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PREFACE

Welcome to the CompactRISC Development Toolset for the CompactRISC microprocessor
family. This manual presents a first view of the CompactRISC Toolset, and shows you
how to make the best use of the tools.

This manual includes detailed descriptions of all the manuals in the toolset, and illus-
trates the use of the toolset with several examples for each of the tools.

The information contained in this manual is for reference only, and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

CompactRISC is a trademark of National Semiconductor Corporation.
National Semiconductor is a registered trademark of National Semiconductor Corporation.
Dinkum and Dinkumware are registered trademarks of Dinkumware Ltd.



CompactRISC Introduction CONTENTS-iv

CONTENTS

Chapter 1 OVERVIEW

1.1 INTRODUCTION ................................................................................................. 1-1

1.2 MANUAL ORGANIZATION ................................................................................. 1-1

1.3 THE COMPACTRISC MICROPROCESSOR FAMILY........................................ 1-2

1.4 THE COMPACTRISC DEVELOPMENT TOOLSET............................................ 1-2

1.5 MAIN FEATURES OF THE TOOLSET ............................................................... 1-3

1.5.1 The CompactRISC C Compiler .............................................................. 1-3

1.5.2 The CompactRISC Assembler ............................................................... 1-4

1.5.3 The CompactRISC Linker ...................................................................... 1-5

1.5.4 The CompactRISC Object Utilities ......................................................... 1-5

1.5.5 The CompactRISC Run-time Libraries ................................................... 1-6

1.5.6 The CompactRISC Debugger ................................................................ 1-8

1.6 COMPACTRISC DOCUMENTATION OVERVIEW............................................. 1-8

Chapter 2 USING THE TOOLSET

2.1 INSTALLING THE TOOLSET.............................................................................. 2-1

2.2 DOCUMENTATION CONVENTIONS ................................................................. 2-1

2.3 GETTING STARTED........................................................................................... 2-2

2.4 USING THE C COMPILER.................................................................................. 2-3

2.5 USING THE ASSEMBLER .................................................................................. 2-7

2.6 USING THE LINKER........................................................................................... 2-9

2.7 READING ARGUMENTS FROM A FILE........................................................... 2-12

2.8 USING THE DEBUGGER ................................................................................. 2-12

Chapter 3 THE DEBUGGING ENVIRONMENT

3.1 INTRODUCTION ................................................................................................. 3-1

3.1.1 Using the DBGCOM and ADB in Real Execution Mode ......................... 3-2

3.2 THE TARGET MONITOR (TMON)...................................................................... 3-3

3.3 CONECTING THE APPLICATION TO TMON .................................................... 3-4

3.3.1 Sharing the Interrupt Dispatch Table ...................................................... 3-4

3.3.2 Virtual I/O Service .................................................................................. 3-5



CompactRISC Introduction CONTENTS-v

3.3.3 End of Program ...................................................................................... 3-6

3.3.4 Summary of SVC Calls (new TMON only) ............................................. 3-6

3.3.5 Summary of Symbol Definitions (old TMON only) .................................. 3-7

Chapter 4 ARCHITECTURE TOPICS

4.1 INTRODUCTION ................................................................................................. 4-1

4.2 CALLING CONVENTION .................................................................................... 4-1

4.2.1 Calling a Subroutine ............................................................................... 4-1

4.2.2 Returning from a Subroutine .................................................................. 4-2

4.2.3 Passing Arguments to a Subroutine ....................................................... 4-2

4.2.4 Returning a Value ................................................................................... 4-3

4.2.5 Program Stack ........................................................................................ 4-4

4.2.6 Scratch and non-Scratch Registers ........................................................ 4-5

4.3  16-BIT PROGRAMMING ISSUES (CR16 ONLY) .............................................. 4-6

4.3.1 Small and Large Programming Models (CR16B only) ........................... 4-6

4.3.2 Basic Types ............................................................................................ 4-7

4.3.3 Far Data ................................................................................................. 4-7

4.3.4 Code Addresses ..................................................................................... 4-8

Chapter 5 EMBEDDED PROGRAMMING TOPICS

5.1 INTRODUCTION ................................................................................................. 5-1

5.2 WRITING TRAP AND INTERRUPT HANDLERS IN C ....................................... 5-1

5.3 CONST VARIABLES........................................................................................... 5-2

5.4 VOLATILE VARIABLES ...................................................................................... 5-3

5.5 USING THE LINKER DIRECTIVES .................................................................... 5-4

5.5.1 Binding the Start-up Routine to Address 0 ............................................. 5-5

5.5.2 Using Overlays to Save Space ............................................................... 5-5

5.5.3 Code Overlay Allocation ......................................................................... 5-6

5.5.4 Bank Switching ....................................................................................... 5-8

5.5.5 Using Link-time Information .................................................................. 5-11

5.6 DATA INITIALIZATION...................................................................................... 5-12

5.7 THE START-UP ROUTINE ............................................................................... 5-13

5.8 THE INTERRUPT DISPATCH TABLE .............................................................. 5-15

5.9 ENABLING AND DISABLING INTERRUPTS.................................................... 5-17

INDEX



CompactRISC Introduction FIGURES-vi

 FIGURES

Figure 2-1. The Debugger Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
Figure 2-2. Debugger Main Window after Stopping at Breakpoint  . . . . . . . . . . . . . . . . . 2-14
Figure 2-3. Caller Stack Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-14
Figure 2-4. Local Variable Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Figure 2-5. Register Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-15
Figure 3-1. Block Diagram of the CompactRISC Toolset  . . . . . . . . . . . . . . . . . . . . . . . . . 3-2
Figure 4-1. The Program Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-4



CompactRISC Introduction OVERVIEW  1-1

Chapter 1

OVERVIEW

1.1 INTRODUCTION

Welcome to the CompactRISC software cross-development toolset for
National Semiconductor’s CompactRISC embedded-microprocessor family.

CompactRISC is a family of RISC microprocessors targeted for embed-
ded systems, and covering a wide range of applications.

The CompactRISC Toolset supports software cross-development. Soft-
ware is developed on a host computer, while the target is an embedded
CompactRISC-based system. The toolset is designed to take full advan-
tage of the CompactRISC architecture. It supports the complete range of
CompactRISC-based microprocessors using a common user-interface.

1.2 MANUAL ORGANIZATION

This manual presents a first view of the CompactRISC Toolset, and
shows you how to make the best use of the tools. It contains the follow-
ing Chapters and Appendices:

Chapter 1 Overview, introduces the tools, and describes the structure of the doc-
umentation.

Chapter 2 Using the Toolset, provides a detailed tour through the CompactRISC
development tools. It uses a “getting-started” example to introduce each
tool together with its most important options.Chapter 3The Debugging Environment, describes the execution and debugging of
the application program on a real target-hardware platform (Real Exe-
cution Mode). It explains how the host computer is connected to the
target-hardware platform, how the application program is downloaded
and executed, and what hardware and software components are in-
volved in this operation.Chapter 4Architecture Topics, introduces several topics which are related to the
CompactRISC architecture (such as calling convention) and their impli-
cations on the CompactRISC Toolset.
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Chapter 5 Embedded Programming Topics, deals with various aspects of embedded
application programming and the way they are handled by the
CompactRISC Toolset.

1.3 THE COMPACTRISC MICROPROCESSOR FAMILY

The CompactRISC core is the first CPU core, specifically designed for
the embedded microprocessor market, to use RISC technology.
CompactRISC CPU cores can range from 8-bit to 64-bit. The current
CompactRISC implementation consists of 16 and 32-bit CPU cores. All
CompactRISC-based CPU cores have very similar instruction sets, regis-
ter sets, addressing modes, interrupt and trap handling and debug sup-
port. This common programming model ensures efficient high-level
language execution, and highly portable code.

The CompactRISC CPU cores are designed for minimum die size, small
code size, high performance, reduced power consumption, and flexible
design methodology. These features make the CompactRISC competitive
in a wide range of applications, including cost-sensitive and power-sen-
sitive applications.

The current implementations of CompactRISC-based CPU cores include
the following:

• CR16A - the first CompactRISC-based 16-bit core.

• CR16B - the second generation enhanced 16-bit core.

• CR32A - the first CompactRISC-based 32-bit core.

We recommend that you familiarize yourself with the CompactRISC ar-
chitecture (i.e., its programming model, register set, instruction set
etc.), especially if you are going to program in assembly language. Refer
to the appropriate Chip Reference Manual.

1.4 THE COMPACTRISC DEVELOPMENT TOOLSET

The CompactRISC tools are cross-development tools. You develop a pro-
gram, compile, link and optionally simulate it, on a host computer. The
program’s machine code and data is then downloaded to a Compact-
RISC microprocessor-based target system for execution and debugging,
using a debugger which runs on the host. Once it is verified it can be
programmed in ROM and executed (stand-alone) on the target system.
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The CompactRISC Development Toolset includes the following compo-
nents:

• Optimizing ANSI C Compiler

• C run-time libraries

• Assembler with Macro Pre-processor

• Linker

• Archiver

• Miscellaneous Object File utilities

• Performance and Functional Simulators

• Firmware Run-time environment (Monitor)

• Debugger Communication Layer (DBGCOM)

• Graphical Source Debugger

The CompactRISC Toolset is currently available for IBM PCs, and com-
patibles, using Windows 95 and Windows NT.

The following table shows the minimal PC configuration requirements,
for running the CompactRISC Toolset:

Table 1-1. CompactRISC Toolset System Requirements

1.5 MAIN FEATURES OF THE TOOLSET

1.5.1 The CompactRISC C Compiler

The toolset includes a full ANSI C compiler and optimizer. It generates
high-quality code for the CompactRISC architecture. The CompactRISC
C Compiler is derived from the well-known GNU C Compiler from the
Free Software Foundation. It includes enhancements, such as intrinsic
functions, source code register control, and full structure layout con-
trol, specifically for the development of embedded code.

Processor i486 or later

OS
MS Windows 95®

MS Windows NT ®

Memory 8 Mbytes

Communication hardware
(required only when connecting to a
development board)

RS-232 port or RS-422 add-in card, or
JTAG add-in card
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Using the advanced features of this compiler you can develop your ap-
plication entirely in the C language, thereby reducing development time
and improving the portability of your code. The C compiler’s main fea-
tures are:

• Full ANSI C

• GNU C compatible

• Allows programming of interrupt/trap handlers in C

• Fully supports the underlying CompactRISC architecture

• Optimizations can be tuned either to improve speed or save space

• User-controlled optimization level

• Global variables may be placed in registers for the entire program

• User-controlled alignment of variables and structure members

• Assembly output can be annotated with source lines

• Fast compilation mode

• Enables errors dump to file.

• Supports code Bank Switching (CR16A-based chips with add-on
bank-switching support only).

