
CompactRISC

Object Tools

Reference Manual

Part Number: 424521772-005

August 1998

ΤΜ

ii

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGES

0.6 August 1995 First beta release.

0.7 January 1996 Minor changes and corrections.

1.0 August 1996 CR16A Product Version.
CR16A Beta Version.

1.1 February 1997 Minor modifications and corrections.

2.a September 1997 Alpha release for CR16B.

2.0 January 1998 Beta release.

2.1 August 1998 Product release.

iii

PREFACE

Welcome to the CompactRISC Object Tools. This manual is divided into two parts. Part
1 describes the CompactRISC Linker, used to create executable files. Part 2 describes a
number of utilities which help you organize and manipulate object files.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

CompactRISC is a trademark of National Semiconductor Corporation.
National Semiconductor is a registered trademark of National Semiconductor Corporation.

CompactRISC Object Tools Reference Manual CONTENTS-iv

CONTENTS

Chapter 1 OVERVIEW

1.1 INTRODUCTION ... 1-1

1.2 THE COMMON OBJECT FILE FORMAT.. 1-1

1.3 LINKER INPUT AND OUTPUT FILES .. 1-2

1.4 LINKER FUNCTIONS.. 1-4

Chapter 2 INVOKING THE LINKER

2.1 INTRODUCTION ... 2-1

2.2 INVOCATION LINE ... 2-1

2.2.1 Libraries .. 2-2

2.3 INVOCATION OPTIONS... 2-2

2.3.1 Specify Output Filename .. 2-2

2.3.2 Specify Directive File .. 2-3

2.3.3 Specify Standard Library Filename .. 2-3

2.3.4 Specify Library Directory .. 2-3

2.3.5 Request Memory Map .. 2-4

2.3.6 Specify Program Entry Point .. 2-4

2.3.7 Retain Relocation Information .. 2-4

2.3.8 Keep Relocation Information .. 2-5

2.3.9 Strip Symbolic Information ... 2-5

2.3.10 Strip Local Symbolic Information .. 2-5

2.3.11 Specify Undefined Symbol ... 2-6

2.3.12 Specify Fill Value for Section Gaps .. 2-6

2.3.13 Suppress Size Warning Message for Common Data 2-6

2.3.14 Suppress Error Message .. 2-6

2.3.15 Issue Warning for Defined Common Data .. 2-7

2.3.16 Output Linker Version Information .. 2-7

2.3.17 Specify Version Stamp ... 2-7

2.3.18 Enable Code Overlay Allocation ... 2-7

2.3.19 Dump Errors and Warnings Into a File ... 2-7

2.3.20 Enable Bank Switching Mechanism ... 2-8

Chapter 3 THE LINKER DIRECTIVE FILE

CompactRISC Object Tools Reference Manual CONTENTS-v

3.1 INTRODUCTION ... 3-1

3.2 STRUCTURE OF THE DIRECTIVE FILE ... 3-1

3.3 DIRECTIVE FILE EXPRESSIONS .. 3-2

3.3.1 Integer Syntax .. 3-3

3.3.2 Unary and Binary Operators ... 3-3

3.3.3 Assignment Operators .. 3-4

3.3.4 Special Functions ... 3-4

3.4 COMMENT.. 3-6

3.5 INPUT FILE SPECIFICATION... 3-6

3.6 MEMORY STATEMENT.. 3-6

3.7 SECTIONS STATEMENT ... 3-8

3.7.1 Input Section Specification ... 3-8

3.7.2 Allocating a Section to Memory .. 3-9

3.7.3 Aligning a Section ... 3-12

3.7.4 Setting the Section Type .. 3-13

3.7.5 Grouping Output Sections .. 3-13

3.8 ASSIGNMENT STATEMENT .. 3-14

3.8.1 Symbol Assignment Within SECTIONS Statement 3-16

3.8.2 Creating Gaps Within An Output Section ... 3-16

3.9 OUTPUT FILE OPTIONS.. 3-17

Chapter 4 LINKER FUNCTIONS

4.1 RESOLUTION OF SYMBOLIC REFERENCES .. 4-1

4.1.1 Library Processing .. 4-3

4.1.2 Symbol Definition in the Directive file ... 4-3

4.1.3 Linker Defined Symbols ... 4-3

4.2 ALLOCATION OF OUTPUT SECTIONS... 4-5

4.2.1 Creating Output Sections from Input Sections 4-5

4.2.2 Assigning an Address to an Output Section ... 4-6

4.2.3 Using the Linker Definition File to Overlay Input Sections 4-7

4.2.4 Data Initialization Support .. 4-7

4.2.5 Code Overlay Allocation ... 4-10

4.2.6 Bank Switching ... 4-12

4.2.7 Memory Map .. 4-15

4.3 RELOCATION OF MEMORY ADDRESS.. 4-18

4.3.1 Relocation Information ... 4-18

CompactRISC Object Tools Reference Manual CONTENTS-vi

4.3.2 The Relocation Process ... 4-19

Chapter 5 THE ARCHIVER

5.1 INTRODUCTION ... 5-1

5.2 CREATING ARCHIVE FILES .. 5-1

5.3 INVOCATION AND USAGE .. 5-1

Chapter 6 THE EPROM FILE GENERATOR

6.1 INTRODUCTION ... 6-1

6.2 GENERATING EPROM FILES.. 6-1

6.3 INVOCATION AND USAGE .. 6-2

6.4 THE INTEL FORMAT.. 6-5

6.4.1 00 - Data Record .. 6-5

6.4.2 01 - End Record ... 6-5

6.4.3 02 - Extended Segment Address Record ... 6-5

6.4.4 03 - Start Record .. 6-6

Chapter 7 THE OBJECT FILE VIEWER

7.1 INTRODUCTION ... 7-1

7.2 INVOCATION AND USAGE .. 7-1

Appendix A LINKER ERROR MESSAGES

Appendix B GLOSSARY

INDEX

CompactRISC Object Tools Reference Manual OVERVIEW 1-1

Chapter 1

OVERVIEW

1.1 INTRODUCTION

This guide describes the CompactRISC Object Tools, which include the
following:

crlink The CompactRISC Linker combines a number of object files, created by
the CompactRISC Assembler and Compiler, into one executable object
file which can be executed on a target board.

The linker combines object files by resolving symbolic references, allo-
cating output sections, and relocating memory addresses.

The linker is controlled by the invocation line and a directive file. You
can use the default directive file, supplied with the CompactRISC pack-
age, or your own directive file. The ability to write your own file is espe-
cially useful for embedded applications.

crlib The CompactRISC Archiver, crlib , maintains groups of object files in a
single archive.

crprom The CompactRISC crprom utility converts executable object files to a
format which can be used to burn EPROMs.

crview he CompactRISC crview utility displays, in a formatted manner, all the
information that exists in a CompactRISC object file.

1.2 THE COMMON OBJECT FILE FORMAT

Many software development tools, including the CompactRISC develop-
ment tools, use the Common Object File Format (COFF) as the standard
object file format.

Object files are made up of sections. A section is a contiguous block of
code, or data, having common attributes, and is the smallest unit of re-
location. A section can have any name.

Traditionally, both the compiler and the assembler created the following
default section names:

CompactRISC Object Tools Reference Manual OVERVIEW 1-2

• .text .
The .text section contains executable code.

• .data .
The .data section contains initialized data. This data is available at
run-time without any explicit assignment statement from the program.

• . bss .
The .bss section contains uninitialized data. Since this data is un-
initialized, the .bss section does not occupy space in the object file.
When program execution starts, the .bss values found in memory
are environmentally dependent. Most environments initialize the
.bss section to zeroes.

The assembler still creates these default names.

To optimize program space consumption, the compiler creates the fol-
lowing sections, instead of . bss and . data :

• .rdata_4 , .rdata_2 , .rdata_1 .
for ROM data of sizes 4, 2, and 1.

• .data_4 ,.data_2 , .data_1 .
for initialized data of sizes 4, 2, and 1.

• .bss_4 , . bss_2 , . bss_1.
for uninitialized data of sizes 4, 2, 1.

1.3 LINKER INPUT AND OUTPUT FILES

Input The linker input consists of simple object files produced by the assem-
bler or compiler, partially linked object files produced by a previous
linking operation, and library files. These input files are combined to
produce an output file. The linker directive file can also be considered
as linker input. Figure 1-1 shows the linker input, and output file options.

Simple object
file

The simple object file is the most common type of linker input. It is cre-
ated when the assembler or compiler translates source-language pro-
grams into COFF. Simple object files may contain unresolved external
references. A simple object file is specified either on the invocation line
(see Section 2.2) or in a directive file (see Section 3.5).

Partially linked
object file

The partially linked object file is produced by a previous linking opera-
tion. It contains unresolved external references, and is therefore not ex-
ecutable. Partially linked object files must be included as input in a
subsequent linking operation that produces an executable file.

The partially linked object file is used for many programming needs:

CompactRISC Object Tools Reference Manual OVERVIEW 1-3

• A complex linking task is made easier by creating small groups of
simple object files. Each group is then linked together to create a
partially linked object file. Finally the partially linked object files
can be linked to produce an executable object file.

• A large program can be modified without relinking the entire program.

• A set of routines can be produced for use in different application
programs.

Refer to Section 2.3.7 for an explanation of the Retain Option used to
create partially linked files.

Library file The library file is a collection of simple object files, each representing a
useful function. Several library files are supplied as part of the
CompactRISC software package. You can also create your own library
file using the CompactRISC archiver (see Chapter 5).

Library members that are referenced (by an external symbolic reference)
are selected by linker and included in the linking process. Library mem-
bers that are not referenced are not included in the linking process.

See Section 2.3.3 for the invocation line option to specify a library file.

Directive file The directive file controls certain actions of the linker (specifically mem-
ory allocation). You can exercise considerable control over the linking
operation by creating your own directive file. This feature is especially
useful for embedded applications.

Chapter 3 offers a detailed description of the directive file.

Figure 1-1. Linker Input and Output File Option

Output Output of the linker consists of executable object files and partially linked
object files. A memory map can also be considered as linker output.

Directive
File

Linker

exe

partial

object

Map

CompactRISC Object Tools Reference Manual OVERVIEW 1-4

“Output section” is defined as a section of a linker output object file.

Executable ob-
ject file

The executable object file is the final output of the linker. In an execut-
able object file all external symbolic references have been resolved. The
executable object file is therefore in a form that can be executed on the
CompactRISC-based target system.

Memory map The memory map illustrates the allocation of memory after the linking
process. It also illustrates the composition of the output sections from in-
put sections. Section 4.2.6 provides a complete explanation of the mem-
ory map.

1.4 LINKER FUNCTIONS

The linker performs three basic functions: resolution of symbolic refer-
ences, allocation of output sections, and relocation of memory addresses.

Resolution of
symbolic refer-
ences

A symbol is used either to mark a program location, or to represent a
data element. Object files contain a symbol table which holds informa-
tion about symbols defined or referenced in the source program.

An external symbol is a symbol that can be referenced from any object file.

The linker resolves references to external symbols. The resolution of
symbolic references is the process by which the linker matches an ex-
ternal symbolic reference with its definition (see Chapter 4).

A symbol can also be defined in a directive file. Section 3.8 explains the
use of the assignment statement for this purpose.

Allocation of
output sections

The linker determines which part of memory is available for the alloca-
tion of output sections. The linker then assembles output sections from
input sections and binds each output section to a starting memory address.

The directive file allows you to specify memory configuration. The direc-
tive file informs the linker which parts of memory are available for allo-
cation (see Section 3.6), how to construct output sections from input
sections, and how to allocate memory for these output sections (see
Section 3.7). Control over the allocation of memory allows you to create
a memory layout for various hardware requirements.

See Chapter 5 for a complete description of allocating output sections.

Relocation of
memory ad-
dresses

Once external symbolic references have been resolved, and output sec-
tions allocated to memory, the linker assigns each symbolic reference
its actual memory address.

Chapter 6 explains the relocation of memory address.

CompactRISC Object Tools Reference Manual INVOKING THE LINKER 2-1

Chapter 2

INVOKING THE LINKER

2.1 INTRODUCTION

This chapter explains the CompactRISC Linker invocation line. The link-
er is directly invoked by specifying the appropriate invocation name fol-
lowed by invocation line arguments. These arguments specify a list of
object and library files to link and linker options.

The linker is often invoked by the C compiler. A compiler driver invokes
the linker with a predetermined set of linker options. If these options
are not suitable for your needs, you can either force the compiler driver
to pass specific options to the linker, (see Section 2.3.3 in the Compact-
RISC Toolset - C Compiler Reference Manual) or terminate the compila-
tion process after object file creation and invoke the linker directly.

2.2 INVOCATION LINE

crlink [{ option | filename | @argfile}]...

crlink is the linker name.

filename is any valid object or library file. Object and library filena-
mes must be separated by a space. filename must in-
clude a complete or relative pathname if the specified
object or library file is not in your current directory.

option is any valid linker invocation line option. Each option is pre-
ceded by a dash (-). Options must be separated by a space.

@argfile a file containing arguments for the linker invocation line.
The linker replaces @argfile with these arguments, and
handles them as if written in the invocation line.

filename and option can be placed in any order within the invocation
syntax. However, object files which contain symbolic references to a li-
brary must precede that library filename on the invocation line. Librar-
ies specified explicitly or through the -l invocation line option are
processed as they are encountered.

The linker invocation syntax is case-sensitive.

Invoking the linker without options, or filenames, prints the usage line
and version number of the currently used linker.

CompactRISC Object Tools Reference Manual INVOKING THE LINKER 2-2

2.2.1 Libraries

Libraries can be specified through the -l invocation-line option (Section
2.3.3). The linker searches for these libraries by directory, according to
a default directory list. The default library location is crdir /lib (where
crdir is the top-level directory of the installed CompactRISC tools). For
the CR16B large programming model, the default library location is
crdir /libl .

The LIBPATH environment variable can be set to override the default di-
rectory search.

set LIBPATH= directory-search-list

directory-search-list
is a list of library directories separated by colons.

At link-time, the linker searches the listed directories for the libraries
specified with the -l invocation line option.

2.3 INVOCATION OPTIONS

This section describes the linker invocation options that control linking
operations such as specifying a directive file, requesting an output
memory map, naming the output file, and suppressing error and warn-
ing messages.

Table 2-1 provides an abbreviated syntax guide to the invocation options.

