
DEBUG.book : cover+ i Sun Mar 9 10:56:45 1997

CompactRISC

Debugger

Reference Manual

Part Number: 424521426-004

February 1997

DEBUG.book : cover+ ii Sun Mar 9 10:56:45 1997

ii

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGES

0.6 August 1995 First beta release.

0.7 January 1996 Minor changes and corrections.

1.0 August 1996 CR16A Product Version.
CR32A Beta Version.

1.1 February 1997 Minor changes and corrections.

DEBUG.book : cover+ iii Sun Mar 9 10:56:45 1997

iii

PREFACE

Welcome to the CompactRISC Debugger. The debugger can be used for symbolic debugging of
high-level language programs generated by the CompactRISC C Compiler, as well as for as-
sembly language programs generated by the CompactRISC Assembler.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the prior
written consent of National Semiconductor Corporation.

DEBUG.book : cover+ iv Sun Mar 9 10:56:45 1997

DEBUG.book : DEBUGTOC.doc v Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual CONTENTS-v

CONTENTS

Chapter 1 OVERVIEW

1.1 INTRODUCTION .. 1-1

1.2 DEBUGGER FEATURES ... 1-2

1.3 DEVELOPMENT ENVIRONMENT ... 1-2

1.3.1 Instruction-Level Simulator (ILS) Environment 1-3

1.3.2 Board Environment .. 1-4

1.4 MANUAL ORGANIZATION .. 1-5

1.5 REFERENCE DOCUMENTS.. 1-5

Chapter 2 DEBUGGER FEATURES

2.1 INTRODUCTION .. 2-1

2.2 DEBUGGING WITH THE DEBUGGER.. 2-1

2.2.1 Installing the Debugger .. 2-1

2.2.2 Debugger Initialization and Configuration .. 2-1

2.2.3 Invoking the Debugger ... 2-2

2.2.4 Accessing On-line Help .. 2-3

2.2.5 Selecting the Target ... 2-3

2.2.6 Working with Executables and Source Files .. 2-3

2.2.7 Working with Breakpoints .. 2-4

2.2.8 Executing the Program .. 2-5

2.2.9 Looking at Memory and Variables ... 2-5

2.2.10 Virtual I/O Support ... 2-6

2.2.11 Performance Estimation ... 2-6

2.2.12 Working with Debugger Command Scripts .. 2-8

2.2.13 Saving and Restoring the Debugging Context 2-9

2.2.14 Working with the Monitor Commands .. 2-9

2.3 USING THE SIMULATION ENVIRONMENT.. 2-10

2.3.1 Peripheral Stimulus System ... 2-11

2.3.2 Simulating I/O Operations .. 2-13

2.3.3 Simulating Interrupts .. 2-14

Chapter 3 DEBUGGER USER INTERFACE

3.1 DEBUGGER GUI INTERFACE .. 3-1

3.1.1 GUI Operations .. 3-1

3.2 THE DEBUGGER WINDOWS.. 3-4

DEBUG.book : DEBUGTOC.doc vi Sun Mar 9 10:56:45 1997

CONTENTS-vi CompactRISC Debugger Reference Manual

3.3 MENU DESCRIPTIONS ..3-10

Chapter 4 THE DEBUGGER COMMANDS

4.1 INTRODUCTION ...4-1

4.1.1 Symbol References in Commands ...4-1

4.1.2 Command Entry and Formats ...4-2

4.1.3 Command Descriptions ..4-2

4.1.4 Common Command Modifiers ..4-3

4.2 ALIAS — DEFINE MACRO ...4-3

4.3 AUTOCOMMAND — SPECIFY COMMANDS FOR AUTO EXECUTION.........4-4

4.4 BREAK — SET HARDWARE BREAKPOINT..4-5

4.5 CALL — EXECUTE USER FUNCTION ..4-8

4.6 CD — CHANGE WORKING DIRECTORY..4-8

4.7 CHIP — SELECT CHIP FOR EMULATION OR SIMULATION.........................4-9

4.8 COMM — SET COMMUNICATIONS PARAMETERS4-9

4.9 DEBUG — SELECT THE EXECUTABLE FILE FOR DEBUGGING4-10

4.10 DEBUGMODE — SELECT DEBUGGING MODE...4-10

4.11 FIND — FIND VALUE IN MEMORY..4-11

4.12 FINDSRC — FIND STRING IN A SOURCE FILE ...4-12

4.13 GO — EXECUTION OF USER PROGRAM..4-13

4.14 INFO — DISPLAY DEBUGGER INFORMATION ...4-14

4.15 INPUT — EXECUTE COMMAND SCRIPT FILE ..4-14

4.16 LIST — LIST MEMORY OR FILE..4-15

4.17 LOG — RECORD DEBUGGER COMMAND SESSION4-16

4.18 MODIFY — MODIFY CONTENTS OF MEMORY OR SYMBOLS4-17

4.19 NEXT — EXECUTE NEXT SOURCE LINE (STEP OVER)4-18

4.20 NEXTINS — EXECUTE NEXT ASSEMBLY INSTRUCTION (STEP OVER)..4-19

4.21 PAUSE — SUSPEND INPUT FILE EXECUTION ...4-20

4.22 QUIT — EXIT FROM THE DEBUGGER ...4-20

4.23 RADIX — SET RADIX FOR OUTPUT DISPLAY ..4-20

4.24 RESET — RESET THE DEBUGGER AND THE TARGET BOARD4-21

4.25 RESUME — RESUME EXECUTION OF INPUT FILE....................................4-22

4.26 SAVECONFIG — SAVE CURRENT DEBUGGER CONFIGURATION4-22

4.27 SAVESTATE — SAVE CURRENT DEBUGGING STATE4-22

DEBUG.book : DEBUGTOC.doc vii Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual CONTENTS-vii

4.28 SET — DEFINE DEBUGGER VARIABLES AND STRINGS.......................... 4-23

4.29 SETSTATE — RESTORE DEBUGGING STATE... 4-23

4.30 SOFTBREAK — SET SOFTWARE BREAKPOINT.. 4-24

4.31 SRCMODE — SET SOURCE FILE DISPLAY MODE.................................... 4-25

4.32 SRCPATH — SET DIRECTORY PATH FOR SOURCE FILES 4-25

4.33 STDIO - REDIRECT VIRTUAL I/O STANDARD FILES.................................. 4-26

4.34 STEP — STEP ONE SOURCE LINE ... 4-27

4.35 STEPINS — STEP ONE ASSEMBLY INSTRUCTION................................... 4-27

4.36 SYMBOL — DISPLAY SYMBOL CHARACTERISTICS 4-29

4.37 SYNC — SYNCHRONIZE SOURCE FILE DISPLAY..................................... 4-30

4.38 TARGET — SPECIFY EXECUTION ENGINE.. 4-30

4.39 VERBOSE — MONITOR COMMUNICATION TRAFFIC TO TARGET.......... 4-31

4.40 VIEW — VIEW VALUE OF STRUCTURE OR SYMBOL................................ 4-32

4.41 WATCH — SELECT VARIABLES FOR AUTO DISPLAY 4-35

4.42 WHERE — DISPLAY CURRENT CONTEXT... 4-36

4.43 ! — SINGLE LINE COMMAND TO MONITOR ... 4-36

Chapter 5 INSTRUCTION-LEVEL SIMULATOR COMMANDS

5.1 INTRODUCTION .. 5-1

5.2 CONFIGURATION COMMANDS ... 5-2

5.3 PSS INTERNAL COMMANDS ... 5-3

5.4 SIM PSS COMMANDS (FROM DEBUGGER COMMAND LINE) 5-6

Appendix A QUICK REFERENCE GUIDE

Appendix B TROUBLE-SHOOTING HINTS

Appendix C PERIPHERAL SIMULATION SYSTEM - EXAMPLE

Appendix D MONITOR INTERFACE

Appendix E DEBUGGER LIMITATIONS

Appendix F PERFORMANCE SIMULATION CONFIGURATION FILE

Appendix G PERFORMANCE SIMULATION TRACE OUTPUT

INDEX

DEBUG.book : DEBUGLOF.doc viii Sun Mar 9 10:56:45 1997

FIGURES-viii CompactRISC Debugger Reference Manual

FIGURES

Figure 1-1. Debugging Using a Functional/Performance Simulator 1-2
Figure 1-2. Debugging the Program on a Target ADB Board .1-3
Figure 3-1. Main Window .3-1
Figure 3-2. Query Window .3-3
Figure 3-3. Status Window .3-5
Figure 3-4. Register Window .3-6
Figure 3-5. Caller Stack Window .3-7
Figure 3-6. Watch Variables Window .3-7
Figure 3-7. Memory Window .3-8
Figure 3-8. Performance Window .3-8
Figure 3-9. Help Window .3-10

DEBUG.book : DB1 1 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual OVERVIEW 1-1

Chapter 1

OVERVIEW

1.1 INTRODUCTION

The CompactRISC Debugger is a GUI debugger for the CompactRISC fami-
ly. It is available for IBM PC-compatible computer, running Mictosoft Win-
dows, Windows 95 or Windows NT. It supports symbolic debugging of
code written in C, or in assembly language. The Release Letter, supplied
with your software, contains instructions for the installation and configura-
tion of the debugger and the remaining CompactRISC tools.

To help you evaluate a CompactRISC microprocessor, or to develop soft-
ware for it, National Semiconductor provides a target board kit, for your
particular member of the CompactRISC family, consisting of a Debugger
Extension Box (DEX) and an Application Development Board (ADB).

Intended
audience

This manual assumes a knowledge of the C language, and is addressed to
embedded-systems engineers involved in:

• evaluating a CompactRISC processor
• developing software for a CompactRISC processor

This manual is applicable to processors and Evaluation/Development Boards
for the entire CompactRISC family. For information unique to a specific pro-
cessor and board you are using, see the appropriate documents.

DEBUG.book : DB1 2 Sun Mar 9 10:56:45 1997

1-2 OVERVIEW CompactRISC Debugger Reference Manual

1.2 DEBUGGER FEATURES

The CompactRISC Debugger offers the following features and benefits:

• Supports C or assembly programs
• Initialization files for automatic initialization and restart
• On-line Help
• User-configurable buttons
• Executes commands from a preconstructed command (input) file
• Records debugging session, for later analysis and/or re-execution. Fa-

cilitates automation of regression test suites
• Function call stack display in a window
• Traverse data structures (lists, etc.) through pointers using a mouse
• ALIAS and SET commands, for customizing the command interface
• Recall, editing, and re-execution of previous commands
• Multiple commands on a single line
• Mixed-mode debugging
• Save and restore debug environment
• Call user subroutines/functions from command level
• Access to host file system using Virtual I/O (see Section 5.1 of the

CompactRISC C Compiler Manual)

1.3 DEVELOPMENT ENVIRONMENT

The symbolic debugger, with its instruction-level simulator, comprises a
complete, software-based, evaluation or development environment. It sup-
ports all the capabilities necessary for effective, efficient development of
your target program. However, if your requirements (speed, etc.) are such
that you require hardware to aid in your development, you can purchase a
target board kit, consisting of a pair of DEX and ADB Boards, from
National Semiconductor Corporation, and connect them to your system for
hardware-assisted debugging. In terms of using the debugger, there is no
noticeable difference to you in using either the Simulator or a Development
Board kit. You use exactly the same tools and interface.

Figure 1-1. Debugging Using a Functional/Performance Simulator

Performance

DEBUG/SIM

DEBUG.book : DB1 3 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual OVERVIEW 1-3

Figure 1-2. Debugging the Program on a Target ADB Board

1.3.1 Instruction-Level Simulator (ILS) Environment

The major functions of the Simulator are:

• Provide a tool for evaluating a particular target chip (CPU) before the
first silicon is available.

• Provide a software tool (less expensive than hardware) for software ap-
plication development.

Features The Simulator provides the following functional capabilities:

• Instruction-level simulation of the operation of your program.
• Instruction traces of the operation of all or part of your program.
• Performance evaluation of all, or parts, of your program, including ac-

curate execution-time estimates and program profiling. To make this
more accurate, memory wait states may be simulated.

The following two features, while operable, are not fully supported.

• The ability, in primitive form, to simulate the effect of peripherals.
• The ability to simulate the effects of up to thirty-two unique non-

maskable and maskable interrupts and traps on program flow.

Limitations The Simulator has the following limitations:

• ILS does not simulate the hardware aspects of instruction execution,
such as caching or pipelining. However, it does include factors in its
performance estimation to allow for caching, etc.

• ILS simulates all CompactRISC instructions, except WAIT.
• Performance information available from the ILS is a very accurate esti-

mate, but is not exact.
• The ILS does not simulate the operation of any memory management

peripherals. Therefore, any addresses used within a program are phys-
ical, not logical or virtual.

• The maximum real memory that can be simulated is limited, and is de-
pendent on the host.

Performance

DEBUG/SIM

ADB

DEX

DEBUG.book : DB1 4 Sun Mar 9 10:56:45 1997

1-4 OVERVIEW CompactRISC Debugger Reference Manual

1.3.2 Board Environment

The development board kit is comprised of two boards, the Debugger Ex-
tension Box (DEX) and the Application Development Board, which commu-
nicate with one another and together provide a hardware development
environment in which you can develop your CompactRISC applications.
The DEX is a standard board; the ADB is product-specific, supporting a
particular member of the CompactRISC family.

The DEX contains a resident Monitor which provides a number of capabil-
ities (Section 1.3), most of which are supported by CompactRISC Debugger.
You may take advantage of some of the hardware capabilities not directly
supported by CompactRISC Debugger by using it to send commands di-
rectly to the monitor and to display communications to and from the mon-
itor. The monitor commands are described in Appendix D.

Board/host
connection

You can connect the board to your host system via one of the UART
(RS-232) connections, or via ETHERNET.

See the relevant board Reference Manual for general installation and oper-
ating instructions.

Both the DEX and the ADB have a monitor to aid debugging which pro-
vides the following features:

• Control of program execution and debugging.
The debugger can download your program to on-board memory, after
which the monitor can execute commands for starting, stopping, single-
stepping, and setting breakpoints within your program.

• Data exchange.
The DEX works with the debugger to display and change data located
in the on-board memory, and CPU general-purpose and special-purpose
registers.

• Run-time environment.
The ADB-monitor contains routines that can be used by your program
to access the host computer file system via the debugger (Chapter 2,
Virtual I/O).

• Reset and initialization.
Upon reset, the Monitor initializes the board. It resets the board I/O de-
vices and the CPU, and performs a small set of diagnostic tests to en-
sure that the board is operational.

See Appendix D for information about the Monitor interface and command
set. See also the appropriate development board Reference Manual, and the
CompactRISC Toolset - Debugger Extender (DEX) Reference Manual.

DEBUG.book : DB1 5 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual OVERVIEW 1-5

1.4 MANUAL ORGANIZATION

Chapter 2 Debugger Features, explains how the commands are used to perform vari-
ous debugging operations. It describes the CompactRISC Debugger envi-
ronment, and shows how to invoke it.

Chapter 3 Debugger User Interface, describes the debugger graphical user interface,
including the purpose and content of the windows and the CompactRISC
Debugger menus.

Chapter 4 The Debugger Commands, is a reference section which describes the syntax
of the commands, the equivalent GUI facility and provides some examples.

Chapter 5 Instruction-level Simulator Commands, describes the simulator commands.
The format is similar to Chapter 4.

Appendix A Quick Reference Guide, summarizes the CompactRISC Debugger commands
and arguments.

Appendix B Trouble-shooting Hints, suggests solutions to some common problems, in-
cluding responses to error messages, and RS-232 or ETHERNET interface
problems.

Appendix C Peripheral Simulation System - Example, contains listings for the files giving
an example of the usage of the Peripheral Simulation System (PSS) and vir-
tual I/O in a C-language program.

Appendix D Monitor Interface, describes the interface and command set of the DEX
Monitor. These commands may be executed through the CompactRISC De-
bugger.

Appendix E Debugger Limitations, lists the known limitations.

Appendix F Performance Simulation Configuration File, shows how to configure the wait-
state parameters of the simulated memory through a simulator configura-
tion file..

Appendix G Performance Simulation Trace Output, describes detailed program execution
information the simulator sends to a file.

1.5 REFERENCE DOCUMENTS

The following National Semiconductor publications provide related study
and reference material:

1. CompactRISC Toolset - Introduction

2. CompactRISC Toolset - C Compiler Reference Manual

3. CompactRISC Toolset - Assembler Reference Manual

DEBUG.book : DB1 6 Sun Mar 9 10:56:45 1997

1-6 OVERVIEW CompactRISC Debugger Reference Manual

4. CompactRISC Toolset - Object Tools Reference Manual

5. Reference Manuals for each of the microprocessors in the CompactRISC
family.

6. User’s Manuals for the various Evaluation/Development Boards provid-
ed by National Semiconductor Corporation.

DEBUG.book : DB2 1 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-1

Chapter 2

DEBUGGER FEATURES

2.1 INTRODUCTION

The debugger is used to debug programs, either by executing them on a
National Semiconductor development board, or with the built-in Instruc-
tion-Level Simulator. The debugger provides the same interface for both the
development board and the Simulation environment.

2.2 DEBUGGING WITH THE DEBUGGER

2.2.1 Installing the Debugger

The debugger must be installed in your host as described in the release let-
ter. It requires a number of external files (help file, resource files for win-
dow, etc.) which are supplied with the release package. These files are
installed in the installation directory, which must be included in your sys-
tem’s PATH variable.

2.2.2 Debugger Initialization and Configuration

The debugger uses the following initialization and configuration files:

Global
environment file
(crdb.env)

This optional file contains configuration commands for color, size and posi-
tion of the windows, and communication parameters. The debugger first
looks for this file in the directory indicated by the environment variable,
CRDBENV. If CRDBENV is not set, the debugger looks in the current directory.
See Section 2.2.13.

Local
initialization file
(crdb.ini)

This optional file contains local setup commands, used to customize the
debugging environment for a particular project e.g., alias definitions, stan-
dard input command file, executable file to be downloaded, source path di-
rectories and standard logging file. It must reside in the current working
directory, and may contain any legal debugger command.

DEBUG.book : DB2 2 Sun Mar 9 10:56:45 1997

2-2 DEBUGGER FEATURES CompactRISC Debugger Reference Manual

2.2.3 Invoking the Debugger

You can invoke the debugger by double-clicking on the debugger icon from
the CompactRISC Program Group. If you plan to run the debugger from the
File Manager’s Run menu, use the following invocation syntax

crdb [executable_file] [-e= command_file] [-l= log_file]

Executable
file

executable_file is the file name (including the path, if necessary) of the
COFF file to be debugged. This file must have been generated using the
CompactRISC C Compiler with the debug option. Refer to the CompactRISC
Toolset - C Compiler Reference Manual for more information about compil-
ing for debugging.

The CompactRISC Linker generates executable files in COFF format. A
COFF file consists of two major parts: code and data that make up your
program, and the symbol table, which contains debugging information
about your program. The manual, Introduction to the CompactRISC Tools
describes the procedure for compiling and linking your program.

Command
file

When you invoke the debugger, it immediately executes the debugger com-
mands in command_file . You can use your text editor to create a file of the
debugger commands, or use a log file previously created by the debugger
(Section 4-16). You can also execute commands from a file, during the de-
bugging session, using the INPUT command (Section 4.15).

Log file log_file is the file which holds the information logged (recorded) by the
debugger during the debugging session. Specify the -l option on the com-
mand line to set up a log file to record the debugging session.

Startup and
initialization

When invoked, the debugger executes commands from the two initialization
files, crdb.env and crdb.ini , in that order.

If you invoke the debugger without any arguments, it completes its initial-
ization, and awaits further commands from you.

If you specify the executable file, the debugger reads and downloads the file
to the target.

If you specify the -e option, the debugger executes the commands from the
command_file .

Debugging
session

To enter the commands, select the command line edit area in the upper
part of the Debugger Window by clicking it with the left-button of the
mouse, and type in the command (see Chapter 4 for details of the debugger
commands). After entering the command, press ENTER to process the com-
mand.

Exiting the
debugger

Terminate a debugging session with the QUIT command, or open FILE and
select QUIT.

DEBUG.book : DB2 3 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-3

2.2.4 Accessing On-line Help

Select the help button, on the main menu, to obtain help information. Se-
lect a topic from the list by double clicking on the left button of the mouse.

Alternatively, enter a question mark (?) as the only argument to a com-
mand to get help with its syntax.

2.2.5 Selecting the Target

You must select the target environment in which you want to debug the
program. This can be either simulator, or development board.

Simulator Specify the TARGET command (section 4.38), or open CONFIG and select SIM-
ULATOR, to select the simulator.

Development
board

Before you can use the development board, you must connect it to your
host through either a serial or an ETHERNET connection.

Set up the communication parameters, which tell the debugger how to
communicate with the board. The COMM command specifies the communi-
cation method, and the TARGET command specifies the target. You can put
these commands in either of the initialization files, or execute them manu-
ally.

For example:

comm -l 2

comm -b 19200

target edb

Alternatively, you can open CONFIG and select EDB.

For detailed information, and installation instructions, for your DEX/ADB,
see the user’s manual supplied with your board.

2.2.6 Working with Executables and Source Files

Specifying an
executable file

The DEBUG command (Section 4.9) specifies the name of the executable
COFF file to be used by the debugger, and optionally downloads code and
symbols. DEBUG updates the Source Window (Section 3.2) display. After a
file has been downloaded, the debugger issues a RESET command (Section
4.24).

C or Assembly
mode display

SRCMODE (Section 4.31) specifies the display mode for your source files. You
can specify source code only, or mixed source and assembly code.

DEBUG.book : DB2 4 Sun Mar 9 10:56:45 1997

2-4 DEBUGGER FEATURES CompactRISC Debugger Reference Manual

Source file
operations

The current source file, or the currently requested text file, is always dis-
played in the Source Window. To look at a particular area in your source
file, if you know its location, use the LIST command (Section 4.16). If you
do not know where to look, but you know something about the context,
such as some structure, or variable, referenced there, you can use FINDSRC
(Section 4.12) to find each of the possible locations. SYNC (Section 4.37) re-
turns the Source Window to the execution point in the source file.

Specifying
directories

If your source files are in several directories, use SRCPATH (Section 4.31) to
tell the debugger where to find them.

CD (Section 4.6) sets the current working directory for the debugger; INFO
(Section 4.14) displays the setting of CRDBENV, the current directory paths
used by the debugger when searching for source files, and the names of
the files currently in use.

2.2.7 Working with Breakpoints

There are two types of breakpoints: hardware breakpoints, made available
by either the development board or the CompactRISC processor, and soft-
ware breakpoints, made available by the processor only. The hardware
breakpoints (BREAK, Section 4.4) are less numerous and less flexible, but
operate in near real-time. Software breakpoints (SOFTBREAK, Section 4.30)
are more numerous and more flexible but do not operate in real-time.

Hard-break Depending upon the implementation, a hard breakpoint may support
breakpointing on data read/write/any access, and PC match. You can
manage your hardware breakpoint list with the BREAK command.

PC match with occurrence count is implemented through software, and
hence affects the real-time performance.

Soft-break SOFTBREAK provides PC breakpointing based on occurrence count and/or
based on a conditional expression. Use the SOFTBREAK command (Section
4.30) to manage the software breakpoint list. Double-click on a particular
source line to set or unset a software breakpoint.

If a software breakpoint is set on a source file line displayed in the Source
Window, the affected line is marked with an “S” at the left edge of the
Source Window.

Temporary
breakpoints

If you do not want to use a breakpoint for a while, you can disable it and
later re-enable it. You can also set a temporary breakpoint, which is auto-
matically removed after it has been executed once. If you set a new hard-
ware breakpoint, and expect it to be executed immediately, you must
ensure that your BREAK list is enabled.

You can use the WATCH command (Section 4.41) to set up a list of variables
to display and AUTOCOMMAND (Section 4.3) to list the commands to be exe-
cuted when the next breakpoint is recognized.

DEBUG.book : DB2 5 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-5

The number of breakpoints you may use depends on the target. Refer to
your application board’s Reference Manual for the availability of hardware
breakpoints.

Attaching
commands to
break

AUTOCOMMAND specifies a set of commands to be executed whenever the
program stops after execution due to breakpoints.