The C compiler performs global optimizations by looking at the code of
a whole procedure at a time, not only in the local context of a line or
loop. A wide range of optimization options allows you to finely control
the performance and memory allocation of your program.

The C compiler is aware of the hardware support available on each
CompactRISC-based microprocessor, and includes support and exten-
sions for embedded programming and application-specific instructions.
The compiler uses its knowledge of each specific implementation of the
CompactRISC instructions to generate the most efficient code sequence.
Thus, you can write even your most time-critical applications in C.

1.5.2 The CompactRISC Assembler

The toolset enables you to develop your application entirely in the C
language. You can, however, develop your application, or parts of it, in
assembly language using the CompactRISC Assembler.
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The assembler assembles CompactRISC assembly language source pro-
grams and generates relocatable object files. The CompactRISC Assem-
bler supports the Common Object File Format (COFF). The main
features of the assembler are:

• Powerful macro capability

• Supports the whole range of CompactRISC architectures

• Generates relocatable object files

• Optionally produces assembly program listing

• Displacement optimization reduces code-size and increases perfor-
mance

• Enables errors dump to file.

1.5.3 The CompactRISC Linker

A linker is a very important tool, especially for development of embed-
ded applications in which the developer requires full control over mem-
ory allocation. The CompactRISC Linker links one or more object files
and libraries and creates one executable object file. In addition it sup-
ports the needs of embedded applications and provides useful features
for developers of such applications.

The linker's main functions and features are:

• Resolves external symbolic references

• Relocates code and data

• Gives you full control over memory allocation and program layout
using linker directive language.

• Automatic data initialization support for embedded application soft-
ware

• Produces a detailed memory map

• Supports partial (incremental) linking

• Enables errors dump to file.

• Supports code and data overlays

• Supports code Bank Switching (CR16A-based chips with Bank
Switching hardware support)

The CompactRISC Linker supports the Common Object File Format
(COFF).

1.5.4 The CompactRISC Object Utilities

The toolset includes several utilities which handle object files:
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The CompactRISC Archiver: crlib. The archiver is used to combine
groups of object files into a single software library, or archive file.

The CompactRISC ROM Programing Utility: crprom. Translates an
executable file into one of several formats used by PROM programmers.
The whole process of creating an executable file and programmable
parts of it on PROMs is made simple by specifying both the RAM and
ROM configuration in the Linker Definition File. The complete memory
map is then automatically passed on to the programming interface utility.

The CompactRISC Object File Viewer Utility: crview. Displays infor-
mation about all parts of a COFF object file including object file head-
ers, section headers, raw data (i.e., sections contents like code,
initialized data), symbol table, line number information and relocation
information. All the information is displayed in a formatted and easy to
read manner. The symbol table can be displayed in different formats,
and can be filtered and sorted. In addition, there is an option to display
section size information in a very convenient format to evaluate pro-
gram memory consumption.

1.5.5 The CompactRISC Run-time Libraries

The toolset contains a set of run-time libraries. You can link your pro-
gram with any of these libraries according to the needs of your applica-
tion. The libraries are:

libc The CompactRISC standard ANSI-C library is based on the Dinkum C
library by Dinkumware Ltd. This library contains all the standard C func-
tions defined by ANSI. It includes standard I/O functions, string process-
ing functions, dynamic memory allocation functions, mathematical
functions and other ANSI functions. In addition, this library includes divi-
sion and modolu emulation functions, emulation functions for National
Semiconductor’s Series 32000 embedded microprocessor instructions (for
backward compatibility), and 32-bit emulation functions for users of the
CompactRISC 16 processors.

In addition, libc  includes low-level I/O functions that implement “vir-
tual I/O”. The virtual I/O feature of the CompactRISC toolset enables
programs that are executed by the debugger, on a development board,
or in simulation mode, to read data from, and write data to, the host
computer. Using virtual I/O, these programs can read from the stan-
dard input, or from any file on the host, write to the standard output,
or to any file on the host, and manipulate files on the host (e.g., remove
or rename them). Virtual I/O is implemented by a special protocol be-
tween the application program and the CompactRISC Debugger. The
low-level I/O functions implement this protocol from the application
program side. These functions are used by high-level I/O functions like
the ANSI-C standard I/O functions, but they can also be called directly
by the application program.
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libstart The default start-up library contains several run-time initialization ser-
vices that are required to run user applications on either an Application
Development Board (ADB) or a simulator. These services include the de-
fault initialization routines that are essential for proper execution (e.g.,
stack initialization), and the default interrupt dispatch table, that is es-
sential for debugging the application program. You should use this li-
brary to communicate with the new TMON (i.e., TMON ver 2.1.0 or
higher), or when developing in simulation mode. This is the default
start-up library.

libadb The start-up library which is compatible with old versions of TMON (i.e.,
TMON ver 2.0.x or lower). This library supplies the same functionality
as the new libstart , but is used to communicate with the old TMON.
This is the default start-up library for version 1.2, or lower.

libhfp The Floating-Point Emulation library contains functions which emulate
floating-point operation, since the CompactRISC CPU does not support
these operations at machine-level. The CompactRISC C compiler auto-
matically generates a call to one of these functions, whenever it detects
a floating-point operation in the source code.

libd The Dummy Floating-Point Emulation library has the same interface as
the Floating-Point emulation library, however, all its functions are emp-
ty. Use libd  instead of libhfp  when the application program does not
perform floating-point operations.

For more information about the CompactRISC Libraries refer to the
CompactRISC Toolset - Compiler Reference Manual.
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1.5.6 The CompactRISC Debugger

The CompactRISC Debugger is a graphical C source-level debugger with
special support for the various CompactRISC run-time environments.
Its main features are:

• Supports C or assembly programs

• Initialization files for automatic initialization and restart

• On-line Help

• User configurable buttons and keys

• Execution of commands from a preconstructed command (input) file

• Recording your debugging session, for later analysis and/or re-exe-
cution. Facilitates automation of regression test suites

• Function call stack display in a window

• Traversal of data structures (lists, etc.) through pointers using
mouse click

• ALIAS  and SET commands, for customizing the command interface

• Recall, editing, and re-execution of previous commands

• Multiple commands on a single line

• Mixed-mode debugging (both C source and assembly code are dis-
played in the source window at the same time)

• Save and restore debug environment

• Call user subroutines/functions from command level

• Access to host file system using Virtual I/O

1.6 COMPACTRISC DOCUMENTATION OVERVIEW

The CompactRISC documentation set describes and specifies the
CompactRISC cross development tools. It consists of the following manuals:

The CompactRISC Toolset - Introduction (This manual)

Provides an overview of the CompactRISC Development Tools.

The CompactRISC T oolset - C Compiler Ref erence Man ual

This manual provides guidelines for using the compiler and information
regarding the compilation process.

In addition, you will find an overview of the CompactRISC support li-
braries, including a complete C run-time library, system calls and emu-
lation functions.
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The CompactRISC T oolset - Assemb ler Ref erence Man ual

This manual describes the CompactRISC Assembler and assembly lan-
guage in detail.

The CompactRISC T oolset - Object T ools Ref erence Man ual

This manual describes the various tools that are used to maintain and
combine object and executable (COFF) files. This manual includes the
following parts:

• CompactRISC Linker

• CompactRISC Archiver

• The CompactRISC ROM Programing Utility

• The CompactRISC Crview Utility

Additional utilities, for viewing and controlling object files, are also de-
scribed in this manual.

The CompactRISC T oolset - Deb ugger Reference Man ual

This manual describes the CompactRISC graphical source-level debug-
ger, its user interface and its method of operation. It also describes the
CompactRISC execution and debugging environment, including the
Debugger Communication Layer (DBGCOM) software, add-in communi-
cation board (e.g., NSV-RS422-COM), function and performance simula-
tors, and the Application Development Board (ADB).
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Chapter 2

USING THE TOOLSET

2.1 INSTALLING THE TOOLSET

The release letter, which you received with the CompactRISC Toolset,
contains detailed installation instructions. Read the instructions care-
fully before you install the toolset.

2.2 DOCUMENTATION CONVENTIONS

The documentation conventions used in the CompactRISC Toolset man-
uals are shown below. The commands are case-sensitive, and although
shown in uppercase, they must be input in lowercase.

The commands you enter are shown in boldface-courier . Variables,
pathnames, and filenames are in italic-courier .

Syntax
notation

Spaces or blanks, when present, are significant; they must be entered
as shown. Multiple blanks may be used in place of a single blank.

All other characters or symbols appearing in the syntax must be en-
tered as shown. Brackets, parentheses, or braces which must be en-
tered are shown smaller than the symbols used to enclose optional
items. (Compare user-entered [ ], with [ ], which encloses optional
items.)

{ } Large braces enclose two or more items of which one, and only
one, must be used. The items are separated from each other by
a logical OR sign |.

[ ] Large brackets enclose optional item(s).

| Logical OR sign separates options, only one of which can be
used.

... Three consecutive periods indicate optional repetition of the pre-
ceding item(s). If a group of items can be repeated, the group is
enclosed in large parentheses ( ).

( ) Large parentheses enclose items which need to be grouped
together for optional repetition. If three consecutive commas or
periods follow an item, only that item may be repeated. The
parentheses indicate that the group may be repeated.



CompactRISC Introduction USING THE TOOLSET  2-2

Conventions
for examples

In examples user input is preceded by the > sign. System responses are
indented. For example:

To display the current selection:

> target
Current_target = SIMULATOR

Special keys to be entered are specified in all capital letters (ESC, TAB,
RETURN, etc.). Mouse operations are specified as they should be carried
out on the host system.

Syntax for
examples

This syntax shows how to enter a correct response to a command, or
engage in an interactive session with the system.

• All user-input lines are terminated by RETURN. RETURN is not in-
dicated, unless it is the only user input (indicating the default for
that input line).

2.3 GETTING STARTED

To demonstrate a development cycle using the CompactRISC Develop-
ment Toolset, we take a simple example that includes:

• Writing a C program

• Compiling the program

• Running the program

Consider the following program, often used by C beginners:

#include <stdio.h>
main()
{
     printf("Hello world !\n");
}

Step 1 We use the CompactRISC C Compiler, crcc , to compile and link this
program.

> crcc -g hello.c -o hello.x

This command compiles and links the C program, hello.c , and gener-
ates a CompactRISC executable object file. This file is named hello.x , as
specified by the -o  option. The -g option tells the compiler to generate
symbolic information, which is useful if the program is to be debugged
with the CompactRISC Debugger.
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Step 2 We now run this program on a CompactRISC target. At this stage, we do
not deal with running the program on a development board. Instead we
use the instruction-level simulator which runs on the host platform. By
default, the debugger executes programs in simulation mode. To this
end, we invoke the debugger by clicking the CRDB icon.

