 00 00 00 00 00 00 00 00 0e 01 00 00 0a 01 00 00  ................
000000b0 00 00 0b 00 fc 00 00 00 00 00 02 00 0b 00 f4 00  ....|.........t.
000000c0 00 00 03 00 0b 00 07 00 00 00 00 00 00 00 00 00  ................
000000d0 00 00 13 01 00 00 15 01 00 00 f0 00 f0 00 fc 00  ..........p.p.|.
000000e0 00 00 f0 00 f0 00 0b 00 00 00 00 00 00 00 00 00  ..p.p...........
000000f0 00 00 18 01 00 00 13 01 00 00 01 00 01 00 fc 00  ..............|.
00000100 00 00 01 00 01 00 0b 00 00 00 00 00 00 00 00 00  ................
00000110 00 00 00 00 00 00 c0 00 00 00 c8 00 00 00 24 01  ......@...H...$.
00000120 00 00 00 00 00 00 00 00 00 00 1b 00 00 00 1c 00  ................
00000130 00 00 1e 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
00000150 00 00 00 00 00 00 00 00 00 00 00 00 1c 00 00 00  ................
00000160 1c 00 00 00 ff ff ff ff ff ff ff ff ff ff ff ff  ................
00000170 ff ff ff ff 1c 00 00 00 1d 00 00 00              ............

Section: .text
Paddr: 0x00000000, Vaddr: 0x00000000
Size of raw data: 0x0000000c
Flags: REG
Number of line number records: 8

Raw Data:
00000000 30 03 ff 9d f0 bd 01 84 bd 00 84 8e              0...p=..=...

Line Number Entries
Function: .sect_CODE_1

    2 at address 0x00000003
    3 at address 0x00000005
    4 at address 0x00000008
    5 at address 0x0000000b

Function: .sect_CODE_1
    2 at address 0x00000000
COFF DISPLAY UTILITY (DUMPCOFF)  5-7



    3 at address 0x00000002

*** Symbol Table - Local Symbols

0:+Bank: SHARED
2:+File: sample1.asm
4:+absolute static int .sect_CODE_1() with value 0x00000003
6:+.bf with value 0x00000003
8:+ .bb with value 0x00000003
a:+ .eb with value 0x0000000c
c:+.ef with value 0x0000000c
e: absolute static unsigned char basedata with value 0x00000000

f:+File: sample2.asm
11:+absolute static int .sect_CODE_1() with value 0x00000000
13:+.bf with value 0x00000000
15:+ .bb with value 0x00000000
17:+ .eb with value 0x00000003
19:+.ef with value 0x00000003
1b: label start at address 0x00000000

*** Symbol Table - Global Symbols

Bank: SHARED

1c: absolute extern unsigned char regdata with value 0x000000f0
1d: absolute extern unsigned char ramdata with value 0x00000001
1e: label p1 at address 0x00000003
5-8 COFF DISPLAY UTILITY (DUMPCOFF)



Chapter 6

PROM UTILITY (PROMCOP)

6.1 INTRODUCTION

PROMCOP is a utility program that is used to convert the COFF file output by LNCOP,
the COP8 Linker, into an Intel hex file for the purpose of burning a PROM. PROMCOP
is directly invoked by LNCOP when the LNCOP /f=hex option is specified. PROMCOP
can also be invoked independent of LNCOP, as explained below.

6.2 INVOCATION

The invocation line is as follows:

PROMCOP (gives help)

PROMCOP [options] coffile [options]
where: coffile is the linker COFF file to be processed. The default extension

is .cof.

options is one or more of the following program options. An option can
be abbreviated to any number of characters.

/f[ormat] = h[ex][=[no]fill[=value]]

/o[utput] = filename

NOTE: If no options are specified, a hex file of name coffile.hex, with unused bytes
set equal to zero, is generated.

6.2.1 Options

/Format=hex

/f[ormat][=]h[ex][=[no]fill[=value]]
This option indicates that one hex file is generated containing all the data bytes from the
COFF file. The default output file name is coffile.hex. By default, unused bytes are filled
with zero up to ROM range. The nofill option prevents filling unused bytes. The
fill=value option fills unused bytes with the specified byte value.
PROM UTILITY (PROMCOP)  6-1



Output

/o[utput][=]filename

/output specifies the output filename. If the name is given without an extension, a
default extension of .hex is used.

6.2.2 Error Level Return

If no errors occur, an error level of zero is returned. If errors occur, a nonzero error level
is returned (warnings are not considered errors).

6.3 ERRORS

Can’t allocate room for bank info
There is not enough memory in your system to run the program.

Can’t allocate room for section tables
There is not enough memory in your system to run the program.

Can’t create file
Error trying to create an output file.

File not found
The COFF input file or command input file can not be found. Possibly wrong file spec-
ified.

First section isn’t .BNKINFO
The first COFF section created by the linker containing range and section information
was not found. Possibly wrong input file is specified.

Hit end of file on COFF file
While reading the COFF file the end of file was reached. This indicates a corrupted
file. Try generating the file again.

Input File contains no range information
The COFF input file has already been processed by this program and hence contains
no range or section information. Thus it cannot be processed; use original input COFF
file.

Invalid COFF file
The COFF input file does not appear to be a COFF file. Possibly you specified the
wrong file.

Invalid or missing option
An option given on the invocation line was not recognized. Must be /format or /output.

Invalid or missing format
The /format option has an invalid argument.

Invalid File Name
The COFF, /format, or /output file names are bad.
6-2 PROM UTILITY (PROMCOP)



More than 1 COFF file specified
Only 1 file may be specified on the invocation line.

No COFF file specified
A COFF file must be given on the invocation line.