2.3.1 Specify Output Filename

Use this invocation option to specify a name for the output file that is
produced by the linker. This option overrides the default output filena-
me.

-o filename

filename is any valid filename.

The default output filename is cr.x

CompactRISC Object Tools Reference Manual INVOKING THE LINKER 2-3

2.3.2 Specify Directive File

Use the Specify Directive File invocation option to designate a directive
file to be used by the linker in creating the executable object file. This in-
vocation option overrides the default directive file used by the linker.

-d filename

filename is any valid directive file. filename must include a com-
plete pathname if the directive file is not in your current
directory.

LINKERFILE When a directive file is not specified in the invocation line, the linker
uses the directive file specified by LINKERFILE .

If the LINKERFILE parameter is missing, the linker uses the default di-
rective file linker.def , located in the CompactRISC root directory.

If linker.def does not exist, the linker issues a warning message and
then follows a predefined trivial link process. You should not depend on
the trivial link process to produce meaningful results.

See Chapter 3 for a full explanation of the linker directive file.

2.3.3 Specify Standard Library Filename

The Specify Library Filename invocation option can be used to specify
standard libraries to be used by the linker. This option is useful for
specifying system libraries.

-lx

x is a sequence, of up to nine characters, that defines a sys-
tem library name in the filename libx.a .

On the invocation line the -lx option must follow the list of object files
with external references that are resolved in the specified library. The
linker first searches for this library in the directories specified with the
-L invocation line option (Section 2.3.4) and then in the default library
locations (Section 2.2.1.)

2.3.4 Specify Library Directory

Use this option to define the directory in which the linker first searches
for a library specified with the -l invocation option (Section 2.3.3).

- Ldir

dir is any valid directory pathname containing user libraries.

CompactRISC Object Tools Reference Manual INVOKING THE LINKER 2-4

The -L option must precede any -l option. The linker searches for li-
braries specified through the -l invocation line option first in dir and
then in the default library locations (Section 2.2.1).

2.3.5 Request Memory Map

Request Memory Map invocation option generates a memory map of the
executable object file. The format and contents of the memory map are
detailed in Section 4.2.6.

-m

The memory map is sent to standard output. You must redirect stan-
dard output to save the memory map to a file.

2.3.6 Specify Program Entry Point

Use this option to indicate to the linker the entry point of your program.
The operating system, or the debugger, uses this entry point as the
starting point for program execution. Entry point information is part of
the COFF file and does not necessarily represent the actual beginning of
the .text section.

By default, the linker looks for the external symbol start as indicating
the entry point. If start is not found, the linker issues an error mes-
sage.

-e symbol

symbol is an external symbol that marks the program entry point.

2.3.7 Retain Relocation Information

The Retain Relocation Information option must be used if the product of
the linking operation is to be a partially linked file (i.e., not all symbolic
references have been resolved) that may be used as input in a subse-
quent link.

-r

Use of the Retain Relocation Information option ensures that the linker
retains relocation information and does not issue a linking error for un-
resolved external references.

CompactRISC Object Tools Reference Manual INVOKING THE LINKER 2-5

2.3.8 Keep Relocation Information

This option allows you to instruct the linker to keep relocation informa-
tion in your executable object file.

-k

Relocation information is used to calculate the actual address of a data
or routine reference. Normally, executable object files do not have relo-
catable information since final addresses have been calculated by the
linker. However, the Keep Relocation Information option instructs the
linker to keep relocation information in your executable object file. This
may be useful on systems that implement dynamic (load-time) address
relocations.

2.3.9 Strip Symbolic Information

This option instructs the linker to remove the symbol table and line
number information from the executable file the linker produces, there-
by reducing the size of the executable file.

-s

Since symbolic information is used for debugging and for relocation of
memory addresses, do not specify the strip symbolic information option
if the output file is either to be used in debugging or is a partially linked
object file.

2.3.10 Strip Local Symbolic Information

The Strip Local Symbolic Information invocation option removes only lo-
cal symbolic information from the linker output file. This option is use-
ful for reducing the size of linker output files.

-x

Since local symbolic information is used for debugging, do not specify
the strip local symbolic information option if the output file is to be
used in debugging. However, the output file can be a partially linked ob-
ject file.

CompactRISC Object Tools Reference Manual INVOKING THE LINKER 2-6

2.3.11 Specify Undefined Symbol

The Specify Undefined Symbol invocation option allows you to create a
“pseudo” external reference to a symbol. This may be used to force the
linker to select a library member for the linking process. Unless this op-
tion is specified, the linker links library members only if they resolve an
external symbolic reference from a previously specified object file.

-u symbolname

symbolname is any valid symbol name.

2.3.12 Specify Fill Value for Section Gaps

This invocation option is used to specify a fill value other than zero for
section gaps. By default, the linker fills any gaps created in output sec-
tions with a zero value.

-f int

int is an 2-byte unsigned integer constant.

2.3.13 Suppress Size Warning Message for Common Data

Use this invocation option to suppress the issuance of warning messag-
es by the linker when various references to common data are of differ-
ent memory address sizes.

-t

Common data are consolidated by the linker and allocated to a linker
created .bss section. Normally, every reference to common data is of
the same size. However, if the references are of different sizes, the linker
issues a warning message for each reference that is contrary to the first
found common data size. In this case the linker uses the largest size.

2.3.14 Suppress Error Message

This option instructs the linker to suppress all nonfatal error messages
that describe problems encountered during the linking operation.

-S

Only fatal errors cause the linking operation to abort immediately. Error
messages describing fatal errors are issued by the linker.

CompactRISC Object Tools Reference Manual INVOKING THE LINKER 2-7

2.3.15 Issue Warning for Defined Common Data

This option causes the linker to issue a warning whenever a common
variable is defined later on in a program.

-M

2.3.16 Output Linker Version Information

This option produces information regarding the version and revision
numbers of the linker in use.

-V

Version and revision number information is useful to determine whether
changes and updates in the linker package apply to the linker you are
using.

2.3.17 Specify Version Stamp

This option specifies a version stamp for identifying linker output files.

-VS int

A version stamp is a 16-bit integer constant. It is stored in a special
field in the optional header of linker output files.

2.3.18 Enable Code Overlay Allocation

This option enables binding a number of text output sections to the
same memory address, i.e., to allocate an overlay code.

-O

This option should be accompanied by appropriate instructions in the
linker definition file, See Section 4.2.5 for further details.

2.3.19 Dump Errors and Warnings Into a File

Dumps both errors and warnings into an error file.

-z

CompactRISC Object Tools Reference Manual INVOKING THE LINKER 2-8

The error file name is filename . err where filename is the base name
of the executable file. For example:

crlink -z test.o -o test.x

generates the error file test.err .

crlink -z test.o

generates the error file cr.err .

-zn filename

The error file name is filename . For example:

crlink -zntest new_test.o

generates the error file test .

Note, there must be no space between zn and filename .

2.3.20 Enable Bank Switching Mechanism

This option enables the Bank Switching mechanism. This mechanism is
needed for CR16A applications with code size larger than 128 Kbytes.
(For a full explanation see Section 4.2.6.)

-BS

This option should be accompanied by appropriate instructions in the
linker definition file. See Section 4.2.6 for further details.

Notes The Bank Switching mechanism requires additional chip-specific
hardware. It is currently supported for CR16A-based chips only.

The CompactRISC debugger does not support Bank Switching.

Table 2-1. Environment Invocation Options

Option Explanation Section

-k Keep relocation information in executable file 2.3.8

-V Output linker version information 2.3.16

-r Retain relocation information 2.3.7

-m Request an output memory map 2.3.5

-d filename Specify a directive file 2.3.2

-Ldir Specify a directory to search for libraries 2.3.4

CompactRISC Object Tools Reference Manual INVOKING THE LINKER 2-9

-f int Specify a fill value 2.3.12

-lx Specify a library file for linking 2.3.3

-e symbol Specify a program entry point 2.3.6

-u symbol Specify an undefined symbol 2.3.11

-o filename Specify an output filename 2.3.1

-VS int Specify a version stamp 2.3.17

-x Strip local symbolic information 2.3.10

-s Strip symbolic information 2.3.9

-S Suppress error messages 2.3.14

-M Issue warning for defined common data 2.3.15

-t Suppress size warning for common data 2.3.13

-O Enable code overlay allocation 2.3.18

-z [nfilename] Dump errors and warnings into a file 2.3.19

-BS
Enable bank switcing mechanism (for CR16A-
based chips, requires additional hardware)

2.3.20

Option Explanation Section

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-1

Chapter 3

THE LINKER DIRECTIVE FILE

3.1 INTRODUCTION

The linker directive file controls the linker functions. It mainly dictates
memory configuration, output section content, and allocation of output
sections.

A default linker directive file, linker.def , is supplied with the
CompactRISC software package. It contains predefined directive defini-
tions. This file resides in the CompactRISC top-level directory and in-
cludes the configuration to produce an executable object file for a
CompactRISC development board.

You can exercise considerable control over the linking operation by cre-
ating a directive file that contains directive definitions tailored to your
unique needs. This directive file is especially useful for embedded appli-
cations. The linker is instructed to use a user-written directive file
through the Specify Directive file invocation option (see Section 2.3.2).

This chapter provides an overview of the directive file. Section 3.2 ex-
plains the structure. Section 3.3 briefly describes the expressions used
in the directive file. The remainder of the chapter defines the various
parts of the directive file, providing a detailed description of use, syntax
and examples.

3.2 STRUCTURE OF THE DIRECTIVE FILE

A directive file is made up of the following parts:

• Comments. A comment may be used for documentation purposes.

• Input file specifications. An alternative to specifying input files on
the invocation line.

• MEMORY statements. A MEMORY statement is used to define which
parts of the memory are available for allocation of output sections.

• SECTIONS statements. A SECTIONS statement is used to control the
construction of output sections from input sections and the alloca-
tion of output sections to memory addresses.

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-2

• Assignment statements. An assignment statement both defines a
symbol and assigns the symbol an absolute address.

• Output file options. Controls certain output file characteristics.

The following is an example of a Directive File:

Example /* Input file specification */

a.o
b.o
c.o
/* Memory configuration */

MEMORY {
mem1 : origin=0x10000, length=0x8000
mem2 : origin=0x20000, length=0x8000

}

/* Output section construction and allocation */

SECTIONS {
.text BIND(0x10000) : { *(.text) }
.data INTO(mem2) : { *(.data)

*(.data_2) }
.bss INTO(mem2) ALIGN(64) : { *(.bss) *(.bss_1) }

}

/*Special symbol assignment */

end_bss = ADDR(.bss) + SIZEOF(.bss) ; /* End of .bss section */

3.3 DIRECTIVE FILE EXPRESSIONS

Directive file expressions are used as arguments for certain options and
as right-hand-side of assignment statements. Expressions consist of in-
teger constants, operators, special functions, and parentheses. The val-
ue of a directive file expression is always a 4-byte unsigned integer. The
value generally represents a memory address.

Examples 0x1000

0x1000 is an integer constant having the value of 1000 in hexadecimal.

ADDR(.text)+SIZEOF(.text)

This is the sum of the start address of the .text output section and its
size. The result is the address following the end of the .text section.

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-3

Expressions are used in two places in the directive file:

• As arguments to the BIND, ROMBIND and ALIGN options and to the
NEXT function.

• As the right-hand side of an assignment statement.

3.3.1 Integer Syntax

The linker accepts three radices for unsigned integer input: decimal (the
default), hexadecimal, and octal. Integer input in the directive file syn-
tax is denoted by the word int . Unless otherwise noted, int represents
a 4-byte unsigned integer.

Decimal A decimal value begins with a digit in the range of 1 through 9 followed
by optional digits in the range of 0 through 9.

Octal An octal value begins with 0 followed by digits in the range of 0 through 7.

Hexadecimal A hexadecimal value begins with either 0x or 0X, followed by digits in
the range of 0 through 9 and/or letters in the range of A through F (ei-
ther upper- or lower-case).

The linker supports the following unary operators:

A unary operator has a higher precedence than a binary operator in ex-
pression evaluation.

3.3.2 Unary and Binary Operators

The linker supports the following unary and binary operators (listed in
order of precedence):

Precedence Operator

1 ! Logical negation

1 ~ One’s complement

1 - Two’s complement

Precedence Operator

UNARY

1 ! Logical negation

1 ~ One’s complement

1 - Two’s complement

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-4

3.3.3 Assignment Operators

The value of an expression may be assigned to a symbol in one of five
ways:

symbol = expr ; (assign the value of expr to symbol)

symbol += expr ; (equivalent to: symbol = symbol + expr)

symbol -= expr ; (equivalent to: symbol = symbol - expr)

symbol *= expr ; (equivalent to: symbol = symbol * expr)

symbol /= expr ; (equivalent to: symbol = symbol / expr)

The assignment syntax always requires a semicolon after the expression.

3.3.4 Special Functions

Five special functions provide useful information about output sections
and memory addresses. These functions and the information they re-
turn are listed in Table 3-1.

BINARY

2
* (multiplication)
/ (division)
% (modulus)

3
+ (addition)
- (subtraction)

4
>>(right shift)
<<(left shift)

5

> (greater than)
< (less than)
>=(greater than or equal)
<=(less than or equal)

6
==(equal)
!= (not equal)

7
& bitwise AND
| bitwise OR

8
&&logical AND
|| logical OR

Precedence Operator

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-5

Output function
size

The size of the output function returns the number of bytes in the spec-
ified output section. The syntax for the SIZEOF function is:

SIZEOF (section_name)

The SIZEOF function can return a valid value only for a section which
has already been created, otherwise it returns a zero.

If more than one section exists with the same name, the information re-
turned will be relevant only for the first section recognized.

Output function
size

The memory address function returns the starting address of the spec-
ified output section. The syntax for the memory address function is:

ADDR (section_name)

The ADDR function can return a valid value only for a section which has
already been allocated memory space, otherwise it returns zero.

If more than one section exists with the specified section name, the in-
formation returned will be relevant only for the first section recognized.

File address The file address function returns the file address of a section’s raw data
in the output file. The syntax for the file address function is:

FILEADDR (section_name)

The FILEADDR function can return a valid value only for a section which
has already been allocated file space in the output file, otherwise it re-
turns zero.

If more than one section exists with the specified section name, the in-
formation returned will be relevant only for the first section recognized.