Step 3 We now load the executable object file hello , using the Load option
from the File menu. The program is now ready to run. Press the Go
button to run the program.

Figure 2-1. The Debugger Window

As you can see, the program has been run and then exited. Note that
the output appears in the debugger output window.

2.4 USING THE C COMPILER

You invoke the compiler with the crcc  command. However, crcc  does
more than just compile your code. If you invoke crcc  without specifying
any option:

> crcc prog.c

crcc  carries out the following:
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• It invokes the C preprocessor (cpp ).
This expands macros (defined by #define ), includes header files
(#include ), and processes conditional code (e.g., code enclosed by
an #ifdef  statement)

• It invokes the compiler engine (cc1 ).
This translates the preprocessed C program to a CompactRISC as-
sembly language program.

• It invokes the CompactRISC assembler (crasm ).
This converts the assembly program to an object file. The object file
contains CompactRISC machine code, program data and in addition
symbolic information, relocation information and additional useful
information.

• It invokes the CompactRISC linker (crlink ).
This links the object file with default run-time libraries in order to
generate executable object file. The default executable object file
name is cr.x .

In addition, crcc  has useful options which enable you to perform part,
or parts, of the above steps, as required.

-c option Use the -c  option to generate an object file without linking it. This is
useful when you want to invoke the CompactRISC Linker directly, and
not via crcc . With this option, crcc  generates an object file. The default
object name is identical to the C file name except that the suffix is re-
placed by .o . For example:

> crcc -c prog1.c
> crcc -c prog2.c
> crlink prog1.o prog2.o -o prog -ladb -lc

-S option Use the -S  option to inspect the assembly language program that was
generated from your C program. In this case, crcc  does not invoke the
assembler and leaves you with the assembly code. The default output
file name suffix is .s . For example:

> crcc -S prog1.c

-n option Use the -n  option, in conjunction with the -S option, to get the assem-
bly program generated by the compiler in annotated form. The compiler
puts the original C line as a comment in the assembly program just be-
fore the assembly code that was generated by this line. This output for-
mat is very convenient for analyzing the assembly code that was
generated from your C code. For example:

> crcc -S -n prog1.c

#--- foo()
#--- {
#--- int i;
        .globl  _a
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        .globl  _b
        .text
        .align  2
        .globl  _foo
_foo:
#---     for(i = 0; i < 10; i++)
        movw    $0,r3
        movw    $_a:m,r2
        movw    $_b:m,r1
.L5:
#---    a[i] = b[i];
        loadw   0(r1),r0
        storw   r0,0(r2)
        addw    $2,r2
        addw    $2,r1
        addw    $1,r3
        cmpw    $9,r3
        bge     .L5
#--- }
        jump    ra

-P option Use the -P  option to inspect your C code after it has been preprocessed
by the C preprocessor (cpp ) e.g., when you wish to see how your macros
were expanded, or which parts of the code are included. In this case
crcc  just invokes cpp , and the default output file name has the suffix
.i . For example:

> crcc -P prog1.c

-Q option Use the -Q option to check whether your program can be compiled with-
out any errors. This mode of compilation is very quick, and does not
generate any output.

-g option Use the -g  option when you want to debug your program. This option
is normally used during the whole development phase of the applica-
tion. When this option is specified the compiler generates symbolic in-
formation which is later on used by the CompactRISC Debugger to
perform source level debugging. Specifying this option in the compila-
tion of your program is therefore essential for debugging it.

-O option Use the -O option to generate optimal code in terms of speed and/or
space. In this case the compiler employs several optimization tech-
niques which are not used by default.  Note: if your program is com-
piled with the -O option it is still possible to debug it using the
CompactRISC Debugger though certain optimizations may somewhat
complicate the debugging.

-Os option If the compiler has an optimization trade-off between speed and space,
by default it optimizes for speed. However you can override this default
by specifying the -Os  option which implies space is favored over speed
in the optimization process.
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--z option Use the -z option to dump both errors and warnings into an error file.
The error file name is filename . err  where filename  is the base name
of C source file. Use -znfilename to override the default error file name.

--mlarge option
(CR16B only)

Use this option to generate code for the large programming model
(CR16B CPU core).

--msmall option
(CR16B only)

Use this option to generate code for the small programming model
(CR16B CPU core).

--mcr16a option Use this option to generate code for the CR16A CPU core.

The main options for crcc  are listed below.

Main Compiler Invocation Options

For other compiler options refer to the CompactRISC Toolset - C Compiler
Reference Manual.

Option Description

-g Generates symbolic information for the CompactRISC Debugger.

-O
The compiler employs several optimization techniques, which are not used
by default, to generate code optimized for speed and/or space.

-Os
Generates code optimized for space only. (By default the compiler optimizes
for speed.)

-Q Checks if your program compiles without errors; no output created.

-S

-n

Generates the assembly code, but does not invoke the assembler. Allows in-
spection of the assembly language program, generated from your C program.
Annotates this code. Puts the original C line as a comment in the assembly
program, just before the assembly code generated by this line

-P
Invokes cpp  only. Shows how your macros were expanded, or which parts
of the code were included.

-c
Invokes the CompactRISC Linker directly, and not via crcc  to generate an
object file, without linking it.

-z[n filename ] Dump errors and warnings into a file.

-mlarge Generates code for CR16B large model.

-msmall Generates code for CR16B small model.

-mcr16a Generates code for CR16A.
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2.5 USING THE ASSEMBLER

To assemble your CompactRISC assembly program, invoke crasm  directly
as follows:

> crasm prog1.s

The assembler generates an object file. The default object file name is
the same as the assembly source file except that the suffix is replaced
by .o . You can override this by specifying the -o  option with the alter-
native output object name. For example:

> crasm prog1.o -o prog1.obj

You can write your whole program in assembly if you wish. In this case
you must use the CompactRISC Linker after the assembler to generate
an executable object file. For example:

> crasm prog1.s
> crlink prog1.o -o prog1

or

> crasm prog1.s
> crasm prog2.s
> crlink prog1.o prog2.o -o prog

Use the -L  option to generate a program listing in addition to the out-
put object file. The listing is directed to the filename which is specified
immediately following the -L  option. If no file is specified the output is
directed to the standard output. For example:

> crasm -Lprog1.lis prog1.s

CompactRISC Assembler (CR16BS) Ver 2.0 (revision 3)  2/1/97  Page: 1

##### File "prog1.s" #####

     1                                  .globl  _a
     2                                  .globl  _b
     3                                  .text
     4                                  .align  2
     5                                  .globl  foo
     6  T00000000               foo:
     7  T00000000  6038                 movw    $0,r3
     8  T00000002  51380000           movw    $_a:m,r2
     9  T00000006  31380000           movw    $_b:m,r1
    10  T0000000a               loop:
    11  T0000000a  02a0                 loadw   0(r1),r0
    12  T0000000c  04e0                 storw   r0,0(r2)
    13  T0000000e  4220                 addw    $2,r2
    14  T00000010  2220                 addw    $2,r1
    15  T00000012  6120                 addw    $1,r3
    16  T00000014  692e                 cmpw    $9,r3
    17  T00000016  be15eaff           bge     .L5
    18  T0000001a  dd55                 jump    ra
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The CompactRISC Assembler has a built-in macro processor. Macro
processing is performed as the first pass of the assembly process. You
may use the -MO -MP options of crasm  if you want it to perform the
macro processing phase only, and look at its output. This is useful
when you use the macro processing capability of crasm  and you want
to verify that the macros are expanded according to the expected result.

For example:

> crasm -MO -MPprog1.m prog1.s

The output of macro processing phase is directed to the file prog1.s .
When no file is specified it is directed to the standard output.

As a brief example of the power of the macro capability of the
CompactRISC Assembler we use the macro assembler language to assign
values to registers r0  to r11 . Register r0 is assigned the value 1, r1  is as-
signed the value 2, r2  is assigned the value 3 and so on. The macro pro-
cessor can generate the required code with only three lines of macro
code.

.repeat 12,index
        movw ${index},r{{index}-1}
.endr

which is equivalent to

        movw $1,r0
        movw $2,r1
        movw $3,r2
        movw $4,r3
        movw $5,r4
        movw $6,r5
        movw $7,r6
        movw $8,r7
        movw $9,r8
        movw $10,r9
        movw $11,r10

movw $12,r11

The assembler can also use the C preprocessor cpp. Use the -c  option
to invoke cpp  as a preprocessor of your assembly program. When cpp  is
used as a preprocessor all traditional cpp  options (such as -I -D  and
-U ) are valid as assembler options. For example:

crasm -c -Iinclude prog.s
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The CR16B CPU core has two programming models: the small model
and the large model. The main differences between these models, from
the point of view of the assembler, are:

• Some of the branch/jump instructions require a register operand in
the small model, and a pair of registers operand in large model.

• Some of the instructions are encoded differently in the two models.
In other words, the machine code generated for a certain instruc-
tion may be different in the two models.

Thus, in the following example, the assembly program is parsed as a
CR16B large model program, and the assembler generates code for the
CR16B large model:

crasm -mlarge prog.s

Main Assembler Invocation Options

For other assembler options refer to the CompactRISC Toolset -
Assembler Reference Manual.

2.6 USING THE LINKER

To link your program, invoke crlink  and specify the input object file(s)
as argument(s). For example:

> crlink prog.o

The default executable object file name which is generated by the linker
is cr.x . To override this use the -o  option with the alternative output
file name. For example:

> crlink prog.o -o prog

Option Description

-L
Generates a program listing, in addition to the output object
file. By default, the listing is directed to the standard output.

-MP
Performs the macro processing pass only. Macro processing is
performed as the first pass of the assembly process.

-c Invokes the C preprocessor (cpp) before the assembly process.

-z[nfilename] Dump errors and warnings into a file.

-mlarge Generates code for CR16B large model.

-msmall Generates code for CR16B small model.

-mcr16a Generates code for CR16A.
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-l option If you wish to add standard libraries to the link process use the -l  op-
tion. For example, if you want to link your program with the Compact-
RISC standard C library (libc.a ) specify the -lc  option as in the
following example. The CompactRISC Linker knows where to search for
this library. Refer to the CompactRISC Toolset - C Compiler Reference
Manual for a list of standard libraries and their functions. For example:

> crlink prog.o -lc -o prog

Always specify libraries in the command line after specifying the input
object files. The reason for that is that the linker extracts from object li-
braries only objects that resolve external symbolic references. By the
time it processes a library it should have processed all the input objects
that refer to this library. Therefore the library should be specified after
the object file in the command line.