2.2.8 Executing the Program

Start execution Use GO (Section 4.13), to start executing your program. When the program
reaches a breakpoint, the debugger stops the execution, updates the Watch
Variables Window, executes the AUTOCOMMAND list (Section 4.3), and up-
dates the display in the Source Window to point to the current source line
or instruction.

RESET and
debugging of
startup code

The RESET command (Section 4.24) issues a software reset to the ADB with
the help of the monitor on the DEX board. By default, the debugger exe-
cutes up to main() .

If you want to get control at the physical entry point of the program, to de-
bug your startup code, use DEBUGMODE (Section 4.10) to stop at the entry
point, or to execute up to main() , the logical ‘C’ start function. The Source
Window display is updated accordingly.

Single stepping The debugger provides single stepping at the source level (STEP Section
4.34) as well as at instruction level (STEPINS Section 4.35). It also provides
stepping over at source level (NEXT Section 4.19) and stepping over at the
instruction level (NEXTINS section 4.20).

Aborting
execution

Open EXECUTE and select ABORT to abort any executing command. Control
returns to the debugger prompt level. If you select abort while an input file
is being executed, the execution of the input file is also aborted.

If you are executing your program on a development board, you may abort
execution by pressing the ISE switch on the ADB board. You may have to
restart the program later.

If the Simulator is executing your program when you abort, you may reset
and restart the program later.

2.2.9 Looking at Memory and Variables

Whenever the program is stopped, the debugger provides various ways of
looking at the memory or program variables.

Inspecting
program stack

WHERE (Section 4.42) displays the current program context, and the current
function stack in the Output Window. You can also open the Stack Window
to see the current call chain; open SHOW and select STACK WINDOW.

DEBUG.book : DB2 6 Sun Mar 9 10:56:45 1997

2-6 DEBUGGER FEATURES CompactRISC Debugger Reference Manual

Looking at
memory

LIST , with -m option (Section 4.16), and Memory window (Section 3.2) dis-
play memory in various widths and formats. You can use the Memory win-
dow or MODIFY to modify the memory location.

Viewing
program
variables

VIEW (Section 4.40) displays the program variables in a variety of C
printf -like formats. The debugger also provides several different windows
to view variables.

The Local Variables window (open SHOW and select LOCAL VARIABLES) dis-
plays the arguments, and C-local variables.

The Watch window (open SHOW and select WATCH VARIABLES) lets you define
a set of variables or expressions to be automatically displayed whenever
the program stops.

The Symbol Window (open QUERY MENU) displays any variable in the C-Pro-
gram context. This window also lets you expand or contract structures,
and includes a facility to get symbol-type information via this window.

Viewing
registers

VIEW also displays registers, using the Register window (open SHOW and se-
lect REGISTER).

Modifying
memory,
registers and
variables

MODIFY modifies memory location and variables. You can modify registers,
variables, or memory by double clicking on the entry in the Register, Que-
ry, and Memory windows respectively.

2.2.10 Virtual I/O Support

Virtual I/O enables your program, running on an ADB, or under control of
the Simulator, to access the host system, normally through the debugger.
The low-level virtual I/O functions are included as part of the C library.
Virtual I/O operations are listed in Chapter 7, and described in the
CompactRISC Toolset - C Compiler Reference Manual.

STDIO (Section 4.33) directs the output of I/O functions to standard files,
a host disk file, the Output Window, or to the terminal from which you in-
voked the debugger.

2.2.11 Performance Estimation

The ability to measure the performance of various parts of the software is
an important requirement of embedded system programming. For example,
we need to know the time required to perform a particular task, or execute
a particular function.

DEBUG.book : DB2 7 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-7

Profiling You can profile the performance of your program. Profiling provides an indi-
cation of where bottlenecks occur, and where the program spends most of its
execution time. The Simulator samples the program counter at a predeter-
mined rate, and then estimates performance based on the frequency distri-
bution of the program counter values.

To profile all or a portion of your program, open CONFIG and select SIM ➼
PERFORMANCE ON.

On completion of program execution, open SHOW and select PERFORMANCE to
display the Performance Window, and see a bar graph showing an execu-
tion profile of either the files or functions of your program. Open CUSTOMIZE
and select File, or open CUSTOMIZE and select FUNCTION, in the Performance
Window, to select files or functions, respectively.

The bar graph reflects the percentage of execution time your program spent
in each of the displayed portions (modules or functions) relative to the time
spent in all the code that was executed with performance mode on. The
numbers shown by the bar elements indicate the time spent in that section
of code only; they do not include any time spent in any section called from
this section of the code. This display includes only portions of code con-
taining symbolics.

The simulator slows down when collecting data for program profiling. If you
do not need to profile a particular part of your program, open CONFIG and
select SIM ➼ PERFORMANCE OFF to disable the function. When startup code
debugging is disabled, performance data collection is also disabled.

Note We recommend that you execute the measured part of the program contin-
uously, without interruptions such as breakpoints or single steps. Break-
points and single-steps each add a few cycles to the total cycle count, and
thus adversely affect the performance measurement.

Chapter 3 describes the graphical aspects of the Performance Window.

Tracing With performance simulation you can get a cycle-level trace of your pro-
gram, or part of it, with full information about instructions being executed
and the processor pipeline status. The trace information is directed to a log
file, which you specify. Select CONFIG ➼ SIM AND click the SETUP button.
Mark the LOG ON/OFF box in the dialog box, and select an output file name.
In addition, you can select short or long log file format.
For details of the output format, refer to Appendix G.

Config You can specify configuration parameters for the performance simulation.
These parameters deal mainly with memory wait-states. By default, all
parts of the memory are assumed to be accessed with zero wait-states. If
you want to override this configuration, specify a configuration file name.
Select CONFIG ➼ SIM AND click the SETUP button. In the dialog box. next to
SIM CONFIG FILE, specify the configuration file name. For convenience, you
can also generate a conguration file template by clicking GEN TEMPLATE,
and specifying the template file name next to it.
For details of the configuration file format refer to Appendix F.

DEBUG.book : DB2 8 Sun Mar 9 10:56:45 1997

2-8 DEBUGGER FEATURES CompactRISC Debugger Reference Manual

2.2.12 Working with Debugger Command Scripts

To make command entry and debugging more convenient, the debugger
provides two commands: alias (Section 4.2) and set (Section 4.28). In ad-
dition to the standard command buttons, the debugger provides a set of
custom buttons. To use this feature, open CONFIG and select CUSTOM BUT-
TONS.

Command
aliasing and
macro variables

alias defines short forms, or more meaningful names, for single com-
mands, and defines substitution macros for frequently-used sequences of
commands.

set assigns short, meaningful, names to long, complex, strings e.g., an ad-
dressing expression for a nested structure.

alias and set definitions may conveniently be placed in the debugger ini-
tialization files, or in input (command) files. You can specify more than one
command on a line, separated by semicolons (;). If a command is interac-
tive, or results in an error, the debugger ignores commands which follow
on the same line.

This capability can be used to separate commands within strings for the
alias and set commands.

Log files
(crdb.log)

You can record the commands which the debugger receives during a de-
bugging session, and optionally, the responses to the commands. In addi-
tion, you can request the debugger either to expand aliased names, or to
record them as input. Recording the commands is particularly useful if you
want to rerun the debugging session later, either because you are chasing
a specific bug which requires some setup of the environment, or you want
to use the session as a regression test for your program. Recording the de-
bugger responses allows you to analyze the output at your convenience.

To record a log file, either specify -l = log_filename on the invocation
line, or if you are already in a debugging session, open FILE and select LOG
FILE or use the LOG command (see Section 4.17).

Commands are recorded in a log file just as they were typed. Result lines
are displayed with a leading pound sign (#), making them comments so
that the log file can later be used as a command file. If the original input
was from a command file, comments in that file are preceded by two pound
signs.

Comments If you need to place annotations/comments into your log file for later ref-
erence, precede them (each individual line) with a pound character (#), the
comment character. If # is the first non-whitespace character, the rest of
the line is ignored. To place a comment on a command line you must pre-
cede the comment with both a semicolon (;) and a pound sign (#):

Example break main;# set a breakpoint at main()

Replaying
scripts

You can use a recorded file as a debugger command file either by specify-
ing its name as an executable_file on the command line (Section 2.2.3)
or by using INPUT (Section 4.15) during a debugging session.

DEBUG.book : DB2 9 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-9

You can also create a command file using a text editor, and run it with this
facility. Such files are useful for debugger initialization, setting up particu-
lar target system states as a prelude to further debugging, or setting up a
particular set of commands, possibly with expected responses, to be exe-
cuted as a regression test for your program. The debugger initialization
files (Section 2.2.2) are examples of such files.

To pause, during command file execution, to read output, or execute one
or more external debugger commands, insert a pause command (Section
4.21) in your command stream. To continue execution, use resume (Sec-
tion 4.25).

2.2.13 Saving and Restoring the Debugging Context

The following three functions make the debugger convenient to use.

Debugger
initialization

When you initially invoke the debugger, you have only rudimentary initial-
ization files. After you have become familiar with the debugger commands,
you will have discovered a set of commands that configure the debugger for
your use. These include setting communication parameters, and the target
chip name. When you are satisfied with your environment, you can save it
in a specified file, possibly one of the initialization files, using SAVECONFIG
(Section 4.26). For succeeding debugging sessions, the debugger sets this
environment automatically. Refer to the command description to see what
environmental characteristics are saved by the command. Alternatively,
open FILE and select SAVESETUP to save the current window configuration.

Saving
debugging
setup

You can stop your debugging session in the middle, and continue it later.
End a session with SAVESTATE (Section 4.27) to save data such as the
break/softbreak lists and current filename. Specify the name of the file into
which the state is saved. The default name is crdb.ctx .

Restoring
debugging
setup

In a later session, when you are ready to continue debugging, use the
SETSTATE command (Section 4.29) to restore the previous debugging setup.

Open FILE and select SAVESTATE to save the current state, select LOADSTATE to
restore it.

2.2.14 Working with the Monitor Commands

Debugger-
monitor
traffic

The debugger sends a series of monitor commands to the monitor to ac-
complish each command. Use VERBOSE (Section 4.39) to monitor the traffic
between the monitor and the debugger. The Output Window displays traffic
in both directions. This information may be useful in understanding com-
munication, monitor, or debugger problems.

DEBUG.book : DB2 10 Sun Mar 9 10:56:45 1997

2-10 DEBUGGER FEATURES CompactRISC Debugger Reference Manual

Directly using
monitor

To send a command directly to the monitor, with no other processing, type
it on the command line preceded by an exclamation point (!). The entire
command is passed to the appropriate backend (the ILS for SIM mode, and
the DEX monitor, for EDB mode) without the ! . Any subsequent input
needed for successfully completing the Monitor command must be prefixed
with ! .

See Appendix D for a description of the Monitor command interface.

2.3 USING THE SIMULATION ENVIRONMENT

One of the tools provided by the debugger to aid you in your program devel-
opment is the Instruction-Level Simulator (ILS), which accurately interprets
and executes your program, one machine instruction at a time. As the Simu-
lator executes your program, it maintains an up-to-date copy of your registers
and data memory, so that at any time during your work with the Simulator,
you may use the standard debugger features to control the execution of your
program and manipulate your registers and data memory.

You can invoke the Simulator either from the command line (Section 2.2),
or with the TARGET command (Section 4.38). See Chapter 5 for detailed in-
formation about the Simulator commands.

Configuring the
Simulator

Three simulator variables control the operation of the Simulator. Set these
variables with the SIM CONFIG parameter command, where parameter is
one of:

clock= frequency

Sets the frequency of the Simulation Clock. To use the Simulator for per-
formance estimation, you must set the correct clock frequency.

refresh= refresh_frequency

Specifies the time delay between updates of the debugger Status Window
(Section 3.2). The time delay can be specified either in terms of time units,
or in terms of the number of instructions executed.

sim config perf = string

Specifies wait states.

Control
during
simulation

When the Simulator is executing a target program, it is in full control of
the system, preventing any user-interface action, such as window updat-
ing, from taking place. The debugger can not service any requests via the
keyboard or mouse. To allow you to request such services, the simulator
periodically returns control to the debugger. SIM CONFIG REFRESH
(Section 5.2) specifies the period between such updates as either a time pe-
riod in ticks, or a number of instructions. The default refresh period is
1000 instructions.

The Simulator provides four sets of basic functions:

DEBUG.book : DB2 11 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-11

1. Instruction-level simulation of the target CPU, executing your program,
one machine instruction at a time, and maintaining its own up-to-date
copy of the CPU registers and memory.

2. Primitive simulation of I/O functions, allowing you to perform basic de-
bugging of your I/O routines.

3. Primitive simulation of interrupts and traps, for the same purpose.

4. Estimation and display of data and profiles (bar charts) reflecting the
theoretical performance of all, or portions, of your program, to aid you in
determination of program performance, location of bottle-necks, etc.

The following paragraphs explain the basics of each of these functions.

In executing a target program, the Simulator accurately simulates the ex-
ternal functionality of machine instructions, but does not simulate the
hardware functionality (pipelining, cache simulation, etc.), thus perfor-
mance measurements are best estimates. When Simulator Performance
Measurement is turned on, the Simulator maintains a clock giving simula-
tion time. This clock is set to zero at the beginning of the simulation, after
a RESET command (Section 4.24), and if Performance Measurement is
turned off and then back on.

2.3.1 Peripheral Stimulus System

To debug your embedded system software completely, you must simulate
the peripheral devices required by your program. The Simulator provides
input, output, and interrupt simulation through the Peripheral Stimulus
System (PSS).

To use PSS, turn on the Simulator program profiling function, followed by
SIM PSS ON (Section 5.4).

If you want certain parts of your program to execute faster, use SIM PSS
OFF (Section 5.4) to turn off PSS.

To rerun a test, use RESET, turn the performance simulator off, and use
SIM PSS CLEAR. After PSS CLEAR, you must re-map your PSS output files
and reload your PSS input file (Chapter 5).

PSS
commands

PSS commands are divided into two groups: external and internal. The de-
tailed operation of PSS is controlled by internal commands, which must re-
side in PSS input files. Some of the basic operations of PSS can be
controlled by external PSS commands, which can be executed in the same
manner as any other debugger command.

DEBUG.book : DB2 12 Sun Mar 9 10:56:45 1997

2-12 DEBUGGER FEATURES CompactRISC Debugger Reference Manual

To use PSS, first build a PSS input file containing the internal commands
for the I/O, or interrupt, actions you want to perform. The timing of the
various commands to be executed is extremely important. Before you try to
use PSS, we recommend that you read carefully all of the information on
PSS in this chapter, and in Chapter 5, paying particular attention to the
information on both absolute and relative simulation time.

Before you begin using PSS in a simulation, you must use turn perfor-
mance simulation on, to start the simulation clock and timing mechanism.

All keywords used by PSS must be lower-case. All external PSS commands
must be preceded by the keywords SIM PSS. All tokens in PSS commands
must be separated from each other by white space (spaces, tabs, or new-
line characters).

PSS input files may be read into memory either from the command line by
LOAD (Section 5.4), or from within another PSS input file by READFILE
(Section 5.3).

Appendix B contains listings for an example C program which makes use
of the Peripheral Stimulus System to read and write a character stream.

PSS external
commands

PSS supports the following external commands, which may be executed
from the command line, or from the debugger input files (Section 5.4):

on, off , load , unload , pss , clear , files , and output .

ON and OFF turn on and off PSS internal command processing for optimiz-
ing program execution speed.

LOAD loads and processes a PSS file containing internal commands which
carry out the detailed operations required.

UNLOAD unloads a previously loaded file.

PSS reports the state of PSS (on or off).

CLEAR clears PSS data structures, closes all PSS files, sets PSS state to off,
and sets the time of the last executed SET command to current simulation
time.

FILES displays the names of the currently open PSS files.

OUTPUT maps a target memory address to a particular output file for re-
cording.

PSS internal
commands

PSS supports the SET, OUTPUT, and READFILE internal commands
(Section 5.3), which must be executed from PSS input files. Each command
must be on a separate line. Comments may be included in PSS input files
by preceding them with a pound-sign (#).

DEBUG.book : DB2 13 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-13

Before executing PSS internal commands, turn on internal command pro-
cessing by specifying SIM PSS ON. If you later want to increase the speed of
execution of your program, and you do not require PSS processing for
awhile, you may turn off internal command processing with SIM PSS OFF,
and then use SIM PSS ON to turn on internal command processing later. At
any time, you can determine the state of PSS by with the SIM PSS com-
mand (Section 5.4).

A PSS input file may be loaded from the command line with LOAD
(Section 5.3) or from another PSS input file with READFILE.

SET SET sets a target memory address to a specified value each time specified
time delays have elapsed, or other conditions have been met.

OUTPUT OUTPUT, like the external command, maps a specific target memory address
or range to a particular output file for recording.

READFILE READFILE loads a PSS file containing internal PSS commands which carry
out the detailed PSS operations required.

Using data files To provide either a large number of data points, or a series of repetitive
data points, for a SET command, you may specify the pathname of a data
file in the SET. Thus, you can write a sequence of values for a SET. One
practical application of this feature is the generation of patterns such as
square waves, sine waves, or analog-to-digital outputs, using a single com-
mand.

The data file format is one value per line (minimum of one value per data
file). Comments may be included in the file and must start with a pound
sign (#). Data is read from the file cyclically.

If an address range is specified in the SET command, several values at a
time are read from the file, otherwise, a single value is read on each itera-
tion.

Creating PSS
symbols

Symbols can replace any entity within a PSS command except reserved
words. Symbols can replace address , time , time value , and path_name .
Symbols must be defined before use and must be unique. They may, how-
ever, be defined more than once in a file. The last value of the symbol read
from a file is the value used for substitution. To create a symbol (see Sec-
tion 5.3):

symbol = [value]

2.3.2 Simulating I/O Operations

In general, CompactRISC peripheral I/O devices are memory-mapped. To
simulate input, use the SET command (Section 5.3) to set various memory
addresses either by a single command, or from an external file, after a
specified delay from some event, and repeated with a specified period. SET
operations may also be keyed on previous reads or writes of a specific
memory address by your program.

DEBUG.book : DB2 14 Sun Mar 9 10:56:45 1997

2-14 DEBUGGER FEATURES CompactRISC Debugger Reference Manual

For simulated output, use the OUTPUT command (Section 5.4) to capture
data written either to a specific memory address or to a range of addresses.

2.3.3 Simulating Interrupts

The Peripheral Stimulus System can simulate the non-maskable interrupt,
and any of the other maskable traps and interrupts up to vector number
32. The vector numbers for a particular processor are given in the relevant
Chip User’s Guide.

To simulate interrupt operation in your program, follow these steps:

1. Reserve a block of 32 double words as an Interrupt Vector Table in user
memory.

2. Set the INTBASE register to point to this block.

3. Set all of the entries in this block to zero, so that by default, all inter-
rupts are ignored.

4. Choose vector numbers for the interrupts which you want to simulate.
The vector number for the non-maskable interrupt is normally one (1)
and the vector numbers for traps may be found in the chip User’s Guide
for the target processor.

5. For each interrupt to be simulated, set the entry in the Interrupt Vector
Table corresponding to the vector number of the interrupt to the memo-
ry address of its interrupt handler.

6. For each interrupt you want to simulate, in your PSS input file, specify a
SET command with a special target address of nmi for a non-maskable
interrupt, or int for a maskable interrupt. The value for the nmi may be
one (1), but the value for the int must be the actual vector number of
the interrupt to be simulated. The same time delays and conditions may
be specified on the SET command as for any other SET command.

DEBUG.book : DB3 1 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-1

Chapter 3

DEBUGGER USER INTERFACE

3.1 DEBUGGER GUI INTERFACE

When you invoke the debugger, it displays the Main Window (Figure 3-1).
This window contains the Main Menu bar, programmable buttons, the
command line, source window and output window.

Figure 3-1. Main Window

3.1.1 GUI Operations

Using Pull-down
menus

To access a menu with the mouse, move the mouse cursor to the menu and
hold down the Left button. When the menu is displayed, move the mouse cur-
sor up or down the list until the desired command is highlighted; then release
the mouse button. Section 3.3 lists the selections available on each menu.

If after you select a menu, you decide not to use it, click outside the menu
to de-select it.

DEBUG.book : DB3 2 Sun Mar 9 10:56:45 1997

3-2 DEBUGGER USER INTERFACE CompactRISC Debugger Reference Manual

Using
configurable
buttons

The second row contains configurable buttons. To configure these buttons,
open CONFIG and select CUSTOM BUTTONS. The debugger is shipped with the
following default settings, most of which can be re-configured:

File Menu
deals with file-related commands, e.g., user COFF file, text
files, command files, save and restoring of the debugger’s state
or environment.

Execute Menu controls program execution.

Break Menu
sets breakpoints, autocommands to be executed upon reaching a
breakpoint, and performs time measurements.

Source Menu manipulates source file characteristics.

Config Menu
configures your debugging environment (target, color, button
mappings etc.).

Show Menu makes any debugger window active.

Help Menu invokes the Help system.

Reset issues a reset command.
Stop at sets a Software Breakpoint at the selected source line.
Return executes till control returns to the caller of the current function.

Go Till
begins execution of the target program at the address indicat-
ed by the current contents of the PC, and continues until the
currently selected source line is reached.

Step executes a single source statement of the target program.

Next
steps the target program to the next statement, executing any
called functions, i.e., it steps over the next source statement.

Go
begins execution of the target program at the address indicat-
ed by the current PC.

Print
prints the contents of a highlighted variable.
This button is not configurable.

Query

opens a dialog box which displays variables which are visible
under current scope. Variables which are structures can be ex-
panded or contracted. Double clicking on an expanded variable
opens a dialog box for modifying the contents of the variable.
This button is not configurable.

DEBUG.book : DB3 3 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-3

Figure 3-2. Query Window

Interactive
commands

To enter commands, click on the command line (the third row) and type the
commands. Chapter 4 describes the syntax of the command. You can retrieve,
edit and re-execute previous commands with the up and down arrow keys.

You can copy and paste to the command line from other windows. The re-
peat button, on the right side, repeats the last command you typed.

Using a dialog
box

Dialog boxes pop up when additional information is required from you e.g.,
file and conditional break point selection. Dialog boxes are indicated by
three dots following the menu entry. Use the conventions of the host sys-
tem to enter information in a dialog box.

Many dialog boxes are closed with a DONE button. Operations performed in
such dialog boxes can not be undone automatically. You must explicitly
undo the operations using the appropriate commands.

Selecting
windows

To use a window, you must first select it. Selecting a window brings it to
the front, and highlights its title bar to indicate that it is active.

To select a window with the mouse, move the mouse cursor to the visible
portion of the window, and click the left button.

Alternatively, you can select a window by clicking on its name in the SHOW
menu.

The Menu bar is overlaid by all windows. Thus, when you select a window,
the menu bar shows the current window’s menus.

DEBUG.book : DB3 4 Sun Mar 9 10:56:45 1997

3-4 DEBUGGER USER INTERFACE CompactRISC Debugger Reference Manual

When you install the debugger in a program group, make sure that you se-
lect the current directory appropriately. The debugger reads, by default,
files like crdb.env , crdb.ini or crdb.ctx . from this directory.

To select an iconized window, double-click on it with the left button.

Programming
function keys

To scroll with the keyboard, use the up-arrow, down-arrow, PGUP, PGDN,
HOME, and END buttons for vertical scrolling, and the left-arrow and right-
arrow for horizontal scrolling.

A hot key is a single key on your keyboard which, by itself or in combina-
tion with a control key such as ALT, executes a debugger function. Some
menu items are mapped to pre-defined hot keys, as indicated in the Menu
Item.

3.2 THE DEBUGGER WINDOWS

Source
window

This window (Figure 3-2) is part of the Main Window and displays the con-
tents of source files and text files. It is centered on the current display line,
which is marked with a ‘>’. The current execution line (where the program
counter is positioned) is marked with reverse video.

Use the scroll bar, or the arrow keys, to scroll through a file. If you scroll
down with the mouse, the text scrolls until the last line is brought into
view, and no further. In this case, the last line is not the current line. You
can use the mouse to reposition the current line to the last line.

The format of a source line is:

BS lineno hex-addr source line

where:

B denotes a hardware breakpoint.
S denotes a software breakpoint.
> denotes the current display line.
lineno is the line number starting at the beginning of the source file.
hex-addr is the hex-format code address for executable lines.

hex-addr appears only in mixed mode.