Next address The next address function returns the next available memory address
(i.e., after the most recently allocated output section), which is a multi-
ple of a specified value. The syntax for the next function is:

Table 3-1. Special Functions

Function Returned Value

SIZEOF Size of a specified output section

ADDR Memory address of a specified output section

FILEADDR File address of a specified output section

NEXT Next memory address aligned to a specified value

HIGHMEMADDR Next address after highest allocated memory address

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-6

NEXT (int)

int must be greater than zero.

Highest memo-
ry address

The highest memory address function returns the next available memo-
ry address after the highest address that has been allocated in memory.
The syntax for the highest memory address is:

HIGHMEMADDR

3.4 COMMENT

A comment can be placed anywhere in the directive file. Comments be-
gin with a slash and asterisk (/*) followed by one or more lines of text.
The comment is terminated with an asterisk and slash (*/). Comments
cannot be nested.

3.5 INPUT FILE SPECIFICATION

As an alternative to specifying input files on the linker invocation line,
you can specify input files in a linker directive file. An input file is any
object or library file to be linked.

Input filenames may appear anywhere in the directive file, except within
a MEMORY or SECTIONS statement. The placement is significant because
the linker processes input files as they are encountered in the directive
file. It is recommended that you place input filenames before the SEC-
TIONS directive so that the SECTIONS directive is applicable to all input
files.

filename is any valid input filename. It may include a full or partial
pathname. A filename containing special characters
should be enclosed in double-quotes (" ") to avoid conflict
with definitions of special characters in the directive file.

3.6 MEMORY STATEMENT

Use the MEMORY statement to specify the configured and unconfigured
(i.e., non-available) areas of memory. If a MEMORY statement is not spec-
ified, the linker assumes the maximum amount of configured memory
address space available to the CompactRISC family member (e.g., in
CR16B small, 0x0 through 0x1ffff).

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-7

If one or more MEMORY statements are specified, the linker treats all
memory areas not within these statements as unconfigured. Unconfig-
ured memory is not used in the linker allocation process. Therefore,
output sections can not be allocated within unconfigured memory.

MEMORY {
mem_name[(attributes)] : ORIGIN = int , LENGTH = int

...
}

mem_name is any symbolic name to be associated with the specified
configured memory area.

int is a valid integer constant (in decimal, hexadecimal, or oc-
tal format).

attributes are a sequence of one or more of the following attribute
letters:

I - The named memory area is initializable.

R - The named memory area is readable.

W - The named memory area is writable.

X - The named memory area is executable.

Attribute letters can only be used to direct a section to a
memory area with specified attributes (see Section 3.7.2).
Attribute letters have no other meaning.

A configured memory area is a contiguous block of memo-
ry. It starts at the address specified by the value given to
ORIGIN and contains the number of bytes specified as the
value of LENGTH. ORIGIN may be abbreviated to ORG, and
LENGTH may be abbreviated to LEN.

Any number of configured memory areas may be declared
within one MEMORY statement. However, if more than one
memory area is declared, no overlap should exist among
the specified areas. A memory area overlap causes the link-
er to issue an error message and terminate the linking pro-
cess.

Each memory area can be referenced from the SECTIONS
statement either by name or by attribute.

Example MEMORY {
ROM (R) origin = 0x1000 length = 0x40000
RAM (RW) origin = 0x8000 length = 0x100000

}

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-8

3.7 SECTIONS STATEMENT

Use the SECTIONS statement to specify how output sections are con-
structed from input sections, and to allocate memory for output sections.

SECTIONS {
output_section_name [options] : {input_section_spec ...

}
...

}

output_section_name
is the name of the output section to be created.
output_section_name can be any name of up to eight
characters.

options are a list of allocation options (Section 3.7.2) or section
type options (Section 3.7.4).

input_section_spec
is a specification of an input section. This input section is
combined with the other specified input sections to pro-
duce an output section.

Example SECTIONS {
.text BIND(0x8000):{ file1.o(.text) file2.o(.text) }
.data ALIGN(16):{ file1.o(.data) file2.o(.data) }

}

The use of the SECTIONS statement is described below.

3.7.1 Input Section Specification

Input sections are specified in the SECTIONS statement as follows:

1. Specify all sections of the input file

filename is any valid input filename. The filename can include a
full or partial pathname. A filename containing special
characters may be enclosed in double quotes (" ") to avoid
conflict with the directive syntax. If filename is a library,
this specification applies to all library members which
have been selected for the linking process.

Example 1 .xxx : { abc.o }

Output section .xxx consists of all input sections of file abc.o.

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-9

2. Specify only certain sections of the input file.

filename (section_name ...)

Example 2 .text : { file.o(.text .data) }

Output section .text consists of sections .text and .data from
file.o.

3. Specify only certain sections from all input files indicated on the in-
vocation line or in the directive file before the SECTIONS statement.

*(section_name ...)

Example 3 .text : { *(.rdata_4) *(.text) }

Output section .text consists of sections .text and .rdata_4 sections
from all input files.

4. Specify the initialization table created by the linker. The initializa-
tion table resides in a linker-created .init section (see Section
4.2.4 for an explanation of data initialization).

*[INIT]

Example 4 .text : { *(.text) *[INIT] }

Output section .text consists of both the .text sections from all input
files and the linker-created .init section (which contains an initializa-
tion table).

3.7.2 Allocating a Section to Memory

Output sections can be allocated to memory by using allocation options
in the following ways:

1. Bind a section to a particular memory address by using the BIND
option. This instructs the linker to assign a configured memory ad-
dress to the specified output section.

BIND(expression)

expression is any valid linker expression. The expression value is a
memory address to which the output is bound.

Example 1 .text BIND(0x1000) : { *(.text) }

The .text output section is allocated at address 0x1000.

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-10

2. Direct a section to a memory area by name using the INTO option.
This instructs the linker to assign a memory address within the
memory area to the specified output section. The output section
must fit in the memory area.

INTO(mem_name)

mem_name is a name that has been associated with a configured
memory area through use of the MEMORY directive (see
Section 3.6).

Example 2 MEMORY {

ROM : origin=0x1000 length=0x2000
RAM : origin=0x5000 length=0x8000

}

SECTIONS {
.text INTO(ROM) : { *(.text) }
.data INTO(RAM) : { *(.data) *(.data_4) *(.data_2)

*(.data_1) }
...

}

The .text output section is allocated within the ROM memory area as
defined with the MEMORY statement. The .data output section is allocat-
ed within the RAM memory area.

3. Direct a section to two memory areas while splitting the section, if
necessary. This instructs the linker to allocate space in one, or two,
of the specified memory areas for the specified output section, and
to split the output section between them, if necessary.

INTO(mem_name_1, mem_name_2)

mem_name_1 and mem_name_2
are names that have been associated with a configured
memory area through use of the MEMORY directive (see
Section 3.6).

 Example 3 MEMORY {

ROM1 : ORIGIN = 0 LENGTH = 0XD800
ROM2 : ORIGIN = 0X10000 LENGTH = 0X10000

}

SECTIONS {

.text INTO(ROM1, ROM2) : { *(.text) }
}

This is useful, for example, in a system with two non-consecutive ROM
segments, if you do not want to split the code between them manually.
Here the linker automatically splits the output section.

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-11

Note: if the linker splits an output section, it attempts to implement a
best-fit approach to achieve optimal memory allocation. This
may change the order of the input sections inside the output
section.

4. Direct a section to memory by attributes by using the INTO option.
The INTO option instructs the linker to assign a memory address,
within any memory area having the listed attributes, to the specified
output section.

INTO((attributes))

attributes is a sequence of attribute letters (I, R, W, X, meaning re-
spectively init, read, write and execute).

Example 4 MEMORY {
ROM1(R) : origin=0x1000 length=0x2000
ROM2(R) : origin=0x5000 length=0x2000
RAM1(RW) : origin=0x8000 length=0x1000
RAM2(RW) : origin=0xa000 length=0x1000

}

SECTIONS {
.text INTO((R)) : { *(.text) }
.data INTO((RW)) : { *(.data)*(.data_2) *(.data_1)}
...

}

The .text output section is allocated within a memory area that has
only read attributes (ROM1 or ROM2). The .data output section is al-
located within a memory area that has read and write attributes (RAM1
or RAM2).

5. Bind or direct a ROM copy of a section to memory by using the ROM-
BIND and ROMINTO options. These options are equivalent to the BIND
and INTO options, respectively. Use of the ROMBIND or ROMINTO op-
tion instructs the linker to allocate memory for a ROM copy of the
specified output section. The output section therefore has two ad-
dresses: a ROM address and a RAM address. This can be used for
data initialization (see Section 4.2.4 for details).

ROMBIND (expression)
ROMINTO (mem_name)
ROMINTO((attributes))

expression is any valid linker expression.

mem_name is a name that has been associated with a configured
memory area through use of the MEMORY directive.

attributes is a sequence of attribute letters (I, R, W, X, meaning re-
spectively init, read, write and execute).

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-12

Example 5 .data BIND(0x1000) ROMBIND(0x8000) : { *(.data) }

The .data output section is allocated at address 0x1000. A copy of the
.data section is allocated at address 0x8000. This copy is used only for
initialization purposes. At run-time the .data section is copied by an
initialization routine from address 0x8000 (ROM address) to its actual
(RAM) address 0x1000.

Example 6 MEMORY {
ROM : origin=0x1000 length=0x2000
RAM : origin=0x3000 length=0x3000

}

SECTIONS {
.text INTO(ROM) : { *(.text) }
.data INTO(RAM) ROMINTO(ROM) :

{ *(.data) *(.data_4) *(.data_2) *(.data_1)
 ...

}

The .text output section is allocated within the ROM memory area as
defined by the MEMORY statement. The .data output section is allocated
within the RAM memory area, and a copy of the .data section is allo-
cated within the ROM memory area. This copy is used only for initial-
ization purposes.

3.7.3 Aligning a Section

Aligning an output section to an alignment value ensures that the out-
put section is assigned a memory address that is a multiple of the val-
ue. The ALIGN option is used for this purpose.

ALIGN(expression)

expression is any valid linker expression (Appendix A).

Note The ALIGN option is ignored when it appears in conjunction with the
BIND or ROMBIND allocation options, because the allocation options are
specified with a particular address.

Example .text ALIGN(16) : { *(.text) }

The .text output section is allocated anywhere within available config-
ured memory but its address must be a multiple of 16.

Example .text INTO(RAM) ALIGN(16) : { *(.text) }

The .text output section is allocated within the memory area RAM and
its address is a multiple of 16.

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-13

3.7.4 Setting the Section Type

The COFF section headers contain information that indicate how the
sections are to be handled by the debugger and linker, and what cate-
gory of data is contained within the section. By default the linker deter-
mines the type of an output section based on the input sections
comprising it. You may control the section type using the following op-
tions:

• type_contents_option

Type options that specify the contents of output sections are:

– TYP_TEXT section contains executable text.

– TYP_DATA section contains initialized data.

– TYP_BSS section contains only uninitialized data.

Example .xxx (TYP_TEXT) BIND(0x2000) : {a.o(.yyy)}

The .xxx output section contains executable text from section .yyy of
the file a.o .

• type_control_option

The only type control option that is currently supported is:

– NOLOAD this option specifies that the output section is not loaded.

Example .data (NOLOAD) BIND(0x1000) : {*(.data_2)}

3.7.5 Grouping Output Sections

Several output sections may be grouped to create a contiguous block of
memory by using the GROUP option. This allows you to allocate consec-
utive sections without having to specify an allocation option for each
section. Although the output sections are grouped together in memory,
they remain separate.

GROUP [group_options] : {

output_section_spec [type_option] : {input_section_spec ...} }

group_options
are the allocation options BIND, ROMBIND, INTO and ROM-
INTO, and the option ALIGN.

output_section_spec
is a specification of the output section to be created.

type_option is any section type option (see Section 3.7.4 for the list of
these options).

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-14

input_section_spec
is a specification of an input section.

Example .text BIND(0x8000) : { *(.text) }
GROUP BIND(0xa000) : {

.data : { *(.data) *(.data_4) *(.data_2) *(.data_1)}

.bss : { *(.bss) *(.bss_4) *(.bss_2) *(.bss_1) }
}

The .data and .bss output sections are grouped to a contiguous block
of memory starting at address 0xa000.

Note Output sections that are specified within a GROUP option may be qualified
only by section options, since all other options are specified in GROUP level.

3.8 ASSIGNMENT STATEMENT

Symbols can be defined and assigned a memory address at link-time
through use of the assignment statement. This is useful for two rea-
sons:

• To use link-time computed information at run-time. You can assign
a symbol an expression that is calculated by the linker, and then
use it in your program.

• To bind a symbol to an address in a flexible way. If you define a
symbol in a directive file and later want to change its address, you
simply change the assignment in the directive file and re-link.
Therefore there is no need to recompile your program.

symbol = expression ;

symbol is any valid symbol name.

expression is any valid linker expression.

The syntax supports other assignment operators in addition to ‘‘=’’, e.g.,
"+=" operator. (For a complete list of assignment operators see Appendix A.)

Example abc = 0x1000 ;

A symbol named abc is defined, with address 0x1000.

Example sdata = ADDR(.data)

A symbol named sdata is defined, and its address is the start address
of the .data output section.

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-15

Example C program:

extern int foo;
mem()
{

 int x;
 x=&foo;

}

linker definition file:

MEMORY{
data_mem: origin = 2 length = 0xd7fe
code_mem: origin = 1,1000 length = 0x10000

}

SECTIONS{
.text ALIGN(4) INTO(code_mem):{*(.text)}
.rdata ALIGN(4) INTO(data_mem):{

*(.rdata_4) *(dspm)*(.rdata_2) *(.rdata_1)}
.data ALIGN(4) INTO(data_mem):

*(.data_4) *(.data) *(.data_2) *(.data_1)
*(.static)}

.bss ALIGN(4) INTO(data_mem) {*(.bss) *(.bss_4)

(.bss_2)(.bss_1)}
}
_foo = 0x51;

The symbol foo is resolved by the linker.def symbol _foo. x takes
the value 0x51. x can be changed by relinking, after changing the value
of _foo in the linker.def file. It is not necessary to recompile.

Since the assignment of symbols to a memory address is made at the
end of the linker allocation phase, the linker does not recognize ad-
dresses assigned previously. The assignment statement may thus be
placed anywhere within the directive file.

Notes 1. The linker does not check that the memory address assigned to a
symbol is within configured memory.