No sections in file
The COFF file is not valid. Probably not produced by the COP8 Linker.

Fill value > 255
Fill value is limited to 8 bits.
PROM UTILITY (PROMCOP)  6-3



6-4 PROM UTILITY (PROMCOP)



Chapter 7

HEXLM, LMHEX UTILITIES

7.1 INTRODUCTION

This chapter describes the utilities LMHEX and HEXLM. The utilities are provided so
that you can convert NSC load modules into Intel-hex format object files and vice versa.

These utilities are of special interest to users who have data files in Intel-hex format and
wish to use them with the microcontroller development system. HEXLM, for example,
can be used to convert Intel-hex files to NSC LM format to be downloaded by COMM.

LMHEX converts NSC load modules to Intel-hex files. See Section 7.2.

HEXLM converts Intel-hex files to NSC load modules. See Section 7.3.

7.2 LMHEX

Syntax: LMHEX lmfile [.ext]
where: lmfile is the filename (without extension) of the load module to be

converted.

ext is the filename extension. The default extension is .lm.

The Intel-hex format output file created is named

lmfile.hex
HEXLM, LMHEX UTILITIES  7-1



7.3 HEXLM

Syntax: HEXLM hexfile[.ext]
where: hexfile is the filename (without extension) of the Intel-hex file to be

converted.

ext is the filename extension. The default file extension is .hex.

The NSC load module created is named

hexfile.lm

WARNING

HEXLM does not check that the Intel-hex file contains record type 02, such as generated
by a program with address > 0xffff. An erroneous LM file is generated in this case.
7-2 HEXLM, LMHEX UTILITIES



Appendix A

ASCII CHARACTER SET IN HEXADECIMAL

Char.
7-bit
Hex

Number
Char.

7-bit
Hex

Number
Char.

7-bit
Hex

Number
Char.

7-bit
Hex

Number

NUL 00 SP 20 @ 40 ` 60
SOH 01 ! 21 A 41 a 61
STX 02 " 22 B 42 b 62
ETX 03 # 23 C 43 c 63
EOT 04 $ 24 D 44 d 64
ENQ 05 % 25 E 45 e 65
ACK 06 & 26 F 46 f 66
BEL 07 ' 27 G 47 g 67
BS _ ( 28 H 48 h 68
HT 09 ) 29 I 49 i 69
LF 0A * 2A J 4A j 6A
VT 0B + 2B K 4B k 6B
FF 0C , 2C L 4C l 6C
CR 0D - 2D M 4D m 6D
SO 0E . 2E N 4E n 6E
SI 0F / 2F O 4F o 6F

DLE 10 0 30 P 50 p 70
DC1 11 1 31 Q 51 q 71
DC2 12 2 32 R 52 r 72
DC3 13 3 33 S 53 s 73
DC4 14 4 34 T 54 t 74
NAK 15 5 35 U 55 u 75
SYN 16 6 36 V 56 v 76
ETB 17 7 37 W 57 w 77
CAN 18 8 38 X 58 x 78
EM 19 9 39 Y 59 y 79
SUB 1A : 3A Z 5A z 7A
ESC 1B ; 3B [ 5B { 7B
FS 1C < 3C \ 5C | 7C
GS 1D = 3D ] 5D } 7D
RS 1E > 3E ↑ 5E ~ 7E
US 1F ? 3F ← 5F DEL, 7F

rubout
ASCII CHARACTER SET IN HEXADECIMAL  A-1



A-2 ASCII CHARACTER SET IN HEXADECIMAL



Appendix B

CHIP ARGUMENTS AND DEFAULT RANGES

The valid .chip directive and chip control arguments are listed below. Each argument
maps to a chip family; this determines instruction set and default range. Please see
release letter for new parts.

Table B-1 Chip Arguments for Each Chip Family

Chip
Arguments Device Type

820 820, 821, 822, 820C, 821C, 822C, 620, 621, 622, 620C, 621C, 622C
820CJ 820CJ, 822CJ, 823CJ, 620CJ, 622CJ, 623CJ, 920CJ, 922CJ, 923CJ,

87L20CJ, 87L22CJ
840 840, 841, 842, 840C, 841C, 842C, 640, 641, 642, 640C, 641C, 642C
840CJ 840CJ, 842CJ, 87L40CJ, 87L42CJ
87L40RJ 87L40RJ, 87L42RJ
8780 8780*, 8781*, 8782*
880 880, 881, 882, 880C, 881C, 882C
888BC 888BC, 884BC, 684BC, 87L84BC
888CF 888CF, 884CF, 87L88CF, 87L84CF
888CG 888CG, 884CG
888CL 888CL, 884CL, 688CL, 684CL, 87L88CL, 87L84CL
888CS 888CS, 884CS, 688CS, 684CS
888EB 888EB, 889EB, 87L88EB, 87L89EB
888EG 888EG, 884EG, 688EG, 684EG, 87L88EG, 87L84EG
87L88RG 87L88RG, 87L84RG
888EK 888EK, 884EK, 87L88EK, 87L84EK
87L84RK 87L88RK, 87L84RK
888FH 888FH, 884FH, 688FH, 684FH, 87L88FH, 87L84FH
888GD 888GD, 87L88GD
87L88RD 87L88RD
888GG 888GG, 87L88GG
87L88RG 87L88RG, 87L84RG
888GW 888GW
87L88RW 87L88RW
888HG 888HG, 688HG
888KG 888KG, 688KG, 87L88KG
8ACC 8ACC, 8ACC5, 8ACC7
CHIP ARGUMENTS AND DEFAULT RANGES  B-1



* Please refer to the data sheets of these devices for the correct configuration.