Example B 233 i = i + j;

To show the code in C followed by the assembly lines open SOURCE and se-
lect DISPLAYMODE ➼ MIXED option (Section 4.31)

If you use debug (Section 4.9) to specify another COFF file, this window is
updated to the appropriate source file.

DEBUG.book : DB3 5 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-5

The fourth row on the Main window is associated with this window and the
three entries in that row show the current module, current function and the
current line number corresponding to current line display line. To bring an-
other file or function or line in to source window, just type in the new name
on the corresponding position in this row and press return. Use LIST (Sec-
tion 4.16) to bring any module/function/line belonging to the COFF file into
this window. The filename field is updated appropriately.

If you bring in a file that does not belong to the COFF file, it is displayed
as plain text. You can not set breakpoints, etc.

In this window, the mouse keys have special meaning:

Left button
single-click: repositions the current display line.
double-click: toggles a soft breakpoint at the current display line.

Right button
single-click: Executes from the line addressed by current PC up to

the selected line.

Status
window

The Status Window (Figure 3-3) shows the address in the program counter,
and the source file reference corresponding to the current program counter.
It is updated whenever there is a change of state in the debugging environ-
ment.

Figure 3-3. Status Window

Status

DEBUG.book : DB3 6 Sun Mar 9 10:56:45 1997

3-6 DEBUGGER USER INTERFACE CompactRISC Debugger Reference Manual

The individual fields are:

The number of instructions executed, and the simulation time, are normal-
ly cumulative, but are initialized to zero by RESET (Section 4.24) or SIM
PERF CLEAR (Section 5.4). After SIM PERF ON is executed, they are updated
periodically, as controlled by the SIM CONFIG REFRESH command (Section
5.2).

Register
Window

The Register Window (Figure 3-4) shows the contents of the PC, SP, PSW and
other processor registers in hexadecimal format. You can double click on any
register name to open a dialog box for modifying the value in that register.

Figure 3-4. Register Window

Output
Window

The Output Window (Figure 3-1) allows scrolling, and can show the last
few hundred lines of output from the debugger.

Stack
Window

The Stack Window (Figure 3-5) displays the current caller stack. Open
SHOW-STACK, on the main menu bar, to display the window. The top line is
the currently executing function.

Current PC
displays the current contents of the program counter, and the
corresponding source-file line number.

Current Line
shows symbolic information, or the instruction being executed if no
symbolic information is available, for the current program counter.

Chip Status shows whether the chip is stopped, running, or reset.

Execution Time
shows the time taken for this run in microseconds. Applicable
only when the target is simulator.

DEBUG.book : DB3 7 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-7

Figure 3-5. Caller Stack Window

The format of each line in this window is:

To bring the source of the calling function (mentioned in that line) into the
Source Window, position the cursor on one of these lines, double click on
that line. To return to the current execution line, open SOURCE and select
DISPLAY PC.

Watch
Variables
Window

The Watch Variables Window (Figure 3-6) displays variables selected with
the WATCH command. It is updated every time there is a change of state in
the debugger or target environment. This window does not let the debugger
modify the variables. To modify variables, use the Query window.

Figure 3-6. Watch Variables Window

Local Variables
Window

The Local Variables Window displays the values of the local variables of the
currently executing function and its arguments. The name of the function
is displayed in the title bar of the window. This window does not let the de-
bugger modify the variables. To modify variables, use the Query window.

function-nn (arg1, ..., argn)

....

....

function-2 (arg1, ..., argn)

function-1 (arg1, ..., argn)

main (argc,argv)

DEBUG.book : DB3 8 Sun Mar 9 10:56:45 1997

3-8 DEBUGGER USER INTERFACE CompactRISC Debugger Reference Manual

Memory
Window

The Memory Window (Figure 3-7) displays a memory region in the selected
format. You can specify the address, the format and the number of units to
be displayed from that address in that format. The address can be an ex-
pression, (see list -m , Section 4.16). Change any one of these, and press
return, to bring in the new values. Double click on any item to open a dialog
box for modifying the contents of the selected address.

Figure 3-7. Memory Window

Performance
Window

After you have collected performance data on all, or a portion, of your pro-
gram, you may display the data, both numerically and in a chart, in the
Performance Window (Figure 3-8).

Figure 3-8. Performance Window

DEBUG.book : DB3 9 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-9

This windows menu bar containing the following menus (left-to-right):

On row two of the Performance Window, the debugger displays the total
number of cycles simulated (Total Cycles), the number of PC samples tak-
en during data collection (Total PCs), and the total number of instructions
simulated (Total instructions).

The dominant feature of the Performance Window is a bar chart showing
execution time and percentage by program units, for either program files or
C functions. If files are listed, you can double-click on a particular file
name to see the execution time of that file broken down by function. If
functions are displayed you can double-click on a function name to see the
execution time of that function broken down by line. If you request the
breakdown of a second file, the currently displayed breakdown is removed.
The third row of the window indicates the current Expansion level, by file
and function name.

Help
Window

The debugger provides on-line help on general topics and individual com-
mands (see Figure 3-9). The on-line help is intended for users who do not
want to read manuals.

Customize Select the items to be displayed in the bar graph:
Granularity: select top level display as files or func-

tions.
Entries: filter entries to be displayed on the graph

instead of all the files or functions.
Performance On:

enable or disable performance simula-
tion, if needed. Same functionality as
SIM PERF ON (Section 5.4) command.

Graph Select various update options:
Redisplay: refresh the bar graphs.
Track with source:

update the source window correspond-
ing to the current file or function or line
selection using the bar graph.

Track with execution:
update these bar graphs whenever the
program stops.

Quit: Remove the Performance Window from the display.

DEBUG.book : DB3 10 Sun Mar 9 10:56:45 1997

3-10 DEBUGGER USER INTERFACE CompactRISC Debugger Reference Manual

Figure 3-9. Help Window

3.3 MENU DESCRIPTIONS

File menu The entries on the FILE menu are:

• Load COFF File : selects an executable file for loading (Section 4.9)

• View Text : selects any text file for display. (Section 4.16)

• Log File : selects a file for display. (Section 4.17)

• Command File : executes a file containing debugger commands. (Section
4.15)

• Work Directory : changes the working directory. (Section 4.6)

DEBUG.book : DB3 11 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-11

• Save Setup : saves the current environment, window layout and color of
the debugger to crdb.env file. (Section 4.26

• Save State : saves settings related to debugging in crdb.ctx . (Section
4.27)

• Load State : restores the settings related to debugging from a crdb.ctx .
(Section 4.29)

• About : displays information about the current version of the debugger

• Quit : exits the debugger

Execute menu The entries on the EXECUTE menu are:

• Go: begins execution of your program. (Section 4.13)

• Reset : reset the system (Section 4.24)

• Rerun : executes your program from the beginning

• Go Till : executes your program until the selected source line is
reached

• Step source line : executes the machine instructions contained in the
current source line. If the instruction contains a function call, execu-
tion stops in that function. (Section 4.34)

• Next source line : executes the machine instructions generated by the
current source line. If the instructions contain a function call(s), exe-
cutes the entire function and returns. (Section 4.19)

• Step instruction : executes one machine instruction. (Section 4.35)

• Next instruction : executes one machine instruction. If the current
source-level instruction contains a function call, execute the entire
function. (Section 4.20)

• Debug mode: enables or disables debugging of startup or exit code. This
is a toggle switch.

• Advanced : selects options for Run, StepSource or StepIns , NextIns or
Step Source

• Abort Execution : aborts execution of your program by sending a signal
to the target. There may be some delay before the target stops and re-
sponds. (Section 2.2.8)

Break menu The entries on the BREAK menu are:

• Soft Break : manages software breakpoints. (Section 4.30)

• Break : manages hardware breakpoints. (Section 4.4)

• Cmds on Break : manages the command list to be executed whenever the
debugger stops (Section 4.3)

DEBUG.book : DB3 12 Sun Mar 9 10:56:45 1997

3-12 DEBUGGER USER INTERFACE CompactRISC Debugger Reference Manual

Source menu The entries on the SOURCE menu are:

• Show PC Line : re-centers the Source Window display on the source line
addressed by the program counter. (Section 4.37)

• DisplayMode : sets the display mode for the Source Window display to
Source or Mixed. (Section 4.31)

• Source Path : adds a new path to the list of pathnames for finding
source files (Section 4.32)

• Search String : searches for a string in source window (Section 4.12)

Config menu The entries on the CONFIG menu are:

• EDB: configures the debugger to work with a DEX-ADB development
board pair. (Section 4.38)

• SIM: configures the debugger to use the Instruction-Level Simulator
(Section 4.38)

• Radix : sets the global radix for debugger output displays (Section 4.23)

• Verbose : displays all communications between the debugger and the
monitor. (Section 4.39)

• Color : configures the color for all the windows

Show menu The SHOW menu allows you to activate any debugger window. The windows
are:

• Registers
• Status
• Local Variables
• Watch Variables
• Memory
• Performance

Help menu The Help menu opens the help sub-system, and allows you to look at the
various sections of the on-line help.

DEBUG.book : DB4 1 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-1

Chapter 4

THE DEBUGGER COMMANDS

4.1 INTRODUCTION

This chapter describes the debugger commands in alphabetical order.

Commands which relate directly to the Instruction-Level Simulator are de-
scribed in Chapter 5. Simulator commands must be prefixed by the key-
word sim . Commands for the Peripheral Stimulus System must be prefixed
by the keywords, sim pss .

Arguments, modifiers, and options for all commands are defined in Appen-
dix A.3.

4.1.1 Symbol References in Commands

In general, symbol references are the same as in a C program. The debug-
ger applies the scope rules of C to resolve the symbol references. In addi-
tion, there are the following special notations and modifiers for certain
symbols;

• To specify a function within a particular file, use:
file_name@func_name

• The function names also take the following modifiers:

$b Address of the absolute beginning of a function (the prologue).

$c Address of the first instruction in the body of the function (after the
prologue).

$e Address of the last instruction in the body of the function (before the
epilogue).

$x Address of the RETURN instruction at the end of the function.

These modifiers can be used in any command where function name may
be used, for example, arcsin$e .

• To reference a line number within a file, use:
file_name#line_no
Line numbers are counted from the beginning of the file.

• An address range is specified as:
start_address//end_address

• The current PC can be specified as . (period):
break .

DEBUG.book : DB4 2 Sun Mar 9 10:56:45 1997

4-2 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

• The address of return PC for the current C function can be specified as
.. (period period):
break . .

• The current source line can be specified as #(pound symbol):
break #

• The source line corresponding to the current PC can be specified as &:
break &

4.1.2 Command Entry and Formats

You enter the debugger commands in the command-line editing area. Select
the command line by clicking on the line (Section 3.1.1). Inputs must be low-
ercase. You do not have to type the complete command name, only sufficient
characters to differentiate it from other commands or aliases.

4.1.3 Command Descriptions

The descriptions of the commands are in the following format:

• The command name, and a short description of its functionality.
• The syntax of each the command’s formats, together with a detailed de-

scription of the operation of the command.
• How to execute the function with the hot keys, or the mouse.
• Any cautions which need to be observed when using the command.
• Examples of command usage, where necessary.

Most commands have a syntax of the following format:

command-name [-option] [-option] arg1 ,.., argn

Some commands do not have options or arguments. Whenever an asterisk
(*) is specified as an argument, it denotes wildcard operation. The debugger
provides limited wildcard support.

If you do not specify an operator/argument for a command, which requires
one, the debugger usually responds with the current values. For example:

Command> comm
RS-232: Baud = 9600, Port = Com2

Inputs are specified in standard C language constant format (0x as a prefix
for hexadecimal, 0 as a prefix for octal, no prefix for decimal). Generally,
outputs are displayed in the decimal format. Some commands have options
to change the display format.

DEBUG.book : DB4 3 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-3

4.1.4 Common Command Modifiers

The following modifiers are common to many commands, and are not repeated for
each individual command

List control modifiers:

-r removes an entry from a list.

-d disables an entry from a list.

-e enables an entry from a list.

4.2 ALIAS — DEFINE MACRO

Maps a command, or list of commands to a name which you can use instead
of the command(s). An alias can consist of up to eight alphanumeric charac-
ters; the first character is alphabetic.
Aliases are not expanded within other aliases, and thus recursion is not
allowed. During command validation, the alias table is searched before the
command table.

Aliases may be expanded in the log file (Section 4.17).

Examples To imitate the command names of another popular debugger, define them
as aliases of the debugger commands:

> alias bd=break -d

> alias bc=break -r

> alias be=break -e

To execute break -r and go as a sequence of commands, create an alias,
e.g., freerun . When you execute freerun :

> alias freerun=”break -r *; go”

alias name = “command; command ...”
sets an alias. Specify double quotes if the command contains arguments, or
commas, or command separators.

alias name = “command $$, $$”
defines an alias with arguments, where each “$$” is a placeholder for an
argument. Arguments are substituted one-at-a-time, in order, into the macro
definition.
When using the alias, you must provide the exact number of arguments.
otherwise, an error is issued.

alias name prints the alias for the name.

alias prints all aliases.

alias -r {name | *}
removes a name from the alias table.

DEBUG.book : DB4 4 Sun Mar 9 10:56:45 1997

4-4 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

To create a short notation for softbreak , create the following alias. When
you enter bp 0x200, 0x300 , softbreak is executed with 0x200 and 0x300
as arguments.

> alias bp=”softbreak $$,$$”

4.3 AUTOCOMMAND — SPECIFY COMMANDS FOR AUTO EXECUTION

Specifies a list of commands that are executed following an execution com-
mand such as step , next , reset or go. The specified commands are not
validated until they are executed.

Mouse Open BREAK and select CMDS ON BREAK. Fill in the dialog box.

Examples To display the stack history after each breakpoint, step , or next :

> autocommand where -c

To display the value of the PC after each breakpoint, step , or next :

> autocommand view %PC
[2] - view %PC

To display the current list:

> autocommand
[1] where -c
[2] - view %PC

To remove command number 2:

> autocommand -r %2

To display the value of the structure member, salary, addressed by the
pointer, e_list:

> autocommand view e_list->salary

To display the value of the string contained in structure member name, of
the structure in entry 0 of the array of structures p_tab:

> autocommand view p_tab[0].name

autocommand lists the current entries in the autocommand list.

autocommand command
adds a command to the list. Commands can be: view , list , find , or where .
Do not specify execution commands (e.g., step , next , go).

autocommand {-r | -d | -e } %id | *
A command is identified by its ordinal number, as shown by the output of
autocommand without an argument.

DEBUG.book : DB4 5 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-5

4.4 BREAK — SET HARDWARE BREAKPOINT

Manages the hardware breakpoint list. A breakpoint may be specified on a
PC-match, a read reference, on a write reference, or on either read or write.
You may also attach an occurrence count and or logical conditions to a giv-
en address .

For a general discussion of how to use breakpoints, see Section 2.2.7. The
debugger assumes the qualifier as PC-MATCH, if the address is a code ad-
dress, and as ACCESS, if the address is data address.

If a break address starts on a line, the source line corresponding to that
line is marked with a B in the first column. This mark disappears when the
breakpoint is removed.

Some options of this command may affect real-time operation. You are no-
tified whenever a real-time breakpoint occurs.

Caution The number of hardware breakpoints that can be specified at a time is a
function of your target chip and development system. The particular break-
point functions provided are also a function of your target development
system. Hardware limitations may permit only one breakpoint to operate
at any one time.

Mouse To set a complex breakpoint, open BREAK and select BREAK. Fill in the
dialog box.

break [-t] brkaddr_list [,c=RLexp][,o=occ_cnt][,q=qualifier][,s=size]
adds entries as hardware break.
-t adds temporary breakpoints. These breakpoints are

deleted after they occur.
brkaddr_list list of break points, code address or data address depend-

ing on the target, to be added. See Appendix A for the syn-
tax.

c=RLexp Specifies the relational, or logical, expression which must be
evaluated as TRUE to satisfy the break condition. This
option may affect real-time operation, because the condition
is being evaluated by the debugger.

o=occ_cnt Sets the number of times the given address must be ref-
erenced before execution is actually interrupted. Specify-
ing this option along with a condition may result in non
real-time operation.

q=qualifier The qualifier specifies the type of access which makes the
break become effective.
E to stop whenever code is executed at this address. It is
also known as PC-MATCH. This is the default when the
address specified is a code address.
A to stop whenever the address is accessed, i.e., read or
written to. This is the default when the address is data
address.
R to stop whenever the address is read.
W to stop whenever the address is written to.

DEBUG.book : DB4 6 Sun Mar 9 10:56:45 1997

4-6 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

Examples To set the breakpoint at the current source display line:

> break #

To set the breakpoint at the current PC:

> break .

To set the breakpoint at the beginning of the line containing the PC:

> break &

To set the breakpoint at line 36 in the file main.c :

> break main.c#36

To delete a breakpoint after its first occurrence, use the temporary break-
point feature:

> break -t main.c#36

To set the breakpoint at the start of the first executable line of the function
initerm :

> break initerm$c

To set the breakpoint at the last line of the function initport :

> break isdn1.c@initport$e

To set the breakpoint at the final return of the function:

> break main$x
[4] E (0x7DAF) main.c#19@main

To set the breakpoint upon a reference to initflag if the current value is not
equal to 2. Note that condition option affects real-time performance

> break initflag,c= (initflag!= 2)

s=size Sets the number of bytes for which the data break is
applicable. This field is meaningful when the qualifier is A,
R or W.
By default, the debugger sets the size based on the data
type of the symbol (subject to hardware limitations), oth-
erwise it sets the size to the size of the target integer (2 for
a 16-bit core and 4 for a 32-bit core).

After you set a breakpoint, the debugger responds with the message:
[id] : command string
The id is used with a percent sign (%id) to disable, enable, or remove the
breakpoint (see below).

break {-r |- d | -e} %id | *

break lists the break points in the following format:
[id1] - command1
[id2] - command2

DEBUG.book : DB4 7 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-7

To set the breakpoint upon a reference to initflag if the current values of
initflag and fileflag are non-zero:

> break initflag,c= (initflag && fileflag)

To set the breakpoint at line number 258 in the current source file

> break #258

To set the breakpoint at the beginning of the prologue of function
is_prime1, in module stmts1.c

> break stmts1.c@is_prime1$b

To set the breakpoint at line number 164 of the current source file if the
value of j is zero and the value addressed by temp is equal to the value ad-
dressed by str.

> break #164,c= (!j && *temp == *str)

To set the breakpoint at the second occurrence when the program is at line
236 of module stmts3.c if the value of str[k] equals the value of ch and the
value of j is greater than the value of k.

> break stmts3.c#236,c= (str[k] == ch && j > k),o=2

To disable breakpoint number 4:

> break -d %4
[4] - disabled “main$x”

To list the current breakpoint

> break
[1] E (0xE800) crdb_ch2.c#15@ main

To set a breakpoint on a local variable of a function.
This differs from other breakpoints because each local variable in a func-
tion (which is allocated space on the stack) is created only when the func-
tion is called, and disappears when the function is exited. Thus, if you set
a breakpoint on a local variable, you should remove it when the local vari-
able goes out of the scope. Otherwise, it will continue to stop whenever the
breakpoint condition is met for that stack location.

> break i1
[1] E (0x3E0023C4) Var : i1 Q: A; S: 4

DEBUG.book : DB4 8 Sun Mar 9 10:56:45 1997

4-8 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

4.5 CALL — EXECUTE USER FUNCTION

Caution When executing an arbitrary set of functions, it is possible to lose control
if you are not aware of function flow. This command saves all the registers
before it calls the function, and restores them on return from the function.
Hence, global variables used as registers may have their values restored.

There is no support for functions with variable number of arguments. The
debugger does not accept literal strings as arguments.

Example > call toint(‘9’)

Return value:

9

The function toint has a prototype int toint(char c) , hence when it
is called with a character ‘9’ , it converts into integer and prints 9.

4.6 CD — CHANGE WORKING DIRECTORY

Mouse Open FILE and select WORK DIRECTORY

Examples To change the current working directory to /usr/ISDN/SRC :

> cd /usr/ISDN/SRC

To display the current working directory:

> cd
/usr/ISDN/SRC

call func_symbol (arg1,arg2,...,argn)
Executes any C function in your program. After execution, control usually
returns to the debugger with the environment unchanged, except for any side-
effects of the function. The type and number of arguments must match.

One use of this command is to execute a previously written debugging
function, e.g., to print out a complex program structure in a more custom-
ized manner than can be done by the debugger. You may also use a func-
tion to set up inputs, such as arrays or structures, to be processed by later
stages of your program.

call prints the return value (if any) of the called function.

cd [path] sets the current working directory for creating/reading log and other files.
The quit command returns you to the directory from which you invoked the
debugger.

cd displays the current working directory.

DEBUG.book : DB4 9 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-9

4.7 CHIP — SELECT CHIP FOR EMULATION OR SIMULATION

Mouse Open CONFIG and select EDB or SIM.

4.8 COMM — SET COMMUNICATIONS PARAMETERS

Sets the communication parameters required to communicate with your
target board. See the appropriate board manual for the supported baud
rate.

Caution The comm command does not change the baud rates of the target. You must
change the speed settings on the board. Before using the ETHERNET fea-
ture of the debugger, you must configure the target to work in ETHERNET
mode. See the appropriate target manual. Currently, DEX-APB works at
19200 baud.

Mouse Open CONFIG and select EDB ➼ COMMUNICATIONS, or open CONFIG and select
ISE ➼ COMMUNICATIONS. Set up the communication parameters in the dialog
box.

Examples To set the baud rate:

> comm -b 19200;
RS232: Baud = 19200, Port = 2

To select serial port:

> comm -l 2
RS232: Baud = 19200, Port = 2

To list current settings:

> comm
RS232: Baud = 19200, Port = 2

chip [chipname]
Simulates, or emulates, a particular chip. If no argument is specified, the
debugger displays the name of the currently selected chip. chip is an ideal
command to specify in the .env or .ini files.

comm -b baud sets the baud rate for serial communication.
baud 19200

comm -l line sets the comm port: com1 or com2 for serial communication.
line 1 | 2

comm -e hostname | IP addr
sets the ETHERNET communication parameters.

hostname A name in the hosts file.
IP addr IP address in aa.bb.cc.dd format.

comm displays the current settings.

DEBUG.book : DB4 10 Sun Mar 9 10:56:45 1997

4-10 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

To select ETHERNET of the development board using IP address:

> comm -e 192.23.37.69
ETHERNET: host = 192.23.37.69

To select ETHERNET of the development board using host address:

> comm -e target1
ETHERNET: host = target1

If target1 is an alias for address 192.23.37.69, communication is established
to the target at that IP address.

4.9 DEBUG — SELECT THE EXECUTABLE FILE FOR DEBUGGING

Mouse Open FILE and select LOAD. Enter or select the filename for down loading.

Examples To select browser.cof

> debug browser.cof

To select fax.exe , and download to target, without reading its symbol tables.

> debug -x fax.exe

To select the executable file prog , and read the symbol tables without
downloading code from the COFF file to the target.

> debug -n prog

4.10 DEBUGMODE — SELECT DEBUGGING MODE

Caution If the C startup code is not assembled with symbols for debugging, and the
code is in ROM, the reset command may be slow.

debug [-x | -n | -xn] executable
specifies a COFF file, downloads its code, and reads its symbol tables to the
target board or Simulator.
-n do not download the executable file to be downloaded.
-x do not read symbol table.

debugmode {-e | -d } [startup | exitcode]
enables or disables the debugging of C startup code, non-symbolically linked
object modules, or C exit code. The default settings are:
• Debugging of startup code is disabled. i.e., the debugger executes up to

main() and stops at the start of the main function.
• Debugging of non-symbolically linked object modules is disabled.
• Debugging of C exit code is disabled.

exitcode refers to the exit code provided by the C compiler. Disabling the
debugging of startup code, disables performance data collection, even if you
have selected performance mode on, when using the simulator.

DEBUG.book : DB4 11 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-11

Mouse Open EXECUTE and SELECT debugmode.

Examples To allow debugging of startup code that has been modified:

> debugmode -e startup

4.11 FIND — FIND VALUE IN MEMORY

Examples To search memory, beginning with the address pointed to by stepte, for the
string “uphill.” Displays the memory address where found.