2. A symbol that was defined in the linker directives file with an as-
signment statement, does not have any specific type (e.g., integer). It
can be referred to from C programs as an external variable of any
type. However, the debugger does not recognize the type used in the
C program, since the symbol was defined in the linker directives file,
and is not associated with any particular type.

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-16

3.8.1 Symbol Assignment Within SECTIONS Statement

A symbol assignment may also be used within a SECTIONS statement.
Such an assignment can use the symbol "." to denote the current loca-
tion in memory. This assignment should appear as part of the input
section specification list.

Example .text : { *(.text) xxx = . ; }

A symbol named xxx is defined and assigned the end address of the
.text output section (the end address is the value of the current location
of the assignment).

Note This symbol assignment can also be specified outside the SECTIONS
statement:

xxx = ADDR(.text) + SIZEOF(.text) ;

3.8.2 Creating Gaps Within An Output Section

The current location symbol itself may be assigned a value. This can be
used to create a gap within an output section. The linker normally com-
bines input sections in a contiguous fashion when creating an output
section. However, by incrementing the value of the current location you
can create a gap of unallocated space.

. += expression

expression is any valid linker expression.(See Section 3.3)

Example .text : { a.o(.text) . += 0x1000 ; b.o(.text) }

The .text output section consists of the .text section of file a.o , a gap
of 0x1000 (created by the current location assignment), and the .text
section of file b.o.

By default, the linker fills the gaps created within an output section
with zeros, or with a value specified with the Specify Fill Value invoca-
tion option (see Section 2.3.12). However, you can specify a fill value for
a specific output section. This overrides any other specified fill value.

output_section_name [options] : {input_section_spec ... } =
xfill_value

fill_value is a two-byte integer constant.

Example .text : { a.o(.text) . += 0x1000 ; b.o(.text) } = 0xffff

Each word in the gap created inside the .text output section contains
the value 0xffff (i.e., the gap is filled with 1’s).

CompactRISC Object Tools Reference Manual THE LINKER DIRECTIVE FILE 3-17

3.9 OUTPUT FILE OPTIONS

Three characteristics of the output file can be changed with output file
options: the default filename, the default execution permission set, and
the header magic number.

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-1

Chapter 4

LINKER FUNCTIONS

4.1 RESOLUTION OF SYMBOLIC REFERENCES

A symbol is used either to mark a program location or to represent a
data element. In high-level languages, symbols represent variables,
functions or labels.

Symbol
definition

an external symbol is a symbol that can be referenced from any object
file. The definition (defining point) of a symbol is a source program
statement which associates the symbol with an explicit location in a
section of the object file. A symbol can be defined only in one object file.

Symbol
reference

A symbolic reference is the use of a symbol in a statement that is not
its definition. An external symbolic reference is a reference to a symbol
which is defined in another object file.

Examples In the assembly language:

.globl abc

The .globl assembler directive is used to declare the symbol abc as ex-
ternal.

xxx:

This assembly language label defines the symbol xxx since it is associ-
ated with an explicit location within one of the sections.

yyy::

A label, followed by a double colon, defines an external symbol. This ex-
ample is equivalent to:

yyy:

.globl yyy

The first statement defines the symbol yyy . The second statement de-
clares it as external.

movd sym,r0

This is a reference to the symbol sym. If sym is not defined in the same
program, the assembler considers this an external symbolic reference.

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-2

In the C language:

int i;
int j = 5;
main {
extern k;
...
}

The variable i is an external symbol since it is declared outside any
function. k is also an external symbol because it is declared as such (by
the term “extern”). And j is a defined external symbol since it is initial-
ized at its point of declaration. This initialization associates j with a lo-
cation within the .data section.

Symbol Resolution Using the Symbol Table

The COFF object file contains a symbol table which holds information
about symbols defined or referenced in the source program. If a symbol
was defined in the source program, it has a “defined” status in the ob-
ject file’s symbol table entry. If a symbol is only referenced in the source
program (and not defined), it has an “undefined” status in the object
file’s symbol table entry.

The resolution of symbolic references is the process by which the linker
matches an external symbolic reference with its definition. It does so by
using the information in the symbol tables of the object files. If a sym-
bol has the status “undefined” in one object file, the linker searches for
the symbol’s definition in the other object files. The linker checks that
no symbol is defined more than once, and that there is no symbol left
undefined. If such a symbol is found, the linker issues an error message
and terminates the linking process.

Example object_1 object_2
a : defined a : undefined
b : defined b : defined
c : undefined

d : defined

When linking the two object files, the symbols a and d are resolved cor-
rectly by the linker. a is defined in object_1 and appears in object_2
as undefined. d appears only in the object file in which it is defined. The
linker issues an error message for symbols b and c , since b is defined
twice and c is not defined.

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-3

4.1.1 Library Processing

The resolution of external symbolic references to a library member in-
volves a slightly different process. A library member becomes part of the
linker’s input only if it contains a definition of an external symbol that
has been referenced in a previous input file or library member. This is
unlike regular object files, which are completely included in the linker’s
input.

A library file is a collection of object files typically containing useful rou-
tines. When the CompactRISC archiver builds a library from object files,
it creates a symbol directory as the first member of the library. The li-
brary symbol directory is a list of all defined external symbols found in
the library members. For each such symbol, there is a pointer to the li-
brary member where the symbol is defined. When the linker processes
a library it scans the symbol directory, selecting the definitions that re-
solve currently undefined external symbols.

When a library member is selected for the linking process, it may create
new external symbolic references (for example, one library member can
refer to a symbol which is defined in another library member). For this
reason, the linker scans the symbol directory of a library repeatedly un-
til the definitions in the symbol directory no longer resolve external
symbols (i.e. all references to library members have been resolved in
previous passes). Therefore, for efficiency of the linking process, the or-
dering of library members should be such that a library member con-
taining a reference to another library member should be place first in
the library.

4.1.2 Symbol Definition in the Directive file

Normally, the definition of an external symbol is found in one of the in-
put files. However, you can also define a symbol at link time through
use of the assignment statement in the directive file (Section 3.8). This
creates an external symbol and associates it with an absolute address.

4.1.3 Linker Defined Symbols

Certain special symbols are referenced in useful routines and have a
universal use. These symbols have a default definition and value that is
automatically assigned by the linker. You can override the default defi-
nition and value of special symbols by supplying your own definition (ei-
ther in the source program or in the linker directive file). These symbols
are:

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-4

Example In the assembly language:

movbd $ __STACK_START, sp

The symbol __STACK_START is used to initialize the stack pointer (sp).

The symbol __STATIC_BASE_START is used to define a static data area.
This is the pointer to the area used by the compiler or assembler to
generate sb-relative data.

Symbol Name Meaning Default Value

_etext
end address of . text sec-
tion

end address of . text section

_edata
end address of . data sec-
tion

end address of . data section

_end start of heap
next address after highest
allocated memory address

_HEAP$_START start of heap
next address after highest
allocated memory address

_HEAP$_MAX heap limit address highest address in configured memory

__STACK_START initial top of stack
highest available address
 (depends on CPU architecture e.g.,
for cr16 - 0xffff)

__INIT_TABLE address of initialization table
address of linker-created . init sec-
tion

_ _STATIC_BASE_START address of static data area
highest available address
(depends on CPU architecture e.g. for
cr16 - 0xffff)

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-5

4.2 ALLOCATION OF OUTPUT SECTIONS

The allocation process of the linker takes place after all input files have
been read and all external symbolic references have been resolved. This
process includes constructing output sections from input sections and as-
signing memory addresses to each output section. The linker directive file
can be used to exercise considerable control over the allocation of memory.

4.2.1 Creating Output Sections from Input Sections

Each output section is constructed from one or more input sections.
The list of input sections to be combined to produce an output section
is determined in two ways:

• Through the user-specified SECTIONS statement in the directive file
(Section 3.7).

• By the default linker rule.

The default linker rule applies to input sections that have not been as-
sociated with an output section through use of the SECTIONS statement.
Such input sections are associated with an output section that has the
same name. If there is no output section with the same name, the link-
er creates a new output section with the input section name and asso-
ciates the input section with the newly created output section.

Example Consider two input files, a.o and b.o , each containing the input sec-
tions .text , .data , .bss . For the following SECTIONS statement:

SECTIONS {
.text : {*(.text) }
.data : {a.o(.data) b.o(.bss) }
.bss : {}

}

Output sections are constructed as follows (Reason 1 indicates a user
specification; Reason 2 indicates the linker default rule):

Output Section Contents Reason

.text .text of a.o 1

.text of b.o 1

.data .data of a.o 1

.bss of b.o 1

.data of b.o 2

.bss .bss of a.o 2

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-6

4.2.2 Assigning an Address to an Output Section

Before assigning an address to an output section, the linker determines
which parts of memory are available for allocation. By default, the linker
assumes that the maximum amount of configured memory space, (e.g.,
in CR16, 0x0 through 0xffff), is available for allocation. However, you
can (and should) specify the areas of memory to be configured, and
therefore available for allocation, through use of the MEMORY statement
in the directive file (Section 3.6).

There are four phases in the allocation process (see Section 3.7.2):

1. Processing all the BIND options used in the SECTIONS statement. The
BIND option has the highest priority in determining output section ad-
dresses.

2. Processing all the INTO options of the SECTIONS statement to direct
output sections to memory areas by name.

3. Processing all the INTO options of the SECTIONS statement to direct
output sections to memory areas by attributes.

4. Assigning memory addresses to all unallocated output sections us-
ing a find-first-fit algorithm.

If the linker cannot process any one of the above phases, it issues an
error and terminates the linking process.

Example Consider the following directive file:

MEMORY {
MEM1 (R) : origin = 1000 length = 1000
MEM2 (RW): origin = 3000 length = 1000

}

SECTIONS {
.text INTO(MEM1): { *(.text) }
.data BIND(3500): {

*(.data) *(.data_4) *(.data_2)*(.data_1)}
.bss : { *(.bss) *(.bss_3) *(.bss_2) *(.bss_1) }

}

Assume that the size of the output section of .text is 500, of .data is
400, and of .bss is 500. The steps in the allocation process are as fol-
lows:

1. Output section .data is allocated at address 3500, as specified in
the BIND option.

2. Output section .text is allocated within memory area MEM1. Since
this area is empty, the .text section is allocated at its starting address
1000.

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-7

3. Since there is no allocation option specified for the .bss output sec-
tion, it is allocated in the first memory address where it fits. Though
the .bss section does not fit in memory area MEM1, it does fit in
the memory area MEM2. Therefore the .bss section is allocated at
the starting address of MEM2, 3000.

4.2.3 Using the Linker Definition File to Overlay Input Sections

The linker supports overlays of input sections, in the sense that more
than one input section can be allocated to the same output section lo-
cation. This may only be done for uninitialized sections. To achieve this
the location counter is changed in the middle of section allocation.

Example SECTIONS{
CCC (NOLOAD) BIND (0x100):
{(a.o: .bss_2) .=ADDR(CCC) (b.o:.bss_2)}

The .bss_2 section of a.o is allocated to address 0x100. The location
counter is then changed to point to the beginning of the CCC section,
0x100, and the .bss_2 section of b.o is allocated starting at this ad-
dress. As a result the .bss_2 sections of a.o and b.o are overlayed.

4.2.4 Data Initialization Support

The linker supports two kinds of data initializations for an embedded
environment:

• Variables that are initialized at their point of declaration rather
than by assignment at run-time.

• Variables that are uninitialized are automatically initialized to zero.

By default the linker uses the following libadb predefined functions to
do the initializations:

• init_bss_data
Initializes the default initialized data sections and initializes the de-
fault uninitialized data sections (bss) to zero.

• init_bss
Initializes non-initialized data sections to zero.

• init_data
Initializes initialized data sections.

• init_bss_data_code
Initializes data and bss sections and also jumps to RAM if copied
data sections include code.

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-8

The default linker definition file uses the ROMBIND and ROMINTO output
section options to define the ROM and RAM addresses of .data and
.bss sections.

To implement data initialization you must do the following:

To initialize data sections, duplicate the section that contains the ini-
tialized data (typically the .data section) using the ROMBIND and ROM-
INTO output section options (Section 3.7.2). These options instruct the
linker to assign a second address to the output section (a ROM ad-
dress). The output section should be burned on ROM, and copied to
RAM, at run-time, for it to be writable. The output section is thus allo-
cated twice (on ROM and RAM). References to symbols that are defined
in duplicated sections are modified by the linker according to the sec-
tion RAM address, where it resides at run-time. In the start routine of
the application program call one of the routines above that initializes
data.

To initialize non-initialized data to zero, call one of the above mentioned
routines, that initializes bss, from libadb .

In order to pass the initialization request information to the application,
the linker creates an initialization table which includes:

• One kind of entry for each duplicated section. The information in
this kind of entry may be used to copy sections from ROM to RAM.

• One entry for each section of uninitialized data (typically .bss). The
information in this kind of entry may be used to initialize sections.

The structure of an initialization table is:

The linker also defines the symbol _INIT_TABLE . This symbol is as-
signed the address of the initialization table.

The C structure declaration for this table may be found in the init-
tab.h header file supplied with the CompactRISC package. The initial-
ization table generated by the linker resides in a linker-created .init
input section (see Section 4.2.4).

Type Size Name Description

unsigned long 4 i_size Section size

unsigned long 4 i_srcaddr
Section source (ROM) address.
N/A for sections of uninitialized
data (contains 1 in this case).

unsigned long 4 i_trgaddr Section target (RAM) address

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-9

Example Consider a simple C program that uses both initialized and uninitialized
variables:

int i = 5;
int j;
main()
{

if (i == 5 && j == 0)
printf("PASSED \n");
else
printf("FAILED \n");

}

The initialized variables are directed to .data_1 .data_2 and .data_4
sections according to their size. Uninitialized variables are directed to
.bss_1 .bss_2 and .bss_4 sections. To run this program correctly in
an embedded environment, data initialization is necessary. The contents
of the .data_ n sections should reside on ROM and copied to RAM at
the beginning of the program execution. The .bss_ n sections can be
filled with zeroes. Use the linker data initialization support to simplify
this process. A sample directive file for linking the program is:

MEMORY {
ROM : ORG = 0x80000 LEN = 0x20000
RAM : ORG = 0x10000 LEN = 0x40000

}

SECTIONS {
.text INTO(ROM) : { }
.rdata ALIGN(2) INTO(RAM):

{ *(.rdata_4) *(.rdata_2)
*(.rdata_1)}

.data ROMINTO(ROM) INTO(RAM) :
{ *(.data_4) *(.data_2) *(.data_1)}

.bss INTO(RAM) :
{ *(.bss_4) *(.bss_2) *(.bss_1)}

.init INTO(ROM) : { }
}

The .text section that contains the program code is directed to the
ROM memory area. The .data section (which is combined from all
.data_ n sections) is duplicated, and directed to the RAM and ROM
memory areas.