8SAA 8SAA
8SAB 8SAB
8SAC 8SAC
912C 912C, 912CH

Table B-2 Default Ranges for Each Chip Family

Chip
Family

Default Ranges (in Hex)

ROM RAM BASE REG SEG SEGB

820 0:03FF 0:2F, REG 0:F F0:FB,FF

820CJ 0:03FF 0:2F, REG 0:F F0:FB,FF

840 0:07FF 0:6F, REG 0:F F0:FB,FF

840CJ 0:07FF 0:6F, REG 0:F F0:FB,FF

87L40RJ 0:7FFF 0:6F, REG 0:F F0:FB,FF

8780 0:0FFF 0:6F, REG 0:F F0:FB,FF

880 0:0FFF 0:6F, REG 0:F F0:FB,FF

888BC 0:07FF 0:2F, REG 0:F F0:FB,FF

888CF 0:0FFF 0:6F, REG 0:F F0:FB,FF

888CG 0:0FFF 0:6F, REG 0:F F0:FB 100:13F 100:10F

888CL 0:0FFF 0:6F, REG 0:F F0:FB,FF

888CS 0:0FFF 0:6F, REG 0:F F0:FB 100:13F 100:10F

888EB 0:1FFF 0:6F, REG 0:F F0:FB 100:13F 100:10F

888EG 0:1FFF 0:6F, REG 0:F F0:FB 100:17F 100:10F

87L88RG 0:7FFF 0:6F, REG 0:F F0:FF 100:17F 100:10F

888EK 0:1FFF 0:6F, REG 0:F F0:FB 100:17F 100:10F

87L88RK 0:7FFF 0:6F, REG 0:F F0:FF 100:17F 100:10F

888FH 0:2FFF 0:6F, REG 0:F F0:FB 100:17F2
00:27F
300:37F

100:10F
200:20F
300:30F

Table B-1 Chip Arguments for Each Chip Family

Chip
Arguments Device Type

(Continued)
B-2 CHIP ARGUMENTS AND DEFAULT RANGES



888GD 0:3FFF 0:6F, REG 0:F F0:FB 100:17F 100:10F

87L88RD 0:7FFF 0:6F, REG 0:F F0:FF 100:17F 100:10F

888GG 0:3FFF 0:6F, REG 0:F F0:FB 100:17F
200:27F
300:37F

100:10F
200:20F
300:30F

87L88RG 0:7FFF 0:6F, REG 0:F F0:FB 100:17F
200:27F
300:37F

100:10F
200:20F
300:30F

888GW 0:3FFF 0:6F, REG 0:F F0:FB 100:17F
200:27F
300:37F

100:10F
200:20F
300:30F

87L88RW 0:3FFF 0:6F, REG 0:F F0:FB 100:17F
200:27F
300:37F

100:10F
200:20F
300:30F

888HG 0:4FFF 0:6F, REG 0:F F0:FB 100:17F
200:27F
300:37F

100:10F
200:20F
300:30F

888KG 0:5FFF 0:6F, REG 0:F F0:FB 100:17F
200:27F
300:37F
400:47F
500:57F
600:67F
700:77F
800:83F

100:10F
200:20F
300:30F
400:40F
500:50F
600:60F
700:70F
800:80F

8ACC 0:0FFF 0:6F, REG 0:F F0:FB

8SAA 0:03FF 0:2F, REG 0:F F0:FB

8SAB 0:07FF 0:6F, REG 0:F F0:FB

8SAC 0:0FFF 0:6F, REG 0:F F0:FB

912C 0:02FF 0:2F, REG 0:F F0:FB,FF

Table B-2 Default Ranges for Each Chip Family

Chip
Family

Default Ranges (in Hex)

ROM RAM BASE REG SEG SEGB

(Continued)
CHIP ARGUMENTS AND DEFAULT RANGES  B-3



B-4 CHIP ARGUMENTS AND DEFAULT RANGES



INDEX
A
ADD command 4-5
Add object module 4-5
.ADDR directive 2-38
Addressing 2-14

branch 2-15
direct 2-14
immediate 2-14
indirect 2-14
register indirect 2-14

.ADDRW directive 2-39
Arithmetic operators 2-8, 2-9
ASERRORFILE control 2-83
Assembler

directives 2-36
error messages 2-28

Assembler controls 2-80, 2-81
ASERRORFILE 2-83
CHIP 2-84
CNDDIRECTIVES 2-85
CNDLINES 2-86
COMMENTLINES 2-87
COMPLEXREL 2-88
CONSTANTS 2-89
CROSSREF 2-90
DATADIRECTIVES 2-91
DEFINE 2-92
ECHO 2-93
ERRORFILE 2-94
FORMFEED 2-95
HEADINGS 2-96
ILINES 2-97
INCLUDE 2-98
LISTFILE 2-99
LOCALSYMBOLS 2-100
MASTERLIST 2-101
MCALLS 2-102
MCOMMENTS 2-103
MDEFINITIONS 2-104
memory 2-105
MEXPANSIONS 2-106
MLOCAL 2-107
MOBJECT 2-108
MODEL 2-109
NUMBERLINES 2-110
OBJECTFILE 2-111
PASS 2-112
PLENGTH 2-113
PWIDTH 2-114
QUICK 2-115
REMOVE 2-116
RESTORE 2-117
SAVE 2-118
SIGNEDCOMPARE 2-119
SIZESYMBOL 2-120
Sym_debug 2-121
TABLESYMBOLS 2-122
TABS 2-123
UNDEFINE 2-124

UPPERCASE 2-125
VERIFY 2-126
WARNINGS 2-127
XDIRECTORY 2-128

Assembler invocation for MS-DOS 2-1
Assembler options for MS-DOS 2-3
Assembly

listing 2-35
process 2-17

Assembly Language Elements 2-4
character set 2-5
label construction 2-5
location counter 2-5
operand expression evaluation 2-6
symbol construction 2-5