-d option Use the -d  option to specify a linker directive file. The linker directive
file is written in a special linker directive language.  When this option is
not specified the linker uses a default directive file named linker.def
which is provided with the CompactRISC Toolset. In most cases, you
use your own linker directive file. For example:

> crlink prog.o -o prog -d mylinker.def

With the linker directive language you can do the following:

• Define the address space of your application i.e. the memory seg-
ments which can be used by your application program.

• Define how to combine the input sections from the input object files
to output sections of the executable object file which is generated
by the linker.

• Allocate memory for the various output section by explicit address
assignment or by directing them to one of the memory segments in
the application address space.

• Assign addresses for program symbols at link time. These symbols
can be referred to by any of the input objects. In other words you
can refer from your C or assembly program to symbols which are
eventually defined at link time by the linker using the information
the linker has about the program layout in memory.

The following example shows a simple linker directive file, which defines
ROM and RAM address spaces, directs code and data to these address
spaces, allocates a stack in the RAM address space, and defines a sym-
bol whose address is the stack start address:

memory {
ROM : origin=0 length=0x8000     /* ROM address space */
RAM : origin=0xe000 len=0x800    /* RAM address space */

}

sections {
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.text into(ROM): { *(.text) }     /* Direct code to ROM */

.bss into(RAM): { *(.bss) *(.data) }/* Direct data to RAM */

.stack into(RAM): {. += 0x200;}  /* Allocate 0.5 K of RAM
                                              for program stack */

}

__STACK_START =  ADDR(.stack) + SIZEOF(.stack);
/* Stack start symbol */

For a detailed description of the CompactRISC linker directive language re-
fer to the CompactRISC Toolset - Object Tools Reference Manual.

-m option If you want to produce a memory map of your program use the -m op-
tion of crlink . The output is directed to the standard output and can
be redirected to a file.

Example > crlink prog.o -m > prog.map

                        CompactRISC LINKER MEMORY MAP

outputinput  memory size section
sectionsectionaddress contents

.text 0 38
.text 0 38 main.o

.data 38 10
.data_238 10 main.o

.bss 48 4
.bss_2 48 4 main.o

UNUSED4c to 8000 7fb4

.stack e000 200
e000 200 fill space

UNUSED e200 toe800 600

Note If the linker reports an error because your program cannot fit into
memory as specified in your linker directive file, you can still consult
the partial memory map that the linker creates. This memory map
shows you which parts of your program have already been located in
memory and how much space is left in each memory segment. Thus you
can determine why the remainder of your program cannot fit into mem-
ory.

-e option Use the -e  option of crlink  to specify the entry point of your program.
By the default crlink  looks for a global symbol named start  and takes
its address as the entry point to your program. You can override this
default by specifying the -e  option and the alternative symbol whose
address is to be used as entry point to your program. For example:

> crlink prog.o -o prog -e mystart
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Note If you run your program stand-alone (i.e., you burn it and run it from
ROM), make sure to place your start-up routine at address 0 so that
your entry point symbol has the address 0. This is because Compact-
RISC-architecture CPUs start execution at address 0 after reset.
If your program is not run stand-alone (i.e., you use the CompactRISC
Debugger on a development board, or in simulation mode) you can use
an entry point other than address 0. The debugger starts executing your
program from this entry point.

Main Linker Invocation Options

2.7 READING ARGUMENTS FROM A FILE

In some environments, command lines are limited in size.  To bypass
this problem, some CompactRISC development tools use a convention
which allows you to specify the command line arguments, or part of
them, in a file. If you specify @filename  as an argument, filename  is
read and its contents are used as part of the command line. For example:

>crcc @comflags.cmd prog1.c

2.8 USING THE DEBUGGER

Once you have compiled and linked your program, you can run it, and
debug it, with the CompactRISC Debugger.

Option Description

-o Overrides the default name for the executable object file.

-l
Add standard libraries to the link process. Libraries are speci-
fied in the command line, after specifying the input object files.

-d
Specifies a linker directive file. The default directive file is
linker.def

-m
Produces a memory map of your program. The output is di-
rected to the standard output or can be redirected to a file.

-e
Specify the entry point of your program. By default crlink
uses the global symbol start  as the entry point to your
program.

-z[n filename ] Dump errors and warnings into a file name.
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To invoke the CompactRISC Debugger, use the crdb  command in your
window environment. For example:

Invoke the debugger by double-clicking the CRDB icon.

In this chapter we discuss only a few of the crdb  commands and op-
tions.

The debugger supports two execution modes:

• Simulation mode. The program is executed by a built-in Compact-
RISC instruction simulator and not on a real target hardware plat-
form.

• Real execution mode. The program is downloaded to and executed
on a target hardware platform. This platform may be an Application
Development Board (ADB) which includes, among other compo-
nents, a CompactRISC based microprocessor.

By default, the debugger executes programs in simulation mode. In this
chapter we ignore the differences between the two execution modes and
focus on more general aspects of debugging. For details about the dif-
ferent debugger targets refer to Chapter 3.

Step 1 Use the Load option in the File menu to load your program into the
simulator. The debugger displays the source lines of your program’s en-
try point in its source window.

Step 2 Use the Go button to run the program.
or
Set a breakpoint in one or more places in your program.

To set a breakpoint, display the desired point in your code in the source
window and use the mouse to double-click on the source line in which
you want your program to be stopped. To cancel this breakpoint, dou-
ble-click it again. Now press the Go button. Your program execution
starts and if it reaches any of the breakpoints you have set, the pro-
gram stops. The debugger notifies you about the breakpoint you have
just reached and displays its source code in the source window.
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Figure 2-2. Debugger Main Window after Stopping at Breakpoint

Now that your program has stopped in a breakpoint you can examine
its state in various ways. You can first examine the calling chain at this
points by using the SHOW STACK option in the Show menu. You can
inspect the value of variables or any part of your memory using the
Memory option in the Show menu. You can see the contents of the reg-
isters in the Register option of the Show menu.

Figure 2-3. Caller Stack Window
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Figure 2-4. Local Variable Window

Figure 2-5. Register Window
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Chapter 3

THE DEBUGGING ENVIRONMENT

3.1 INTRODUCTION

To run and debug your program, you must understand the CompactRISC
debugging environment. So far we have discussed the CompactRISC
Debugger, and mentioned that it supports both simulation and real ex-
ecution modes. In this chapter we concentrate on the real execution
mode.

In real execution mode, you run your program on a target system,
called an Application Development Board (ADB). You use the debugger
to download the program to the ADB, and then to run and debug it. To
perform these operations a connection is needed between the Compact-
RISC Debugger, running on the host computer, and the target board.
The debugger communicates with firmware on the board called Target
MONitor (TMON) using the Debugger Communication Layer (DBGCOM)
software.

Debugger Communication Interface

In the CompactRISC debugging environment, version 2.0 or higher, we
use an additional component, the Debugger Communication Interface
(DBGCOM), as a mediator between the debugger and a target-specific
dll. The DBGCOM hides the physical communication media from the
debugger by providing the debugger with a standard API to communi-
cate with all targets, including a simulated target running on the host.
The physical communication layer is thus fully transparent to the de-
bugger.
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3.2 THE TARGET MONITOR (TMON)

As mentioned above, each ADB contains software, called the target
monitor (TMON), which is responsible for debugging support.

There are two families of TMON:

• Old TMON
TMON ver 2.0.x or lower. To communicate with old TMON, link your
application with the libadb  start-up library.

• New TMON
TMON ver 2.1.0 or higher. To communicate with new TMON, link
your application with the libstart  start-up library.
This is the default start-up library.

Using the TMON protocol, the debugger can retrieve ADB status infor-
mation (e.g., contents of registers and memory), or modify information
on the ADB. It can also download the application code to the ADB. In
addition, TMON can report different events that occur on the ADB (like
breakpoints or other traps) to the debugger, and finally, it is used for
virtual I/O requests issued by the application on the ADB. For more de-
tails about virtual I/O see Section 3.3.2.

There is a different version of TMON for each ADB. The appropriate
TMON software version is installed on one or more EPROMs which are
part of your ADB. If you develop your own ADB, you must customize
the TMON software and make the necessary modification for this ADB.
In a typical case most parts of TMON require no change, hence custom-
ization is not expected to be a major task.

To make your application independent of the TMON version, the
CompactRISC Toolset has changed to a new TMON approach. In this
new approach, TMON updates all the debugging traps located in your
dispatch table (e.g., bpt traps) in run-time using the supervisor call. In
the old TMON approach, you had to update the dispatch table in link
time, i.e., TMON trap addresses had to be located in the linker defini-
tion file. Refer to your ADB reference manual to clarify which TMON you
are using (usually, new TMON is version 2.0, or higher).

For proper communication with TMON, link your application with a
start-up library that provides the necessary initializations. (The start-up
library is provided with the CompactRISC Toolset).

Use the libstart.a  start-up library to communicate with either a new
TMON, or the simulator. This is the default start-up library.

Use the libadb.a  start-up library to communicate with an old TMON.
To use this library, you must define __tmon , __eop  and __vio  in your
linker definition file, or the default file.
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* Default Start-up Library.

The start-up library is also provided in source form so that you can
customize it for your application needs. For example, when you move
your application to production mode you no longer need TMON services,
and you can replace the default trap handlers. To customize any mod-
ule of the start-up library, simply modify its source, compile it, and add
it to the list of your objects in the linking phase before the start-up li-
brary so that it overrides the start-up library.

3.3 CONECTING THE APPLICATION TO TMON

TMON is an independent program which is not directly linked with your
application. It resides in a pre-allocated memory area that typically re-
quires about 1.5 - 2 Kbytes for its code and data. See your ADB manual
for details of TMON’s pre-allocated memory. Make sure that you do not
allocate any part of this memory space to your program. This can best
be done by dedicating an address range for TMON in your linker direc-
tive file. For example:

MEMORY {

  ROM: origin=0, length=0xa000
  RAM: origin=0xa000, length=0x1000
  /* The following address range is reserved for TMON */
  tmon_data: origin=0xD800, length= 0x280
  tmon_code: origin=0xDB00, length= 0x500
}

3.3.1 Sharing the Interrupt Dispatch Table

Although the application program is not linked with TMON, it shares
one important resource with it. This resource is the interrupt dispatch
table. This table contains addresses of all exception handlers. The ex-
ception list includes traps (e.g., breakpoint trap, trace trap) which are
handled by TMON, and also application-specific interrupts (e.g., timer,
UART) which are handled by the application.