Note that all references to the .data section are to the RAM copy. The
ROM copy is used only for initialization purposes and is not used after
initialization is completed.

The .bss section (which is combined from all the .bss_ n sections) is di-
rected to the RAM memory area. The .init section, which contains the
initialization table, is directed to the ROM memory area.

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-10

The program is now ready for linking. The start routine, provided as
part of the CompactRISC libadb library, can be used to perform the
initialization. The invocation line for the above program is:

crlink main.o -ladb -lc -lvio -o prog

The .data section should now be burned to ROM using the crprom utility
(see Chapter 6). A sample invocation of crprom (assuming 64K EPROMs) is:

crprom -x0x8000 -l64 prog -o prog.hex

Using the initialization routines defined in libadb , you can fully control
the initialization process by calling the specific initialization routine
needed. To eliminate all the initialization, simply comment out the call
to the initialization routine in your start routine.

Normally, an input section is a part of an input file. However, for data
initializations the linker creates a “dummy” input section called .init .
The .init dummy input section is added to the input section list, and
participates in the allocation process like any other input section. The
.init section can be identified in the linker memory map by the term
linker_defined that replaces the filename.

4.2.5 Code Overlay Allocation

The CompactRISC linker supports a code overlay mechanism. You can
write several code sections in the same output section. This allows sev-
eral time-critical code segments to run from a single, small, fast memo-
ry (e.g., SRAM), while the entire program resides in a large, slow,
memory (e.g., DRAM).

The -O flag informs the linker to enable the code overlay mechanism.
(See Section 2.3.18)

A special library function, cp_overlay_code , copies the code segments
into the fast memory. The application must call this function before ex-
ecuting the code. This function is included in the Application Develop-
ment Board library (libstart for version 2.0, or libadb for version
1.2).

Example Consider an application that has two critical functions, f1 and f2 (de-
fined in the files c1.o and c2.o , respectively), and a 0x500 bytes of
fast-memory, starting at address 0x1000.

You should use the following linker definition file:

MEMORY {
...

CODE_MEM:
...

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-11

SRAM: origin = 0x1000,length = 0x500
...

}

SECTIONS {
...

.text BIND(0x1000) ROMINTO(_a=.; , CODE_MEM) :
{c1.o(.text)}

.text BIND(0x1000) ROMINTO(_b=.; , CODE_MEM) :
{c2.o(.text)}

.text INTO(CODE_MEM) : {*(.text)}
...

}

The application code that calls these functions should be:

#include <libstart.h> //for old tmon users <libadb.h>
extern void a();
extern void b();
...
application()
{

...
cp_overlay_code(b);
f2();
...
cp_overlay_code(a);
f1();
...
cp_overlay_code(b);
f2();

}

In this example, the linker assigns the source address of the code sec-
tion, c1 , to the symbol a, and the source address of the code section,
c2 , to the symbol b. These symbols are used as parameters to
cp_overlay_code() .

The size of any critical code, defined with the code overlay mechanism,
must not exceed the size of the fast memory.

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-12

4.2.6 Bank Switching

The CR16A core enables accesses to 128KB code address space. The
Bank Switching mechanism enables execution of applications larger
than 128KB, on a CR16A-based chip.

Notes The Bank Switching mechanism, for a CR16A-based chip, requires
additional on-chip hardware.

The CompactRISC debugger does not support Bank Switching.

The Bank Switching mechanism provides virtual linear code address
space of size n * 128KB (where n is the number of banks). The applica-
tion resides in a sequence of 128KB external ROM segments (banks).
The Bank Switching mechanism enables mapping the code address
space of the CR16A core to one bank at a time. A special hardware reg-
ister, on the chip, selects the number of the currently mapped bank.

While compiling the C code for a Bank Switching application, you must
specify -mbank to the compiler. While linking a Bank Switching applica-
tion, you must specify -BS to the linker.

Mediator
function

A mediator function enables the linker to make a cross-bank function
call (i.e., the caller function is located in one bank and the called func-
tion is located in another). If the linker encounters a cross-bank func-
tion call, it generates a mediator function. The linker replaces the cross-
bank function call with a call to the mediator function.

The linker generates one mediator function for each cross-bank called
function in the application. It allocates the code for the mediator func-
tions to a code segment that exists in all the banks. This code segment
is called common-memory, and is described below.

CODE_MEM

c1.o(.text)

c2.o(.text)

*(.text)

SRAM

cp_overlay_code(b)

cp_overlay_code(a)

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-13

For example, consider a cross-bank function call: f() function, in one
bank, that calls g() function, in another bank. The linker generates a
mediator function, m_g() , for the cross-bank called function g() , and
replaces the call to g() with a call to m_g() . The mediator function,
m_g() , enables this cross-bank function call:

f() prepares parameters for g() , as usual.

f() calls to m_g() (the mediator function of g()).

m_g() loads the address of g() (the bank number for g() and its
address in this bank).

m_g() saves the return address (the current bank number and the
address for f() in this bank).

m_g() switches to the bank containing g() (i.e., writes this bank
number to the dedicated hardware register).

m_g() calls g() .

and after g() returns:

m_g() switches back to the bank containing f() .

m_g() returns to f() .

A mediator function is composed of two parts. One part loads the called
function's bank and address. This part is specific for every cross-bank
called function. The second part is fixed for all the mediator functions.

Common-
memory

A Bank Switching application must have a code segment that is always
visible, i.e., copied to all the banks. This common-memory includes in-
terrupt handlers, ROM data (.rdata sections), and the code for the me-
diator functions (generated by the linker).

You must define the common-memory, in the linker.def file, (see the
example below). The length field contains the size of the common-mem-
ory.

You must also direct the linker, using the linker.def file, to allocate
all the always visible code and data (e.g., interrupt handlers and .rdata
section) to the common-memory (see the example below).

In the remaining part of the common-memory, the linker allocates the
code for the mediator functions.

The size of the common-memory is calculated by adding the size of what
you have allocated to the common-memory (interrupt handlers, .rdata
sections) to the code size of all the mediator functions (generated by the
linker).

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-14

The code size (in bytes) of all the mediator functions is (N * 12) + 36

where:
N is an estimate of the number of the cross-bank called functions in
the application.
12 is the maximum size of the specific part of a mediator function,
and 36 is the size of the fixed part of all the mediator functions.

Example Consider an application with three modules (a.o , b.o , c.o) that we want to
allocate to three banks. The MEMORY part of the linker.def file should
have the form shown below (where the addresses are just for example):

MEMORY {
 common_memory:

origin=0x10000, length=0x2000

 bank0_code_mem:
origin=0x12000, length=0xC000

 bank1_code_mem:
origin=0x32000, length=0xC000

 bank2_code_mem:
origin=0x52000, length=0xC000

.

.

.
}

Note Define the common-memory area in the first bank (0 - 0x1FFFF).
The linker copies the common-memory to the corresponding ad-
dresses in the higher numbered banks. (In the above example, to
addresses 0x30000 - 0x32000 in the second bank, and to addresses
0x50000 -0x52000 in the third bank). Do not allocate anything to
these addresses.

To allocate the interrupt handlers’ code and .rdata sections to the
common-memory, and the three modules to the three banks, the
SECTION part of the linker.def file should have the form:

SECTIONS {

.text ALIGN(2) INTO(common_memory): { int1.o(.text) int2.o(.text) ... }

.rdata ALIGN(2) INTO(common_memory): { *(.rdata_2) *(.rdata_1) }
.
.
.

.text ALIGN(2) INTO(bank0 _code_mem): { a.o(.text) }

.text ALIGN(2) INTO(bank1 _code_mem): { b.o(.text) }

.text ALIGN(2) INTO(bank2 _code_mem): { c.o(.text) }

}

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-15

Note You can allocate the interrupt handlers to the common-memory only if
they do not reside in the same modules as the rest of the application.

To define the address of the bank number register (in the linker.def file):

BANK_NUM_REG =0x...; (address of the special register).

Limitations Cross-bank function calls through a pointer are not supported.

A module can not cross bank boundaries, branches between modules
are only allowed as function calls.

A cross-bank called function must not return structure as a return value.

4.2.7 Memory Map

The following information appears on the memory map (all address and
size values are in hexadecimal):

Output
section

lists each output section in the order it appears in memory. For those
output sections that have been duplicated, the ROM copy is denoted by
(R) next to the output section name.

Input
section

lists each input section that was linked to produce the specified output
section.

Memory
address

denotes the starting address in memory of a particular input or output
section.

Size lists the total size of the output section and the individual size of each
input sections.

Section
contents

specifies the input file from which the input section originated. This is
either an object file or a library file. The term "linker_defined" indicates
that the section was created by the linker.

The term “fill space” may appear in the section contents column, and
indicates a gap created in the output section through use of the current
location symbol assignment of the directive file (Section 3.8.2). The term
“UNUSED” refers to unallocated or unconfigured memory.

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-16

Example output input memory size section

section section address contents

.rdata 0 2c

.rdata_2 0 2c libadb.a:intable.o

.data 2c 132

.data_2 2c 72 libc.a:xfiles.o

.data_2 9e c0 libvio.a:_util.o

.bss 15e 120

.bss_2 15e 42 libc.a:atexit.o

.bss_2 1a0 4 libc.a:malloc.o

.bss_2 1a4 2 libc.a:sbrk.o

.bss_2 1a6 2 libc.a:xinit.o

.bss_2 1a8 2 libc.a:errno.o

.bss_2 1aa 84 libvio.a:_util.o

.bss_1 22e 50 libc.a:xfiles.o

.init 27e 1c

.init 27e 1c linker_defined

.stack 29a 2000

29a 2000 fill_space

.istack 229a 100

229a 100 fill_space

UNUSED 239a to d800 b466

UNUSED d800 to db00 300

UNUSED db00 to e000 500

.text 10000 8ca

.text 10000 e main.o

.text 1000e 20 libadb.a:start.o

.text 1002e 6e libadb.a:init_all.o

.text 1009c 12 libadb.a:bpt.o

.text 100ae 12 libadb.a:dvz.o

.text 100c0 12 libadb.a:flg.o

.text 100d2 12 libadb.a:und.o

.text 100e4 12 libadb.a:nmi.o

.text 100f6 12 libadb.a:svc.o

.text 10108 12 libadb.a:trc.o

.text 1011a 12 libadb.a:ise.o

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-17

.text 1012c 14 libadb.a:int_hnd.o

.text 10140 14 libadb.a:int_hnd2.o

.text 10154 4c libc.a:exit.o

.text 101a0 22 libc.a:_exit.o

.text 101c2 b8 libc.a:fclose.o

.text 1027a e libc.a:remove.o

.text 10288 82 libc.a:fflush.o

.text 1030a 86 libc.a:free.o

.text 10390 22 libc.a:atexit.o

.text 103b2 104 libc.a:malloc.o

.text 104b6 1a libc.a:xgetmem.o

.text 104d0 7a libc.a:sbrk.o

.text 1054a 7c libvio.a:close.o

.text 105c6 ce libvio.a:unlink.o

.text 10694 180 libvio.a:write.o

.text 10814 6e libvio.a:_util.o

.text 10882 1a libvio.a:do_viopk.o

.text 1089c 18 libvio.a:memcpy.o

.text 108b4 16 libvio.a:strlen.o

.data (R) 108ca 132

.data_2 108ca 72 libc.a:xfiles.o

.data_2 1093c c0 libvio.a:_util.o

UNUSED 109fc to 20000 f604

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-18

4.3 RELOCATION OF MEMORY ADDRESS

Once external symbolic references have been resolved, and output sec-
tions allocated to memory, the linker calculates the final addresses of
symbolic references. It also modifies the contents of the holes within the
code or data. Holes are small pieces of code, or data, that are based on
symbolic references. A hole must be modified to reflect the new address
of the symbolic reference on which it is based. This process includes
not only external symbolic references, but also other symbolic referenc-
es that must be updated (e.g., a reference that uses absolute address-
ing).

4.3.1 Relocation Information

Relocation information is part of the COFF file. The assembler creates a
relocation table for each section of the file. Each relocation table entry
provides information about a hole that should be updated as a result of
link-time section allocation. This hole may be a machine instruction op-
erand or data (typically address constants, etc.).

Each relocation entry consists of:

• The address of the hole that should be updated.

• A pointer to the symbol that is associated with the reference.

• The hole type (format, size, and semantic).

Consider the following assembly program:

Example bal r2, foo
storw r0,abc
.data
abc: .double 5

The first two instructions must be relocated at link-time.

The first instruction, bal r2, foo , refers to an external symbol (foo)
whose address is unknown at assembly-time. In the assembler encoding
of this instruction, the place that should contain foo ’s address is initial-
ized to 0. (All the encodings used throughout this section are for the
CR16).

9e 92 00 00 00 00 (bal r2,foo)

The relocation entry created by the assembler contains the following in-
formation:

• A hole address that points to the instruction’s second byte (the lo-
cation of the instruction operand).

CompactRISC Object Tools Reference Manual LINKER FUNCTIONS 4-19

• The index of the symbol foo in the symbol table.

• The hole type (the hole size is 4 bytes, and the hole is pc-relative).

The second instruction, storw r0, abc , has a reference to the local
symbol abc . However this reference is in absolute addressing mode, and
absolute addresses are unknown at assembly time. The assembler en-
coding of this instruction includes the offset of abc ’s address from the
beginning of the section.

d9 0f 0c 00 00 00 00(storw r0,abc)

The relocation entry created by the assembler contains the following in-
formation:

• A hole address that points to the instruction’s third byte (the loca-
tion of the instruction’s second operand).

• The index of the symbol .data in the symbol table. The symbol abc
is already allocated in the .data section and its final address is up-
dated according to the final address of the .data input section. The
address of the symbol .data is also the address of the .data input
section.

• The hole type (hole size is 4 bytes, and the hole is an absolute ad-
dress).