Assembly local symbols 3-28
Assembly time errors 2-27
Assignment statements 2-18

B
DUMPCOFF

/b 5-2
/b /s /t /l main 5-3

Options
/b 5-2

/b option 5-2
BACKUP command 4-6
Bankfile for bank switching 3-22
Branch addressing 2-15
BRIEFMAP command 3-17
.BYTE directive 2-1, 2-40

C
Character set 2-5
CHIP control 2-84
.CHIP directive 2-41
CNDDIRECTIVES control 2-85
CNDLINES control 2-86
Code alteration 2-43
COFF display utility 5-1
Command line errors 2-26
Commands

ADD 4-5
BACKUP 4-6
DELETE 4-7
ECHO 4-8
EXTRACT 3-21
EXTRACTSYBMOL 3-21
LIST 4-9
LOAD 3-27
REPLACE 4-10
UPDATE 4-11
WARNINGS 4-12

Comment field 2-17
COMMENTLINES control 2-87
COMPLEXREL control 2-88
Concatenation operator 2-23
Conditional assembly 2-59
CONSTANTS control 2-89
INDEX  1



.CONTRL directive 2-42

.CONTRL options 2-43
Cross-librarian

LIBHPC 4-1
Cross-librarian invocation

for MS-DOS 4-1
Cross-linker 3-1

options 3-3
options for MS-DOS 3-3

Cross-linker invocation
for MS-DOS 3-1

CROSSREF
command 3-18

CROSSREF control 2-90
Cross-Reference 3-18

D
DATADIRECTIVES control 2-91
.DB directive 2-40
DEBUG command 3-19
Debug symbols 3-19
Default filenames and extensions

for MS-DOS 3-3, 4-2
Default filenames and extensions for MS-DOS 2-3
DEFINE control 2-92
Define storage 2-47
DELETE command 4-7
Direct addressing 2-14
Directives 2-35

.ADDR 2-38

.ADDRW 2-39

.BYTE 2-40

.CHIP 2-41

.CONTRL 2-42

.DB 2-40

.DO 2-45

.DOPARM 2-46

.DSB 2-47

.DSW 2-47

.DW 2-79

.ELSE 2-48, 2-59

.END 2-49

.ENDDO 2-45, 2-50

.ENDIF 2-51, 2-59

.ENDM 2-52

.ENDSECT 2-53, 2-74

.ERROR 2-54

.EXIT 2-45, 2-55

.EXITM 2-45, 2-55

.EXTRN 2-56

.FB 2-57

.FORM 2-58

.FW 2-57

.IF 2-59
IFB 2-59
IFC 2-59
.IFDEF 2-59
.IFNB 2-59
.IFNDEF 2-59
.IFSTR 2-59
.INCLD 2-62

.LIST 2-63

.LIST options 2-64

.LOCAL 2-65

.MACRO 2-66

.MDEL 2-67

.MLOC 2-68

.OPDEF 2-69

.OPT 2-70

.ORG 2-71

.OUT 2-72

.OUT1 2-72

.OUT2 2-72

.OUTALL 2-72

.PUBLIC 2-73

.SECT 2-74

.SET 2-76

.SPACE 2-77
summary of assembler 2-36
.TITLE 2-78
.WARNING 2-54
.WORD 2-79

.DO directive 2-45
Documentation conventions 1-3
.DOPARM directive 2-46
.DSB directive 2-47
.DSW directive 2-47
DUMPCOFF 5-1

examples 5-3
invocation 5-1
main 5-3
operation 5-1
options 5-1

.DW directive 2-79

E
DUMPCOFF

/e 5-2
/e /h main 5-5

Options
/e 5-2

/e option 5-2
ECHO command 3-20
Echo command files 3-20
ECHO commands 4-8
ECHO control 2-93
.ELSE directive 2-48, 2-59
Enable symbol table 3-36
.END directive 2-49
.ENDDO directive 2-45, 2-50
.ENDIF directive 2-51, 2-59
.ENDM directive 2-20, 2-52
.ENDSECT directive 2-53, 2-74
.ERROR directive 2-54
Error level return 3-4, 5-2, 6-2
Error messages 2-26

assembler 2-28
assembly time errors 2-27
command line 2-26
linker errors 3-10

ERRORFILE control 2-94
Errors
2 INDEX



PROMHPC 6-2
Example syntax 1-4
Examples

DUMPCOFF 5-3
linker 3-7

Exclude standard directories 3-38
.EXIT directive 2-45, 2-55
.EXITM directive 2-45, 2-55
EXTRACT command 3-21
Extraction operators 2-8
EXTRACTSYMBOL command 3-21
.EXTRN directive 2-56

F
.FB directive 2-57
Fields

comment 2-17
operand 2-17
operation 2-16

FILE command 3-22
Force object file 3-24
.FORM directive 2-58
PROMHPC

/Format=hex 6-1
FORMAT command 3-23
/Format=hex format 6-1
FORMFEED control 2-95
.FW directive 2-57

H
DUMPCOFF

/h 5-2
Options

/h 5-2
/h option 5-2
HEADINGS control 2-96
Help file search order 3-4

for MS-DOS 4-2
Help file search order for MS-DOS 2-4

I
.IF directive 2-59
.IFB directive 2-59
.IFC directive 2-59
.IFDEF directive 2-59
.IFNB directive 2-59
.IFNDEF directive 2-59
.IFSTR directive 2-59
IGNOREERRORS command 3-24
ILINES control 2-97
Immediate addressing 2-14
.INCLD directive 2-62
INCLUDE control 2-98
Include file search order for MS-DOS 2-3
Indirect addressing 2-14
Invocation