> find -a “uphill”, stepte

To search the memory range 0xc000//0xcfff for “string2.”

> find -a “string2”, 0xc000//0xcfff

To search for 345.67 in memory address range 0xd800//0xd8ff.

> find -f 345.67, 0xd800//0xd8ff

To report if the instruction “stor r0, flag” is in memory in the address
range 0xe800//0xe8ff.

> find -i “stor r0, flag”, 0xe800//0xe8ff

find {-a | -b | -c | -w | -f | -p | -l | -i } value , addr_range
Finds a pattern in memory. The options are:
-a ASCII string
-b byte
-c char
-w word
-f float
-p pointer
-l long
-i assembly instruction (Not yet supported)
If you do not specify a qualifier, the debugger finds the pattern in memory
with a qualifier based on the size of the value.

DEBUG.book : DB4 12 Sun Mar 9 10:56:45 1997

4-12 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

4.12 FINDSRC — FIND STRING IN A SOURCE FILE

Mouse Open SOURCE and select SEARCH STRING.

Examples To search for “getnum” in all files of the current working directory with the
extension c:

> findsrc “getnum”, *.c

To search for “backhandle” in the current source file, from the current dis-
play line to the end of the file, and then from the beginning of the file to
the current source line.

> findsrc -f “backhandle”

To search for string “malloc” in the current source file, from the current
display line to the beginning of the file, and then from the end of the file to
the current display line.

> findsrc -b “malloc”

To search for the string specified in the previous findsrc command in the
same direction as for the previous command.

> findsrc -n

findsrc [-f | -b | -n] [string] [, file_name]
f inds a specified string in the current source file, or the file specified by
file_name , and updates the Source Window to the selected line. If the string
is not found, the Source Window is not changed. If the current source file is
used, findsrc begins the search at the currently displayed line. The options
are:
-f for forward search
-b for backward search
-n for next
string is the specified search string (NULL on first reference). Use double
quotes to enclose words separated by blanks or commas. If string is not
specified for the -n option, the last specified search string is used. For option
-f or -b , you are prompted for input.
The file name can contain wildcard characters. The default is the currently
displayed file in the source window.

DEBUG.book : DB4 13 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-13

4.13 GO — EXECUTION OF USER PROGRAM

Mouse To go from the current PC, open EXECUTE and select GO, or select the GO but-
ton from the configurable buttons.
To go from the current PC until you reach the current source line, open
EXECUTE and select GOTILL.
To re-execute the code from the beginning, open EXECUTE select RUN.
For continuous execution, or to specify a range, open EXECUTE and select
ADVANCED to select your options.

To restart from the beginning of the program, open EXECUTE and select RERUN.

Examples To start debugging, for breakpoint address 0xE809, current module
crdb_ch2.c , current line number 20, and current function main :

> go
Realtime breakpoint
Breakpointed at :
[1] (0xE809) crdb_ch2.c#20@ main

To execute from line 10 to line 12 of the current display file:

> go #10//#12

To execute from address 0xd800 to address 0xd810 without stopping at
breakpoints. Control returns to you immediately.

> go -c 0xd800//0xd810

To execute from the current PC to the return address of the current ‘C’ function:

> go -c ..

go [-c] [from_addr][//end_addr]
issues a go command to the target.
If you specify the -c option (continue), the debugger does not stop at a break
condition, but updates the windows, issues autocommand (Section 4.3), and
continues execution. The Status Window shows the trigger condition.
from-addr and stop-addr are any valid code addresses.
If the debugger encounters a breakpointed state, and -c is not specified, it
stops and updates the Source Window. The source line corresponding to the
address contained in the PC is highlighted.
After a GO command, the debugger waits for a response from the target. To
regain control, open EXECUTE and select ABORT.
When the -c option is specified, execution is handled asynchronously, and
you retain some control over the debugger and can use the menus. To abort
the target, Open EXECUTE and select ABORT. The debugger updates the Status
and Source Windows upon receiving a response from the target.
from_addr must be a valid code address for the execution starting points.
end_addr must be a valid code address for the stopping point. Otherwise,
results are unpredictable.

DEBUG.book : DB4 14 Sun Mar 9 10:56:45 1997

4-14 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

4.14 INFO — DISPLAY DEBUGGER INFORMATION

4.15 INPUT — EXECUTE COMMAND SCRIPT FILE

Mouse Open FILE and select COMMAND FILE.

info prints the current settings of the following parameters:
• Debugger name and version.
• Target emulator (See target command, Section 4.38).
• Target CompactRISC chip (See chip command, Section 4.7).
• Environment variable CRDBENV.
• Current working directory (See cd , Section 4.6).
• Source directory path (See srcpath , Section 4.32).
• Environment file name.
• Initialization file name.
• Current program name (See debug , Section 4.9).
• Log file name (See log , Section 4.17).

input file_name
executes the commands from an input (command) file (see Section 2.2.12).
An input recursion of up to four levels is allowed.
Specify pause (Section 4.21) to suspend the execution of commands from
the input file. Use resume (Section 4.25) to continue the execution of com-
mands from the input file after pause .
Section 2.2.12 describes the debugger facilities provided for use with input
files and explains how to use them.
If an abort (Section 2.2.8) is issued while an input file is being executed, exe-
cution of this file, as well as its parent files are aborted.

DEBUG.book : DB4 15 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-15

4.16 LIST — LIST MEMORY OR FILE

Mouse To list a particular section of memory, open SHOW and select MEMORY window.

Mouse Position the cursor on the Line box on the fourth row of the Main Window.
Highlight the currently displayed line number, enter the new line number,
and press RETURN. Similarly, you can use the FILE and FUNCTION entries on
the row to display a particular file or function.

Examples To list memory within the range sCStr1//sCStr1+60, in floating-point format:

> list -mf sCStr1//sCStr1+60

To list the contents of the array slice, a_3i[1][0][0]//a_3i[2][0][0]:

> list -mw a_3i[1][0][0]//a_3i[2][0][0]

To disassemble the code in the function TestUnion within the module
vars2.c :

> list -mi vars2.c@TestUnion$b//vars2.c@TestUnion$e

list -m [h|o|d] [b | c | w | f | p | l | i] address | addr_range
lists the contents a memory range. The options are:
-h print the values in hexadecimal
-o print the valued in octal
-d print the value in decimal
-b byte
-c char
-w word
-f float
-p pointer
-l long
-i assembly instructions
radix command (Section 4.23) affects the output this command format.
When you specify the address as a numeric expression or in register nota-
tion (e.g., %PC) or in expression format (e.g., errno+5), the debugger evalu-
ates the expression and uses the result as the address.
When you specify the symbolic name (e.g., errno), the debugger displays
the contents of the variable.

list qualified_lineno
brings the specified source or text file into the Source Window. Use srcmode
(Section 4.31) to set the display mode. The file is displayed in the Source
Window.
You can also view files that do not belong to the current COFF file (e.g.,
header files). The debugger searches for these files in the directories speci-
fied by srcpath (Section 4.32).
qualified_line_no can be described as follows:

[filename][@func_symbol] const_lineno
The requested line, and as many of the following lines as possible, are dis-
played in the Source Window.

DEBUG.book : DB4 16 Sun Mar 9 10:56:45 1997

4-16 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

To list the file test1.c in the Source Window:

> list test1.c

To list the file tmp.c in the Source Window, and place the current display
at the function form_list :

> list tmp.c@form_list

4.17 LOG — RECORD DEBUGGER COMMAND SESSION

Records the sequence of commands issued to the debugger and, optionally,
the responses returned by the debugger.

Mouse Open FILE and select LOGFILE. Fill in the dialogue box.

Example To log all subsequent commands, and output into the commands.log file in
the current working directory:

> log commands.log

log [-a] [file_name]
-a appends the recording to an existing file.
file_name

specifies the log-file name. The default is crdb.log .
Invoking the debugger with -l option is the same as issuing the log
command with no arguments or options. (See Section 2.2.3.)

log [-d | -e]
-d disables the log.
-e enables (default) the log.

log [-i | -o]
-i signifies input only. This is a sticky option
-o signifies output also (default).

log [-f | -u]
-f specifies full form (expanding alias, set, etc.). This is a sticky option.
-u specifies unexpanded form (default).This is a sticky option.
If no arguments are given, the debugger records both the commands and
their responses in a file named crdb.log . There is no default for the file
name’s extension.
Specify -a to append the commands, and possible responses, to an existing
file. Otherwise, the debugger creates a new file for logging.
A sticky option apply to all the log operation until it is explicitly disabled. For
example, if you open another file_name the sticky options do not reset to
their default values.

log -s displays the current status of the log-options.
For information on the log file, see Section 2.2.12.

DEBUG.book : DB4 17 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-17

4.18 MODIFY — MODIFY CONTENTS OF MEMORY OR SYMBOLS

Caution The debugger does not keep track of the proper memory alignments for
length values greater than 1; you must do this yourself.

Mouse Open SHOW and select the MEMORY, REGISTERS or SYMBOL windows to modify
the programs.

Examples To store the characters ‘A’, ‘B’, ‘C’, and ‘D’ into the array elements
a[0]//a[3]:

> modify &a[0]//&a[3],‘A’,‘B’,‘C’,‘D’

To store the string into the location addressed by str , where str is defined
as char *:

> modify -a str,“ABCD”

To store the characters, ‘A’, ‘B’, ‘C’, and ‘D’, into the memory locations ad-
dressed by str and the following three locations

modify [-b |-c | -w | -f | -p | -l | -i] address | addr_range [, value [,value]]
-b byte
-c char
-w word
-f float
-p pointer
-l long
Modifies memory locations in various formats. addr_range can be any valid
text/data address, or a symbol reference, or an address range. The default
format for address is byte, and for a symbol is based on the type of variable.
The value should conform to the format; otherwise, a conversion is applied
whenever possible.
If an addr_range is specified, and the number of values specified is less
than the number of locations in the address range, the values are written
into memory repeatedly.

modify -a string_pointer ,string
-a string copy
If the -a option is specified, the debugger puts a string copy of string into
the location pointed to by the value of string_pointer . If string_pointer
is defined as a character, you may specify &string_pointer in the com-
mand. See example below.

modify % reg_name , value
If the % option is specified, the debugger sets the specified register to the new
value. Register names are target-specific, and are specified in the appropri-
ate appendix.
If value is omitted, modify becomes an interactive command. If an array or
structure is specified, the debugger displays an element at a time and
accepts a new value for each element, or press RETURN if the current value is
not to be modified. The addresses displayed by the debugger are spaced in
memory according to the length of the values to be specified. If a single
address is specified, the debugger queries one time for the new value.

DEBUG.book : DB4 18 Sun Mar 9 10:56:45 1997

4-18 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

> modify str//str+3,’A’,’B’,’C’,’D’

To store the string into memory, beginning at the address of str[2] , where
str is an array of char.

> modify -a &str[2],“ABCDF”

To store the value 385 into the variable iSNum:

> modify iSNum, 385

To store the value 25.642 into the variable ifNum:

> modify ifNum, 25.642

To set the value of general register r4 to the value, 0xff3e1415:

> modify %r4, 0xff3e1415

4.19 NEXT — EXECUTE NEXT SOURCE LINE (STEP OVER)

The debugger executes the next source line (i.e., C language source line) as
a whole. If the statement is a function call, the entire function is executed
and the debugger stops on the source line following the call. In some de-
buggers, this function is also known as step-over.

Mouse To execute a single statement (executing through a function), select NEXT
on the configurable menu, or open EXECUTE and select NEXT SOURCE LINE.
For continuous execution, or to specify a statement count or range, first
open EXECUTE and select ADVANCED.

next -c causes continuous execution of source lines until the end of program.

next -n number
causes execution of the given number (n) of source lines.

next [from_addr [//end_addr]]
executes the source lines in the given range. If only from_addr is specified,
the single statement beginning at that address is executed. If no range is
specified, the single statement addressed by the current contents of the PC
is executed.
from_addr must be a valid code address for the execution starting points.
end_addr must be a valid code address for the stopping point. Otherwise,
results are unpredictable.
After each source line completes executing, the commands specified in the
autocommand list (Section 4.3) are executed.
After the debugger executes a next command, it displays, for example:

Next to 0xE8B0 : crdb_ch2.c : plus_ab #52

where 0xE8B0 is the current address, crdb_ch2.c is the current module,
plus_ab is the current function, and 52 is the current line number.
After next , the debugger waits for a response from the target. To regain con-
trol, open EXECUTE and select ABORT to abort the command.

DEBUG.book : DB4 19 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-19

Caution Attempting a next over a complex source line may cause the debugger to
use software breakpoints internally.

Examples To execute the next source lines, starting at line 10 up to line 12 of the
displayed source file:

> next #10//#12

To execute the next source lines, starting at line 10 up to line 12 of the
displayed source file. If any of your breakpoints are detected, they are re-
ported and execution continues.

> next -c #10//#12

To execute the next 10 source lines, one at a time:

> next -n 10

4.20 NEXTINS — EXECUTE NEXT ASSEMBLY INSTRUCTION (STEP OVER)

The debugger executes the next assembly instruction. If the instruction is
a Jump to Subroutine, the entire subroutine is executed and the debugger
stops on the instruction following the Jump to Subroutine. This is similar
to the next command but at instruction level.

Mouse To execute a single instruction, executing through a function, open EXECUTE
and select NEXT INSTRUCTION. For continuous execution, or to specify an
instruction count or range, first open EXECUTE and select ADVANCED.

Open EXECUTE and select ABORT EXECUTION to abort the command.

Examples To execute the next 10 instructions, starting from the current PC:

nextins -c executes instructions until the end of the program.

nextins -n number
executes the given number (n) of instructions.

nextins [from_addr [//end_addr]]
executes the instructions in the given range. If only from_addr is specified,
the single instruction beginning at that address is executed. If no range is
specified, the single instruction addressed by the current contents of the PC
is executed.
from_addr must be a valid code address for the execution starting points.
end_addr must be a valid code address for the stopping point. Otherwise,
results are unpredictable.
After each instruction has been executed, the commands specified in the
autocommand list (Section 4.3) are executed.
After a nextins command, the debugger waits for a response from the tar-
get. To regain control, press CTRL-C. If you specify the -c option, control
returns to you before the command is completed. In this case, open FILE and
select ABORT to abort the command.

DEBUG.book : DB4 20 Sun Mar 9 10:56:45 1997

4-20 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

> nextins -n 10

To execute the instructions between line 10 and line 12 in the displayed
source file:

> nextins -c #10//#12

To execute the machine-language instructions from address 0xd800
through address 0xd810:

> nextins 0xd800//0xd810

4.21 PAUSE — SUSPEND INPUT FILE EXECUTION

4.22 QUIT — EXIT FROM THE DEBUGGER

Mouse Open FILE and select QUIT.

Caution To continue your debugging session at a later stage, use savestate (Sec-
tion 4.27). To resume at the same point, use setstate (Section 4.29).

4.23 RADIX — SET RADIX FOR OUTPUT DISPLAY

Mouse Open CONFIG and select RADIX.

pause suspends execution of commands from the input file, and prompt for input
at the Command Window.
When a pause is executed, the debugger displays the following message:

*** PAUSED for input, type ‘resume’ to continue

You can execute several commands via the Command Window. To resume
execution of the input file commands, use resume (Section 4.25).
This command is only useful in an input file.

quit quits debugging session, without waiting for confirmation.

radix [8 | 10 | 16]
sets the radix for displaying output values to octal (8), decimal (10), or hexa-
decimal (16). The default radix is decimal.
When no argument is specified, the debugger displays the current radix.
The command affects the default behavior of the watch , view , where , and
list commands with -m option.

DEBUG.book : DB4 21 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-21

Caution This command sets the radix for outputs only. Specify input values using
the standard syntax for C language constants. radix does not affect the
output of the memory window.

Examples To display the current radix:

> radix

To set the radix to 16 (hexadecimal):

> radix 16

4.24 RESET — RESET THE DEBUGGER AND THE TARGET BOARD

Mouse Select RESET on the main menu, or open EXECUTE and select RESET.

Caution To debug program initialization code, which has been modified while devel-
oping a C application for CompactRISC, invoke debug with the -e option,
and specify the directory containing the source file as your source path (Sec-
tion 4.32). If the debugger does not find the file in the source path, it
prompts for an alternative directory.

The target system’s response to the reset command is hardware-dependent.

reset The debugger issues a reset command to the target board. The source file
display is synchronized to the beginning of the program.
By default, the debugger executes your program up to the first instruction in
the main program (main$b). See debugmode (Section 4.10) if you want to
change this behavior.

DEBUG.book : DB4 22 Sun Mar 9 10:56:45 1997

4-22 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

4.25 RESUME — RESUME EXECUTION OF INPUT FILE

4.26 SAVECONFIG — SAVE CURRENT DEBUGGER CONFIGURATION

Mouse Open FILE and select SAVESETUP.

Caution If you do not specify file_name , crdb.env , if it already exists, is copied
into the file crdbenv.old , and crdb.env is overwritten.

Examples To save the configuration in the default file crdb.env , in the default loca-
tion:

> saveconfig

To save the configuration in config.in , in the current working directory:

> saveconfig config.in

4.27 SAVESTATE — SAVE CURRENT DEBUGGING STATE

Mouse Open FILE and select SAVE STATE.

Caution The environment depends on the state of the debugger, the target, and the tar-
get chip. savestate and setstate only save and restore the state of the
debugger. If you are unsure about the state of the target, restart your pro-
gram.

resume Resumes execution of an input file that was suspended with pause (Section
4.21). Other commands can be executed before resume .

saveconfig [file_name]
saves current configuration setting in file_name , (default crdb.env), in the
directory pointed to by CRDBENV, or in the startup directory if CRDBENV is not
set.

• target chip name
• communication parameters
• display colors
• window sizing information

Since parameters are saved in the form of debugger commands, you can exe-
cute these commands with INPUT.

savestate [file_name]
Saves the current debugging settings in file_name in the current working
directory, or in the default file, crdb.ctx . The file contains information
about the current state of the debugger, including break/softbreak lists,
current COFF file, cd , and autocommand , watch , alias , set , and srcpath
lists. Use savestate and setstate (Section 4.29) to quit the debugger, and
later restore the saved settings.

DEBUG.book : DB4 23 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-23

If you specify no arguments and crdb.ctx already exists, it is overwritten.

Examples To save the current state of the debugger in crdb.ctx , in the current working di-
rectory.

> savestate

To save the current state of the debugger in save.fil , in the current working di-
rectory.

> savestate save.fil

4.28 SET — DEFINE DEBUGGER VARIABLES AND STRINGS

Defines debugger variables and function keys.

Examples To set a symbol uart to 100:

> set uart = 0x100

You can make use of the symbol uart in a command by specifying $uart :

> list -mw $uart

4.29 SETSTATE — RESTORE DEBUGGING STATE

Mouse Open FILE and select LOAD STATE.

Caution The debugger assumes that the state of the target has not changed since
savestate was executed.

set name=string
defines name to have the value string . Whenever you specify $name, in a
command string is substituted.

set -r name | *
removes name from the list of defined names. Specify an asterisk (*) to
remove every name from the list.

set name displays the current value of name.

set displays all of the values currently in the list of defined names

setstate [file_name]
restores the debugging state as saved by savestate (Section 4.27). The
debugger automatically downloads your previous COFF file.
The debugger reads file_name from the current working directory. The
default filename is crdb.ctx .

DEBUG.book : DB4 24 Sun Mar 9 10:56:45 1997

4-24 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

The debugging environment depends on the states of the debugger, target,
and target chip. savestate and setstate (Section 4.29) only save and
restore the state of the debugger.

Examples To set the state of the debugger to the state captured in the file crdb.ctx
in the current working directory:

> setstate

To set the state of the debugger to the state captured in the file save.fil :

> setstate save.fil

4.30 SOFTBREAK — SET SOFTWARE BREAKPOINT

Similar to break (Section 4.4), but the breakpoint is implemented by software;
hence, the program does not operate in real-time mode if an occurrence count or
conditional expression is specified. This mode does not have the global break oc-
currence count or break qualifier. The break occurs only on an opcode fetch.

For a general explanation of breakpoints, see Section 2.2.7.

Mouse To set a complex breakpoint, open BREAK and select SOFTBREAK. Fill in the dia-
log box.
To set a simple execution breakpoint on a particular line of your source file,
use the fourth row editable fields like File, Module, Line in the Main Window
(Section 3.2) to select and display the appropriate line in the Source Window,
and then click the left mouse twice to set softbreak . The debugger acknowl-
edges the setting of the breakpoint by displaying an S at the left end of the
source line. Double-click again to remove the breakpoint.

You can also set a software breakpoint by pressing the corresponding but-
ton in the second row of the Main Window (Section 3.2) when the cursor is
on the desired source line.

softbreak [-t] softbreak_list [,c =RLexp] [,o =occ_cnt]
adds a soft break.
c=RLexp specifies a condition
o=occ_cnt sets the occurrence count. During operation, the occurrence

count is decremented only if the breakpoint condition is met.
-t adds temporary software breakpoints. These breakpoints are

deleted after they occur.
softbreak_list

lists the code addresses at which the breakpoints are set.

softbreak { -r | -d | -e } %id | *
-r removes breakpoint
-d disables breakpoint
-e enables breakpoint

softbreak lists the current softbreak items.

DEBUG.book : DB4 25 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-25

Caution These breakpoints are implemented by software, and may result in non real-
time operation. The total number of soft breakpoints that can be set at a time
is limited, and depends on the target. Refer to the appropriate manual for the
target.

Examples To set a software breakpoint at the final return of the function TestVars
in module vars3.c :

> softbreak vars3.c@TestVars1$e

To set a software breakpoint at the current display line:

> softbreak #

To set a temporary software breakpoint at line number 10 in the current
module:

> softbreak -t #10

4.31 SRCMODE — SET SOURCE FILE DISPLAY MODE

Sets the Source Window display mode. By default, source-only is enabled

Mouse Open SOURCE and select DISPLAYMODE.

Note A source line may be associated with two separate blocks of assembly code
(e.g., a for loop line for which the compiler generates code both before and af-
ter the loop body). In this case, if you select mixed mode display, you may
find the results confusing; there are two non-contiguous blocks of assem-
bly code after the source line. Although this might be confusing at first
sight, it is correct and reflects the reality.

The disassembled code shown in the source window is obtained by disas-
sembling the instructions from the COFF file. Hence, this does not reflect
code changes which are made to the target memory.

4.32 SRCPATH — SET DIRECTORY PATH FOR SOURCE FILES

Sets the directory pathname for the source files search. The last entry add-
ed, or enabled, is the first directory to be searched.

srcmode [-s | -m]
sets the display mode for the Source Window.
-s enables source-only display.
-m enables mixed mode display.

(Displays both the source line and lines of generated assembly code.)

srcpath pathname_list
adds a pathname or list of pathnames.

DEBUG.book : DB4 26 Sun Mar 9 10:56:45 1997

4-26 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

Mouse Open SOURCE and select SOURCE PATH. You have more control here to delete
or add a directory.

Examples To add ..\test to the set of source paths:

> srcpath..\test

To remove ..\data from the set of source paths:

> srcpath -r ..\data

To display the current set of source paths:

> srcpath

4.33 STDIO - REDIRECT VIRTUAL I/O STANDARD FILES

STDIO directs the output of standard I/O functions (Section 2.2.10) to
standard files, to a host disk file, to the Output Window. By default, stdin ,
stderr and stdout are redirected to the Output Window..

srcpath -r pathname | *
removes a pathname. Specify an asterisk, to remove all pathnames.

srcpath displays the current source search path. If it does not find a source file for
display, the debugger asks for the name of the directory to be searched.

stdio -i <filename>
maps the stdin operations to the specified file.

stdio -o [a]<filename>
maps the stdout operations to the specified file. If you specify the -a option,
new output is appended to the current file.

stdio -e [a] <filename>
maps the stderr operations to the specified file. If you specify the -a option,
new output is appended to the current file.

stdio -oe [a] <filename>
maps the stdout operations and stderr operations to the file specified. If
you specify the -a option, new output is appended to the file.

stdio [-i|-e|-o]w
maps the specified operations, stdin , stdout , or stderr , to the Program
Output Window.

stdio [-i|-e|-o]r
maps the specified operations, stdin , stdout , or stderr , to the program
invocation terminal.

stdio lists the current mappings of I/O operations.