4.3.2 The Relocation Process

During the relocation process, the linker scans the relocation table of
each input section. For each relocation entry, the linker calculates the
new value of the hole. The calculation is based on the referenced sym-
bol’s new address, on the new address of the hole (if the hole is a pc-
relative operand), and on the type of the hole found in the relocation en-
try. The new value of the hole must fit the size allocated to it, otherwise
the linker issues an error message. After the new value of the hole has
been calculated, the linker updates the hole with this new value.

Example Using the example in Section 4.3.1, two holes are modified. Assume that
the final address of the symbol foo is 0x9000, and that the final address
of the bal instruction is 0x8000. The displacement for the bal instruc-
tion should thus be modified to 0x9000-0x8000=0x1000. The linker mod-
ifies the operand, and the new instruction encoding includes the correct
address.

Assume that the final address of the symbol abc is 0xf000. The second
operand of the storw instruction is modified to this absolute address.

CompactRISC Object Tools Reference Manual THE ARCHIVER 5-1

Chapter 5

THE ARCHIVER

5.1 INTRODUCTION

The archiver, crlib , maintains groups of object files combined into a
single archive (library) file. Its main use is to create and update library
files for use by the linker. The archive’s object file are called members.

5.2 CREATING ARCHIVE FILES

When crlib creates an archive, it generates a symbol directory for it.
The linker crlink uses the archive symbol directory to search object
files, which define unresolved symbols, in an efficient manner. An ar-
chive symbol directory is created and maintained by crlib only when
there is at least one object file in the archive. Whenever the crlib com-
mand is used to create or update the contents of such an archive, the
symbol directory is rebuilt.

5.3 INVOCATION AND USAGE

crlib key [modifier] afile filename . ..

The minus "−" is optional to key , followed by one character from the set
d, r , q, t , p, V, m, or x , optionally concatenated with one or more mod-
ifiers from the set v , u, c , l and/or s . afile is the archive file. file-
names are the names of archive members, or of object files, to be added
to the archive. The meanings of the key characters are as follows:

d Deletes the named files from the archive file.

r Replaces the named files in the archive file. If the optional
character u is used with r , only those files with modifica-
tion dates later than the archive files are replaced. If the
archive does not already exist, it is created. If the file is
not already present in the archive, it is placed at the end.

q Quickly appends the named files to the end of the archive
file. This command does not check whether the added
members are already in the archive.

CompactRISC Object Tools Reference Manual THE ARCHIVER 5-2

t Prints a table of contents of the archive file. If no names
are given, all files in the archive are tabled. If names are
given, only those files are tabled.

m Moves the named files to the end of the archive.

x Extracts the named files. If no names are given, all files in
the archive are extracted. In neither case does x alter the
archive file.

V Prints the version number of the crlib program in use.

The meanings of the modifier characters are as follows:

v Gives a verbose file-by-file description of the making of a
new archive file from the old archive and the constituent
files. When used with t , gives a long listing of all informa-
tion about the files. When used with x, precedes each file
with a name.

c Suppresses the message that is produced by default when
afile is created.

n Suppresses generation of symbol directory, thus shorten-
ing crlib processing time. This command is useful when
incrementally creating large libraries by several calls to
crlib . When used, all calls should be made with the -n
option, except for the last call.

s Forces the regeneration of the archive symbol directory,
even if crlib is not invoked with an option which modi-
fies the archive contents. This command is useful to re-
store the archive symbol directory of an archive created
using the -n option.

Example crlib x libc.a printf.o

In this example the member printf.o is extracted from library libc.a .

@argfile Reads crlib arguments from the file argfile . The @ op-
tion directs the CompactRISC archiver to read additional
command-line arguments from the named file. This option
overcomes the limitation on the length of invocation lines,
which exists under some environments.

CompactRISC Object Tools Reference Manual THE EPROM FILE GENERATOR 6-1

Chapter 6

THE EPROM FILE GENERATOR

6.1 INTRODUCTION

The crprom utility is used to convert data from CompactRISC executable
object files into an EPROM programmer format. Three formats are support-
ed: ASCII-hex (default), Intel-hex and Motorola. The output is directed into
separate files, one for each EPROM. If no output file name is specified, the
output is directed to the auxiliary (printer) port of a VT100 compatible termi-
nal; the EPROM programmer must then be attached to the auxiliary port.

6.2 GENERATING EPROM FILES

Each EPROM holds part of the data bytes of a memory block, depending
on the system bus-width (or word size). If the system bus-width is 2,
the EPROMs come in pairs. In each pair one EPROM holds the even
address data bytes and the other EPROM holds the odd address data
bytes. Together they form a bank. If the system bus-width is 4, the
EPROMs come in quartets: one EPROM holds the first data bytes of
each word, another EPROM holds the second data byte of each word
and so on. These four EPROMs again form a bank.

The crprom utility allows you to create output for one or more EPROMs
in various ways. The ROM area is regarded by the crprom utility as a
two-dimensional matrix of EPROMs. One dimension is the EPROM byte
number (i.e., which byte in the word the EPROM holds). The other di-
mension is the bank number, since the crprom utility can produce out-
put for several consecutive banks.

The figure below illustrates a two-dimensional matrix of EPROMs:

byte 0 byte 1 byte 2 byte 3

bank 0

bank 1

bank 2

CompactRISC Object Tools Reference Manual THE EPROM FILE GENERATOR 6-2

Using the crprom utility, you can specify each EPROM in the matrix,
and specify each row or column of EPROMs. You can also specify the
complete matrix in order to produce output for the entire ROM area in
a single invocation of crprom . If you direct the output to a file(s), cr-
prom creates one output file for each EPROM.

6.3 INVOCATION AND USAGE

crprom [options] [filename]

filename is a crprom input file. This should be a CompactRISC exe-
cutable object file produced by the CompactRISC Linker,
crlink . The default input file name is cr.x .

The crprom invocation options are listed below. All integer constants
can be specified in C syntax (i.e., decimal, hexadecimal, or octal).

-w size Specifies the bus-width (word size). size can be: 1, 2, 4,
8, 16 or 32. If this option is not specified, a default bus-
width of 2 bytes (16 bits) is used.

-b bytenumber Selects an EPROM in a bank. The EPROM is denoted by
the byte number of the word. bytenumber can have any
value in the range of 0 to buswidth -1 (buswidth is the
system bus-width). By default all EPROMs in the bank are
selected.

-x address Specifies the start address of the first bank. address is
an integer constant.

-l size Specifies the size of the EPROMs in use. size is specified
in Kbytes (i.e., the EPROM size is 1024*size). Default is
64 Kbytes.

-k [bank#:]num
Specifies which banks should be selected. If two values
are specified in the form bank#:num, num banks are se-
lected starting from bank bank# . If only one value is spec-
ified, num banks are selected starting from the first bank
(bank 0). By default crprom selects only the first bank.

-o filename Specifies the output filename. Since crprom can produce
several output files, filename is generally used as a ge-
neric name. For each output file, crprom adds the exten-
sion _banknum_bytenum to the file name (unless the -n
option is specified). banknum is the EPROM bank number,
bytenum is the EPROM byte number.

CompactRISC Object Tools Reference Manual THE EPROM FILE GENERATOR 6-3

If this option is not specified, crprom directs the output(s)
to an auxiliary port of a VT100-compatible terminal. At-
tach the EPROM programmer to this port. Before writing
the output for each EPROM, crprom prints a message to
the terminal and waits for you to plug in the EPROM.

-n Specifies that a filename extension is not required. This is
useful when only one output file is to be produced. The
output file name in this case is as specified by the -o op-
tion.

-p offset Specifies an EPROM offset to which the data is to be di-
rected. By default the offset is 0. This option applies only
to EPROMs of the first bank.

-i Specifies crprom output in Intel-hex format. This format
supports EPROMs of up to 1 Mbytes. The default format
is ASCII-hex, which supports EPROMs of up to 64 Kbytes.

-m{1|2|3} Specifies crprom output in one of the three Motorola for-
mats:

format 1 - supports EPROMs of up to 64 Kbytes;
format 2 - supports EPROMs of up to 16 Mbytes;
format 3 - supports EPROMs of up to 4 Gbytes.

The default format is ASCII-hex, which supports EPROMs
of up to 64 Kbytes.

-r Specifies that only sections that typically reside in ROM
(i.e., sections of type STYP_TEXT and STYP_DATA) are ex-
tracted from the executable object file. By default, selects
any loadable section that resides in the EPROM address
range.

-c Specifies that a checksum byte is added for each EPROM.
This option is used if the contents of the EPROM are to be
verified at run-time (e.g., for diagnostics purposes). The
checksum byte is located in the first unused byte of the
EPROM. The checksum byte value is calculated such
that the xor of the one’s complement of all bytes (includ-
ing the checksum byte) is 0.

Unused bytes are set by EPROM programmers to 0xFF,
and therefore do not affect the checksum. If all bytes of
the EPROM are occupied, crprom issues a warning and
does not add a checksum byte.

Examples 1 crprom -x0x10000 -o out execfile
This command creates one bank of EPROMs located at address
0x10000. The word size is the default = 2. crprom produces two
output files, one for each EPROM:

out_0_0 out_0_1
The EPROM size is 64K (default size). The output format is ASCII-
hex (default format).

CompactRISC Object Tools Reference Manual THE EPROM FILE GENERATOR 6-4

2 crprom -w2 -b1 -x0x20000 -l32 -i -o OUT execfile
This command creates the second EPROM in a bank located at ad-
dress 0x20000. The word size is 2 (i.e., there are two EPROMs in
each bank, 0 and 1). The byte number is 1, signifying that the sec-
ond EPROM is required. The EPROM size is 32K and the output for-
mat is intel-hex. Only one output file is produced:

out_0_1

3 crprom -w2 -x0x10000 -k2 -m2 -o out execfile
This command creates two consecutive banks of EPROMs. The start
address of the first bank is 0x10000. Each bank has two EPROMs
because the word size is 2. Since there are four EPROMs, the follow-
ing four output files are produced:

out_0_0 (first bank, first EPROM)

out_0_1 (first bank, second EPROM)

out_1_0 (second bank, first EPROM)

out_1_1 (second bank, first EPROM)

EPROM size is 64K (default). The output format is Motorola format
number 2.

4 crprom -w4 -k1:1 -i execfile
This command creates the second bank (bank number 1) of a set of
consecutive banks of EPROMs. The address of the first bank is 0
(default). However, since the second bank is required, data is taken
from the start address of the second bank. This address is equal to
the size of one bank (i.e., the EPROM size 64K, multiplied by four
EPROMs in each bank, gives 256K or 0x40000). Because no output
file is specified, the output is directed to the terminal’s auxiliary port
where the EPROM programmer is attached. Before writing the out-
put for the first EPROM, crprom prints the following message:

Creating output data for bank 1 byte number 0
Press RETURN when ready...

A similar message is printed for each other EPROM. Plug the appro-
priate EPROM into the programmer before you press the RETURN
key.

CompactRISC Object Tools Reference Manual THE EPROM FILE GENERATOR 6-5

6.4 THE INTEL FORMAT

The Intel 16-bit Hexadecimal Object file record format, MSC-86 Hexa-
decimal Object code 88, is the default command used when converting
data using crprom utility. It has a 9-character (4-field) prefix that de-
fines the start of record, byte count, load address, and record type and
a 2-character checksum suffix. For example:

:020000020000FC
:08600000000000001000000088
:106008009FFFFF0AEFFFFF020008F28204A55F9FCF
:10601800FFFF0A008BA0FFFF480A007D09A100E0EE

: :

:1074A00000000000000000000000000000000000DC
:1074B00000000000A0010001000001010000000028
:00000001FF

The four record types are described below:

6.4.1 00 - Data Record

This begins with the colon start character, which is followed by the byte
count (in hex notation), the address of the first data byte, and the record
type (equal to 00). Following these are the data bytes. The checksum fol-
lows the data bytes and is the two’s compliment (in binary) of the preced-
ing bytes in the record, including the byte count, address, record type and

CompactRISC Object Tools Reference Manual THE EPROM FILE GENERATOR 6-6

6.4.4 03 - Start Record

This record type is not sent during output by Data I/O translator firmware.

CompactRISC Object Tools Reference Manual THE OBJECT FILE VIEWER 7-1

Chapter 7

THE OBJECT FILE VIEWER

7.1 INTRODUCTION

The crview utility displays, in a formatted manner, all the information
that exists in a CompactRISC object file.

Input files for crview may be object files (executables or not) and ar-
chive (library) files.

7.2 INVOCATION AND USAGE

crview [options] filename ...

If no options are specified crview displays all parts of the object file(s).

The options are available:

-h display file headers

-n display section headers

-r display relocation information

-l display line number information

-s [sub-option]
display symbol table (long format)

-S [sub-option]
display symbol table (short format: one line per symbol)

Possible sub options for -s and -S options:

n - sort symbols according to their names
v - sort symbols according to their values
u - display only user-defined symbols
g - display only global and static symbols
x - display symbol values in hexadecimal format
If no sub-option is specified, all the symbols in the symbol
table are displayed in the same order as they appear in
the symbol table, and their values are displayed in deci-
mal format (with -S) and in both decimal and hexadeci-
mal formats (with -s).

-a display archive symbol directory

CompactRISC Object Tools Reference Manual THE OBJECT FILE VIEWER 7-2

-T disassemble .text section(s) contents

-D display .data section(s) contents in dump format

-I display .init section contents in an initialization table
format

-O display any section contents in dump format

-e ignore disassembly errors

-f [sub-option]
displays function information.
Possible sub-options are:
c - Class
t - Type
n - Name
a - Arguments
b - Begin address
e - End-address
z - Size
k - Stack
s - Source file
h - Header
If no sub-options are used for the -f option, the whole
function informations is displayed.

-z displays sections and their sizes.

CompactRISC Object Tools Reference Manual LINKER ERROR MESSAGES A-1

Appendix A

LINKER ERROR MESSAGES

A.1 INTRODUCTION

This appendix contains a list of all linker error messages. There are five
types of error messages:

• System Error - the result of an incorrect call to the operating sys-
tem. A system error causes immediate termination of the linking
process. An explanation of the error follows the error message.

• Warning - A warning error has no impact on the linking process.

• Severe Error - Severe errors accumulate, and eventually result in
the termination of the linking process.

• Fatal Error - A fatal error causes an immediate termination of the
linking process.