DUMPCOFF 5-1
PROMHPC 6-1

L
DUMPCOFF

/l 5-2
Options

/l 5-2

/l option 5-2
Label

construction 2-5
field 2-15

LIBDIRECTORY command 3-25
LIBFILE command 3-26
LIBHPC 4-1
Library commands

ADD 4-5
BACKUP 4-6
DELETE 4-7
ECHO 4-8
LIST 4-9
REPLACE 4-10
summary of 4-4
UPDATE 4-11
WARNING 4-12

Library errors 4-3
Library file search order

for MS-DOS 3-4
Library file to search 3-26
Library options 4-2

for MS-DOS 4-2
Library search directory 3-25
Linker commands 3-16

BRIEFMAP 3-17
CROSSREF 3-18
DEBUG 3-19
ECHO 3-20
FILE 3-22
FORMAT 3-23
IGNOREERRORS 3-24
LIBDIRECTORY 3-25
LIBFILE 3-26
LOCALSYMBOLS 3-28
MAPFILE 3-29
OUTPUTFILE 3-30
PWIDTH 3-31
RANGE 3-32
SECT 3-34
SIZSECT 3-35
TABLESYMBOLS 3-36
WARNINGS 3-37
XDIRECTORY 3-38

Linker errors 3-10, 3-11
command errors 3-11
link errors 3-12
link warnings 3-14
object module errors 3-14

Linker example 3-7
LIST command 4-9
.LIST directive 2-63, 2-64
List options 2-64
LISTFILE control 2-99
LNHPC 3-1
LOAD command 3-27
Load object file 3-27
.LOCAL directive 2-65
LOCALSYMBOLS command 3-28
LOCALSYMBOLS controls 2-100
Location counter 2-5
Logical operators 2-8, 2-9
INDEX  3



M
Macro Calls 2-102
Macro comments 2-103
.MACRO directive 2-20, 2-66
Macro object 2-108
Macros 2-19

calling 2-21
comments 2-26
concatenation operator 2-23
conditional expansion 2-25
defining 2-19
local symbols 2-24
nested cells 2-26
nested definitions 2-26
parameters 2-21, 2-22
simple 2-20
time looping 2-25, 2-45, 2-46

MAPFILE command 3-29
MASTERLIST control 2-101
MCALLS control 2-102
MCOMMENTS controls 2-103
MDEFINITIONS control 2-104
.MDEL directive 2-20, 2-67
Memory allocation 3-5
Memory control 2-105
Memory ranges 3-32
Memory size model 2-109
MEXPANSIONS control 2-106
.MLOC directive 2-68
MLOCAL control 2-107
MOBJECT control 2-108
MODEL control 2-109

N
NUMBERLINES control 2-110

O
Object files and modules names

for MS-DOS 4-2
OBJECTFILE control 2-111
.OPDEF directive 2-69
Operand

expression evaluation 2-6
field 2-17
size 2-15

Operation
DUMPCOFF 5-1
PROMHPC 6-1

Operation field 2-16
Operator precedence value 2-10
Operators 2-7

arithmetic 2-8
extraction 2-8
logical 2-8
relational 2-8

.OPT directive 2-70
Options

DUMPCOFF 5-1
PROMHPC 6-1

.ORG directive 2-71

.OUT directive 2-72

.OUT1 directive 2-72

.OUT2 directive 2-72

.OUTALL directive 2-72
PROMHPC

/Output 6-2
Output format 3-23
Output object file 3-30
/Output option 6-2
OUTPUTFILE command 3-30

P
Parameters referenced by number 2-23
PASS control 2-112
PLENGTH control 2-113
Program section 2-74
PROM utility 6-1
PROMHPC 6-1

errors 6-2
invocation 6-1
operation 6-1
options 6-1

.PUBLIC directive 2-73
PWIDTH command 3-31
PWIDTH control 2-114

Q
QUICK control 2-115

R
RANGE command 3-32
Register indirect addressing 2-14
Relational operators 2-8, 2-9
REMOVE control 2-116
REPLACE command 4-10
Replace object module 4-10
RESTORE control 2-117

S
DUMPCOFF

/s 5-2
Options

/s 5-2
/s option 5-2
SAVE control 2-118
SECT command 3-34
.SECT directive 2-74
Select address 3-34
Select size 3-35
.SET directive 2-76
Set map format 3-17
SIGNEDCOMPARE control 2-119
SIZESECT command 3-35
SIZESYMBOL control 2-120
.SPACE directive 2-77
Statement fields

comment field 2-17
operand field 2-17
operation field 2-16

Statements fields
label field 2-15

Strings 2-11, 2-17, 2-40
Sym_debug control 2-121
4 INDEX



Symbol construction 2-5
Syntax, example 1-4

T
DUMPCOFF

/t 5-2
Options

/t 5-2
/t option 5-2
TABLESYMBOLS

command 3-36
TABLESYMBOLS control 2-122
TABS control 2-123
Terms 2-6, 2-8

decimal 2-8
hexadecimal 2-8
label 2-11
location counter 2-12
lower-half 2-12
string constant 2-11
symbol 2-11
upper-half 2-12

.TITLE directive 2-1, 2-78

U
UNDEFINE control 2-124
UPDATE command 4-11
UPPERCASE control 2-125

V
VERIFY control 2-126

W
.WARNING directive 2-54
Warning messages 2-26, 4-12

display 3-37
WARNINGS

command 3-37, 4-12
WARNINGS control 2-127
Width of map file 3-31
.WORD directive 2-79