DEBUG.book : DB4 27 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-27

4.34 STEP — STEP ONE SOURCE LINE

The debugger executes the current, or given source line, i.e., C-language
line, as a whole. After the execution of source line(s), the commands speci-
fied in the autocommand list (Section 4.3) are executed.

To regain control, during a step command, open EXECUTE and select ABORT
EXECUTION to abort the command.

Mouse To step a single source line, press function key F4, or click on the STEP but-
ton, or open EXECUTE and select STEP SOURCE LINE. For continuous execution,
or to specify a source line count or range, first open EXECUTE and select
ADVANCED.

Open EXECUTE and select ABORT EXECUTION to abort this command.

Caution Attempting a step over a complex source line may cause the debugger to
use either hardware or software breakpoints, and may result in non real-
time operation.

Examples To execute source lines from line 10 through line 12 of the source file dis-
played in the source window. If a breakpoint is detected, it is reported and
execution continues until line 12 is executed.

> step -c #10//#12

To step 10 source lines, starting from the current PC:

> step -n 10

4.35 STEPINS — STEP ONE ASSEMBLY INSTRUCTION

Executes the current assembly instruction or given instruction.
Upon completion of each instruction, the commands specified in the auto-
command list (Section 4.3) are executed.

step -c Executes source lines continuously until the end of program. If a softbreak
or break occurs in this process, the debugger issues a report and continues
stepping.

step -n number
executes the given number (n) of source lines.

step [from_addr [//end_addr]]
executes the source lines in the given range. If only from_addr is specified,
the single source statement beginning at that address is executed. If no
range is specified, the single source line addressed by the current contents of
the PC is executed.
from_addr must be a valid code address for the execution starting points.
end_addr must be a valid code address for the stopping point. Otherwise,
results are unpredictable.

DEBUG.book : DB4 28 Sun Mar 9 10:56:45 1997

4-28 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

After a stepins command, the debugger waits for a response from the tar-
get. To regain control, open EXECUTE and select ABORT EXECUTION to abort
the command.

Mouse To step a single instruction in an assembly program, open EXECUTE and
select STEPINSTRUCTION.
For continuous execution, or to specify an instruction count or range, first
open EXECUTE and select ADVANCED.

Open EXECUTE and select ABORT EXECUTION to abort this command.

Examples To execute instructions from address 0xd800 to address 0xd810. If a
breakpoint is detected during execution, it is reported and execution con-
tinues.

> stepins -c 0xd800//0xd810

To execute 10 instructions, starting with the instruction addressed by the
current PC:

> stepins -n 10

Notes 1. A limitation of the CompactRISC architecture makes it impossible to
perform a single step if the next instruction modifies the entire contents
of the PSR register. Do not use the stepins command if the next in-
struction is RETX, or LPR with PSR as the second operand.

2. In simulation mode, you can only perform single steps after the point in
the start-up routine where both the following conditions are fulfilled:

– the INTBASE register points to a dispatch table, with the appropriate
TRC, BPT and ISE trap handlers

– the ISP and SP registers are initialized.

For convenience, the debugger initializes these registers to default val-
ues, allowing you to perform single steps from the first instruction of
your program. The debugger looks in your program for the following glo-
bal symbols on which to base the default values:

– __dispatch_table (dispatch table - used to initialize INTBASE)

– __ISTACK_START (start address of interrupt stack - used to initialize ISP)

– __STACK_START (start address of program stack - used to initialize SP)

stepins -c executes instructions continuously until the end of program.

stepins -n number
executes the given number (n) of instructions.

stepins [from_addr [//end_addr]]
executes the instructions in the given range. If only from_addr is specified,
the single instruction beginning at that address is executed. If no range is
specified, the single instruction addressed by the current contents of the PC
is executed.
from_addr must be a valid code address for the execution starting points.
end_addr must be a valid code address for the stopping point. Otherwise,
results are unpredictable.

DEBUG.book : DB4 29 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-29

The default startup routine uses all these symbols. To enable single
steps from the first instruction, in simulation mode, we recommend that
you continue to use these symbol names, even if you modify the start-up
routine.

4.36 SYMBOL — DISPLAY SYMBOL CHARACTERISTICS

Displays the characteristics of the symbols.

Mouse Open QUERY to get a dialog box. (Section 3.2). Use the info button to get the
details on the symbol.

Examples To search for the symbol, getnum , in the current scope and display the
characteristics:

> symbol getnum

To search for the symbol new_int in the current function and display the
characteristics:

> symbol -l new_int

To display the tag of the symbol k_struct :

> symbol -t k_struct

To display all the symbols defined in the module temp.c :

> symbol -f temp.c

To display all the global symbols:

symbol {* | pattern *}
displays all symbols matching the pattern. The pattern can be symbol_name
or symbol_qualifier (any sequence of characters which can begin a valid
symbol). The asterisk is a pattern wildcard, standing for zero or more addi-
tional characters.

symbol -l { * | pattern * }
displays only local (automatic variable) symbols from the current function.

symbol -t {datatype /tagname | symbol_name | *}
displays the tag or type of the structure or symbol name.

symbol -f qualified_modulename
displays all the symbols from the specified module. Since global symbols are
not attached to any specific module, they are not displayed.

symbol -g [pattern *]
lists all the names of the globals beginning with pattern . If pattern is omit-
ted, the names of all the global symbols are listed.

symbol address
attempts to find the symbolic mapping of address

DEBUG.book : DB4 30 Sun Mar 9 10:56:45 1997

4-30 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

> symbol -g

To display the symbolic mapping of address 0x28c:

> symbol 0x28c
iSNum2:

Scope : Static to file
Declared in : vars1.c
At address : 0x28c
Size (bytes) : 2
Declaration :

static int iSNum2;

4.37 SYNC — SYNCHRONIZE SOURCE FILE DISPLAY

Mouse Open SOURCE and select SHOW PC LINE.

4.38 TARGET — SPECIFY EXECUTION ENGINE

Mouse Open CONFIG and select EDB to use the development board.
Open CONFIG and select SIM to use the Instruction-Level Simulator

Examples To use the Simulator for program development:

> target sim

To display the current selection:

> target
Current_target = SIM

sync brings the source line corresponding to the current PC into the Source Win-
dow. This is helpful when you are looking at a source file other than the cur-
rent file, and want to restore the display to the current execution context.

target [emulator_name]
emulator_name EDB or SIM.
edb - for using National’s development system, i.e., DEX-ADB.
sim - for using National’s instruction and performance simulator.
Specifies the type of emulation, or simulation, engine, e.g., simulator, devel-
opment board, ISE or target board.
info (Section 4.14) displays the name of the currently selected target.
When you invoke the debugger, it assumes the target is a development
board.

DEBUG.book : DB4 31 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-31

4.39 VERBOSE — MONITOR COMMUNICATION TRAFFIC TO TARGET

Mouse Open CONFIG and select VERBOSE.

verbose enables or disables the monitoring of traffic between target and the debug-
ger. Each specification toggles the previous state. Upon startup, the mode is
disabled. This command is for diagnosis purposes only.

DEBUG.book : DB4 32 Sun Mar 9 10:56:45 1997

4-32 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

4.40 VIEW — VIEW VALUE OF STRUCTURE OR SYMBOL

view expression [, print_specifier]
Computes the value of expression . expression may be a C language sym-
bol, or structure element reference. When a symbol or structure element is
specified, without any print_specifier , it displays the symbol based on
the symbol type and the current RADIX setting (Section 4.23).

view % reg_name [, print_specifier]
displays the value of the specified register. Register names are target-specific.
expression is a C-language symbolic expression.
print_specifier is one of:

d signed decimal
i signed decimal
o unsigned octal
x unsigned hexadecimal using “a, b, c, d, e, f”
X unsigned hexadecimal using “A, B, C, D, E, F”
u unsigned decimal integer
e floating-point in engineering notation
E floating-point in engineering notation
f floating-point
g double-signed value printed in +/- format
G double-signed value printed in +/- format
c single character
s character string

hd short-signed decimal integer
hi short-signed decimal integer
ho short-unsigned octal integer
hX short-unsigned hexadecimal integer using “ABCDEF”
hx short-unsigned hexadecimal integer using “abcdef”
hu short-unsigned decimal integer
ld long-signed decimal integer
li long-signed decimal integer
lo long-unsigned octal integer
lX long-unsigned hexadecimal integer using “ABCDEF”
lx long-unsigned hexadecimal integer using “abcdef”
lu long-unsigned decimal integer
Le long-double in engineering notation (lowercase e for exponent)
LE long-double in engineering notation (uppercase E for exponent)
Lf long-double floating-point
Lg long-double signed value printed in f or e format, whichever is more

compact for the given value and precision. The e format is used only
when the exponent of the value is less than −4 or greater than the
specified precision. Trailing zeros are truncated and the decimal point
appears only if one or more digits follow it.

LG long-double signed value, identical to the g format except that G intro-
duces the exponent (where appropriate) instead of E.

DEBUG.book : DB4 33 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-33

Mouse You can use any of the following options to view a variable:

• Select QUERY in the main window.
• Open SHOW and select WATCH, to specify the variable names to be

watched continuously.
• Open SHOW and select LOCAL VARIABLES, to print the current values of the

local variables and arguments of the currently executing functions.
• Highlight a variable, with the mouse, and select PRINT.

Examples To view the value of the expression sStr1+4:

> view sStr1+4

To view the value addressed by the pointer pPtr4:

> view *pPtr4

To view the sum of the value addressed by pPtr2 and 4:

> view *pPtr2+4

To view the value addressed by the sum of the contents of sXStr1 and 18,
where sXStr1 is a pointer variable:

> view *(sXStr1+18)

To view the value of the array element a_2c[1][1]:

> view a_2c[1][1]

To view the value addressed by the array element days[5], where days is an
array of pointers

> view *days[5]

To view the value of the array element days[5]:

> view days[5]

To view the value of member next, of the structure addressed by member
next, of the structure addressed by the contents of e_list

> view e_list->next->next

To view the high byte of the value of hCNum3 as a hexadecimal number:

> view hCNum3,hx

To view the high byte of the value of hCNum1 as an octal number:

> view hCNum1,ho

To view the value 2, shifted left the number of bits indicated by
iCNum1+10, as a long integer:

> view 2<<(iCNum1+10),ld

To view the value of iCNum1 modulo 3:

DEBUG.book : DB4 34 Sun Mar 9 10:56:45 1997

4-34 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

> view iCNum1%3

To view the product of the sizes of union2 and union4, multiplied by 2:

> view sizeof(union2)*sizeof(union4)*2

To view the value of iCNum2, if the value of iCNum1 is greater than 4, oth-
erwise, view the value of iCNum3:

> view (iCNum1>4)?iCNum2:iCNum3

To view the value of the Stack Pointer:

> view %sp

DEBUG.book : DB4 35 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-35

4.41 WATCH — SELECT VARIABLES FOR AUTO DISPLAY

Manages a list of expressions to be displayed in the Watch Window (Section
3.2). The Variable Window is updated whenever there is a change of state
of the debugger, or the target environment, such as the occurrence of a
breakpoint.

Mouse To look at the Variables Window, open SHOW and select VARIABLES.

Examples To add namebuf to the display list. The watch window is updated with its
value:

> watch namebuf

To display the variable namebuf from the watch list:

> watch -d namebuf
[1] - Disabled

To remove the variable namebuf from the watch list:

> watch -r namebuf

To disable display of variables on the watch list:

> watch -d *

To add iCNum1 to the display list, and display its value in hexadecimal for-
mat:

> watch iCNum1, x

watch expression [,print_specifier]
adds an entry to the watch list.
expression Refer to Appendix A.

print_specifier
See the VIEW command (Section 4.40).

watch {-r | -d | -e } %id | *

watch lists the current entries on the watch list.

DEBUG.book : DB4 36 Sun Mar 9 10:56:45 1997

4-36 THE DEBUGGER COMMANDS CompactRISC Debugger Reference Manual

4.42 WHERE — DISPLAY CURRENT CONTEXT

Mouse Open SHOW and select STACK to bring a window containing the function call
stack. Double click on any of the output lines to bring the source for this
line into the source window. Correspondingly, the local variables window is
updated if the local variable window is already open.

Examples To display the current function with arguments:

> where -c

To display the current stack history with local variables for the called func-
tions:

> where -v

To display the stack history and the local variables of function getnum:

> where -cv getnum

4.43 ! — SINGLE LINE COMMAND TO MONITOR

Caution The string is passed as it is; there is no attempt to substitute any of the
symbols specified in this string. If, while debugging, you issue monitor
commands that alter the state of the monitor, the debugger may enter an
undefined state. The debugger does not process the output from these
commands.

where [-c | -v] [func_symbol [@symbol]]
shows the program context at any point.

where [-v] displays the current source line and function with arguments. If -v is speci-
fied, it also displays the total variables and their values.

where -c displays current function call stack history with arguments

where -cv [func_symbol [@symbol]]
with no arguments specified, displays the current stack history with the
local variables for each function.
If only func_symbol is specified, where displays the current stack history
with local variables for only the specified function.
If func_symbol and symbol are specified, where displays the current stack
history and the value of the local variable, symbol , defined in function
func_symbol .
The format is based on current radix setting (Section 4.23).

! command to target
The string that follows ! (the bang) character is passed to the monitor. The
string should be a valid monitor command. It is not validated by the debugger.
The response is echoed on the output window. This command is useful in exe-
cuting functions not directly supported by the Debugger.

DEBUG.book : DB5 1 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual INSTRUCTION-LEVEL SIMULATOR COMMANDS 5-1

Chapter 5

INSTRUCTION-LEVEL SIMULATOR COMMANDS

5.1 INTRODUCTION

The PSS helps you to simulate the behavior of the specific peripherals on
your board. You can thus simulate your application’s hardware environ-
ment, and investigate its implications on program execution.

This chapter describes, in detail, all the Instruction-Level Simulator com-
mands. These commands all have the prefix SIM.

Section 5.2 describes how to configure the simulator. Sections 5.3 and 5.4
detail the peripheral simulator commands.

For a detailed explanation of the PSS, see Chapter 2.

DEBUG.book : DB5 2 Sun Mar 9 10:56:45 1997

5-2 INSTRUCTION-LEVEL SIMULATOR COMMANDS CompactRISC Debugger Reference Manual

5.2 CONFIGURATION COMMANDS

CONFIG - Configure Simulator for Operation

Examples To set the frequency of the simulation clock to 25 MHz:

> sim config clock=25 MHz

To display the current configuration:

> sim config clock
25000

To split memory at address 0x9000, and set the fetch wait states on all ad-
dresses higher than 0x9000 to 2:

> sim config perf -sa 0x9000 -fh 2

sim config param[= value]

This command configures the simulator. If value is not specified, the
current value is displayed.

param is one of:

clock [= frequency KHz | MHz]
sets the simulation clock frequency. frequency is an integer.

perf = string

string is a set of performance simulator parameters of the form:
-sa split_address
-fh waits
-fl waits
-lh waits
-ll waits
-sh waits
-sl waits

Where: fh is fetch high, fl is fetch low, lh is load high, ll is load
low, sh is store high and sl is store low.
wait is the number of wait states.

refresh [= interval]
sets the interval between updates of the Status Window. interval
can be specified either as integer_i , indicating the number of
instructions, or integer_t , indicating the number of clock ticks
(where a tick represents one clock period).

DEBUG.book : DB5 3 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual INSTRUCTION-LEVEL SIMULATOR COMMANDS 5-3

5.3 PSS INTERNAL COMMANDS

OUTPUT - Map Output File to Address

Example To direct the writes to address 0x8000 to /pss/file:

> output 0x8000 /pss/file

READFILE - Read Input File

Example To execute the commands in the PSS input file pss.int from the current
PSS input file, and execute the set commands in it relative to the current
time:

> readfile pss.int -c

SET - Set address

output qual_address path [-a] [-n]
Records writes to address qual_address , into the file designated by path .
-a , appends new data to an existing file; otherwise, if the specified file
exists, it is first erased.
-n , intercepts writes to memory, where the write is necessary to invoke an
action, not to change the contents of the memory address. The write to the
address activates all the PSS activity, but does not modify the memory.
If more than one output command is activated at a given address, and if
one of the output commands uses the -n flag, memory is not modified.
The format of the output file is:
set address value time

readfile full_path [-c]
reads an input file specified by full_path . The specified file must con-
tain internal PSS commands. If multiple files are specified, they are all
read prior to the start of simulation.
If the initial set command of the new file is a relative command, i.e., if it
contains a relative delay time, the time of execution of the last set com-
mand is used as baseline time.
If no se t command has been previously executed, the baseline time is the
beginning of the simulation.
-c , executes the set commands in the file relative to current time.

Sets a value to a specified memory address at particular times, or on the
occurrence of certain conditions.

DEBUG.book : DB5 4 Sun Mar 9 10:56:45 1997

5-4 INSTRUCTION-LEVEL SIMULATOR COMMANDS CompactRISC Debugger Reference Manual

set address1 value1 time1 [<condition>]
OR
set interrupt vector time1 [<condition>]

The directive may take one of three forms.

SYNTAX1: set address1 value1 time1 [every time2 [times1]]
This directive sets the value value1 to the address or address-range
address1 , after a delay of time1 . The delay may either be absolute or rel-
ative. If [every time2 [times]] is included, value1 is set repeatedly in
periodic intervals of size time2 .
If times1 is specified, the value is only set times1 times

SYNTAX2: set address1 value1 time1 onread address2 [value2]

value1 is set to address1 after a delay of time1 from the time that
address2 is read.
If value2 is specified, value1 is set to address1 only if value2 was read
from address2 .

SYNTAX3: set address1 value1 time1 onwrite address2 [value2]

value1 is set to address1 after a delay of time1 from the time that
address2 is writen to.
If value2 is specified, value1 is set to address1 only if value2 was
writen to address2 .

address [:qualifier][:range]
address A positive integer representing an address in the simulated

address space. It may be in decimal, octal (begins with 0), or
hexadecimal (begins with 0x).

qualifier is the type of item addressed by address .

b Byte (8-bit byte, default)

w Word (16-bit, address must be word-aligned, i.e., 0, 2, 4,
6, ...)

d Double (32-bit, Address must be double-word aligned,
i.e., 0, 4, 8, 12, ...)

n [bit_position]

bit_position is in the range 0-7 (default is zero). When
a bit position is specified, range cannot be specified.

range An integer (decimal, octal, or hexadecimal) representing the
length of the memory range.

value An integer (decimal, octal, or hexadecimal)

A path of a data-file containing integers (decimal, octal, or
hexadecimal).

time is defined as time [qualifier]

DEBUG.book : DB5 5 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual INSTRUCTION-LEVEL SIMULATOR COMMANDS 5-5

Caution Execution of a set command may take place any time between 0 and 100
ticks following its specified execution time. To ensure that one set com-
mand precedes another in execution, the two commands must have delays
which differ by at least 100 ticks.

Examples To read a total of ten values of data from a data file into perip_read every
5 ms after an initial wait of 1 ms from the beginning of the simulation:

> set perip_read from_data_file 1m every 5m 10

To set perip_flags to reset, when your program reads perip_read :

> set perip_flags reset 0 onread perip_read

To write 50 double words (taken from the data file) to memory, starting at
address 0xFFFF0000, one ms after you start the DMA:

> set 0xFFFF0000:d:50 data_file 1m onwrite DMA_start start_transfers

To generate a square wave with a period of 2 ms:

> add1 = 0xFFFE0000:w
> set add1 0 0m every 2m
> set add1 1 1m every 2m

time is a positive decimal integer.

qualifier is one of:

r Relative to the previous set statement, if avail-
able, or relative to current time if no previous set
statement is available, or when reading a PSS file
with the -c flag. This flag is ignored for time2 .

a Absolute time from the beginning of the simula-
tion or from the last reset or sim perf on com-
mand. This flag is ignored for time2 .

and/or one of

t Simulation clock ticks. Length of one tick is
determined by the frequency of the simulation
clock.

n Nanoseconds

u Microseconds

m Milliseconds

s Seconds

interrupt is one of:

int (maskable interrupt)
Where vector is the interrupt vector number. It is read from
the value field or from a file.

nmi (non-maskable interrupt)

For an explanation of how to simulate interrupts, see Section 2.3.3.

DEBUG.book : DB5 6 Sun Mar 9 10:56:45 1997

5-6 INSTRUCTION-LEVEL SIMULATOR COMMANDS CompactRISC Debugger Reference Manual

Creating Symbols

5.4 SIM PSS COMMANDS (FROM DEBUGGER COMMAND LINE)

PSS - Report State of PSS System

PSS CLEAR - Clear PSS Data and Status

PSS FILES - Display Names of PSS Files

symbol [= value]

Creates a symbol with the value specified in the command. Symbols must
be unique, and must be defined prior to their usage.
Symbols can replace any entity except: set , output , readfile , onread ,
onwrite , int , nmi , and every . Symbols cannot start with a digit.

sim pss reports the state (on or off) of the Peripheral Stimulus System.

sim pss clear clears the PSS data structure, sets PSS to off, recycles all the dynamically
allocated memory, and closes all open files (including the verbose file, if it
was open).
clear also sets the time of the “last loaded set command” to current
simulation time (see sim pss load).
If you use PSS to restart a test, you must issue reset , sim perf on , sim
pss clear , and sim pss on commands. You must then reload any PSS
files which you want to use.

sim pss files

displays the names of the files opened by the Peripheral Stimulus System.
The number of references to the file is displayed following the pathname.

DEBUG.book : DB5 7 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual INSTRUCTION-LEVEL SIMULATOR COMMANDS 5-7

PSS LOAD - Load PSS File Into PSS

Caution In execution of set commands at load time, the behavior is specified by the
-e flag used in the previous on command.

PSS OFF - Turn Off Execution of Internal PSS Commands

PSS ON - Turn On Execution of Internal PSS Commands

sim pss load [path [-c]]
If path is specified, PSS loads the specified file into the system. If no path
is specified, PSS displays a list of the files currently loaded, followed by
the file_id . load can be executed at any time during execution of your
program.
A relative set command is one which contains a relative delay time. All
commands designated relative, within the file being loaded, are executed
relative to the baseline time of the load. If the first set command in the
file being loaded is a relative command, the execution time of the last pre-
vious set command is used as baseline time. If the first set is not rela-
tive, the baseline time is time 0 for the simulation.
-c , sets baseline time to the current simulation time.
A file can be “unloaded.” To remove files from the system, you can also
execute a clear command, which removes all of the files, and then per-
form load s of all the desired files.

sim pss off turns off the execution of internal PSS commands. If you are not using
PSS during the debugging of a portion of your program, you can turn off
PSS to improve the speed of execution of your program, and later turn
PSS on again.

sim pss on [-e] [-v [path]]
turns on the execution of internal PSS commands.
By default, all of the loaded set commands, with execution times less
than the simulation time at which the on command is executed, are not
executed.
-e flag executes all set commands with a time earlier than the current
time. set-every commands are set to a new full interval and executed,
and then the timing of the intervals is restarted.
The -e flag is “sticky,” i.e., load commands executed after the on com-
mand behave according to the specification or non-specification of -e on
the last previous on command.

DEBUG.book : DB5 8 Sun Mar 9 10:56:45 1997

5-8 INSTRUCTION-LEVEL SIMULATOR COMMANDS CompactRISC Debugger Reference Manual

PSS OUTPUT - Assign PSS Output File to Address

PSS UNLOAD - Unload a Previously Loaded PSS File

sim pss output address = path [-a] [-n]
assigns the file specified by path to address , and opens the file if neces-
sary. All write operations to address are recorded in that file. Once
opened, the file remains open until explicitly closed (by using sim pss
output address =) or until a clear command is issued.
One address can be mapped to many files, and many addresses can be
mapped to a single file.
-a appends new data to an existing file. If -a is not specified, and the file
exists, it is erased before the first write. The file mode, append or erase, is
determined by the file-open operation.
-n , intercepts writes to memory. This mode is needed for emulation of
devices like UARTs, where a write to a particular memory location causes
an action, but is not required to modify the contents of the memory loca-
tion. A write to the address activates all the PSS activity but does not
modify the contents of the memory. If more than one of the output com-
mands is activated for a particular address, and one of the output com-
mands uses the -n flag, the address is not modified.

sim pss output address =

removes all mappings of the address to output files, closes the files, and
terminates the recording of writes to the address.

sim pss output address

 displays a list of the names of files mapped to the specified address.