• Internal Error - An internal error is caused by an internal problem
in the linker. If you encounter an internal error please contact
National Semiconductor immediately. Internal error messages are
not listed in this appendix.

The error messages are listed in alphabetical order. The error message
type and an explanation is also given.

CompactRISC Object Tools Reference Manual LINKER ERROR MESSAGES A-2

A.2 ERROR MESSAGES

Cannot close file filename

Type: System

Explanation: An error has been detected when closing the file.

Cannot open default directive file filename . Proceeding with
default linker processing

Type: Warning

Explanation: The default directive file cannot be opened. The linker
therefore uses a default allocation process, which assumes that the
maximum amount of configured memory space is available and allo-
cates output sections contiguously from address 0.

Cannot open specified directive file filename

Type: System

Explanation: The user-specified directive file cannot be opened.

Cannot open input file filename

Type: System

Explanation: The input object or library file cannot be opened.

Cannot open output file filename

Type: System

Explanation: The output file cannot be opened with write permission.

Common symbol symbolname has an explicit definition

Type: Warning

Explanation: The common symbol which appears in one or more input
files is defined in another input file. This is not an error. All references
to the symbol are resolved according to its definition. Common symbols
without a definition are consolidated and allocated memory space by
the linker.

CompactRISC Object Tools Reference Manual LINKER ERROR MESSAGES A-3

Common symbol symbolname multiply declared with differing siz-
es. Larger size used

Type: Warning

Explanation: The references to the symbol in various input files have
differing size specifications. The linker uses the largest size specified for
allocation.

Entry point not found. To use default entry point “start” link
with libadb.

Type: Fatal

Explanation: No entry point was specified in the invocation line and the
default entry point “start” was not found. To use the default start rou-
tine the application must be linked with libadb.a

Directive file MEMORY statement error: overlapping memory ar-
eas mem1 and mem2

Type: Fatal

Explanation: An error has been detected in the memory configuration
as specified in the directive file MEMORY statement. Two memory areas
overlap.

Directive file BIND/ROMBIND option error: address addr (speci-
fied for output section secname) is already allocated to anoth-
er output section

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error.
The specified argument address of the BIND/ROMBIND option is not
available since it is already allocated to another output section.

Directive file BIND/ROMBIND option error: address addr (speci-
fied for output section secname) is not in configured memory

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error.
The specified argument address of the BIND/ROMBIND option is not
available since it is not within configured memory.

CompactRISC Object Tools Reference Manual LINKER ERROR MESSAGES A-4

Directive file BIND/ROMBIND option error: output section sec-
name does not fit at specified address addr

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error.
The output section does not fit at the address specified by the BIND/
ROMBIND option since there is not enough unallocated memory space at
this point.

Directive file BIND/ROMBIND option is used for output section
secname This overrides any other allocation option

Type: Warning

Explanation: Both a directive file BIND/ROMBIND option and another al-
location option are specified for the output section. The linker ignores
the other allocation option, since BIND/ROMBIND options have the high-
est priority.

Directive file INTO/ROMINTO option error: cannot direct out-
put section secname to a memory area - no memory area with the
specified attributes was defined

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error.
The output section is directed by attributes to a memory area but no
memory area with the requested attributes was defined in the MEMORY
statement.

Directive file INTO/ROMINTO option error: memory area mem,
specified for output section secname , is undefined

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error.
The output section is directed to a named memory area which was not
defined in the MEMORY statement.

CompactRISC Object Tools Reference Manual LINKER ERROR MESSAGES A-5

Directive file INTO/ROMINTO option error: output section sec-
name (size size) cannot fit in any memory area having the speci-
fied attributes

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error.
The output section is directed by attributes to a memory area but there
is not enough space left for this output section in any memory area that
has the specified attributes.

Directive file INTO/ROMINTO option error: output section sec-
name (size size) does not fit in memory area mem

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error.
The output section is directed to a named memory but there is not
enough space left for this output section in the memory area.

Directive file error: opt option illegal within GROUP

Type: Severe

Explanation: This error indicates that one of the directive file options:
BIND/INTO/BLOCK was used within a GROUP. These options may only
be used for the whole group.

Directive file error: input file filename specified inside
SECTIONS statement not found in input file list

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error.
The file name specified as part of an input section specification is not in
the input file list. The input file list includes all input files specified in
the invocation line and in the directive file before the SECTIONS state-
ment.

Directive file error: integer constant int too big near line
num

Type: Fatal

Explanation: The directive file contains an invalid integer constant. In-
teger constants must be in the range 0 - (232)-1.

CompactRISC Object Tools Reference Manual LINKER ERROR MESSAGES A-6

Directive file error: invalid memory attribute att specified.
Will be ignored

Type: Warning

Explanation: The directive file contains an invalid memory attribute let-
ter. This is ignored by the linker.

Directive file error: current location symbol (.) decremented
inside output section secname specification

Type: Fatal

Explanation: The directive file SECTIONS statement contains an error.
The current location symbol (.) is used incorrectly in the output section
specification, such that its new value is less than its old value. The cur-
rent location symbol may never be decremented.

Directive file error: current location symbol (.) used not in-
side SECTIONS statement, near line linenum

Type: Fatal

Explanation: The current location symbol (.) is used outside the SEC-
TIONS statement of the directive file. The current location symbol may
be used only in an assignment statement that appears as part of an in-
put section list in a SECTIONS statement.

Directive file error: illegal character ‘char’ found near
line linenum - ignored

Type: Warning

Explanation: An invalid integer constant is specified as an argument
for the directive file OPTION OMAGIC statement. The argument should
not exceed 16 bits (greater than 65535).

Directive file error: optional header magic number, specified
for OPTION OMAGIC, exceeds 16 bits

Type: Fatal

Explanation: An invalid integer constant is specified as an argument
for the directive file OPTION OMAGIC statement. The argument should
not exceed 16 bits (greater than 65535).

CompactRISC Object Tools Reference Manual LINKER ERROR MESSAGES A-7

Directive file error: optional header magic number, specified
for OPTION OMAGIC, exceeds 16 bits

Type: Fatal

Explanation: An invalid integer constant is specified as an argument
for the directive file OPTION OMAGIC statement. The argument should
not exceed 16 bits (greater than 65535).

Directive file error: specified MEMORY area mem exceeds 32 bit
address range

Type: Fatal

Explanation: The directive file MEMORY statement contains an error. The
memory area is specified with an address range that exceeds the pro-
cessor address range.

Directive file expression error: output section secname used
as an argument for SIZEOF, FILEADDR or ADDR function, is not
found

Type: Fatal

Explanation: The directive file expression contains an error. The output
section that was specified as an argument to the SIZEOF, FILEADDR or
ADDR function is not found.

Directive file expression error: symbol symbolnam e not found

Type: Fatal

Explanation: The directive file assignment statement contains an error.
The symbol that was specified as part of the right-hand-side of an as-
signment statement is not found.

Directive file parse error: err near line numbe r linenum

Type: Fatal

Explanation: The directive file contains a parsing error. This is typically
a syntax error. The parsing error type is denoted by err .

CompactRISC Object Tools Reference Manual LINKER ERROR MESSAGES A-8

Directive file syntax error: ending quote expected near line
num

Type: Fatal

Explanation: The directive file contains a syntax error. A string is miss-
ing the end quote.

Directive file syntax error: unrecognized keyword after OP-
TION near line linenum

Type: Fatal

Explanation: The directive file contains a syntax error. An invalid key-
word is specified after the OPTION keyword.

Dynamic memory allocation failed (num bytes required)

Type: Fatal

Explanation: A system request for the dynamic allocation of num bytes
has failed.

Entry point is not specified and default entry point symbols
(start or _main) cannot be found. Entry point will be set to 0.

Type: Warning

Explanation: The linker failed to determine the program entry point ei-
ther because it was not specified explicitly through the Specify Entry
Point invocation option, or the symbols that mark the entry point by de-
fault (start or _main) were not defined in any input file. Therefore the
linker will set the entry point to the address 0.

Input file filename is not in proper COFF format (bad magic number)

Type: Fatal

Explanation: The magic number is incorrect. The magic number resides
in the first two bytes of any object files. If these two bytes contain an in-
valid value, the file is not recognized as a COFF file and is not processed
by the linker.

CompactRISC Object Tools Reference Manual LINKER ERROR MESSAGES A-9

Instruction operand or address constant cannot fit in space af-
ter relocation. Reference to symbol symbolname (index num)
from section secname , in filename

Type: Severe

Explanation: A piece of code or data (hole), based on a symbolic refer-
ence, cannot be modified because its value after relocation does not fit its
space. This may be the result of using byte/word displacements or abso-
lute addresses.

Input section not found for symbol symbolnam e in filename

Type: Severe

Explanation: symbolnam not found in any input section of file filenam e

Instruction operand or address constant truncated after relo-
cation. Reference to symbol symbolname (index num) from sec-
tion secname , in filenameddr, relocation address s: addr.

Type: Severe

Explanation: A piece of code or data (hole), based on a symbolic refer-
ence, was relocated, after relocation its value does not fit its hole size.
The value was therefore truncated.

Integer constant int, specified as an argument to an invoca-
tion option, is too big

Type: Warning

Explanation: An argument to the Specify Fill Value or Specify Version
Stamp invocation option is out of range. The argument must be in the
range 0-2**16-1.

Invalid integer constant int specified as an argument to an in-
vocation option

Type: Fatal

Explanation: An invalid integer constant value is used for the invoca-
tion options Specify Fill Value or Specify Version Stamp. This is either
an invalid integer constant specification or the integer constant is not
within the legal range (greater than 65535).

CompactRISC Object Tools Reference Manual LINKER ERROR MESSAGES A-10

Invocation option opt requires an argument

Type: Fatal

Explanation: The invocation option is specified without the required ar-
gument. Note that some invocation options may require a space before
the argument.

Library file filename , specified with -l invocation option,
not found

Type: Fatal

Explanation: The library file specified with the -l invocation option is
not found in any directory in the library search path.

Library file filename has no symbol directory. The GNX ar-
chiver utility may be used to restore it

Type: Warning

Explanation: The input library file does not contain a symbol directory.
This file therefore cannot be processed. The symbol directory may not
exist because the library file has been stripped. The CompactRISC ar-
chiver (n)ar may be used to rebuild the symbol directory.

More than one directive file allocation option is used for out-
put section secname . Using allocation option priority rules.

Type: Warning

Explanation: The SECTIONS statement of the directive file has more
than one allocation option specified. The linker uses the allocation op-
tion with the highest priority.

More than one directive file specified

Type: Fatal

Explanation: More than one directive file is specified. Only one directive
file can be specified as linker input.

CompactRISC Object Tools Reference Manual LINKER ERROR MESSAGES A-11

Multiply defined symbol symname, defined in filename1 already
defined in filename2

Type: Fatal

Explanation: The symbol has more than one definition. A symbol may
have only one definition.

No input object files specified

Type: Fatal

Explanation: No input object files have been specified for the linking
process.

Object files being linked are not all the same core code

Type: Fatal

Explanation: The object files being linked have code for different core ar-
chitectures and therefore cannot be linked to create one executable.

Output section secname (size size) cannot fit in remaining un-
allocated configured memory

Type: Fatal

Explanation: Refers to an output section without an allocation option
specified in the directive file. The linker is unable to fit the output section
into the remaining unallocated configured memory since there is not
enough space left for it.

Read error on file filename

Type: Fatal

Explanation: An error was detected when trying to read from the file.

Seek error on file filename

Type: System

Explanation: An error was detected when trying to perform a seek op-
eration on the file.

CompactRISC Object Tools Reference Manual LINKER ERROR MESSAGES A-12

Specified undefined symbol symbolname never resolved

Type: Severe

Explanation: The definition of the symbol is not found in any of the in-
put object files or in the directive file.

_ _STATIC_BASE_START is not initialized properly, in reloca-
tion entry entry of input section section in filename

Type: Fatal

Explanation: An sb-relative symbol is used but the static base start
symbol is not initialized.

Unable to recover from previous errors

Type: Fatal

Explanation: The linking process is aborted because of previously re-
ported severe errors.

Undefined symbol symbolname , first referenced in file filename

Type: Severe

Explanation: The definition of the symbol that is referenced in the in-
put object file is not found any input object file or in the directive file.

Unknown invocation option opt

Type: Fatal

Explanation: An unrecognized invocation option is specified.

Write error on file filename

Type: System

Explanation: An error was detected when trying to write on the file.

CompactRISC Object Tools Reference Manual GLOSSARY B-1

Appendix B

GLOSSARY

.bss section A COFF file section. It normally created by the assembler and contains
uninitialized data.

.bss_1 section A COFF file section. It is normally created by the compiler to hold all
the uninitialized data symbols which occupy 1 byte in memory.

.bss_2 section A COFF file section. It is normally created by the compiler to hold all
the uninitialized data symbols which occupy 2 bytes in memory.

.bss_4 section A COFF file section. It is normally created by the compiler to hold all
the uninitialized data symbols which occupy 4 bytes in memory.

.data section A COFF file section. The .data section is normally created by the assem-
bler and contains initialized data.

.data_1 section A COFF file section. It is normally created by the compiler to hold all
the initialized data symbols which occupy 1 byte in memory.

.data_2 section A COFF file section. It is normally created by the compiler to hold all
the initialized data symbols which occupy 2 bytes in memory.

.data_4 section A COFF file section. It is normally created by the compiler to hold all
the initialized data symbols which occupy 4 bytes in memory.

.rdata_1 section A COFF file section. It is normally created by the compiler to hold all
the ROM data symbols which occupy 1 byte in memory.

.rdata_2 section A COFF file section. It is normally created by the compiler to hold all
the ROM data symbols which occupy 2 bytes in memory.

.rdata_4 section A COFF file section. It is normally created by the compiler to hold all
the ROM data symbols which occupy 4 bytes in memory.

.text section A COFF file section. The .text section contains executable code.

Allocation The process by which the linker constructs output sections from input
sections and allocates memory for the output sections.

COFF Acronym for Common Object File Format. This is the standard object
file format for many software development tools, including the Compact-
RISC software development tools.
A COFF file contains machine code and data and additional information
for relocation and debugging purposes.

CompactRISC Object Tools Reference Manual GLOSSARY B-2

Common data Refers to external symbols that are not defined in any input object file,
but are instead consolidated and allocated by the linker. Examples of
common data include symbols that are declared with the .comm assem-
bler directive, uninitialized variables declared in C outside any function,
and Fortran COMMONs.