X
XDIRECTORY

command 3-38
XDIRECTORY control 2-128
INDEX  5



6 INDEX


	COP8™
	Assembler/Linker/Librarian User’s Manual

	READER’S COMMENT FORM
	A
	09/92
	B
	08/93
	C
	10/94
	-001
	05/95
	-002
	01/96
	-003
	11/96
	PREFACE

	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Appendix A
	Appendix B
	Chapter 1
	INTRODUCTION

	1.1 OVERVIEW
	Figure�1-1 COP8 Software Development Process

	1.2 COP8 CROSS-ASSEMBLER (ASMCOP)
	1.3 COP8 CROSS-LINKER (LNCOP)
	1.4 COP8 CROSS-LIBRARIAN (LIBCOP)
	1.5 COP8 COFF DISPLAY UTILITY (DUMPCOFF)
	1.6 COP8 PROM UTILITY (PROMCOP)
	1.7 HEX LM UTILITIES (HEXLM, LMHEX)
	1.8 DOCUMENTATION CONVENTIONS
	1.8.1 General Conventions
	1.8.2 Conventions in Syntax Descriptions
	1.8.3 Example Conventions
	Chapter 2
	CROSS-ASSEMBLER (ASMCOP)

	2.1 INTRODUCTION
	2.2 INVOCATION AND OPERATION



	2.2.1 Invocation
	2.2.2 Assembler Options
	2.2.3 Default Filenames and Extensions
	2.2.4 Include File Search Order
	1. Current directory
	2. Directories specified by the /I option
	3. Default directories

	a. Directory specified by environment variable ASM...
	b. Directory specified by environment variable COP...
	c. Directory \COP


	2.2.5 Help File Search Order
	1. Current directory
	2. Default directories (as noted in Section 2.2.4)...


	2.2.6 Temporary File Directory
	2.2.7 Error Level Return
	2.3 ASSEMBLY LANGUAGE ELEMENTS
	— label field
	— operation field
	— operand field
	— comment field


	2.3.1 Character Set
	2.3.2 Location Counter
	2.3.3 Symbol and Label Construction
	1. The first character of a symbol must be either ...
	2. All other characters in the symbol may be any a...
	3. The first 64 characters are used by the assembl...
	4. Symbols that start with a dollar sign are local...
	5. Symbols are case sensitive.


	2.3.4 Operand Expression Evaluation
	Terms
	Operators
	Table�2-1 Arithmetic, Logical, and Relational Oper...

	+
	Unary or Binary
	-
	Unary or Binary
	*
	Binary
	/
	Binary
	MOD
	Binary
	SHL
	Binary
	SHR
	Binary
	ROL
	Binary
	ROR
	Binary
	NOT
	%
	Unary
	AND
	&
	Binary
	OR
	!
	Binary
	XOR
	Binary
	LT
	<
	Binary
	EQ
	=
	Binary
	GT
	>
	Binary
	LE
	<=
	Binary
	GE
	>=
	Binary
	NE
	<>
	Binary
	&
	Unary
	LOW
	L
	Unary
	HIGH
	H
	Unary
	B_SECT
	Unary
	E_SECT
	Unary
	Table�2-2 Operator Precedence Value

	)
	OR, !
	XOR
	AND, &
	NOT, %
	LT, <
	GT, >
	EQ, =
	NE, <>
	LE, <=
	GE, >=
	+
	-
	/
	*
	MOD
	SHL
	SHR
	ROL
	ROR
	LOW, L
	HIGH, H
	(
	UNARY -
	UNARY +
	UNARY &
	B_SECT
	E_SECT
	Decimal Constant Terms
	Hexadecimal Constant Terms
	Octal Constant Terms
	Binary Constant Terms
	String Constant Terms
	Label Terms
	Symbol Terms
	Location Counter Terms
	Lower Half and Upper Half Terms
	Size Type
	B_SECT and E_SECT Operators
	Numbers
	Expressions


	2.3.5 Addressing
	Direct Addressing
	Immediate Addressing
	Register Indirect Addressing
	Register Indirect Addressing, Auto Increment/Decre...
	Branch Addressing
	Operand Size

	2.3.6 Label Field
	2.3.7 Operation Field
	2.3.8 Operand Field
	2.3.9 Comment Field
	2.4 ASSEMBLY PROCESS
	2.5 ASSIGNMENT STATEMENTS
	2.6 MACROS

	2.6.1 Defining a Macro
	Simple Macros
	Macros with Parameters

	2.6.2 Calling a Macro
	2.6.3 Using Parameters
	1. One comma and/or one or more blanks delimit par...
	2. A semicolon terminates the parameter list and s...
	3. Single quotes (') may be included as part of a ...
	4. A parameter may be enclosed in single quotation...
	5. Missing or null parameters are treated as strin...

	Parameters Referenced by Number
	NOTES: 1. The @ operator is replaced during macro ...
	2. A .DOPARM loop acts as a macro, and the above d...


	2.6.4 Concatenation Operator
	2.6.5 Macro Local Symbols
	2.6.6 Conditional Expansion
	2.6.7 Macro-Time Looping
	2.6.8 Nested Macro Calls
	2.6.9 Nested Macro Definitions
	2.6.10 Macro Comments
	2.7 ERROR AND WARNING MESSAGES

	2.7.1 Command Line Errors
	2.7.2 Assembly Time Errors
	Table�2-3 Assembler Errors
	1
	2
	3
	5
	7
	9
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	22
	23
	24
	25
	26
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	58
	59
	60
	62
	63
	65
	66
	67
	68
	69
	71
	72
	73
	74
	200
	204
	205
	206
	208
	214
	215
	216
	221
	222
	223
	224
	225
	226
	227
	238
	239
	241
	242
	244
	251
	253
	254
	255
	2.8 THE ASSEMBLY LISTING
	2.9 DIRECTIVES
	Table�2-4 Summary of Assembler Directives



	2.9.1 .addr
	2.9.2 .addrw
	2.9.3 .byte, .db
	2.9.4 .chip
	2.9.5 .contrl
	.
	.
	.
	Table�2-5 .CONTRL Options

	0
	0
	0
	1
	1
	1
	0
	0
	1
	2
	2
	0
	0
	1
	4
	Table�2-6 Code Alteration Based for JP, JMP, JMPL,...