SIM PSS UNLOAD id

unloads the PSS file specified by id . A PSS file (or group of PSS files) can be
unloaded at any time during the debugging of your program. To get a list of
valid id ’s, use the LOAD command without arguments.

DEBUG.book : DBappA 1 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual QUICK REFERENCE GUIDE A-1

Appendix A

QUICK REFERENCE GUIDE

A.1 CRDB COMMAND SYNTAX

Command Definition Syntax Section

alias

Define macro <name> = command 4.2

Define substitution macro <name> = "command $$, $$"

List macro <name>

Remove macro -r {<name> | * }

autocommand

Adds entry <command> 4.3

Removes, disables, enables
entry

{ -r | -d | -e }%<id> | *

List autocommands

break

Adds entry
[-t] <brkaddr_list>[,c=<RLexp>]
[,o=<occ_cnt>][,q=<qualifier>][,s=<size>]

4.4

Removes, disables, enables
entry

{ -r | -d | -e }%<id> | *

call Call function <func_name>(arg1,arg2,..,argn) 4.5

cd Change working directory [<path>] 4.6

chip Select chip <chip_name> 4.7

comm

Set baud rate
(Note: only 19200 is supported)

-b {4800 | 9600 | 19200 | 38400 |
57600 | 115200}

4.8

Set comm port -l {1 | 2 | 3 | 4}
Set Ethernet communication
parameter

-e <hostname> | <IP address>

debug Select file [-x| -n| -xn] <file_name> 4.9

debugmode Select debugging modet [- e | -d] { startup | exitcode } 4.10

find Find value [-a | -b | -c | -w | -f | -p | -l | -i] <value>,
<addr_range>

4.11

findsrc Find string [-f | -b | -n] [<string>] [,<file_name>] 4.12

go Go [-c] [<from_addr>][//<end_addr>] 4.13

info Debug info 4.14

input Execute input file <file_name> 4.15

DEBUG.book : DBappA 2 Sun Mar 9 10:56:45 1997

A-2 QUICK REFERENCE GUIDE CompactRISC C Debugger Reference Manual

list
List memory -m [h| o| d] [b | c | w | f | p | l | i]

<addr_range>

4.16

List source <qualified_lineno>

log

Create or append to file

Disable or enable log

Log input only or output also

Expand aliases or not ex-
pand aliasest

[-a]<file_name>

[-d |-e]

[- i | -o]

[-f | -u]

4.17

Display logging status -s

modify

Modify memory

[- b |-c | -w |-f |-p |-l]
<address> |
<addr_range>[,<value>[,value]]

4.18

Modify string -a <string_pointer>,<string>

Modify register %<reg_name>,<value>

next

Continuous execution till end
of program

Stepover <number> of
source lines

Stepover source lines in the
address range

-c

-n <number>

[<from_addr> [//<end_addr>]]

4.19

nextins

Continuous execution till end
of program

Stepover <number> of as-
sembly instructions

stepover assembly instruc-
tions in the address range

-c

-n <number>

[<from_addr> [//<end_addr>]]

4.20

pause
Pause for user input during
command file processing

4.21

quit Quit the debugger 4.22

radix Set radix [8 | 10 | 16] 4.23

reset Reset the target 4.24

resume
Resume execution from com-
mand file after pause

4.25

saveconfig Save configuration [<file_name>] 4.26

savestate Save state [<file_name>] 4.27

Command Definition Syntax Section

DEBUG.book : DBappA 3 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual QUICK REFERENCE GUIDE A-3

set

Set a variable <name> = <string> 4.28

Undefine a name -r <name> | *
Display a variable assignment <name>

setstate Set state <file_name> 4.29

softbreak
Adds breakpoint

[-t] <softbreak_list> [,<c=<RLexp>]
[,o=<occ_cnt>]

4.30

Removes, disables, enables {-r | -d | -e }%<id> | *
srcmode Set source mode [-s | -m] 4.31

srcpath
Set source path <pathname_list> 4.32

Remove source path -r {<path> | *}

stdio

Map stdin to a file -i <filename 4.33

Map stdout to a file -o[a] <file name>

Map stderr to a file -e[a] <file name>

Map stdout, stderr to a file -oe[a] <file name>

Map stdin, stdout, stderr to
output Window

-[ieo]w

Map stdin, stdout, stderr to
debugger output Window

-[ieo]r

List current mappings

step

Countinuous execution till
end of program

Step <number> of source
lines

Step source lines in the ad-
dress range

-c

-n <number>

[<from_addr> [//<end_addr>]]

4.34

stepins

Continuous execution till end
of program

Step <number> of source in-
structions

Step source instructions in
the address range

-c

-n <number>

[<from_addr> [//<end_addr>]]

4.35

Command Definition Syntax Section

DEBUG.book : DBappA 4 Sun Mar 9 10:56:45 1997

A-4 QUICK REFERENCE GUIDE CompactRISC C Debugger Reference Manual

symbol

Display symbol info {* | <pattern>*} 4.36

Display watch symbols -l {* | <pattern>*}
Display symbol tag -t {<datatype>/<tagname>|<symbolname> | *}
Display module symbols -f <qualified_modulename>

Display global symbol -g <pattern>*

sync Synchronize source window 4.37

target Set target edb|sim| 4.38

verbose Display Monitor traffic 4.39

view
View data <expression [,<print_specifier>] 4.40

View register %<reg_name> [,<print_specifier>]

watch

Adds entry <expression> [,<print_specifier>] 4.41

Removes, disables, enables
entry

{ -r | -d | -e } %<id>| *

where Locate self
[-v]
-c [-v [<func_symbol>[@<symbol>]]

4.42

Command Definition Syntax Section

DEBUG.book : DBappA 5 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual QUICK REFERENCE GUIDE A-5

A.2 SIMULATOR COMMAND SYNTAX

Command Definition Syntax

output Map address to output file <qual_address> <full_path> [-a] [-n]
readfile Read input file <full_path> [-c]

set

Set address to value
<qual_address> <set_value> <qual_time>

[every <qual_time> [<times>]]

Set address to value on read
<qual_address> <set_value> <qual_time>

onread <qual_address> [<set_value>]

Set address to value on write
<qual_address> <set_value> <qual_time>

onwrite <qual_address> [<set_value>]

sim config Configure simulator
clock = <frequency>
perf = <parameters>
refresh = <refresh_frequency>

sim pss

Report state of PSS

Clear PSS data and status CLEAR

Display names of PSS files FILES

Load input file LOAD <full_path> [-c]
Turn off PSS OFF

Turn on PSS ON

Map address to output file OUTPUT <address> = <full_path> [-a] [-n]
Unmap address OUTPUT <address> =

Display mapping of address OUTPUT <address>

Unload PSS input file UNLOAD <file_id>

sim perf

Turn on performance estimation ON

Turn off performance estimation OFF

Set range for performance estimation RANGE <address> <address>

sim trace
Turn on unconditional trace ON

Turn off unconditional trace OFF

DEBUG.book : DBappA 6 Sun Mar 9 10:56:45 1997

A-6 QUICK REFERENCE GUIDE CompactRISC C Debugger Reference Manual

A.3 ARGUMENTS

Read the string, “:=”, as “is defined as”. “null” represents the empty set. .

<addr_range> := <address>//<address>

<address>
:= <numeric_expression> | <symbolic_address> |

<symbolic_expr>

<brkaddr>
:= <addr_range> | <cur_pc> | <address> |

<line_for_cur_pc> | <cur_display_line>
<brkaddr_list> := <brkaddr><brkaddr_list> | null

<chipname> := refer to official chip name list
<command> := any debugger command

<const> := <integer>
<cur_display_line> := #
<cur_pc> := .
<datatype> := any legal C data type
<emulator_name> := EDB |ISE
<end_addr> := any valid code address
<expression> := any C symbolic expression
<frequency> = <decimal_integer> [Mhz | khz]
<file_id> = file identifier given by debug command
<file_name> := file name without the path

<fixed_symbol> := <global_symbol> | <static_symbol>
<from_addr> := any valid code address
<full_path> = [<path>]<file_name>
<func_line> := [file_name]<func_symbol>
<func_symbol> := symbolic name of a defined function
<global_symbol> := any valid C global symbol
<id> := <integer>
<length> = <integer>

<line_for_cur_pc> := & (representing the source line to which the current PC address
maps)

<const_lineno> := #<const>

<lineno> := <const_lineno> | <cur_display_line> | <line_for_cur_pc>
|<qualified_lineno>

<local_addr> := $b | $c | $e | $r | $x

<name> := a sequence of up to eight alphanumeric characters, of which the
first is alphabetic

<number> := <decimal_num> | <hex_num> | <octal_num>

<numeric_expression>
:= any legal C expression consisting of <number>s and <oper-

ator>s

DEBUG.book : DBappA 7 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual QUICK REFERENCE GUIDE A-7

<occ_cnt> := <integer>
<operator> := + | - | * | /
<opr> := any C relational or logical operator
<path> := any legal pathname

<pathname_list> := <path> | <pathname_list>,<path>
<print_specifier> One of the following:

d signed decimal
i signed decimal
o unsigned octal
x unsigned hexadecimal in lower case “a,b,c,d,e,f”
X unsigned hexadecimal in upper case “A,B,C,D,E,F”
u unsigned decimal integer
e floating-point in engineering notation
E floating-point in engineering notation
f floating-point
g double signed value printed in ± format
G double signed value printed in ± format
c single character
s character string
hd short signed decimal integer
hi short signed decimal integer
ho short unsigned octal integer
hX short unsigned hexadecimal integer in uppercase “ABC-

DEF”
hx short unsigned hexadecimal integer in lower case “abc-

def”
hu short unsigned decimal integer
ld long signed decimal integer
li long signed decimal integer
lo long unsigned octal integer
lX long unsigned hexadecimal integer in upper case “ABC-

DEF”
lx long unsigned hexadecimal integer in lower case “abcdef”
lu long unsigned decimal integer
Le long double in engineering notation (lowercase ‘e‘ for ex-

ponent)
LE long double in engineering notation (uppercase ‘E’ for ex-

ponent)
Lf long double floating-point
Lg long double signed value printed in f or ‘e’ format, which-

ever is more compact for the given value and precision.
The ‘e’ format is used only when the exponent of the val-
ue is less than -4 or greater than the specified precision.
Trailing zeros are truncated and the decimal point appears
only if one or more digits follow it.

LG long double signed value, identical to the ‘g’ format, ex-
cept that ‘G’ introduces the exponent (where appropriate)
instead of ‘e’.

<qual_address> in simulator = <address>[:[b | w | d | n]][:<range_length>] | int | nmi

DEBUG.book : DBappA 8 Sun Mar 9 10:56:45 1997

A-8 QUICK REFERENCE GUIDE CompactRISC C Debugger Reference Manual

<qualified_code_address> := any valid <address> or <symbolic_address> lying in the code
range

<qualified_lineno>
:= [<file_name>][@<func_symbol>]

[<const_lineno>]
<qualified_modulename> := <file_name>
<qual_time> = <positive_decimal_integer> [r | a][t | m | u | n | s]
<pattern> := <symbol> | <symbol_qualifier>
<range_length> = <integer>
<refresh_frequency> = <integer>[i | t]
<reg_name> = any valid register name for target chip

<RLexp> := any legal C expression consisting of <const>, <symbol>, and
<opr>

<set_value> = <integer> | <full_path>

<simple_break>
:= <cur_pc> | <address> |

<line_for_cur_pc> | <cur_display_line>
<softbreak_list> = <qualified code address>[,<softbreak_list>] | null
<static_symbol> := any valid C static symbol
<string> := a C language string
<string_pointer> := the address of a string or a <value> defined as char*.
<symbol> := any valid (defined) C symbol
<symbol_qualifier> := any sequence of characters which can begin a valid symbol
<symbolic_address> := <fixed_symbol> |

<func_line> <local_addr> |
<mod_line><const_lineno> | <lineno>

<symbolic_expr> := Any legal C expression consisting of <const>s, <symbol>s,
<symbolic_address>es, and <operator>s

<tagname> := tagname of structures and unions

<value> := a legal value of the type implied by other arguments of the com-
mand

<value_list> := <value> | <value>, <value_list>

$b the address of the absolute beginning of a function (the prologue)

$c
the address of the first instruction in the body of the function (after
the prologue)

$e
the address of the last instruction in the body of the function (be-
fore the epilogue)

$x the address of the RETURN instruction at the end of the function

DEBUG.book : DBappB 1 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual TROUBLE-SHOOTING HINTS B-1

Appendix B

TROUBLE-SHOOTING HINTS

B.1 TARGET ERROR MESSAGES

Communication errors are displayed in the following form:

Target Error/Warning: [error message]

where error message is one of the following:

• Emulator Time-out: No response from Emulator

• Emulator Line Too Long
The emulator’s inputs are too large (max. is 0x500)

• Emulator Output Unexpected

• Comm Port Open Failure
The debugger failed to open connection with the DEX through serial
port or ETHERNET connection.

• Comm Port Close Failure
The debugger failed to close connection with the DEX through serial
port or ETHERNET connection.

• Comm Port Read Failure
The debugger cannot read the emulator’s inputs.

• Comm Port Send Failure
The debugger is unable to send a message to the emulator.

• Chip is Running
You have tried to send a request to the emulator while the chip is
running.

• Only 1 hard breakpoint allowed
This is really a limitation of your development board.

• Invalid range
The address range is invalid.

• Handshake error
The debugger failed to establish communication with the DEX
through serial port.

• Invalid chip specified
The name of the chip you specified in the chip command is incor-
rect.

• Address out of range
The address is greater than the maximum address value.

DEBUG.book : DBappB 2 Sun Mar 9 10:56:45 1997

B-2 TROUBLE-SHOOTING HINTS CompactRISC C Debugger Reference Manual

• Chip is not Running

• Bad MON command
The command sent to the emulator is invalid.

• Virtual I/O transmission
The debugger gets empty line from the emulator through virtual I/O
transmission.

• Search length too large
The search length exceeds the maximum (max is 0x500)

• Invalid emulator specified
The name of the emulator specified in the target command is invalid.

• Illegal emulator, chip combination
The chip name specified in the chip command is unsupported by the
current emulator

• Emulator type cannot be verified
You may be attempting to use a development board that is not con-
nected to the system.

• Bad occurrence count
Incorrect value of occurrence count for the soft break or hard break.

• This command is unavailable now
The debugger and the DEX do not support a command. Report the
problem to National Semiconductor.

• Unknown EIM error
The debugger and the DEX are unable to communicate. Try to power
up, and restart again.

• BUS error; please re-download file
The serial connection is lost, due to the DEX power-off or reset, try
to re-download file, or re-establish the communication using the
comm command.

B.2 SERIAL LINKAGE PROBLEMS

The most common problem with a serial-link connection is a mismatch
between the configuration of the RS-232 port on the host side, and that
on the target board side.

The target board is configured as a DCE. Therefore, if your host port is
configured as a DTE, you should be able to use a standard RS-232 cable
for the connection. If your host is configured as a DCE, you need a null
modem cable, in addition to a standard RS-232 cable, for the connec-
tion. If you are not sure of your host configuration, try to connect both
with and without the null modem cable. Set the VERBOSE mode of
communication with your monitor. If you get communication, but it
looks like garbage, you may have the board and host set to mismatching
baud rates.

DEBUG.book : DBappB 3 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual TROUBLE-SHOOTING HINTS B-3

B.3 ETHERNET PROBLEMS

• Can not find usable winsock.dll
The debugger is unable to locate winsock.dll in the path. The de-
bugger requires a winsock.dll Ver1.1 API, or higher, library to com-
municate with the DEX via ETHERNET.
You should modify the PATH to include a directory containing such a
library.

• Broken pipe; please re-download file
The ETHERNET connection is lost, due to the DEX power-off or re-
set. Try to re-download the file, or re-establish communication using
the comm command.

DEBUG.book : DBappB 4 Sun Mar 9 10:56:45 1997

DEBUG.book : DBappC 1 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual PERIPHERAL SIMULATION SYSTEM - EXAMPLE C-1

Appendix C

PERIPHERAL SIMULATION SYSTEM - EXAMPLE

This appendix describes an example program which makes use of both
the Peripheral Stimulus System, and the virtual I/O capability of the
CompactRISC, system to perform I/O functions. The example models a
UART-like device, using the PSS to provide a character-string input to
the program, and virtual I/O to echo the string to the screen.

To try out the example on your own, first build a COFF file using the
command:

crcc -g -o example.cof example.c -Wl,"-d" -Wl,"linker.def"

crdb -e=example.inp

As is, the example echoes the string, Hello!, to the debugger’s Output
Window.

You may examine the file test.doc to determine the actions taken by PSS,
and the file example.log to see the outputs of the program. For a detailed
description of the syntax for each command used in example.pss and ex-
ample.inp, refer to Chapter 5.

C.1 SOURCE FILES

C.1.1 example.c

#include “example.h”
#include <stdio.h>

void main() {
char buf; /* terminal output buffer */

MReset = 0; /* reset UART */

GMode = 0; /* global mode register */
/* one stop bit */

BRGL = 20; /* baud rate = 9600 */
BRGH = 0;

/* initialize receiver */
RMode = 0xFA; /* 8-bit, even parity, auto-enable

 DCD’, internal clock */

/* initialize transmitter */
TMode = 0xF8; /* 8-bit, even parity, auto-enable

 CTS’, internal clock */

DEBUG.book : DBappC 2 Sun Mar 9 10:56:45 1997

C-2 PERIPHERAL SIMULATION SYSTEM - EXAMPLE CompactRISC C Debugger Reference Manual

/* read a character */
rd:

while ((ModStat & DCD)!=0) ; /* if DCD’ low, */
Cmnd |= RcvEn; /* enable receiver */

rd1:
while ((RTStat & RxRDY)==0) ; /* when RxRDY set, */

read:
while ((buf = RxH)==0) ; /* get character */
if (buf == CR) /* if CR, */

goto exit; /* quit */

/* transmit a character */
xmt1:

write(1, &buf, 1); /* output character to screen *
xmt: /* use PSS to simulate peripheral

 output */
while ((ModStat & CTS)!=0) ; /* if CTS’ low, */
TxH = buf; /* transmit character */
Cmnd = TxEn; /* enable transmitter */
goto rd; /* continue */

exit:
while ((ModStat & CTS)!=0) ; /* if CTS’ low, */
buf = CR; /* transmit CR character */
write(1, &buf, 1); /* output character to screen */
Cmnd |= TxEn; /* enable transmitter *

exit1:
while ((ModStat & CTS)!=0) ; /* if CTS’ low, */
buf = LF; /* transmit LF character */
write(1, &buf, 1); /* output character to screen */
Cmnd |= TxEn; /* enable transmitter */

C.1.2 example.h

/* */
/* UART Register Addresses */
/* */

extern char uart_base[];

#define RxH uart_base[0] /* receiver holding register */
#define TxH uart_base[0] /* transmitter holding register
*/
#define RMode uart_base[1] /* receiver mode */
#define TMode uart_base[2] /* transmitter mode */
#define GMode uart_base[3] /* global mode */
#define Cmnd uart_base[4] /* command */
#define BRGL uart_base[5] /* baud rate generator divisor

 latch(low) */
#define BRGH uart_base[6] /* baud rate generator divisor

 latch(high) */
#define RTSMask uart_base[7] /* r-t status mask */
#define RTStat uart_base[8] /* r-t status */
#define ModMask uart_base[9] /* modem status mask */
#define ModStat uart_base[10] /* modem status */
#define PwrDn uart_base[11] /* power down */
#define MReset uart_base[12] /* master reset */

DEBUG.book : DBappC 3 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual PERIPHERAL SIMULATION SYSTEM - EXAMPLE C-3

/* Modem Status Register bits */
#define CTS 0x10 /* Clear to Send */
#define DCD 0x20
#define DSR 0x40 /* Data Set Ready */

/* Command Register bits */
#define RcvEn 0x1 /* receiver enable */
#define TxEn 0x2 /* transmitter enable */

/* R-T Status Register bits */
#define RxRDY 0x1 /* receiver data ready */
#define TxBE 0x2 /* transmitter buffer empty */

#define CR 0x0D
#define LF 0x0A

C.1.3 linker.def

Please copy linker.def from the CR Tools installation directory and
add following statement as the last line in this file

_uart_base = 0xe000;

This line binds the uart_base address to 0xE000. This address is used
in example.inp and example.pss .

C.2 COMMAND FILE (EXAMPLE.INP)

log example.log
emu sim
target sim
debug example.cof
stdio -ow
sim perf on
sim pss output 0xE001:0x10 = result.doc -a
sim pss load example.pss
sim pss on -v test.doc
pause
go
sim pss clear
quit

C.3 PSS INPUT FILE (EXAMPLE.PSS)

#
UART Register Addresses
#

uart_base = 0xE000

DEBUG.book : DBappC 4 Sun Mar 9 10:56:45 1997

C-4 PERIPHERAL SIMULATION SYSTEM - EXAMPLE CompactRISC C Debugger Reference Manual

RxH = 0xE000 # receiver holding register
TxH = 0xE000 # transmitter holding register
Cmnd = 0xE004 # command
Cmnd0 = 0xE004:n0 # command
Cmnd1 = 0xE004:n1 # command
RTSMask = 0xE007 # r-t status mask
RTStat = 0xE008 # r-t status
RTStat0 = 0xE008:n0 # r-t status
RTStat1 = 0xE008:n1 # r-t status
ModStat0 = 0xE00A:n0 # modem status
ModStat1 = 0xE00A:n1 # modem status
ModStat2 = 0xE00A:n2 # modem status
ModStat3 = 0xE00A:n3 # modem status
ModStat4 = 0xE00A:n4 # modem status
ModStat7 = 0xE00A:n7 # modem status
MReset = 0xE00C # master reset

Modem Status Register bits
CTS = 4 # Clear to Send
DCD = 5
DSR = 6 # Data Set Ready

Command Register bits
RcvEn = 0 # receiver enable
TxEn = 1 # transmitter enable

R-T Status Register bits
TxBE = 1 # transmitter buffer empty

CR = 0x0D
LF = 0x0A
period = 1042u
delay = 200ua

Reset state for most registers
on_reset = 0

from_uart_data = uart.inp
output TxH result.doc -n

Chip reset
set Cmnd on_reset 0 onwrite MReset
set RTStat TxBE 0 onwrite MReset
set RTSMask on_reset 0 onwrite MReset
set ModStat0 on_reset 0 onwrite MReset
set ModStat1 on_reset 0 onwrite MReset
set ModStat2 on_reset 0 onwrite MReset
set ModStat3 on_reset 0 onwrite MReset
set ModStat4 on_reset 0 onwrite MReset
set ModStat7 on_reset 0 onwrite MReset

baud rate - 9600 baud
set RxH from_uart_data delay every period 14
set RxRDY
set RTStat0 1 delay every period 14
set RTStat0 1 delay every period 14
set RTStat0 0 0 onread RxH

DEBUG.book : DBappC 5 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual PERIPHERAL SIMULATION SYSTEM - EXAMPLE C-5

set RTStat0 0 0 onread RxH
clear receiver enable
set Cmnd0 0 0 onread RxH

set TxBE
set RTStat1 0 0 onwrite TxH
set RTStat1 TxBE 5tr
clear transmitter enable
set Cmnd1 0 0 onwrite TxH
set CTS
set ModStat4 1 5tr
set ModStat4 0 255tr

C.4 PSS DATA FILE (UART.INP)

0x48 # ‘H’
0x65 # ‘e’
0x6C # ‘l’
0x6C # ‘l’
0x6F # ‘o’
0x21 # ‘!’
0x0D # CR
0x0A # LF

DEBUG.book : DBappC 6 Sun Mar 9 10:56:45 1997

DEBUG.book : DBappD 1 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual MONITOR INTERFACE D-1

Appendix D

MONITOR INTERFACE

D.1 INTRODUCTION

You can send commands directly to the DEX, with no other processing,
from the debugger (Section 2.2.14) by typing a command on the com-
mand line preceded by an exclamation point (!). (See the Caution in Sec-
tion 4.43.)
Any subsequent input needed to complete the DEX command, or any
new commands, must also be prefixed with ! .