Environment Start-up Library Comments

Simulator libstart  *

New TMON libstart  *

Old TMON libadb
The symbols __tmon , __eop , __vio
must be defined in your linker directive file
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There are two approaches for sharing this interrupt dispatch table be-
tween the application and TMON, depending on the TMON you are us-
ing (see also Section 3.2):

New TMON
approach

Initially, TMON holds the interrupt table, as it is the first program to re-
ceive control on reset. However, the application can set up the interrupt
table in its own address space. This is done as part of the start-up rou-
tine. To move the table to the application space, and maintain debug-
ging capability, the first part of the table, containing the addresses of
trap handlers that are handled by TMON, must be copied to the new lo-
cation of the table. The application achieves this by generating a super-
visor call (SVC) trap, that is a service request from TMON. TMON
handles this request by copying the first 16 entries of the table to the
new table address, that is provided as one of the parameters of the re-
quest. After the table has been moved to the application space, trap
handlers are still handled by TMON when they occur, and thus it is
possible to debug the application. The following example, taken from the
start-up routine, demonstrates how the application sets up the inter-
rupt table in its own space.

Example The following start-up routine is for the CR16B core (large mode) used
with new TMON:

movd        $__dispatch_table, (r2,r1)      # User table
movw        $0x102, r0
excp        svc # now TMON updates the user

# dispatch table.
movw        $0x100,r0 # Set dispatch table width
lpr         r0,cfg # to 32 bits.
lpr         r1,intbasel # Switch to user dispatch
lpr         r2,intbaseh # table.

Old TMON
approach

As in the new approach, above, TMON holds the dispatch table initially.
However, once the application moves the dispatch table to its own space
it also sets up its own trap handlers in the table. These new handlers
are part of the libadb  library that is linked with the application. These
handlers simply mark the trap number, and jump into TMON. Thus
trap handlers are still handled by TMON.  To jump into TMON, the ap-
plication uses a predefined symbol, __tmon . This symbol is typically de-
fined in the linker directive file, and is assigned a hardwired address.

3.3.2 Virtual I/O Service

One important feature of the CompactRISC debugging environment is
the virtual I/O mechanism. This feature is useful only during the devel-
opment phase of your application. It enables your application to per-
form standard input and output to the host computer, and to access
files on the host as if it were running on the host.
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Virtual I/O is another case where the application has to communicate
with TMON. Virtual I/O requests are handled by the host debugger
through TMON.

The low-level virtual I/O routines, that are part of the CompactRISC C
library (libc ), issue an SVC trap with the appropriate parameters ac-
cording to the virtual I/O request type. The SVC trap is handled by
TMON, which transfers the request to the debugger. The debugger then
handles the virtual I/O request using standard TMON services (i.e.,
read/write memory or registers). The debugger handles each virtual I/O
low-level routine by knowing the calling convention of the CompactRISC
Toolset, and the prototype of each routine.

3.3.3 End of Program

To exit a program the application also requires a TMON service. Once
again there is a difference between old TMON and new TMON in the
way this is done:

New TMON
approach

The application issues an SVC request with the appropriate parameter.
TMON then reports the event to the debugger.

Old TMON
approach

The application jumps to a specific location in TMON, according to a pre-
defined symbol, __eop. This symbol is typically defined in the linker direc-
tive file. TMON in turn reports end-of-program event to the debugger.

3.3.4 Summary of SVC Calls (new TMON only)

Each SVC call has one or more parameters which are passed in regis-
ters. The main parameter is the request type, which is passed in r0. The
following table summarizes SVC request types:

  0x101 Copy interrupts dispatch table
  0x102 Copy interrupts dispatch table (CR16B large model)
  0x401 Virtual I/O low-level file open request
  0x402 Virtual I/O low-level file close request
  0x403 Virtual I/O low-level file read request
  0x404 Virtual I/O low-level file write request
  0x405 Virtual I/O low-level file lseak request
  0x406 Virtual I/O low-level file rename request
  0x407 Virtual I/O low-level file unlink request
  0x407 Virtual I/O low-level getenv request
  0x410 End Of Program indication.
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3.3.5 Summary of Symbol Definitions (old TMON only)

To link your application with the libadb.a  start-up library, you must
define some symbol in your linker directive file. These symbols are:

  __tmon TMON entry point for trap handlers

  __eop TMON entry point for program exiting
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Chapter 4

ARCHITECTURE TOPICS

4.1 INTRODUCTION

This chapter deals with several aspects of the CompactRISC architec-
ture which may interest you as a user of the CompactRISC Toolset. The
first part explains the CompactRISC calling convention, while the sec-
ond part is intended for CR16A/CR16B users only, and deals with some
aspects which are unique to the 16-bit programming environment.

4.2 CALLING CONVENTION

The calling convention is defined as part of the CompactRISC architec-
ture, and is supported by the CompactRISC Development Tools. The
calling convention consists of a set of rules which forms a handshake
between different pieces of code (subroutines), and defines how control
is transferred from one to another. It thus defines a general mechanism
for calling subroutines and returning from subroutines.

When you develop your entire application in the C language you may
not be aware of the calling convention since it is handled by the
CompactRISC C Compiler. To ensure compatibility between a calling
subroutine (C function) and a called subroutine we strongly recommend
that you use ANSI-C function prototypes. Using function prototypes en-
sures that the call to a function is compatible with its definition. In oth-
er words, it ensures that all arguments are correctly transferred from
the calling function to the called function.

Note that CR16A, CR32A and CR16B small programming model (see
Section 4.3.1) are identical in terms of the calling convention’s details.
The CR16B large programming model calling convention, is very similar
to the others, but has some minor differences.

4.2.1 Calling a Subroutine

The BAL or JAL instruction is used to call a subroutine. Each of these in-
structions performs two operations:
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• Saves the address of the following instruction (the value of the Pro-
gram Counter register) in a single general-purpose register or in a
specified general-purpose register pair (for CR16B large model only).

The calling convention requires the use of the RA register, or of the
register pair (ERA, RA) (for CR16B large model only). This single reg-
ister (or register pair) is used to store the return address.

• Transfers control to a specified location in the program (the subrou-
tine address).

Example 1

bal ra, get_next # call the subroutine "get_next"

or

jal ra, r7 # call the subroutine whose
   address is stored in r7

Example 2 For CR16B large model only:

bal (era,ra), get_next # call the subroutine "get_next"

or

jal (era,ra), (r8,r7) # call the subroutine whose address
   is stored in the pair r7, r8

4.2.2 Returning from a Subroutine

The jump instruction is used to return from a subroutine. The Program
jumps to the return address, which is stored in the RA register or in
(ERA, RA) register pair (for CR16B large model only), as follows:

jump ra # return to caller

For CR16B large model only:

jump (era,ra) # return to caller

4.2.3 Passing Arguments to a Subroutine

Normally arguments to subroutines are passed in registers. The
CompactRISC calling convention uses the general purpose registers r2 , r3 ,
r4  and r5  for this purpose. Usually, each argument is passed in one
register.
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For example, consider the following C line:

extern foo(int, int);
...
foo(5,7);

The following assembly code is generated for this subroutine call (on
CR16A):

movw $5, r2 # pass 1st argument
movw $7, r3 # pass 2nd argument
bal ra, _foo # call foo

If there are more than four arguments, registers r2 -r5  are used for
passing the first four arguments. The remaining arguments are passed
on the program stack (see below).

When a register can not hold an argument because of its size (e.g., long
(double-word) on the CR16A/CR16B, or double-precision floating-point
(quad-word) on CR32), it is passed in two registers.

The parameters of C functions with a variable number of arguments
(vararg ) like printf  are always passed on the stack. Here is the place
to emphasize the importance of function prototypes. When calling a
vararg  function without using a function prototype the arguments to
the functions are not passed on the stack (as they should be) since the
compiler does not know that the called function is of this kind. There-
fore always use a function prototype when calling a vararg  function as
in the following example:

extern int vafunc(int, ...)
...
vafunc(3, a, b, c);

4.2.4 Returning a Value

A subroutine can return one value to its caller. The calling convention
uses the R0 register for returning an integer-size value. In the 16-bit ar-
chitectures the register pair R0 and R1 is used for returning a long (32-
bit) integer value, with the least significant word in R0.

For example, consider the following C code:

return 5;

The assembly code generated from this line is:

movw $5, r0 # pass return value
jump ra # return to caller
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For the CR16B large model, the assembly code generated from this line is:

movw $5, r0 # pass return value
jump (era,ra) # return to caller

The only exception to this rule is a function that returns a structure. In
this case, the calling function must store the address of a structure in
R0. The called function then uses R0 as a pointer to store the resulting
structure.

4.2.5 Program Stack

The program stack is a contiguous memory space that may be used by
your program for:

• Allocating memory for local variables which are not in registers.

• Passing arguments in special cases. (See “Passing Arguments to a
Subroutine” on page 4-2.)

• Saving registers before calling a subroutine, or after being called.
(See “Scratch Registers” on page 4-5.)

The stack is a dynamic memory space which begins at a fixed location
(stack bottom) and grows towards lower memory addresses. Its lowest
address (also called top of stack) is changed dynamically and is usually
pointed to by the Stack Pointer (SP) register.

Figure 4-1. The Program Stack

Address 0
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Top of Stack
Stack Pointer (SP)

Stack
Space

Highest Memory Address
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A subroutine can allocate space on the stack by decrementing the value
of the SP register to adjust the top of stack. When this subroutine re-
turns it must restore the SP to its previous value, thereby releasing the
temporary space that it had occupied on the stack during its life-time.

The program stack always resides in the lowest 64 Kbytes of the CR16B
address space.

Note: (CR16B only) The pop , push  and popret  instructions assume that
the SP general purpose register is used as the program stack pointer.

4.2.6 Scratch and non-Scratch Registers

According to the convention, CompactRISC general-purpose registers
may be used as scratch registers or non-scratch registers.

Scratch Registers

The scratch registers are r0 to r6. Any of these registers can be freely
modified by any subroutine without first saving a backup of their previ-
ous value. The caller cannot assume that their value will remain the
same after a subroutine has returned. If for any reason the caller needs
to keep this value, it is its responsibility to save the scratch register on
the stack before calling the subroutine, and to restore it after the sub-
routine has returned.

Non-Scratch Registers

The non-scratch registers are r7 and above, including RA, SP, and ERA
(CR16B large model only). Before using any of these registers, a subrou-
tine must first store its previous value on the stack. Upon returning to
the caller the subroutine must restore this value. The caller can always
assume that these registers will not be clobbered by any subroutine
that it has called.

Exception The interrupt/trap subroutine is an exception to the rule for using
scratch registers. This kind of subroutine must always save and restore
every scratch register that may be used during the interrupt trap. This
is because there is no real caller. The interrupt, or trap, suspends an-
other subroutine which is not aware of, or prepared for, this intercep-
tion. To protect it, its scratch registers must be saved and restored so
that the interrupt, or trap, is transparent.
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4.3  16-BIT PROGRAMMING ISSUES (CR16 ONLY)

In this section we discuss some special issues which are unique to de-
veloping programs for the 16-bit architectures, or are related to differ-
ences between the CR16 and the CR32.