	JP
	X
	+
	+
	JMP
	–
	X
	+
	JMPL
	–
	–
	X
	JSR
	N/A
	X
	+
	JSRL
	N/A
	–
	X

	2.9.6 .do, .enddo, .exit, exitm
	2.9.7 .doparm
	2.9.8 .dsb, .dsw
	2.9.9 .else
	2.9.10 .end
	2.9.11 .enddo
	2.9.12 .endif
	2.9.13 .endm
	2.9.14 .endsect
	2.9.15 .error, .warning
	2.9.16 .exit, .exitm
	2.9.17 .extrn
	2.9.18 .fb, .fw
	2.9.19 .form
	2.9.20 .if, .ifb .ifc, .ifdef, .ifnb, .ifndef, .if...
	2.9.21 .incld
	2.9.22 .list
	.LIST 1
	.LIST 0
	Table�2-7 List Options

	0
	0
	00
	1
	01
	1
	0
	00
	1
	02
	3,2
	00
	00
	10
	08
	11
	0C
	4
	0
	00
	1
	10
	5
	0
	00
	1
	20
	6
	0
	00
	1
	40

	2.9.23 .local
	2.9.24 .macro
	2.9.25 .mdel
	2.9.26 .mloc
	2.9.27 .opdef
	2.9.28 .opt
	2.9.29 .org
	2.9.30 .outall, .out1, .out2, .out
	2.9.31 .public
	2.9.32 .sect, .endsect
	NOTES: 1. A .SECT directive must appear at the sta...
	2. The assembler generates a general instruction a...

	2.9.33 .set
	2.9.34 .space
	2.9.35 .title
	2.9.36 .word, .dw
	2.10 ASSEMBLER CONTROLS
	Table�2-8 Summary of Assembler Controls


	2.10.1 Aserrorfile
	2.10.2 CHip
	2.10.3 Cnddirectives
	2.10.4 Cndlines
	2.10.5 Commentlines
	2.10.6 Complexrel
	2.10.7 Constants
	2.10.8 Crossref
	2.10.9 Datadirectives
	2.10.10 Define
	2.10.11 Echo
	2.10.12 Errorfile
	2.10.13 Formfeed
	2.10.14 Headings
	2.10.15 Ilines
	2.10.16 Include
	2.10.17 Listfile
	2.10.18 Localsymbols
	2.10.19 Masterlist
	2.10.20 Mcalls — Macro Calls
	2.10.21 Mcomments — Macro Comments
	2.10.22 Mdefinitions
	2.10.23 Memory
	2.10.24 Mexpansions
	2.10.25 Mlocal — Macro Local Symbols
	2.10.26 Mobject — Macro Object
	2.10.27 Model—Memory Size Model
	2.10.28 Numberlines
	2.10.29 Objectfile
	2.10.30 Pass
	2.10.31 Plength
	2.10.32 Pwidth
	2.10.33 Quick
	2.10.34 Remove
	2.10.35 Restore
	2.10.36 Save
	2.10.37 Signedcompare
	2.10.38 Sizesymbol
	2.10.39 Sym_debug
	2.10.40 Tablesymbols
	2.10.41 Tabs
	2.10.42 Undefine
	2.10.43 Uppercase
	2.10.44 Verify
	2.10.45 Warnings
	2.10.46 Xdirectory
	Chapter 3
	CROSS-LINKER (LNCOP)

	3.1 INTRODUCTION
	3.2 INVOCATION AND OPERATION

	3.2.1 Invocation
	3.2.2 Default Configuration File
	3.2.3 Linker Options
	3.2.4 Default Filenames and Extension
	3.2.5 Library File Search Order
	1. current directory
	2. directories specified by the /LIBDIRECTORY opti...
	3. default directories
	a. directory specified by environment variable LNC...
	b. directory specified by environment variable COP...
	c. directory \COP


	3.2.6 Help and Configuration File Search Order
	1. current directory
	2. default directories (as noted in Section 3.2.5)...

	3.2.7 Temporary File Directory
	3.2.8 Error Level Return
	3.3 MEMORY ALLOCATION AND LOAD MAP
	1. Each absolute or fixed section is placed in mem...
	2. Each ranged section is placed in memory within ...
	3. All remaining sections are allocated as follows...
	— Checksum of all ROM bytes
	— Number of ROM bytes used
	— Output filename
	— Memory model
	— Chip family name

	3.4 LINKER EXAMPLE
	3.5 LINKER ERRORS
	Table�3-1 Linker Errors (Sheet 5 of 5)

	3.6 COMMANDS
	Table�3-2 Summary of Linker Commands


	3.6.1 Briefmap — Set Map Format
	3.6.2 Crossref — Cross-Reference
	3.6.3 Debug — Debug Symbols
	3.6.4 Echo — Echo Command Files
	3.6.5 Extract, Extractsymbol — Extract Module from...
	3.6.6 File — Specify Linkfile
	3.6.7 Format — Specify Output Format
	3.6.8 Ignoreerrors — Force Object File
	3.6.9 Libdirectory — Specify Library Search Direct...
	3.6.10 Libfile — Specify Library File to Search
	3.6.11 Load — Load Object File
	3.6.12 Localsymbols — Assembly Local Symbols
	3.6.13 Mapfile — Specify Map File
	3.6.14 Outputfile — Specify Output Object File
	3.6.15 Pwidth — Specify Width of Map File
	3.6.16 Range — Specify Memory Ranges
	NOTES: 1. A new RANGE command overrides a previous...
	2. For MS-DOS, inside a command file (@file), a RA...