The debugger communicates with the DEX via ETHERNET or a serial
connection.

Conventions

The following conventions are used in the monitor commands defini-
tions:

size For register is any size of [1/2/3/4] in bytes. For address is any
positive size (e.g. 1/2/3/4/5..n) in bytes. Default size is 1 byte.

type The type of operand. /s for signed, /u for unsigned. Default type is
unsigned.

reg Any legal register name. (with size)

addr Any valid unsigned absolute address. addr-range - two absolute
addr's low and high, defining an address range.

const Any constant integer value.

var One of: (with size and with type)
- addr whose content is used as value.
- reg whose content is used as value.
- addr or reg whose content + offset is used as (pointer) to an

addr whose content is used as value.
- any const.

op One of: +, -, *, /, %, |, &, !, ^, ~, <<, >>

eq One of: ==, <>, <, >, <=, >=
- unary: changed, in-range const

boolean
One of: ||, &&, !

prd A regular expression in post fix notation with up to 16 vars and
the operators: eq, op, boolean terminated with a "," ";" or NL.

DEBUG.book : DBappD 2 Sun Mar 9 10:56:45 1997

D-2 MONITOR INTERFACE CompactRISC C Debugger Reference Manual

Command Table

The following table summarizes the commands used to interface with
the DEX:

Command Syntax Function Page

Configuration Commands

CFG options Configures the DEX for the target ADB. D-5

 R [$ number] reg/size...
Defines the target registers.

D-5

 B bit-reg bit-name/mask...
Defines the names and masks of bit registers.

D-6

 M [$ number] name [$ parts_n] /addr/size,....name [$ parts_n] /addr/size
Defines special memory spaces.

D-6

 H [$ number] breakpoint-definition...
Defines the numbers and definitions of the target hardware break-
points.

D-7

ECFG [[/TR:H cable-type] [/I ip-addr] [/H dex-name] [/G gateway]]
Configures the ETHERNET to recognize the DEX

D-7

DSYMname addr size Defines a symbol. D-9

DEX Reset and Initialization Commands

VINIT Implements changes to the configuration database D-9

VRS Reset the DEX’s state to power-up D-10

BOOT Boots the DEX hardware D-10

Register Manipulation Commands

DR register... register-range...
Dump Registers, specify the registers by name, or by range

D-10

C regname = val Assigns the value val to the register regname D-10

SR Saves an image of the ADB CPU registers in the DEX D-11

RR Restores the ADB CPU registers from an image saved in the DEX D-11

Memory Manipulation Commands

DMformat elem_size address[/size]...
Dump memory. Memory is specified by address and size (in bytes)
and is dumped in the specified order

D-11

LM format elem_size address[/size] data
Load Memory. Memory is specified by address and size in bytes.

D-12

Msrc-addr dest-addr n [N]
Moves n bytes of data starting at src-addr , to the block of mem-
ory starting at dest-addr .

D-12

DEBUG.book : DBappD 3 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual MONITOR INTERFACE D-3

F start-addr end-addr data [elem-size] [N]
Fills the block of memory starting at start-addr and ending at
end-addr with the specified data.

D-13

SR start-addr end-addr data [size]
Searches for the first appearance of data between start-addr
and end-addr , and prints the address where the data has been
found

D-13

Breakpoint Commands

SBP STid addr [count condition action]
Creates a software breakpoint.

D-14

SBP TRid addr [count condition action]
Creates a software breakpoint that triggers tracing.

D-14

RBP {A | id} Remove a software breakpoint. D-15

HBP STnumber type addr [mask] [times condition action]
Creates a hardware breakpoint.

D-14

HBP TRnumber type addr [mask] [times condition action]
Creates a hardware breakpoint that triggers tracing.

D-14

HRBP {A | id} Removes hardware breakpoints. D-15

Execution Commands

G regname Starts program execution. D-16

G Continues program execution. D-16

ST [n] [v] Steps n assembly instructions. D-16

ST S [v] Single steps through the program until it hits a stop breakpoint. D-16

BAL reg addr Simulates the BAL (branch and link) assembly instruction. D-17

JS addr Simulates JS (jump subroutine) assembly instruction. D-17

B reg addr
Initializes the PC to addr , but does not transfer control to your
program.

D-17

Remote Commands

RS Issues a RESET signal to the ADB board. D-18

ISE Sends an ISE (non-maskable interrupt) to the ADB. D-18

Time Commands

CT Clears the timer. D-18

GT Gets the time. D-18

Simulation Specific Commands

SIM CONFIG config-params
Sets simulator parameters: frequency, wait-states.

D-19

SIM PSS [on | off] Turns pss simulation on and off. Without parameters, returns status. D-18

Command Syntax Function Page

DEBUG.book : DBappD 4 Sun Mar 9 10:56:45 1997

D-4 MONITOR INTERFACE CompactRISC C Debugger Reference Manual

SIM PSS LOAD filename
Loads filename to the peripheral simulator.

D-19

SIM PSS CLEAR Clears the state of the peripheral simulator. D-18

Miscellaneous Commands

I mask Sets the value of the monitor interrupt mask. D-19

EXT command Adds commands to the monitor. D-19

Command Syntax Function Page

DEBUG.book : DBappD 5 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual MONITOR INTERFACE D-5

D.2 MONITOR COMMANDS

D.2.1 Configuration Commands

There are three types of configuration commands:

CFG - Configures the DEX for a specific chip/board.

ECFG - Configures the ETHERNET communication.

DSYM - Defines DEX internal symbols.

Configuration Command

CFGoptions

The configuration command configures the DEX for a specific chip/
board environment. It is issued each time the debugger needs to config-
ure the DEX to work with a new TMON e.g., at the start of a debugging
session.

options is a list of options, each has the format: cfg-type cfg-msg.
A ‘; ’ is used to separate two options in the same CFG command.

cfg-type is one of: R registers, B bit-register, E encoding, M memory, H
hardware breakpoint.

cfg-msg has a different meaning depending on cfg-type

The configuration options can be specified in any order. The debugger
may issue as many CFG commands as needed to configure the DEX.

The following is a description of the various options:

Registers R [$ number] reg/size...

number is the number of all the registers to be defined by all the register
directives. This number must appear once only in the first register direc-
tive command.

reg is either the name of one register (e.g., PC, R15 etc.) or a range of
registers that are instances of the same register type, with a hyphen to
distinguish between them (e.g., R1-R14). A register name can contain up
to eight characters.

size is the size of register or register range members in bytes.

This options defines the registers on the ADB board; each register is de-
fined by its name and its size.

DEBUG.book : DBappD 6 Sun Mar 9 10:56:45 1997

D-6 MONITOR INTERFACE CompactRISC C Debugger Reference Manual

Example To configure 0x38 registers, R1, R2,... R14, each two bytes long, PC four
bytes long, and PSR one byte long:

> CFG R $38 R1-R14/2 PC/4 PSR/1

Register bit masks B bit-reg bit-name/mask...

bit-name is the character name of a register bit. A bit-name length is
up to two characters.

mask is the mask of this bit in the register.

There are two bit-registers in the CompactRISC architecture: CFG and
PSR. The DEX uses the bit registers internally. This command defines
the location of each relevant bit in the these registers.

Example To configure the PSR register with two bits (I in bit 0, T in bit 12) and
the CFG register with two bits (A in bit 8, D in bit 11):

> CFG B PSR I/0001 T/1000;B CFG A/100 D/800

Instruction
encoding

E name/encoding/size

name is the name of an assembly instruction. To run a debugging ses-
sion the following encoding must be configured:

BPT - breakpoint instruction encoding

encoding is the hexadecimal encoding of the instruction.

size is the size in bytes of the instruction encoding.

This option defines the encoding of assembly instructions used by the DEX.

Examples To configure breakpoint encoding to be 0xf038 in two bytes:

> CFG E BPT /38f0/2

Special memory
types

M [$number] name [$parts] /addr/size,....name [$ parts] /addr/
size...

number is the number of all the memory types to be defined by all the
memory directives. This number must appear once only in the first
memory directive command.

name is the name of a memory type (e.g., FLASH). A name length is up to
eight characters

parts is the number of parts in the memory type.

addr is the start address of the memory type part.

size is the size of the memory type part space in bytes.

This option defines special memory spaces. e.g., FLASH.

DEBUG.book : DBappD 7 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual MONITOR INTERFACE D-7

Memory-mapped registers, that the DEX uses internally, are treated as
special memory spaces, and must be defined by this command in order
to be recognized by the DEX. The register name is the memory name,
and the address and size are the address and the size of the registers.
The following list describes all these registers:

• IMASK
Maskable interrupt vector register, used for enabling/disabling inter-
rupts when TMON is running on the ADB (and not the application).

• DSR, DCR, CAR
Registers used for defining and handling hardware breakpoints (not
required if these are CPU registers).

Hardware
breakpoints

H [$ number] breakpoint-definition...

number is the number of hardware breakpoints.

breakpoint-definition is:

: {FP|FNP|NULL} {RWP|RWNP|NULL} {M|R} dcr
{M|R} car {M|R} pc [{M|R} pass]

bp_number - the hardware breakpoint number.

FP - fetch with pass counter
FNP - fetch without pass counter
NULL - the breakpoint cannot be defined to stop on fetch

RWP - read/write with pass counter
RWNP - read/write without pass counter
NULL - the breakpoint cannot be defined to stop on reads and writes

M - memory
R - register

dcr , car, pc, pass - These four virtual registers represent the regis-
ter, or memory-mapped registers, which act as “debug-control register”,
“compare-address register”, “program counter” and “pass counter” which
define a hardware breakpoint in the CompactRISC architecture.

This option defines the hardware breakpoints on a specific board. It de-
fines the number of breakpoints, together with their functionality. In the
CompactRISC architecture, a hardware breakpoint can be defined either
as a fetch breakpoint (which stops execution when a specific address is
fetched), or as a read/write breakpoint (which stops execution when a
specific address is written to, or read from). A hardware breakpoint has
both functions at different times (a specific hardware breakpoint can not
be used simultaneously for both fetch and for read/write). In the
CompactRISC architecture, the four virtual registers defined above are
used to set the hardware breakpoints. The pass register needs to be de-
fined only if the breakpoint has a pass counter.

Example To define a board to have one hardware breakpoint. The number of this
hardware breakpoint is 0. It is both a fetch breakpoint with pass
counter, and a read/write breakpoint with no pass counter. The dcr reg-

DEBUG.book : DBappD 8 Sun Mar 9 10:56:45 1997

D-8 MONITOR INTERFACE CompactRISC C Debugger Reference Manual

ister is a memory-mapped register, mdcr, the dsr register is a memory-
mapped register, mdsr , the car register is a memory-mapped register,
mcar , pc is the pc register, and the pass counter register is a memory-
mapped register, pass .

> CFG H $1 0 FP RWNP M mdcr M mdsr M mcar R pc M pass

Notes 1. The registers and memory-mapped registers used to define hardware
breakpoints, must have been previously defined by the CFG M and
CFG R commands.

2. As the hardware-breakpoints definition relies on the virtual-registers
definition, they must be used in a different CFG command line from
the one defining these registers.

An Example of a Complete Board Configuration

> CFG R $15 pc/4,sp/2,psr/2,ra/2,isp/4,in/4,r0-r13/2, B
psr t/2; E bpt /f07b/2

> CFG M $b dcr/20fb/1, car $3 /22fb/1 /24fb/1 /26fb/1, pass
/28fb/1, pcexe $3 /22fb/1 /24fb/1 /26fb/1, nmis/02fe/2

> CFG H $1 0 FNP RWP M dcr M dsr M car M pcexe M pass

The above example configures the DEX to work with a board. Three CFG
commands are used:

• The first command configures the DEX for 0x15 registers: pc - 4
bytes, sp - 2 bytes etc. It defines bit T of the PSR register at bit num-
ber 1, the breakpoint instruction is encoded in two bytes its encoding
is 0x7bf0.

• The second command describes the special memory spaces on the
ADB. It describes 0xb different memory areas.
dcr resides at address 0xfb20, and is 1 byte long.
car has one byte at each of the three addresses: 0xfb22, 0xfb24, and
0xfb26.
pass is 1 byte at address 0xfb28.
pcexe is defined the same as car .
nmis is 2 bytes long at 0xfe02.

• The last command defines the hardware breakpoints. There is one
hardware breakpoint, number 0, which can be defined as a fetch
breakpoint with no pass counter, or a read/write breakpoint with
pass counter. dcr , dsr , car , pcexe and pass are all defined in mem-
ory.

ETHERNET Configuration (applicable only in board configuration)

ECFG [/TR:cable_type] [/I ip-addr] [/H dex-name] [/G gateway]
]

DEBUG.book : DBappD 9 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual MONITOR INTERFACE D-9

cable_type is tp - for twisted pair connector.
caux - for coaxial cable connector.
external - for thick ETHERNET connector.

ip-addr is the IP address allocated for the DEX (e.g., 138.15.36.1).

dex-name the DEX name in the net.

gateway the default gateway IP address.

Sets the ETHERNET cable configuration and configures the ETHERNET
kernel to recognize the DEX.

Example To define the ETHERNET configuration with ip address 138.15.36.1 :

> ECFG /I 138.15.36.1

Define Symbol

DSYMname addr size

name is the symbols name

addr is the start address

size is the size it takes in memory

Defines a symbol used by the DEX to perform an internal task. Symbols
may be defined at any time during a debugging session. The sizes and
addresses of symbols defined with this command may be changed at any
during the debugging session.

D.2.2 DEX Reset and Initialization Commands

DEX INITialization

VINIT

The debugger must issue this command after every time it finishes up-
dating the configuration database. This command makes sure that all
changes to the configuration database take effect in the DEX.

Note This command resets the ADB.

DEBUG.book : DBappD 10 Sun Mar 9 10:56:45 1997

D-10 MONITOR INTERFACE CompactRISC C Debugger Reference Manual

DEX Reset

VRS

Reset the DEX’s state to power-up. The configuration is erased.

DEX Boot (Applicable only in board configuration)

BOOT

Boots the DEX hardware.

D.2.3 Registers Manipulation Commands

Dump Registers

DR reg... register-range...

reg is the name of one of the registers defined with the CFG R command.
(e.g. pc, r1).

register-range is a range of registers defined with the CFG R com-
mand. (e.g. r0-r7).

The DEX dumps the contents of the specified registers in the order they
appear in the DR command. The DR command with no arguments dumps
the content of the arguments of the previous DR command.

Examples To dump the pc register followed, by r2, r3 and r4, the sp register and
r2:

> R pc r2-r4 sp r2
01000000020000000300000004000000ff00000002000000

To run the same command again:

> DR
01000000020000000300000004000000ff00000002000000

Change Register

C regname = val

regname is the name of one of the registers defined with the CFG R com-
mand.

val is the value to be assigned to this register.

DEBUG.book : DBappD 11 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual MONITOR INTERFACE D-11

The DEX assigns the value val to the register regname according to the
register specification in the CFG R command.

Example To change the value of sp register to be 0x1234:

> C SP=3412

Save Registers

SR

The DEX saves an image of the ADB CPU registers in the DEX’s memo-
ry.

Restore Register Image

RR

The DEX restores the ADB CPU registers from an image saved in the
DEX by the SR command.

D.2.4 Memory Manipulation Commands

Dump Memory

DMformat elem_size address [/size]...

format is A - ASCII
B - binary

elem_size specifies the size in which memory is accessed, where:
B - byte
W - word
D - double word

The DEX dumps size bytes of memory contents starting at address.
Memory is specified by address and size (in bytes) and is dumped in the
specified order. Memory accesses are made in bytes, words, or double-
words, according to elem_size . If the response is longer then the maxi-
mum packet length of the communication protocol, the data is fragmented
into a few response packets each beginning with a full response header.
The DM command, with no arguments, dumps the content of the argu-
ments of the previous DM command using the previously defined format.

Examples To dump four bytes from address 0x2000, and seven bytes from address
0x300:

DEBUG.book : DBappD 12 Sun Mar 9 10:56:45 1997

D-12 MONITOR INTERFACE CompactRISC C Debugger Reference Manual

> DM A B 0020/ 4 0003/7
1122EE4401020304050607

To get the value of the same memory address again:

> DM
1122EE4401020304050607

Load Memory

LM format elem_size address [/size] data

format is A - ASCII
B - binary

elem_size specifies the size in which memory is accessed, where:
B - byte
W - word
D - double word.

The DEX loads to the target board memory area specified by address
size bytes of the data Memory is written in bytes, words, or double-
words, according to elem_size . The length of the data should not ex-
ceed the maximal data length of the communication protocol.

Example To load 10 bytes to address 0x2000 do:

> LM A W 0020/ 10 1122334401020304050E

Move Block of Data

M src-addr dest-addr n [N]

src-addr start address of original block

dest-addr start address of destination block.

n number of bytes to move.

The DEX moves n bytes of data, starting at src-addr , to the block of
memory starting at dest-addr . The move is performed one byte at a
time. The monitor verifies that the moved data matches the original data
block unless the optional N (No verify) appears at the end of the com-
mand.

Example To move nine bytes of data from address 0x9000 to address 0xd000:

> M 0090 00d0 9

DEBUG.book : DBappD 13 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual MONITOR INTERFACE D-13

Fill Memory with Data

F start-addr end-addr data [elem-size] [N]

start-addr start of memory block to be filled.

end-addr last memory address to be filled.

data the data to be filled.

elem_size specifies the size in which memory is accessed, where:
B - byte
W - word
D - double word.

The DEX fills the block of memory starting at start-addr and ending at
end-addr with the specified data . The data is specified as bytes, words
or double-words, depending on elem-size . The monitor verifies that the
moved data matches the original data block unless the optional N (No
verify) appears at the end of the command.

Example To fill the memory area starting at 0x9000 ending at 0xd000 with the
value 09:

> F 0090 00d0 9

Search Memory for Data

SR start-addr end-addr data [size]

start-addr start of memory block to be searched.

end-addr the last byte of the memory block to be searched

data the data to be searched

size specifies the data size, where:
B - byte
W - word
D - double word

The DEX searches for the first appearance of data between start-addr
and end-addr , and prints the address where the data has been found.
Data may be a byte, word or double-word as specified by size . The data
is zero-extended or truncated to fit size .

Example To search for the word 0X44, in the range 0X9000 to oXFFFF:

> SR 0090 FFFF 44 W

DEBUG.book : DBappD 14 Sun Mar 9 10:56:45 1997

D-14 MONITOR INTERFACE CompactRISC C Debugger Reference Manual

D.2.5 Breakpoint Commands

Create Software Stop Breakpoint

SBP ST id addr [count (condition) CM mon-cmd-list]

id is the breakpoint identification number.

addr is the break address.

condition is: (prd).

count is the number of times addr is hit before the actual break.

action is: CM mon-cmd-list.
A list of up to five monitor commands separated by ‘;’. for break-
points with stop execution.

This command creates a software breakpoint. Execution stops, after
addr has been passed count times, if condition is TRUE. If a com-
mand list is defined, the commands are executed automatically when
the program stops because of the breakpoint.

Examples To create a software stop breakpoint with id = 2 at address 0x1000. Ex-
ecution stops the fifth time that address 0x1000 is reached, and r0
equals ‘0’. Then the DEX dumps R5 and resumes execution of the appli-
cation.

> SBP ST 2 0001 5 (r0=0) CM DR R5; G

To create a stop breakpoint with id = 5 at address 0x333. When the ap-
plication execution is stopped, the DEX sends the message “B 5” and
memory address 0x1000 is dumped as four bytes.

> SBP ST 5 3303 CM DM 0010/4

Create Hardware Stop Breakpoint

HBP STid type addr [mask] [count condition action]

id is the hardware breakpoint identification number.

type is R - read
W - write
A - access
E - execution

addr is the break address.

mask a number in the range 1-0xf. For read/write/access breakpoints it
specifies which bytes cause a breakpoint if read or written to.

DEBUG.book : DBappD 15 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual MONITOR INTERFACE D-15

condition is (prd).

count is the number of times a
a list of up to five monitor commands separated by ‘;’. for break-
points with stop execution.

This command creates a hardware breakpoint. Program execution stops
after count times that the addr is passed and the condition is TRUE. If
a command list is defined the commands are executed automatically
when the program stops because of the breakpoint.

The DEX’s response: H id addr

id is the hardware breakpoint number.
addr is the address that caused the breakpoint.

Examples To create a hardware breakpoint number 6 in the DEX breakpoint table
when reading the least-significant-byte at address 0x100:

> HBP ST 6 R 100 1

To stop execution when the command at address 0x5510 is passed
twice:

> HBP ST 7 E 155 2

Software Breakpoint Remove

Syntax RBP {A | id }

id is the breakpoint identification number.

A - apply to all breakpoints.

Example To remove all breakpoints.

> RBP A

Hardware Breakpoint Remove

HRBP { A | id }

id is the hardware breakpoint identification number.

A - apply to all breakpoints.

Example To remove hardware breakpoint number 0:

> HRBP 0

DEBUG.book : DBappD 16 Sun Mar 9 10:56:45 1997

D-16 MONITOR INTERFACE CompactRISC C Debugger Reference Manual

Execution Commands

Go

G [reg]

reg is the name of a general-purpose register specified in the CFG R
command.

The monitor starts program execution at the address in the CPU Pro-
gram Counter (PC); control is passed to the user program. To start at a
specific address, first use the C PC=addr (change program counter) com-
mand.

For normal termination of a program, the first G command issued must
specify a register reg . The monitor initializes the register to point to the
address of the End Of Program code. Since a typical CompactRISC pro-
gram ends with the jump reg assembly instruction, we recommend that
you use the link register of this jump instruction.

Example To put the End-Of-Program address in ra and start program execution:

> G ra

Step n Instructions

ST [n] [v]

Steps n assembly instructions. If n is not specified, one step is per-
formed. If v is specified, the DEX sends the pc value to the debugger af-
ter each instruction execution.

Example To step five assembly instructions, and report the pc to the debugger af-
ter each step:

> ST 5 v

Single Step Until Stopped

ST S [v]

The DEX single steps through the program until a stop breakpoint is hit.
If there is no stop breakpoint, other than end-of-program, it steps
through the rest of the program. If v is specified, the DEX sends the pc
to the debugger after each instruction execution.

DEBUG.book : DBappD 17 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual MONITOR INTERFACE D-17

Branch and Link

BAL reg addr

reg is the link register

addr is a subroutine address.

This command simulates the BAL instruction. reg is loaded with the ad-
dress of an EXCP BPT instruction, and then the subroutine is executed.
On return from the subroutine, the B RET message is issued.

Example To set the PC to 0xe000, load r4 with a return address where the EXCP
BPT instruction can be found, and then transfers control to the routine
at address 0xe000:

> BAL r4 00e0

Jump Subroutine

JS addr

addr is a subroutine address.

This command is equivalent to BAL. RA is used as the link register.

Begin

B reg addr

reg is the link register,

addr is a subroutine address.

This command initializes the PC to addr , but does not transfer control
to your program. It also initializes reg to point to the return address
where an EXCP BPT instruction resides. This halts your program.

Example To set the PC to 0xe000 and load RA with a return address where an
EXCP BPT instruction can be found do:

> B ra 00e0

DEBUG.book : DBappD 18 Sun Mar 9 10:56:45 1997

D-18 MONITOR INTERFACE CompactRISC C Debugger Reference Manual

D.2.6 Remote Commands

Reset

RS

Issues a RESET signal to the ADB board. This restarts the monitor.

In response TMON sends the reset trap message to the DEX:

0x3c monitor-type monitor-version

ISE

ISE

Sends an ISE (non-maskable interrupt) to the ADB.

The DEX response: E ISE

D.2.7 Time Commands

Clear Timer

CT

Clears the DEX timer.

Get Timer

GT

Gets current timer value.

Where number is the timer value.

D.2.8 Simulation Specific Commands

These commands are used only in simulated environment. It is basically
an interface to simulation specific functions.

DEBUG.book : DBappD 19 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual MONITOR INTERFACE D-19

Set Simulator Configuration

SIM config config-params

Sets the simulator configuration according to the parameters.Set/Get
PSS Status

PSS Status

SIM pss [on|off]

Sets the Peripheral Simulator status on or off. Without parameters re-
turns the status.

Load PSS File

SIM pss load filename

Loads filename to the Peripheral Simulator.