4.3.1 Small and Large Programming Models (CR16B only)

The CR16A architecture supports 128 Kbytes of program memory and
256 Kbytes of data memory. The CR16B architecture has enhanced ad-
dressing capabilities allowing it to support 2 Mbytes of memory for pro-
gram and data. This is achieved with two programming models: small
model and large model. Only the large model takes full advantage of the
CR16B address space. The small model generates more optimized code
and data, and in addition is binary backward compatible with the
CR16A.

• Address space. Small model is limited to 128 Kbytes of code and
256 Kbytes of data. In the large model, code and data can reside
anywhere in the CR16B 2 Mbyte address space.

• Some of the branch/jump assembly instructions require a register
operand in small model and a pair of registers operand in large
model.

• Some of the instructions are encoded differently in small model and
large model. In other words, for a certain instruction, the assembler
may generate different machine code in each model.

• In the small model, function pointers are 16 bits long. In the large
model, function pointers are 20 bits long, but since their size is
rounded-up they actually occupy 32-bits.

The CR16B C compiler and the CR16B assembler have options for gen-
erating large model code or small model code.

Note The National Semiconductor Toolset supports 256 Kbytes of data only.
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4.3.2 Basic Types

The integer size on CR16 is 16 bits, as opposed to 32 bits on the CR32.
Short integers are 16 bits long in both CR16 and CR32.  Similarly, long
integers are 32 bits long in both architectures. For your application to
be efficient, and portable between 16 and 32-bit architectures, you
should bear in mind the following rules:

• In general, use int  for integer definitions.

• If an integer variable is not intended to hold more than 16 bits, and
your application is space sensitive, define it as short.

• If an integer variable might have to hold more than 16 bits, define
it as long.

• Wherever possible, define variables that are used as array indices as int .

4.3.3 Far Data

Both the CR16A, and the CR16B small programming model, support
256 Kbytes of programming memory. The large programming model of
the CR16B supports 2 Mbytes of program and data memory.

In all the CR16 programming models, however, the data in the address
space above 64 Kbytes (which we call "far data") has a unique aspect. If
a pointer to data is below 64K, the compiler generates code which ac-
cesses this data using a register-relative addressing mode. The pointer
value is copied to the register prior to accessing the data. Since a CR16
register is 16 bits wide, they can point to any address in the range 0 -
64K. For a pointer to far data, the compiler must use far register rela-
tive addressing mode. Two registers are required to hold the value of the
pointer, since it contains more than 16 bits. Therefore, if you have a
pointer that may point to far data you must use the __far  qualifier to
inform the compiler. For example:

__far int *p;

Clearly, using a far pointer is slower than using a normal pointer since
a far pointer must be loaded into two registers rather than one. You
should, therefore, declare a pointer as a far pointer only if you are sure
that it is going to point to far data at some stage.

Arrays in the far data address range should also be declared as far. For
example:

__far char a[1000];
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In addition to far pointers, you should also declare any variable in the
far data address range, whose address may be taken, as far. For example:

void foo(__far int *)
...
__far int i;
...
foo(&i);

Note The National Semiconductor Toolset supports 256 Kbytes of data only.

4.3.4 Code Addresses

CR16A and
CR16B small
model

The CR16A architecture, and the CR16B small programming model,
support a code address space in the range of 0-128K (17-bit address-
ing). Since CR16 instructions must always start on an even address, the
least-significant-bit of the address is always 0, and therefore is redun-
dant. This makes it possible to encode code address into 16 bits. These
16 bits represent bits 1-16 of the address, while bit 0 (the least-signifi-
cant-bit) is implied.

The CompactRISC C Compiler takes care of address encoding and thus
this is transparent to you, as long as you write your program in C.

If, however, you write your program in CompactRISC assembly, and have a
label of code, use the .code_label  directive to define this label as a label
of code (rather than data) to use a pointer to this place in the code.

Example .code_label  abc
# qualify abc as a label of code

abc: ...
movw $abc, r5 # load the encoded address of abc to r5
...
jump r5 # jump to the code address in r5

Since we define abc  as a label of code, the movw instruction copies bits
1-16 of the address of abc  (rather than bits 0-15) to r5 , and this en-
sures that the jump instruction will later work properly.

Another good example is the interrupt dispatch table:

.code_label handler_1
handler_1:
...

.code_label handler_2
handler_2:
...

.code_label handler_3
handler_3:
...
__dispatch_table:

.word handler_1
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.word handler_2

.word handler_3

...

The addresses of the handlers are encoded correctly in the dispatch ta-
ble because the respective labels have been defined as labels of code.

CR16B large
model

The code address space of the CR16B large programming model is 2
Mbytes. However a code address is encoded in 20 bits, and not in 21
bits address, because code addresses are always even and bit 0 is im-
plied. The 20 bits are encoded over a double word (32 bits). As shown
above it is important for an assembly programmer to qualify a code ad-
dress using the .code_label  directive. This ensures that the assembler
uses the 20 bit encoding of the code address, rather than the full 21-bit
address.

Example .code_label  abc
# qualify abc as a label of code

abc: ...
movd $abc, (r6,r5)

# load the encoded address of abc to the
# register pair (r6,r5)
...

jump (r6,r5)
# jump to the code address in the
# register pair (r6,r5)

Note that bits 1-16 of the address are loaded into r5  while bits 17-20
are loaded into r6 .

The second example, as above, is an assembly definition of the interrupt
dispatch table, this time in CR16B large model. Again the .code_label
directive ensures that the addresses are encoded correctly.

Example .code_label handler_1
handler_1:
...

.code_label handler_2
handler_2:
...

.code_label handler_3
handler_3:
...
__dispatch_table:

.double handler_1

.double handler_2

.double handler_3
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Chapter 5

EMBEDDED PROGRAMMING TOPICS

5.1 INTRODUCTION

This chapter deals with various aspects of embedded application pro-
gramming and the way they are reflected in the CompactRISC Toolset.
These aspects are:

• Writing trap and interrupt handlers in C.

• Constant and volatile variables and their usage.

• Using the linker for different purposes.

• Data initialization.

• The interrupt dispatch table.

• Interrupt enabling and disabling, and nested interrupts.

The information in this chapter may be very useful for every embedded
application programmer who uses the CompactRISC Toolset.

5.2 WRITING TRAP AND INTERRUPT HANDLERS IN C

The CompactRISC C Compiler allows trap and interrupt handlers to be
developed entirely in the C language. You do not need to write any part
of the handler in assembly. In order to develop your trap/interrupt han-
dler in C, you write it as a normal C function of type void  with no ar-
guments. The only special action you must take is to use the #pragma
directive to inform the compiler that this C function is an interrupt or
trap handler.

Example extern volatile int time;

      #pragma interrupt (clock_int)

void clock_int()
{

time++;
}

The function clock_int  is declared as an interrupt handler.

When the compiler generates code for a function which is declared as
an interrupt, or trap handler, it does the following:
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• Uses the retx  (return from exception) instruction for returning
from the handler.
This instruction restores the PC and PSR registers from the inter-
rupt stack (pointed to by the ISP register).

• Saves all the scratch registers used by the function on the stack.
Normally a function can use scratch registers freely without first
saving them (see Section 4.2). However since a handler function oc-
curs asynchronously it must save scratch registers too.
If this function calls another function, all the scratch registers are
saved, since the caller does not know which scratch registers are
modified by the called function.

Following is an example of assembly code generated by the Compact-
RISC C Compiler for the previous example.

Example _clock_int:
addw

$-2,sp
storw r0,0(sp)
loadw _time:m,r0
addw $1,r0
storw r0,_time:m
loadw 0(sp),r0
subw $-2,sp
retx

5.3 CONST VARIABLES

When you develop an embedded application program, you often put the
constant and read-only part of your data in ROM. This part of the data
should be distinguished from other, non-constant, data. To this end,
use the ANSI C const  qualifier when you declare such data.

Example const char days[7][3] = { "Mon", "Tue", "Wed", "Thu",
  "Fri", "Sat", "Sun" };

The CompactRISC C Compiler directs const  data to different sections
that can be later on located in ROM. Note that const  data must have
an initial value. For initializing non-constant data (which resides in
RAM) refer to Section 5.6.
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5.4 VOLATILE VARIABLES

When you develop an embedded application program in the C language,
you must be aware of volatile variables. The volatile qualifier is defined
by ANSI C, and as such is supported by the CompactRISC C Compiler.
It supports embedded applications in case where a certain memory ref-
erence must take place and thus the compiler must avoid using optimi-
zations which eliminate this memory reference.

Normally, the CompactRISC C Compiler can perform several kinds of
optimizations which affect the access to a variable in your program. For
example:

• The compiler can decide to put a variable in a register.

• The compiler can remove (optimize out) an access to a variable
which looks redundant.
For example, if you have two assignments to the same variable, and
you do not use this variable in-between, the compiler can decide
that the first assignment is redundant.

In some cases, you do not want the compiler to perform these optimiza-
tions. In these cases, use the volatile qualifier in the variable declara-
tion:

volatile int i;

The access to the integer variable i  is not optimized by the compiler.

Why would you want to declare a variable as volatile? We discuss here
two examples which explain the motivation.

The first example deals with a variable which may be asynchronously
accessed by an interrupt. Suppose you have a clock interrupt handler
which modifies the time, and some other function that reads the time
every now and then. For this function to access the time variable cor-
rectly, it should reside in memory, and must be accessed from memory.
You do not want the compiler to put this variable in a register, because
this register will not reflect the up-to-date value of the time as it is up-
dated by the interrupt handler. This variable should be declared as vol-
atile.

Example 1 clock interrupt handler:

volatile int time;
#pragma interrupt (clock_int)
void clock_int()
{
    time++;
}
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another function:

extern volatile int time;
display_state()
{
    ...
    if (time > 1000) do_something();
    ....
}

The second example concerns variables that represent memory-mapped
I/O registers. When you access these variables, you actually access a
peripheral I/O device (e.g., clock, UART, codec, etc.). For this reason
you do not want the compiler to put these variable in registers. You
want your program to access the memory address of the memory-
mapped I/O register. Therefore you define them as volatile.

Example 2 volatile unsigned char UART_reg;
...
UART_reg = 'x'; /* send the char 'x' to the serial line */

Another motivation for defining memory-mapped I/O registers as vola-
tile variables is that you may have consecutive writes to the same vari-
able without using the variable in between.