	3.6.17 Sect — Specify Section Address
	3.6.18 Sizesect — Specify Section Size
	3.6.19 Tablesymbols — Enable Symbol Table
	3.6.20 Warnings — Display Warning Messages
	3.6.21 Xdirectory — Exclude Standard Directories
	Chapter 4
	CROSS-LIBRARIAN (LIBCOP)

	4.1 INTRODUCTION
	4.2 INVOCATION AND OPERATION

	4.2.1 Invocation
	4.2.2 Object Files and Module Names
	4.2.3 Library Options
	4.2.4 Default Filenames and Extensions
	4.2.5 Help File Search Order
	1. current directory
	2. default directories
	a. directory specified by environment variable LIB...
	b. directory specified by environment variable COP...
	c. directory \COP


	4.2.6 Error Level Return
	4.3 LIBRARY ERRORS
	Table�4-1 Library Errors

	4.4 LIBRARY COMMANDS
	Table�4-2 Summary of Library Commands


	4.4.1 Add — Add Object Module
	4.4.2 Backup — Create Backup Library
	4.4.3 Delete — Delete Object Module
	4.4.4 Echo — Echo Command Files
	4.4.5 List — List Library
	4.4.6 Replace — Replace Object Module
	4.4.7 Update — Replace Object Module if Newer
	4.4.8 Warnings — Display Warning Messages
	Chapter 5
	COFF DISPLAY UTILITY (DUMPCOFF)

	5.1 INTRODUCTION
	5.2 OPERATION AND INVOCATION
	5.2.1 Options
	/b
	/e
	/h
	/l
	/s
	/t

	5.2.2 Error Level Return
	5.3 EXAMPLES
	5.3.1 DUMPCOFF Sample1
	1. Name of the file.
	2. The file header, which in this case shows only ...
	3. The COFF section information. These sections wh...

	5.3.2 DUMPCOFF /b /s /t /l main
	1. Name of the file.
	2. The file header, which in this case shows only ...
	3. The bank information. This part of the output s...
	4. The COFF sections are displayed again, except t...
	5. If there are any line numbers in the file, they...
	6. Finally, the symbol table is shown, listing the...

	5.3.3 DUMPCOFF /e /h main
	1. The file header now shows additional informatio...
	2. The optional header is shown next. This is also...
	3. On the first line of each bank entry, some inde...
	4. For the section display, there is some addition...
	5. For the symbol table entries, each entry is now...
	Chapter 6
	PROM UTILITY (PROMCOP)


	6.1 INTRODUCTION
	6.2 INVOCATION
	6.2.1 Options
	/Format=hex
	Output

	6.2.2 Error Level Return

	6.3 ERRORS
	Chapter 7
	HEXLM, LMHEX UTILITIES


	7.1 INTRODUCTION
	7.2 LMHEX
	7.3 HEXLM
	Appendix A
	ASCII CHARACTER SET IN HEXADECIMAL


	NUL
	00
	SP
	20
	@
	40
	`
	60
	SOH
	01
	!
	21
	A
	41
	a
	61
	STX
	02
	"
	22
	B
	42
	b
	62
	ETX
	03
	#
	23
	C
	43
	c
	63
	EOT
	04
	$
	24
	D
	44
	d
	64
	ENQ
	05
	%
	25
	E
	45
	e
	65
	ACK
	06
	&
	26
	F
	46
	f
	66
	BEL
	07
	'
	27
	G
	47
	g
	67
	BS
	_
	(
	28
	H
	48
	h
	68
	HT
	09
	)
	29
	I
	49
	i
	69
	LF
	0A
	*
	2A
	J
	4A
	j
	6A
	VT
	0B
	+
	2B
	K
	4B
	k
	6B
	FF
	0C
	,
	2C
	L
	4C
	l
	6C
	CR
	0D
	-
	2D
	M
	4D
	m
	6D
	SO
	0E
	.
	2E
	N
	4E
	n
	6E
	SI
	0F
	/
	2F
	O
	4F
	o
	6F
	DLE
	10
	0
	30
	P
	50
	p
	70
	DC1
	11
	1
	31
	Q
	51
	q
	71
	DC2
	12
	2
	32
	R
	52
	r
	72
	DC3
	13
	3
	33
	S
	53
	s
	73
	DC4
	14
	4
	34
	T
	54
	t
	74
	NAK
	15
	5
	35
	U
	55
	u
	75
	SYN
	16
	6
	36
	V
	56
	v
	76
	ETB
	17
	7
	37
	W
	57
	w
	77
	CAN
	18
	8
	38
	X
	58
	x
	78
	EM
	19
	9
	39
	Y
	59
	y
	79
	SUB
	1A
	:
	3A
	Z
	5A
	z
	7A
	ESC
	1B
	;
	3B
	[
	5B
	{
	7B
	FS
	1C
	<
	3C
	\
	5C
	|
	7C
	GS
	1D
	=
	3D
	]
	5D
	}
	7D
	RS
	1E
	>
	3E
	�
	5E
	~
	7E
	US
	1F
	?
	3F
	¨
	5F
	DEL,
	7F
	rubout
	Appendix B
	CHIP ARGUMENTS AND DEFAULT RANGES
	Table�B-1 Chip Arguments for Each Chip Family
	Table�B-2 Default Ranges for Each Chip Family



	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	0:F
	A
	B
	C
	D
	E
	F
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