Clear PSS State

SIM pss clear

Clears the Performance Simulator state.

D.2.9 Miscellaneous Commands

 Set Interrupt Mask at Monitor Time

I mask

Sets the value of the monitor interrupt mask. It also sets ADB PSR I and
E bits. If the mask is zero, ADB PSR I and E bits are set to zero.

Extension Command

EXT command

DEBUG.book : DBappD 20 Sun Mar 9 10:56:45 1997

D-20 MONITOR INTERFACE CompactRISC C Debugger Reference Manual

command is a string representing a new monitor command.

In order for the EXT command to work the following routine needs to be
supplied:

bool exec_extension_commands(char *cmd, char *response)

Note In order for the DEX to be able to recognize EXT command, add the ex-
tension code to the Makefile and compile using the command:
make EXTRA_CFLAGS=-D__EXTENSION__

D.3 TRAP AND ERROR MESSAGES FROM DEX TO THE DEBUGGER

DEX Indications Meaning

* Prompt; DEX ready to receive commands.

? DEX command error message

data Printed data for DM and DR commands

B TRC Step ended.

B num Reached breakpoint number

B END Reached the end of program execution.

H num addr Hardware breakpoint “num” at “addr”

DEX Error Messages Meaning

E SIM Simulator error message.

E TMON Communication problems with TMON.

E SRC Search failed.

E VRF addr Verify error at address addr.

E ASRT addr Assertion failed at address addr.

E BPT Non-debugger breakpoint trap.

E DBG Debug trap.

E DVZ Division by zero.

E FLG Flag trap error.

E HBT Non-debugger hardware breakpoint.

E ILL Illegal instruction.

E ISE ISE response.

E NES TMON entered nested state.

DEBUG.book : DBappD 21 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual MONITOR INTERFACE D-21

E NMI Non-maskable interrupt.

E PROF Error in profiling.

E SVC Supervisor call.

E TRC Non-debugger trace trap.

E UND Undefined instruction.

E VIO Virtual I/O protocol error.

DEX Error Messages Meaning

DEBUG.book : DBappD 22 Sun Mar 9 10:56:45 1997

DEBUG.book : DBappE 1 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual DEBUGGER LIMITATIONS E-1

Appendix E

DEBUGGER LIMITATIONS

E.1 PERIPHERAL STIMULUS SYSTEM (PSS)

The PSS feature, while operable, is not fully supported.

E.2 EDIT FIELD SIZE

The size of the edit fields in the dialog boxes is limited to 64 characters.

E.3 STEP/NEXT COMMANDS WHILE MEASURING PERFORMANCE

Using step /next commands, while measuring performance with the
performance simulator, may increase the number of cycles measured. To
get an accurate performance measurement, avoid breakpoints and single
steps during performance measurement.

E.4 TARGET BOARD ACCESS WHILE PERFORMING VIRTUAL I/O

Debugger commands which access the target board may not be issued
while the application is performing virtual I/O.

E.5 APPLICATION DEBUGGING IN SIMULATED ENVIRONMENT

In simulated environment, application debugging (stopping at break-
points, stepping etc.) may begin only after the intbase register is loaded
with the value of the application interrupt dispatch table. The intbase
register is loaded either in the libadb.a start routine, or in the applica-
tion start routine. When you invoke the debugger, set a breakpoint in
your application in one of the lines that appears after loading the int-
base register. Run the program, using the debugger Go command, until
you reach this breakpoint, and then start debugging.

DEBUG.book : DBappE 2 Sun Mar 9 10:56:45 1997

DEBUG.book : DBappF 1 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual PERFORMANCE SIMULATION CONFIGURATION FILE F-1

Appendix F

PERFORMANCE SIMULATION CONFIGURATION FILE

You can configure the wait-state parameters of the simulated memory
through a simulator configuration file. The address space can be parti-
tioned into several sections, each with its own wait-state configuration.
You can define up to 10 (non-overlapping) sections. For each section you
can define different wait-states for different access types, according to
the type of access (load, store, fetch) and the size of access (byte, word,
3 bytes, double-word).

In addition, different delay values can be defined for the “wait-state” de-
lay and for the “hold” delay.
(A “wait-state” delay is the number of cycles between the appearance of
an address on the address bus and the appearance of the corresponding
data on the data bus.
A “hold” delay is a delay typical of DRAM accesses. It is the number of
cycles between the appearance of data on the data bus and the time in
which a new address can be written to the address bus.)

Each “memory section declaration” in the simulator configuration file
consists of a reserved sequence, followed by a memory range, followed
by a list of wait-state parameters. For convenience and readability the
wait-state values should be written in a table format. Comments can be
added to the configuration file for clarity.

SYNTAX

A memory section declaration consists of the following parts:

• Section header.

[Address Range]

• Address range.
Two hexadecimal numbers marking the start and end addresses of a
memory section.

00000000 0000F000

• Wait-state values.
A list of “wait-state” and “hold” values. The position in the list deter-
mines the access type combination to which the values correspond.

1 1 1 1
0 0 0 0
0 0 0 1
0 2 2 2
0 3 0 1
0 0 0 0

DEBUG.book : DBappF 2 Sun Mar 9 10:56:45 1997

F-2 PERFORMANCE SIMULATION CONFIGURATION FILE CompactRISC C Debugger Reference Manual

• ‘;’ - Comments.
A comment begins with a semicolon and ends with EOL. The follow-
ing abbreviations are all comments, and appear in the configuration
only for clarity:

– ws - Memory wait-state cycles.

– hold - Memory hold cycles.

– L - Load access.

– S - Store access.

– F - Instruction fetch access.

Example [Address Range] 00000000 0000f000
; ACCESS SIZE (in bytes)/
; /
; 1 2 3 4 / ACCESS TYPE
;---------------;------
 1 1 1 1 ;ws L
 0 0 0 0 ;hold
;---------------;------
 0 0 0 1 ;ws S
 0 2 2 2 ;hold
;---------------;------
 0 3 0 1 ;ws F
 0 0 0 0 ;hold
;---------------;------

DEBUG.book : DBappG 3 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual PERFORMANCE SIMULATION TRACE OUTPUT G-3

Appendix G

PERFORMANCE SIMULATION TRACE OUTPUT

The simulator sends detailed information of the program execution to a
file. The beginning of the file contains some general information: Simu-
lator version, date and time, executable file name and the wait-state
configuration, as read from the simulator-configuration-file. If the de-
fault wait-state configuration is used (all 0’s) the configuration does not
appear in the output file. If the simulator was invoked with the “long for-
mat” option, it prints a cycle-by-cycle status of the CPU’s pipeline.

PIPELINE STATUS SYNTAX

The CompactRISC CPU pipeline consists of three pipeline stages: Fetch,
Decode and Execute. The execution flow of a single instruction consists
of the following phases:

• An address is set on the address bus.

• One, or more, cycles later (depending on the wait-states) the corre-
sponding data appears on the data bus and enters the queue.

• Enough bytes to constitute a full, valid, instruction are resident in
the queue and are passed to the decoder (CR32 only).

• A single cycle after an instruction entered the decoder it is passed to
the execution stage for execution.

Under optimal conditions, all stages of the pipeline might be occupied
with instructions in various stages of their execution.

The following is the structure of the pipeline status log.

• CYCLE No.
The number of clock cycles since the start of program execution.

• PROGRAM COUNTER
The address of the executing instruction.

• Inst. No.
The number of assembly instructions executed since the start of pro-
gram execution.

• EXECUTING INSTRUCTION
Disassembly of the executing instruction.

• Inst. Length
The number of bytes in the instruction.

DEBUG.book : DBappG 4 Sun Mar 9 10:56:45 1997

G-4 PERFORMANCE SIMULATION TRACE OUTPUT CompactRISC C Debugger Reference Manual

• Q size
The number of valid bytes in the instruction queue. Valid queue
bytes are bytes fetched from memory, but not yet consumed by the
decoder.

• AB fetch
The number of transactions on the Address Bus that were triggered
by an Instruction Fetch (as opposed to Load/Store transactions). The
letters ‘a’ - ‘j’ (corresponding to the digits ‘0’ - ‘9’) represent the least
significant digit of the Address Bus Fetch counter.

– Lower-case letters indicate an instruction fetch bus transaction.

– ‘M’ indicates a Load or Store transaction on the bus.

– A hyphen ‘-’ indicates an idle bus cycle.

• DB fetch
The number of transactions on the Data Bus that were triggered by
an Instruction Fetch (as opposed to Load/Store transactions). The
letters ‘a’ - ‘j’ (corresponding to the digits ‘0’ - ‘9’) represent the least
significant digit of the Data Bus Fetch counter. A Data Bus transac-
tion indicated by a letter in this column corresponds to the Address
Bus transaction indicated by the same letter in the ‘AB fetch’ col-
umn.

– Lower-case letters indicate an instruction fetch bus transaction.

– ‘M’ indicates a Load or Store transaction on the bus.

– A hyphen ‘-’ indicates an idle bus cycle.

– An asterisk ‘*’ indicates an idle bus cycle caused by a Non-Sequen-
tial Fetch.

• ID inst
The number of instructions decoded by the decoder. Only instruc-
tions that have reached the execution stage are counted. The digits
‘0’ - ‘9’ represent the least significant digit of the counter.

– Digits indicate an instruction decoding.

– A hyphen ‘-’ indicates an idle cycle.

• EX inst
The number of instructions executed by the CPU. The digits ‘0’ - ‘9’
represent the least significant digit of the counter. An instruction in-
dicated by a digit in this column corresponds to the decoding of the
same instruction indicated by the same digit in the ‘ID inst’ column.

– Digits indicate an instruction execution.

– A hyphen ‘-’ indicates an idle cycle.

• Delay cause
Under optimal circumstances a single instruction can be executed on
each and every cycle. When this is not the case, the cause may be an
instruction that takes more than a single cycle to execute, or a full
instruction that has not been yet fetched from memory. In either
case, this column indicates the cause for lack of execution. ‘IF’ indi-
cates that the CPU is waiting for a full instruction to be fetched. ‘EX’
indicates that a long instruction is executing.

DEBUG.book : DBappG 5 Sun Mar 9 10:56:45 1997

CompactRISC Debugger Reference Manual PERFORMANCE SIMULATION TRACE OUTPUT G-5

Example CRXX Performance Simulator, version X.X.X
Date: Sun Feb 4 15:23:25 1996
Simulated program: dhry1.x
Output format: LONG

[Address] 1 00000000 - 0000f000
; ACCESS SIZE (in bytes)/
; /
; 1 2 3 4 / ACCESS TYPE
;-------------------------;------
 1 1 1 2 ;ws L
 0 0 0 0 ;hold
;-------------------------;------
 0 0 0 1 ;ws S
 0 2 2 2 ;hold
;-------------------------;------
 0 3 0 1 ;ws F
 0 0 0 0 ;hold
;-------------------------;------

CYCLE| PROGRAM- |Inst. | EXECUTING |Inst. | Q A D I E D | de-|
No. | COUNTER | No. | INSTRUCTION |length | B B D X S | lay|

		s f f i i P	ca-
		i e e n n M	use
		z t t s s	
		e c c t t	
		h h	

===
 1 | | | 0 b - - - - | IF |
 2 | | | 4 c b - - - | IF |
 3 | | | 8 - c - - - | IF |
 4 | | | 8 - - 1 - - | IF |
 5 | 00000000 | 1 movw $0xb60:l,r0 6 | 2 d - 2 1 - | |
 6 | 00000006 | 2 lpr r0,intbase 2 | 4 e d - 2 - | |
 7 | | | 0 d * - 2 - | EX |
 8 | | | 4 e d - - - | IF |
 9 | | | 8 - e - - - | IF |
 10 | | | 8 - - 3 - - | IF |
 11 | 00000008 | 3 movw $0x36b0:l,r0 6 | 2 f - 4 3 - | |
 12 | 0000000e | 4 movw r0,sp 2 | 4 g f - 4 - | |
 13 | | | 8 - g - - - | IF |
 14 | | | 8 - - 5 - - | IF |
 15 | 00000010 | 5 movw $0x3730:l,r0 6 | 2 h - 6 5 - | |
 16 | 00000016 | 6 lpr r0,isp 2 | 4 i h - 6 - | |
 17 | | | 0 h * - 6 - | EX |
 18 | | | 4 i h - - - | IF |
 19 | | | 8 - i - - - | IF |
 20 | | | 8 - - 7 - - | IF |
 21 | 00000018 | 7 bal ra,*+8:l 6 | 0 i - 8 7 - | |
 22 | | | 4 j i - - - | IF |
 23 | | | 8 - j 8 - - | IF |
 24 | 00000020 | 8 addd $-4:s,sp 2 | 6 a - 9 8 - | |
 25 | 00000022 | 9 stord ra,0(sp) 2 | 8 M a 0 9 - | |
 26 | | | 8 - M 0 9 - | EX |
 27 | 00000024 | 10 movd $0:s,r0 2 | 6 b - 1 0 - | |
 28 | 00000026 | 11 stord r0,0xc28:l 6 | 4 M b - 1 - | |
 29 | | | 4 c M 2 1 - | EX |

Total cycles : 201316
Total instructions: 87775
Cycles per instruction: 2.29
Average instruction length: 3.15
Total fetches: 160729
Total store instructions: 20405
Total load instructions: 20028

DEBUG.book : DBappG 6 Sun Mar 9 10:56:45 1997

DEBUG.book : DEBUGIX.doc 1 Sun Mar 9 10:56:45 1997

CompactRISC Debbuger Reference Manual INDEX-1

! command 4-36

A

Accessing a menu with the mouse 3-1
Accessing files outside the COFF file 3-5
Accessing on-line help 2-3
Address range 4-1
ALIAS command 2-8, 4-3
Aliasing 2-8
Assembly source mode 4-25
AUTOCOMMAND command 2-4, 4-4

B

Beginning of a function 4-1
Benefits of using the debugger 1-2
BREAK command 4-5
Break Menu 3-2, 3-11
Breakpoint

hard 2-4
soft 2-4
temporary 2-4

Breakpoints 4-5

C

CALL command 4-8
CD command 4-8
Change working directory 4-8
CHIP command 4-9
Clear PSS data and status 5-6
CLEAR SIM PSS command 5-6
COFF file 2-2
COMM command 4-9
Command

SRCPATH 2-4
TARGET 2-10

Command arguments A-6
Command descriptions 4-2
Command entry and formats 4-2
Command file 2-2
Command syntax A-1
Command Window 4-20
Commands

! (single line to ISE) 4-36
ALIAS 2-8, 4-3
aliasing 2-8

AUTOCOMMAND2-4, 4-4
BREAK 4-5
CALL 4-8
CD 4-8
CHIP 4-9
COMM 4-9
CWD 4-8
DBUG 4-10
DEBUG 2-3
DEBUGMODE2-5, 4-10
FIND 4-11
FINDSRC 4-12
GO 2-5, 4-13
INFO 4-14
INPUT 4-14
LIST 2-4, 4-15
LOG 4-16
MODIFY 4-17
NEXT 4-18
NEXTINS 4-19
PAUSE 4-20
QUIT 4-20
RADIX 4-20
RESET 2-3, 4-21
RESUME 4-22
SAVECONFIG 2-9, 4-22
SAVESTATE 4-22
SET 2-8, 4-23
SETSTATE 2-9, 4-23
SOFTBREAK 4-24
SRCMODE2-3, 4-25
SRCPATH 4-25
STDIO 4-26
STEP 4-27
STEPINS 4-27
SYMBOL 4-29
SYNC 4-30
TARGET 4-30
VERBOSE 2-10, 4-31
VIEW 4-32
WATCH 4-35
WHERE 4-36

Communication parameters 4-9, 4-22
Config Menu 3-2, 3-12
CONFIG SIM command 5-2
Configurable buttons

using 3-2
Configuration commands 2-1
Configuration file 2-1
Configure simulator for operation 5-2
Configuring the simulator 2-10
Contents of Pull-Down Menus C-1
Control during simulation 2-10
crdb.ctx 4-22, 4-23
CRDBENV 2-1, 4-22
crdb.env 2-2, 4-22
crdb.ini 2-1, 2-2
crdb.log 2-8
Creating PSS symbols 2-13

INDEX

DEBUG.book : DEBUGIX.doc 2 Sun Mar 9 10:56:45 1997

INDEX-2 CompactRISC Debbuger Reference Manual

Creating symbols 5-6
Current program name 4-14
Current source file 4-12
Current source line 4-36
Current working directory 4-8, 4-14
Customizing the debugging environment 2-1
CWD command 4-8

D

DEBUG command 2-3, 4-10
Debugger

display information 4-14
invoking 2-1, 2-2

Debugger configuration commands 2-1
Debugging environment

customizing 2-1
DEBUGMODE command 2-5, 4-10
Define debugger variables and strings 4-23
Define macro 4-3
Dialog box 3-3

using 3-3
Directory search path name for the source file 4-25
Display

mixed mode 4-25
source-only 4-25

Display current context 4-36
Display debugger information 4-14
Display mode 2-3
Display names of PSS files 5-6
Display symbol characteristics 4-29

E

-e option 2-2
Epilogue 4-1
Executable file 2-2
Execute

command file 4-14
next assembly instruction 4-19
next source statement 4-18
user function 4-8
user programs 4-13

Execute Menu 3-2, 3-11
Exiting the debugger 2-2

F

Features 1-2
File

COFF 2-2
command 2-2

executable 2-2
initialization 2-2
logging 2-2

File Menu 3-2
File menu 3-10
FILES SIM PSS command 5-6
Find

string in a source file 4-12
value in memory or trace buffer 4-11

FIND command 4-11
FINDSRC command 4-12
First instruction in the body of the function 4-1
Function

within a particular module 4-1
Function keys

programming 3-4

G

GO command 2-5, 4-13

H

Hardware breakpoints 2-4
list 2-4

HDB
Main Menu 3-1

help button 2-3
Help Menu 3-2, 3-12
Help Window 3-9
Hot keys 3-4

I

INFO command 4-14
Initial screen 3-1
Initialization 2-2
Initialization file 2-1, 2-2
INPUT command 4-14
Input file 4-20, 4-22
Installation 2-1
Installing the Debugger 2-1
Invoking the debugger 2-1, 2-2
ISE

set communication mode 4-31

L

-l option 2-2

DEBUG.book : DEBUGIX.doc 3 Sun Mar 9 10:56:45 1997

CompactRISC Debbuger Reference Manual INDEX-3

Last instruction in the body of the function 4-1
Line numbers

within a module 4-1
LIST command 2-4, 4-15
List file 4-15
List of features 1-2
List trace buffer 4-15
Load PSS file Into PSS 5-7
LOAD SIM PSS command 5-7
Local Variables Window 3-7
LOG command 4-16
Log commands to debugger 4-16
Log file

annotations 2-8
comments 2-8

log_file 2-2
Logging file 2-2, 2-8

M

Map output file to address 5-3
Measuring performance 2-6
Memory

looking at 2-6
modifying 2-6

Memory Window 3-8
Menu

Break 3-11
Config 3-2, 3-12
Execute 3-11
File 3-10
Help 3-12
Show 3-12
Source 3-12

Menus
accessing with mouse 3-1
Break 3-2
Execute 3-2
File 3-2
Help 3-2
Main 3-1
Pull-down, contents of C-1
Show 3-2
Source 3-2

Mixed mode display 4-25
MODIFY command 4-17
Modify memory contents 4-17
Modifying memory, registers and variables 2-6

N

NEXT command 4-18
NEXTINS command 4-19

O

OFF SIM PSS command 5-7
ON SIM PSS command 5-7
On-line help 2-3
Option

-e 2-2
-l 2-2

Output display 4-20
OUTPUT PSS command 5-3
OUTPUT SIM PSS command 5-8
Output Window 3-6
Overview 1-1

P

PATH 2-1
PAUSE command 4-20
Pause input file execution 4-20
Performance

estimation 2-6
measuring 2-7
profiling 2-7

Performance Window 3-8
Peripheral Stimulus System 2-11
Profiling performance 2-7
Program variables

modifying 2-6
viewing 2-6

Programming function keys 3-4
Prologue 4-1
PSS command

OUTPUT 5-3
READFILE 5-3
SET 5-3

PSS commands 2-11
external 2-12
internal 2-12

PullDown menus
using 3-1

Q

Quick reference guide A-1
QUIT command 4-20

R

RADIX command 4-20
Read input file 5-3
READFILE PSS command 5-3
Redirect the output of standard I/O functions 4-26

DEBUG.book : DEBUGIX.doc 4 Sun Mar 9 10:56:45 1997

INDEX-4 CompactRISC Debbuger Reference Manual

Reference documents 1-5
Register Window 3-6
Registers

modifying 2-6
viewing 2-6

Report state of PSS system 5-6
RESET command 2-3, 4-21
Reset debugger and the ISE 4-21
Restore debugging state 4-23
Restoring debugging setup 2-9
RESUME command 4-22
Resume execution of input file 4-22

S

Save current debugger configuration 4-22
Save current debugging state 4-22
SAVECONFIG command 2-9, 4-22
SAVESTATE command 4-22
Saving and restoring the debugging context 2-9
Saving debugging setup 2-9
Scrolling using the keyboard 3-4
Select variables for auto display 4-35
Selecting the Target 2-3
Selecting windows 3-3
Sending commands directly to the monitor 2-10
Set Chip for ISE 4-9
SET command 2-8, 4-23
Set Communications Parameters 4-9
Set debugging model 4-10
Set ISE communication mode 4-31
SET PSS command 5-3
Set radix for output display 4-20
Set source file display mode 4-25
SETSTATE command 2-9, 4-23
Show Menu 3-2, 3-12
SIM command

CONFIG 5-2
SIM PSS commands

CLEAR 5-6
FILES 5-6
LOAD 5-7
OFF 5-7
ON 5-7
OUTPUT 5-8
UNLOAD 5-8

Simulating I/O Operations 2-13
Simulating interrupts 2-14
Single line command to ISE 4-36
Single stepping 2-5
SOFTBREAK command 4-24
Software breakpoints 2-4, 4-24

list 2-4
Source directory path 4-14
Source file 2-3, 4-15, 4-25, 4-30

display 4-21

Source line format 3-4
Source Menu 3-2
Source menu 3-12
Source Window 2-4, 2-5, 3-4, 4-12, 4-13, 4-15, 4-21,

4-24, 4-25, 4-30
Source-only display 4-25
Specify

COFF file 4-10
commands for auto execution 4-4
emulator name 4-30
Hex file 4-10

Specifying directories 2-4
SRCMODE command 2-3, 4-25
SRCPATH command 2-4, 4-25
Stack history 4-36
Stack Window 2-5, 3-6
Start execution 2-5
Startup 2-2
Status Window 3-5, 4-13
Status Window field

Chip Status 3-6
Current PC 3-6
Execution Time 3-6
Trig Mode 3-6

STDIO command 4-26
STEP command 4-27
Step one assembly instruction 4-27
Step one source line 4-27
STEPINS command 4-27
SYMBOL command 4-29
Symbol references 4-1
SYNC command 4-30
Synchronize source file display 4-30

T

Target
development board 2-3
selecting 2-3
simulator 2-3

TARGET command 2-10, 4-30
Temporary breakpoints 2-4
Text file 2-4, 4-15
Turn off execution of internal PSS commands 5-7
Turn on execution of internal PSS commands 5-7

U

UNLOAD SIM PSS command 5-8
Using a dialog box 3-3
Using configurable buttons 3-2
Using data files 2-13
Using pull-down menus 3-1

DEBUG.book : DEBUGIX.doc 5 Sun Mar 9 10:56:45 1997

CompactRISC Debbuger Reference Manual INDEX-5

V

Variables Window 3-8, 4-35
VERBOSE command 2-9, 4-31
VIEW command 4-32
View value of structure or symbol 4-32
Viewing program variables 2-6
Viewing registers 2-6

W

WATCH command 4-35
WHERE command 4-36
Windows 3-4

Command 4-20
Help 3-9
Output 3-6
selecting 3-3
Source 2-4, 2-5, 3-4, 4-12, 4-13, 4-15, 4-21, 4-24,

4-25, 4-30
Stack 2-5, 3-6
Status 3-5, 4-13
Variables 3-8, 4-35

DEBUG.book : DEBUGIX.doc 6 Sun Mar 9 10:56:45 1997