Example 3 volatile unsigned char UART_reg;
...
UART_reg = 'h';
UART_reg = 'e';
UART_reg = 'l';
UART_reg = 'l';
UART_reg = 'o';

By default the compiler may think that all the writes except the last one
are redundant, and may be optimized out. However this is not the case
because each time you write to this variable there is a side-effect on the
I/O device. Since the variable is declared here as volatile, the compiler
does not remove any of the lines in this example, and all the writes are
actually run.

5.5 USING THE LINKER DIRECTIVES

One of the most useful tools in the CompactRISC Toolset is the linker
directive file. This subject was briefly discussed in Section 2.6. In this
section we give several examples which demonstrate the use of linker
directives in embedded applications.
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5.5.1 Binding the Start-up Routine to Address 0

When a CompactRISC-based microprocessor wakes up, it starts execut-
ing instructions from address 0. Therefore, when you link a program
which is to run stand-alone (i.e., not in the debugging environment) you
must make sure that the entry point to your program is in address 0.
In other words, you must bind your start-up routine to address 0. The
right way to do this is to use linker directives to control the location of
the start-up code. With linker directives you can control the location of
any of the sections of the input object files.

Example memory {
ROM : origin=0 length=0x8000
...

}

sections {
.text BIND(0) : { start.o(.text) }
.text into(ROM) : { *(.text) }
...

}

In this example there are two .text  (code) output sections. The first
section contains only the code from the object start.o , and is bound
to address 0. The second .text  section contains the code from all the
input objects that have not yet been located. In other words, it contains
the code from all the objects except start.o . The second .text  section
is directed to ROM without binding it to any specific address.

5.5.2 Using Overlays to Save Space

Very often, in embedded applications which are sensitive to the RAM
size, you must use the same address space in RAM for different entities
that are not used at the same time. The linker directives support this
requirement in several ways. In the first example we look at two large
buffers in RAM, which are not active simultaneously, and using linker
directives we allocate a special section for both of them:

Example memory { ...
RAM : origin 0xc000 len=0x2000
...

}

sections {
...
.overlay into(RAM) : { . += 0x400; }  /* allocate 1K for

                                                                         buffers */
}
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_buf1 = addr(.overlay);
_buf2 = addr(.overlay);

As you can see, linker directives create a special section, .overlay .
This special section is not composed from input sections. It just allo-
cates 1K bytes in RAM. Later, we assign two symbols (_buf1  and _buf2 )
to the start address of the .overlay  section. This creates an overlay of
two buffers, each of which can use space up to the section size (1K in
this example). These buffers, defined in the linker directive file, can be
used in a C program. For example:

extern unsigned char buf1[];

In the next example we look at two modules which are not active at the
same time, and therefore their static variables can share the same ad-
dress space in RAM (by static we mean non-automatic, i.e., not located
on the program stack). This can also be done with linker directives.

Example memory {
...
RAM : origin 0xc000 len=0x2000
...

}

sections {
...
.overlay into(RAM) : { transmit.o(.bss)

  . = addr(.overlay);
  receive.o(.bss)
 }

...
}

In this example two modules, transmit and receive, use the same space
for their static variables. The .overlay  sections contain the .bss  (un-
initialized variables) input sections, which are not located one after the
other. After locating transmit.o , the location counter is returned to the
beginning of .overlay , and thus receive.o  and transmit.o  are locat-
ed in the same place.

5.5.3 Code Overlay Allocation

The CompactRISC linker supports a code overlay mechanism. You can
write several code sections in the same output section. This allows sev-
eral time-critical code segments to run from a single, small, fast memo-
ry (e.g., SRAM), while the entire program resides in a large, slow,
memory (e.g., DRAM).

The -O flag informs the linker to enable the code overlay mechanism.
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A special library function, cp_overlay_code , copies the code segments
into the fast memory. The application must call this function before ex-
ecuting the code. This function is included in the Application Develop-
ment Board library (libstart  for version 2.0, or libadb  for version
1.2).

Example Consider an application that has two critical functions, f1 and f2 (de-
fined in the files c1.o  and c2.o , respectively), and a 0x500 bytes of
fast-memory, starting at address 0x1000.

You should use the following linker definition file:

MEMORY {
...

CODE_MEM:
...

SRAM: origin = 0x1000,length = 0x500
...

}

SECTIONS {
...

.text BIND(0x1000) ROMINTO(_a=.; , CODE_MEM) :
{c1.o(.text)}

.text BIND(0x1000) ROMINTO(_b=.; , CODE_MEM) :
{c2.o(.text)}

.text INTO(CODE_MEM) : {*(.text)}
...

}

The application code that calls these functions should be:

#include <libstart.h> //for old tmon users <libadb.h>
extern void a();
extern void b();
...
application()
{

...
cp_overlay_code(b);
f2();
...
cp_overlay_code(a);
f1();
...
cp_overlay_code(b);
f2();

}
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In this example, the linker assigns the source address of the code sec-
tion, c1 , to the symbol a, and the source address of the code section,
c2 , to the symbol b. These symbols are used as parameters to
cp_overlay_code() .

The size of any critical code, defined with the code overlay mechanism,
must not exceed the size of the fast memory.

5.5.4 Bank Switching

The CR16A core enables accesses to 128KB code address space. The
Bank Switching mechanism enables execution of applications larger
than 128KB, on a CR16A-based chip.

Notes The Bank Switching mechanism, for a CR16A-based chip, requires
additional on-chip hardware.

The CompactRISC debugger does not support Bank Switching.

The Bank Switching mechanism provides virtual linear code address
space of size n * 128KB (where n is the number of banks). The applica-
tion resides in a sequence of 128KB external ROM segments (banks).
The Bank Switching mechanism enables mapping the code address
space of the CR16A core to one bank at a time. A special hardware reg-
ister, on the chip, selects the number of the currently mapped bank.

While compiling the C code for a Bank Switching application, you must
specify -mbank  to the compiler. While linking a Bank Switching applica-
tion, you must specify -BS  to the linker.

CODE_MEM

c1.o(.text)

c2.o(.text)

*(.text)

SRAM

cp_overlay_code(b)

cp_overlay_code(a)
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Mediator
function

A mediator function enables the linker to make a cross-bank function
call (i.e., the caller function is located in one bank and the called func-
tion is located in another). If the linker encounters a cross-bank func-
tion call, it generates a mediator function. The linker replaces the cross-
bank function call with a call to the mediator function.

The linker generates one mediator function for each cross-bank called
function in the application. It allocates the code for the mediator func-
tions to a code segment that exists in all the banks. This code segment
is called common-memory, and is described below.

For example, consider a cross-bank function call: f()  function, in one
bank, that calls g()  function, in another bank. The linker generates a
mediator function, m_g() , for the cross-bank called function g() , and
replaces the call to g()  with a call to m_g() . The mediator function,
m_g() , enables this cross-bank function call:

f()  prepares parameters for g() , as usual.

f()  calls to m_g()  (the mediator function of g() ).

m_g()  loads the address of g()  (the bank number for g()  and its
address in this bank).

m_g()  saves the return address (the current bank number and the
address for f()  in this bank).

m_g()  switches to the bank containing g()  (i.e., writes this bank
number to the dedicated hardware register).

m_g( ) calls g() .

and after g()  returns:

m_g()  switches back to the bank containing f() .

m_g()  returns to f() .

A mediator function is composed of two parts. One part loads the called
function's bank and address. This part is specific for every cross-bank
called function. The second part is fixed for all the mediator functions.

Common-
memory

A Bank Switching application must have a code segment that is always
visible, i.e., copied to all the banks. This common-memory includes in-
terrupt handlers, ROM data (.rdata  sections), and the code for the me-
diator functions (generated by the linker).

You must define the common-memory, in the linker.def  file, (see the
example below). The length field contains the size of the common-mem-
ory.

You must also direct the linker, using the linker.def  file, to allocate
all the always visible code and data (e.g., interrupt handlers and .rdata
section) to the common-memory (see the example below).
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In the remaining part of the common-memory, the linker allocates the
code for the mediator functions.

The size of the common-memory is calculated by adding the size of what
you have allocated to the common-memory (interrupt handlers, .rdata
sections) to the code size of all the mediator functions (generated by the
linker).

The code size (in bytes) of all the mediator functions is (N * 12) + 36

where:
N is an estimate of the number of the cross-bank called functions in
the application.
12 is the maximum size of the specific part of a mediator function,
and 36 is the size of the fixed part of all the mediator functions.

Example Consider an application with three modules (a.o , b.o , c.o ) that we want to
allocate to three banks. The MEMORY part of the linker.def  file should
have the form shown below (where the addresses are just for example):

MEMORY {
        common_memory:

origin=0x10000,            length=0x2000

        bank0_code_mem:
origin=0x12000,            length=0xC000

        bank1_code_mem:
origin=0x32000,            length=0xC000

        bank2_code_mem:
origin=0x52000,            length=0xC000

.

.

.
}

Note Define the common-memory area in the first bank (0 - 0x1FFFF).
The linker copies the common-memory to the corresponding ad-
dresses in the higher numbered banks. (In the above example, to
addresses 0x30000 - 0x32000 in the second bank, and to addresses
0x50000 -0x52000 in the third bank). Do not allocate anything to
these addresses.

To allocate the interrupt handlers’ code and .rdata  sections to the
common-memory, and the three modules to the three banks, the
SECTION part of the linker.def  file should have the form:

SECTIONS {

.text ALIGN(2) INTO(common_memory): { int1.o(.text) int2.o(.text) ... }

.rdata ALIGN(2) INTO(common_memory): { *(.rdata_2) *(.rdata_1) }
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.

.

.
.text ALIGN(2) INTO(bank0 _code_mem): { a.o(.text) }
.text ALIGN(2) INTO(bank1 _code_mem): { b.o(.text) }
.text ALIGN(2) INTO(bank2 _code_mem): { c.o(.text) }

}

Note You can allocate the interrupt handlers to the common-memory only if
they do not reside in the same modules as the rest of the application.

To define the address of the bank number register (in the linker.def  file):

BANK_NUM_REG =0x...; (address of the special register).

Limitations Cross-bank function calls through a pointer are not supported.

A module can not cross bank boundaries, branches between modules
are only allowed as function calls.

A cross-bank called function must not return structure as a return value.

5.5.5 Using Link-time Information

In some cases you may find it necessary to use the information that the
linker has during link-time in your program. Linker directives provide
ways to access useful link-time information that cannot be obtained in
any other way. In the following example we want to allocate space to a
buffer in a flexible manner. We want this buffer to be as large as possi-
ble, while limiting it to the amount of free space which is still left in
RAM. Of course, as the program is modified, the amount of free space
may increase or decrease, and we want this fact to be transparent to
the program.

Example memory {
...
RAM : origin 0xc000 len=0x2000
...