Cross configu-
ration

When the compilation and execution of the compiled program are done
on different machines (the host and target machines are different).

Directive file The directive file controls certain actions of the linker (especially memo-
ry configuration and allocation). A directive file to be used as input for
the linking process may be specified on the linker invocation line.

Entry point The starting point of program execution. The entry point address is part
of the information saved in an executable object file. A symbol to mark
the entry point may be specified on the linker invocation line.

Executable ob-
ject file

An executable object file is the final product of a linking process. In an
executable object file all external symbolic references have been re-
solved. The executable object file is therefore in a form that can be exe-
cuted on the CompactRISC-based target system.

External symbol A symbol that is recognized by all files. Such a symbol can be defined
in one file but referenced from any file.

Initialization ta-
ble

A table created by the linker to support data initialization. This table
may be used by programs requiring initialized data in an embedded en-
vironment. The initialized data is copied from ROM to RAM at run-time.
The initialization table provides information about memory segments to
be copied from ROM to RAM or to be filled with zeros at run-time.

Input section A COFF section of a linker input object file. The linker combines input
sections to create output sections. By default input sections of the same
name are combined to create one output section having this name in
the output file.

Library file A collection of object files that typically contains useful routines. The
linker selects from a specified library file those object files which resolve
external references.

Memory map A description of the memory layout after the linking process. A memory
map is an optional output of the linker.

Object file A file that is the output of either the assembler or the linker. An object
file contains compiled code and data and additional information for re-
location and debugging purposes.

Option The term for a parameter, specified on the command line, that is used
to control the utility.

CompactRISC Object Tools Reference Manual GLOSSARY B-3

Output section A COFF section of a linker output object file. The linker combines input
sections to create output sections. By default input sections of the same
name are combined to create one output section having this name in
the output file.

Partially linked
object file

An object file created by the linker, which is unexecutable since it con-
tains unresolved external references. A partially linked object file may
be used as input for a subsequent linking process.

Relocation in-
formation

A part of the object file that is used by the linker in the relocation pro-
cess. Relocation information contains information on symbolic referenc-
es that require modification of pieces of code or data (holes) at link time.
The linker uses this information to calculate the final value of the holes.

Relocation pro-
cess

The process by which the linker modifies pieces of code or data (holes)
that cannot be calculated before link-time. These holes are typically ad-
dresses or displacements that are created as a result of symbolic refer-
ences. After the allocation process is completed the linker assigns final
values to these holes, using relocation information (part of the COFF
file) from the input object files.

Resolution of
symbolic refer-
ences

The process by which the linker matches external symbolic references
with their definition.

Section A contiguous block of code or data having common attributes. In the
COFF file code and data are separated to sections. Typically there are
three types of sections: the .text section, containing machine code; the
.data, .data_1, .data_2, .data_4 sections, containing initialized data; and
the .bss, .bss_1, .bss_2, .bss_4 sections, containing uninitialized data.

Symbol A symbol is used either to mark a program location or to represent a
data element. Each symbol is associated with a memory address after
the linking process.

Symbol directo-
ry

Part of a library file. The symbol directory contains information on the
external symbols which are defined in library members. The linker uses
the symbol directory to select the correct library member for the linking
process.

Symbol table Part of the object file. The symbol table contains information about
symbols defined or referenced in the source program(s), and is used for
various purposes such as resolution of external references (by the link-
er) and symbolic debugging.

Symbolic refer-
ence

The use of a symbol in a statement other than its definition. An external
symbolic reference is a reference to a symbol which is defined outside
the module in which it resides.

CompactRISC Object Tools Reference Manual INDEX-1

A

Aligning output section 3-12
Allocation of output sections 3-1, 3-9

assigning an address 4-6
creating output sections 4-5
memory map 4-15
options 3-9

Allocation options 3-9
BIND 3-9
INTO 3-9
ROMBIND 3-9
ROMINTO 3-9

Archive
creating 5-1

Archiver invocation options 5-1
Assigning a memory address 4-6
Assignment operators 3-4
Assignment statement 3-14

operators 3-4
within SECTIONS statement 3-16

Attribute letter 3-7

B

Binary operators 3-3
precedence 3-3

BIND allocation option 3-9, 4-6
.bss section 1-2, 2-6

C

COFF file 1-1, 2-4, 4-2, 4-18
.bss section 1-2
.data section 1-2
entry point 2-4
relocation information 4-18
.text section 1-2

Comment in directive file 3-6
Common data 2-6

.bss section 1-2, 2-6
Common Object File Format 1-1
Configuration

cross B-2
Creating an archive 5-1
Creating gaps 3-16
Creating output sections 4-5
crlib 1-1, 5-1
crlink 1-1

crprom 6-1
crprom invocation options 6-2
Current location symbol 3-16

D

-d invocation line option 2-3
.data section 1-2
Directive file 1-3, 1-4, 2-3, 3-1, 4-3, 4-5

assignment statement 3-14
comment 3-6
MEMORY statement 3-6
SECTIONS statements 3-8
specification 3-6
structure 3-1

Directive file example 3-2
Directive file structure

assignment statement 3-2
comment 3-1
input file specification 3-1
MEMORYstatement 3-1
output file options 3-2
SECTIONS statement 3-1

E

-e invocation line option 2-4
Entry point 2-4
EPROM programmer format

ASCII-hex 6-1
Intel-hex 6-1
Motorola 6-1

Error messages A-1
Example Directive file 3-2
Executable object file 1-1

linker output 1-3
memory map 2-4
relocation information 2-5
strip symbolic information 2-5

Expressions, directive file 3-2, 3-14
assignment operators 3-4
binary operators 3-3
integer syntax 3-3
special functions 3-4
unary operators 3-3

External symbol 4-3

INDEX

CompactRISC Object Tools Reference Manuall INDEX-2

F

-f invocation line option 2-6
File

directive 1-3, 1-4, 2-3, 3-1, 4-5
library 1-2, 2-1, 4-3
partially linked 1-2
simple object 1-2

FILEADDR 3-5
Function, linker 1-3, 1-4

allocation of output sections 1-4, 3-1, 4-5
resolution of symbolic references 1-4, 4-1

G

Gaps
creating 3-16

Grouping output sections 3-13

I

Initialization table 3-9
Input file specification 2-3, 2-4, 3-6
Input section 3-1, 3-8, 4-5, 4-15, 4-19
Input section specification 3-8
Input, linker

directive file 1-3
partially linked object file 1-2
simple object file 1-2

Integer syntax 3-3
decimal 3-3
hexadecimal 3-3
octal 3-3

INTO allocation option 3-10, 4-6
Invocation line 2-1

options 2-2
Invocation line option

-d 2-3
-e 2-4
-f 2-6
-k 2-5
-l 2-2
-M 2-7
-m 2-4
-o 2-2
-r 2-4
-S 2-6
-s 2-5
-t 2-6
-u 2-6
-V 2-7
-VS 2-7
-x 2-5

Invocation options 2-2
dump errors and warnings 2-9
enable code overlay allocation 2-9

issue warning for defined common data 2-7,
2-9

keep relocation information 2-5
keep relocation information in executable

file 2-8
request memory map 2-4
request output memory map 2-8
retain relocation information 2-4, 2-8
specify directive file 2-3, 2-8
specify entry point 2-4
specify fill value 2-6, 2-9
specify library directory 2-3, 2-8
specify library filename 2-3, 2-9
specify output filename 2-2, 2-9
specify program entry point 2-9
specify undefined symbol 2-6, 2-9
specify version stamp 2-7, 2-8, 2-9
strip local symbolic information 2-9
strip symbolic information 2-5, 2-9
suppress error message 2-6, 2-9
suppress size warning 2-9
suppress warning message 2-6
version information 2-7, 2-8

Issue warning for defined common data 2-7

K

-k invocation line option 2-5

L

-l invocation line option 2-2
Library file 1-2, 2-1, 4-3

directory search 2-3
member 2-6, 4-3
specification 2-3, 3-6
symbol directory 4-3

Line number information 2-5
Linker

error messages A-1
functions 1-4
input 1-2

linker.def file 2-3

M

-M invocation line option 2-7
-m invocation line option 2-4
Memory

allocation 1-3, 1-4, 4-6
configuration 1-4, 3-1, 3-6, 4-6

Memory address 1-1, 1-4, 3-1, 3-6
assign 3-10, 3-11, 3-12, 3-14, 4-5, 4-6
relocation 4-18

Memory map 1-3, 1-4, 4-10, 4-15

CompactRISC Object Tools Reference Manuall INDEX-3

specification 2-4
MEMORY statement 3-6, 3-15, 4-6

attribute letter 3-7
Module table

entry 4-18

N

NEXT 3-6

O

-o invocation line option 2-2
Options

invocation 2-2
Options, allocation 3-9

BIND 3-9
INTO 3-9
ROMBIND 3-9
ROMINTO 3-9

Options, invocation
issue warning for defined common data 2-7
keep relocation information 2-5
request memory map 2-4
retain relocation information 2-4
specify directive file 2-3
specify entry point 2-4
specify fill value 2-6
specify library directory 2-3
specify library filename 2-3
specify output filename 2-2
specify undefined symbol 2-6
specify version stamp 2-7, 2-8
strip symbolic information 2-5
suppress error message 2-6
suppress warning message 2-6
version information 2-7

Options, output file 3-2, 3-17
Output file

options, specifying 3-17
Output section

aligning 3-12
allocation 1-4, 3-1, 3-7, 3-8, 3-9, 4-5
assigning an address 4-6
creating 3-1, 3-8, 4-5
creating gaps 3-16
grouping 3-13

Output, linker
executable object file 1-4
memory map 1-4
options 3-2, 3-17
specification 2-2, 2-4

P

Partially linked object file 1-2
linker input 1-2
specification 2-4, 3-6

Precedence
binary operators 3-3
unary operators 3-3

R

-r invocation line option 2-4
Relocation information 2-4, 4-18
Relocation of memory address 4-18
Relocation table 4-18
Resolution of symbolic references 4-1, 4-2
Retain invocation line option 2-4
Retain relocation information 2-4

S

-S invocation line option 2-6
-s invocation line option 2-5
Section 1-1
Section gaps 2-6
SECTIONS statement 3-8, 4-5, 4-6

aligning a section 3-12
allocating a section to memory 3-9
grouping output sections 3-13
input section specification 3-8
symbol assignment 3-16

Simple object file 1-2
specification 3-6

SIZEOF 3-5
Special functions 3-4

file address function 3-5
highest memory address function 3-6
memory address function 3-5
next address function 3-5

Specify directive file 2-3
Specify fill value 2-6
Specify library directory 2-3
Specify library filename 2-3
Specify output filename 2-2
Specify program entry point 2-4
Specify undefined symbol 2-6
Specify version stamp 2-7
Strip symbolic information 2-5
Suppress error message 2-6
Suppress size warning 2-6
Symbol 1-4, 3-14, 4-1

directive file 4-3
external 1-4, 4-1, 4-3
library file 4-3

CompactRISC Object Tools Reference Manuall INDEX-4

linker defined 4-3
Symbol directory 4-3
Symbol table 1-4, 2-5, 4-2
Symbolic reference 4-18

resolution 1-1, 1-4, 4-1

T

-t invocation line option 2-6
.text section 1-2, 2-4

U

-u invocation line option 2-6
Unary operators 3-3

precedence 3-3

V

-V invocation line option 2-7
Version invocation line option 2-7
-VS invocation line option 2-7

X

-x invocation line option 2-5

	CONTENTS
	OVERVIEW
	INTRODUCTION
	THE COMMON OBJECT FILE FORMAT
	LINKER INPUT AND OUTPUT FILES
	LINKER FUNCTIONS

	INVOKING THE LINKER
	INTRODUCTION
	INVOCATION LINE
	Libraries

	INVOCATION OPTIONS
	Specify Output Filename
	Specify Directive File
	Specify Standard Library Filename
	Specify Library Directory
	Request Memory Map
	Specify Program Entry Point
	Retain Relocation Information
	Keep Relocation Information
	Strip Symbolic Information
	Strip Local Symbolic Information
	Specify Undefined Symbol
	Specify Fill Value for Section Gaps
	Suppress Size Warning Message for Common Da...
	Suppress Error Message
	Issue Warning for Defined Common Data
	Output Linker Version Information
	Specify Version Stamp
	Enable Code Overlay Allocation
	Dump Errors and Warnings Into a File
	Enable Bank Switching Mechanism

	THE LINKER DIRECTIVE FILE
	INTRODUCTION
	STRUCTURE OF THE DIRECTIVE FILE
	DIRECTIVE FILE EXPRESSIONS
	Integer Syntax
	Unary and Binary Operators
	Assignment Operators
	Special Functions

	COMMENT
	INPUT FILE SPECIFICATION
	MEMORY STATEMENT
	SECTIONS STATEMENT
	Input Section Specification
	Allocating a Section to Memory
	Aligning a Section
	Setting the Section Type
	Grouping Output Sections

	ASSIGNMENT STATEMENT
	Symbol Assignment Within SECTIONS Statement
	Creating Gaps Within An Output Section

	OUTPUT FILE OPTIONS

	LINKER FUNCTIONS
	RESOLUTION OF SYMBOLIC REFERENCES
	Library Processing
	Symbol Definition in the Directive file
	Linker Defined Symbols

	ALLOCATION OF OUTPUT SECTIONS
	Creating Output Sections from Input Sections...
	Assigning an Address to an Output Section
	Using the Linker Definition File to Overlay ...
	Data Initialization Support
	Code Overlay Allocation
	Bank Switching
	Memory Map

	RELOCATION OF MEMORY ADDRESS
	Relocation Information
	The Relocation Process

	THE ARCHIVER
	INTRODUCTION
	CREATING ARCHIVE FILES
	INVOCATION AND USAGE

	THE EPROM FILE GENERATOR
	INTRODUCTION
	GENERATING EPROM FILES
	INVOCATION AND USAGE
	THE INTEL FORMAT
	00 - Data Record
	01 - End Record
	02 - Extended Segment Address Record
	03 - Start Record

	THE OBJECT FILE VIEWER
	INTRODUCTION
	INVOCATION AND USAGE

	LINKER ERROR MESSAGES
	INTRODUCTION
	ERROR MESSAGES

	GLOSSARY
	INDEX