}

sections {
...
.bss into(RAM) : { ... }

}

/* Free memory space starts just after the .bss section */
_buf = addr(.bss) + sizeof(.bss);
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/* The amount of free space is end of RAM minus start
    address of the free memory */
_buf_size = 0xe000 - ( addr(.bss) + sizeof(.bss) );

Two symbols were defined in this example. These two symbols provide
the link-time information to the program. They can be used in a C pro-
gram as in the following example:

extern char buf[]; #define BUF_SIZE (&buf_size) ...

/* Fill buf with binary 1's */
for (i = 0; i < BUF_SIZE; i++)
    buf[i] = 0xff;

Note that we use &buf_size , and not simply buf_size , to get the size
of our buffer because the linker assigni thalue, toanyo symbos in th-
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The CompactRISC Development Toolset supports two aspects of data
initialization:

• Copying initialized data from ROM to RAM

• Clearing uninitialized data to zero

The CompactRISC Linker, in conjunction with the CompactRISC start-
up code, (which is part of libadb ) supports data initialization. The link-
er generates a special initialization table as part of the executable file.
This table contains the information which assists the start-up code in
performing the necessary data initializations. The initialization table has
two types of entries which match the two types of data initialization:

• An entry which describes a section of initialized data. This entry in-
cludes ROM address, RAM address and section size.

• An entry which describes a section of uninitialized data. This entry
includes RAM address and section size.

Note that, for a section of initialized data, you must specify both a ROM
address and a RAM address in the linker directive file if you want it to be
initialized. Refer to the CompactRISC Toolset - Object Tools Reference
Manual for more details.

The start-up routine in libadb  may call one of several initialization
functions which are also part of libadb . By default, it calls a function
which copies initialized data sections from ROM to RAM, and clears un-
initialized data sections. If you like, you can customize the start-up rou-
tine to call a different initialization function. For example if your
program has no initialized data but you do want to clear the uninitial-
ized data you can call an initialization function which does only the lat-
ter. Since this function is smaller, you benefit in code size. If your
program does not require data initialization you can remove the call to
data initialization function. In this case, you save both the function
code and the initialization table space.

Note that the CompactRISC C run-time library requires data initializa-
tion. Thus, if you are using this library in your program, you should not
skip data initialization.

5.7 THE START-UP ROUTINE

Embedded applications normally involve code which is executed before
your “main” routine, and performs any initializations essential for run-
ning your program. For example, you cannot run your C program before
the stack Pointer (SP) register has been initialized to point to the bottom
of the stack. These initializations are part of the start-up routine which
is run immediately after the CompactRISC microprocessor leaves the re-
set state.
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The CompactRISC Toolset includes the ADB library (libstart.a  or
libadb.a ) which provides a default start-up routine. Like all other
modules in the ADB library it is provided in both source code and ob-
ject form. This makes it possible for you to customize the start-up rou-
tine for your application needs. For being able to debug your program
you must link it with the appropriate start-up library according to the
target to be communicate with for more details refer to TBD.

The default start-up routine in the CompactRISC Toolset is provided in
assembly language since no C code can be executed before some initial-
izations are performed. Its entry point, which is also the entry point to
your program, is labeled by the name start . Note that start  is also
the default entry point symbol used by the CompactRISC Linker.

The default start-up routine carries out the following:

• Initializes the INTBASE register.
It assigns the address of the default interrupt dispatch table to this
register. The default interrupt dispatch table is another customiz-
able module in the ADB library.

• Initializes the SP (Stack Pointer) register.
It assigns the address of the bottom of the stack to this register.

• Initializes the ISP (Interrupt Stack Pointer) register.
It assigns the address of the bottom of the interrupt stack to this
register.

• Calls the init_bass_data  routine which is responsible for data ini-
tialization (both initialized and uninitialized data). For further de-
tails, see Section 5.6.

• Calls the main  routine, which is the actual entry point to your pro-
gram.
If main  ever returns (which does not normally happen in embedded
applications) it calls the exit  routine.

The following is an example of a start-up routine taken from libstart.a
(CR16B large model):

start::
    movd $__dispatch_table, (r2, r1)# Initialize intbase.
    movw $0x102, r0
    excp svc # Initialize debugger traps

# in user dispatch tabel.
    movw $0x100, r0 # Set dispatch table width
    lpr r0, cfg # to be 32 bits.
    lpr r1, intbasel
    lpr r1, intbasel

    movw $__STACK_START, r0 # Initialize program stack.
    movw r0, sp
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    movw $__ISTACK_START, r0 # Initialize interrupt stack.

    lpr r0, isp

    bal ra, _init_bss_data # Initialize data and bss

    bal ra, _main # C program entry point.

    movw r0, r2 # main's return value is a
# parameter for exit.

    br _exit

The following is an example of a start-up routine taken from libadb.a
(CR16A model):

start::
    movw $__dispatch_table, r0# Initialize intbase.
    lpr r0,intbase

    movw $__STACK_START, r0 # Initialize program stack.
    movw r0, sp

    movw $__ISTACK_START, r0 # Initialize interrupt stack.

    lpr r0, isp

    bal ra, _init_bss_data # Initialize data and bss

    bal ra, _main # C program entry point.

    movw r0, r2 # main's return value is a
# parameter for exit.

    br _exit

Note that some of the symbols that are used in the start-up routine are
defined, for convenience, in the default linker directive file. For example
the symbol __STACK_START which marks the program stack bottom is
defined as the end address of the .stack  section in the default linker di-
rective file.

5.8 THE INTERRUPT DISPATCH TABLE

The addresses of all exception handlers, including traps and interrupts,
are specified in the interrupt dispatch table. The CompactRISC pro-
gramming model includes a register called INTBASE which contains the
address of the interrupt dispatch table. When an exception occurs, the
CompactRISC processor uses the INTBASE register to determine the lo-
cation of the interrupt dispatch table. Each exception has a number
which is used as an index to the interrupt dispatch table to find the ad-
dress of the required exception handler.



The interrupt dispatch table has two parts. The first part is used for ex-
ception handlers which are common to all CompactRISC-based proces-
sors e.g., non-maskable interrupt (NMI) handler, breakpoint trap (BPT)
handler, division-by-zero trap (DVZ) handler. The second part is used
for handlers of specific interrupts that exist on a certain derivative of
the CompactRISC family. These interrupts originate from sources which
are peripherals for the CompactRISC core, and reside either on-chip or
externally. All these interrupts are controlled by an Interrupt Control
Unit (ICU). The ICU is the component that sends the interrupt trigger to
the CompactRISC core and also tells the CompactRISC core the number
of the interrupt which is currently pending.

void (*const _dispatch_table[]) = {
0,
nmi, /* Non-Maskabale Interrupt handler */
0, /* Reserved */
0, /* Reserved */
0, /* Reserved */
svc, /* Supervisor call trap handler */
dvz, /* Divide by Zero trap handler */
flg, /* Flag trap handler */
bpt, /* Breakpoint trap handler */
trc, /* Trace trap handler */
und, /* Undefined Instruction trap */
0, /* Reserved */
0, /* Reserved */
0, /* Reserved */
0, /* Reserved */
ise, /* In-System Emulator interrupt */
clock_hnd, /* Clock interrupt handler */
uart_hnd, /* UART interrupt handler */
codec_hnd, /* Codec interrupt handler */
mw_hnd /* MICROWIRE interrupt handler */

};

INTBASE

Exception # Absolute
Address

Dispatch Table

+ Entry Point
Address

x n
  PC
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In your application program, you have full control over the interrupt
dispatch table. You can install your exception handlers either statically
(i.e., the same exception handlers throughout the program execution) or
dynamically (replace one exception handler by another during execu-
tion). You can put your interrupt dispatch table in either ROM or RAM.

When you link your program with the ADB library (libstart  or libadb.a )
you get a default interrupt dispatch table, and a set of default exception
handlers.

You can always customize this table by modifying all or parts of the ta-
ble, or even the exception handlers themselves.

Note that some of the default exception handlers are essential for pro-
gram debugging, and you should not override them in the development
phase of the application. The default exception handlers are the break-
point trap (BPT) handler, the trace trap (TRC) handler and the ISE han-
dler. These handlers call the target monitor (TMON) on the ADB for
debugging purposes. In the final (production) software version these
handlers are no longer needed.

To override any part of the ADB library, modify any of the source files
of the library (provided with the CompactRISC Toolset), compile it, and
add the object file to the object list in the linking phase before the ADB
library.

5.9 ENABLING AND DISABLING INTERRUPTS

If you want the application program to serve interrupts, you must first
enable maskable interrupts. This is done by setting the I  bit of the PSR
register. Normally, you should do this shortly after reset. From a C
function you can use the set_i_bit  macro for this purpose.

#include <asm.h>
...
set_i_bit(); /* Enable maskable interrupts. */

Another reason to enable interrupts is to enable nested interrupts.
When an interrupt or trap is serviced, the CompactRISC CPU automat-
ically clears the I  bit of the PSR register. Thus, at this point nested in-
terrupts are disabled. If you want to enable nested interrupts, set the I
bit of the PSR from within the interrupt handler.

#include <asm.h>
...
#pragma interrupt (int_handler)
void int_handler()
{
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    set_i_bit(); /* Enable nested interrupts. */
    ...
}

By default, nested interrupts are disabled. If, in the interrupt handler,
you set the I  bit of the PSR, all maskable interrupts can be nested. You
can, however, selectively enable maskable interrupts as nested inter-
rupts by setting up the Interrupt Control Unit (ICU) of your chip to en-
able specific interrupts only. This must be done in the interrupt handler
just before you set the I  bit of the PSR enable nested interrupts. For in-
formation about the ICU, refer to the chip specification or datasheet.

The E bit, or local interrupt enable bit of the PSR register is related to
interrupt enabling. Interrupts are enabled only when both the I  bit and
the E bit of the PSR register are set. However, the E bit is set on reset,
whereas the I  bit is cleared. In addition, the CompactRISC instruction
set includes two dedicated instructions, di  and ei , for clearing and set-
ting the E bit, respectively.

Use the E bit, and its two dedicated instructions, for local interrupt dis-
abling. For example, if you have a critical section in your code, which
should be protected from interrupts, enclose it between di  and ei  in-
structions. From a C function you can use the _di_  and _ei_  macros.

#include <asm.h>
...
_di_(); /* Locally disable interrupts */
/* critical section starts here */
...
_ei_();

When the E bit is cleared, using the di  instruction, maskable interrupts
are disabled. When the E bit is set, using the ei  instruction, interrupts
are not necessarily enabled. Their previous status is restored. If inter-
rupts were initially enabled (I  bit was set), they are enabled again. On
the other hand, if they were initially disabled (I  bit was cleared), they
remain disabled. Thus, the di  and ei  pair is used to disable interrupts
locally, without changing their global status.
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