
CompactRISC

Debugger

 Manual

Part Number: 424521772-004

August 1998

ΤΜ

ii

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGES

0.6 August 1995 First beta release.

0.7 January 1996 Minor changes and corrections.

1.0 August 1996 CR16A Product Version.
CR32A Beta Version.

1.1 February 1997 Minor changes and corrections.

2.a September 1997 Alpha release for CR16B.

2.0 January 1998 Beta release.

2.1 August 1998 Product Version.

iii

PREFACE

Welcome to the CompactRISC Debugger. The debugger can be used for symbolic debug-
ging of high-level language programs generated by the CompactRISC C Compiler, as well
as for assembly language programs generated by the CompactRISC Assembler.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

CompactRISC is a trademark of National Semiconductor Corporation.
National Semiconductor is a registered trademark of National Semiconductor Corporation.
IBM, PC are registered trademarks of International Business Machines Corporation.
Microsoft, Windows are trademarks of Microsoft Corporation.

CompactRISC Debugger Reference Manual CONTENTS-iv

CONTENTS

Chapter 1 OVERVIEW

1.1 INTRODUCTION ... 1-1

1.2 DEBUGGER FEATURES.. 1-2

1.3 DEVELOPMENT ENVIRONMENT.. 1-2

1.3.1 Instruction-Level Simulator (ILS) Environment 1-3

1.3.2 Board Environment ... 1-4

1.4 MANUAL ORGANIZATION ... 1-5

1.5 REFERENCE DOCUMENTS .. 1-5

Chapter 2 DEBUGGER FEATURES

2.1 INTRODUCTION ... 2-1

2.2 DEBUGGING WITH THE DEBUGGER... 2-1

2.2.1 Installing the Debugger .. 2-1

2.2.2 Debugger Initialization and Configuration .. 2-1

2.2.3 Invoking the Debugger ... 2-2

2.2.4 Accessing On-line Help .. 2-3

2.2.5 Selecting the Target ... 2-3

2.2.6 Selecting the Core .. 2-4

2.2.7 Working with Executables and Source Files .. 2-4

2.2.8 Working with Breakpoints ... 2-4

2.2.9 Executing the Program ... 2-6

2.2.10 Looking at Memory and Variables .. 2-6

2.2.11 Virtual I/O Support .. 2-7

2.2.12 Performance Estimation ... 2-7

2.2.13 Working with Debugger Command Scripts .. 2-9

2.2.14 Saving and Restoring the Debugging Context 2-11

2.2.15 Working with the Monitor Commands .. 2-11

2.3 USING THE SIMULATION ENVIRONMENT .. 2-11

Chapter 3 DEBUGGER USER INTERFACE

3.1 DEBUGGER GUI INTERFACE ... 3-1

3.1.1 GUI Operations .. 3-1

3.2 THE DEBUGGER WINDOWS... 3-4

CompactRISC Debugger Reference Manual CONTENTS-v

3.3 MENU DESCRIPTIONS .. 3-10

Chapter 4 THE DEBUGGER COMMANDS

4.1 INTRODUCTION ... 4-1

4.1.1 Symbol References in Commands ... 4-1

4.1.2 Command Entry and Formats .. 4-2

4.1.3 Command Descriptions .. 4-2

4.1.4 Common Command Modifiers .. 4-3

4.2 ALIAS — DEFINE MACRO ... 4-3

4.3 AUTOCOMMAND — SPECIFY COMMANDS FOR AUTO EXECUTION........... 4-4

4.4 BREAK — SET HARDWARE BREAKPOINT.. 4-5

4.5 CALL — EXECUTE USER FUNCTION .. 4-8

4.6 CD — CHANGE WORKING DIRECTORY.. 4-9

4.7 COMM — SET COMMUNICATIONS CHANNELS ... 4-10

4.8 CORE - SET THE CURRENT CPU CORE ... 4-11

4.9 DEBUG — SELECT THE EXECUTABLE FILE FOR DEBUGGING 4-11

4.10 DEBUGMODE — SELECT DEBUGGING MODE... 4-12

4.11 FIND — FIND VALUE IN MEMORY.. 4-13

4.12 FINDSRC — FIND STRING IN A SOURCE FILE ... 4-13

4.13 GO — EXECUTION OF USER PROGRAM.. 4-14

4.14 INFO — DISPLAY DEBUGGER INFORMATION ... 4-16

4.15 INPUT — EXECUTE COMMAND SCRIPT FILE .. 4-16

4.16 LIST — LIST MEMORY OR FILE.. 4-16

4.17 LOG — RECORD DEBUGGER COMMAND SESSION 4-18

4.18 MODIFY — MODIFY CONTENTS OF MEMORY OR SYMBOLS 4-19

4.19 NEXT — EXECUTE NEXT SOURCE LINE (STEP OVER) 4-20

4.20 NEXTINS — EXECUTE NEXT ASSEMBLY INSTRUCTION (STEP OVER).... 4-22

4.21 PAUSE — SUSPEND INPUT FILE EXECUTION ... 4-23

4.22 QUIT — EXIT FROM THE DEBUGGER ... 4-23

4.23 RADIX — SET RADIX FOR OUTPUT DISPLAY .. 4-23

4.24 RESET — RESET THE DEBUGGER AND THE TARGET BOARD 4-24

4.25 RESUME — RESUME EXECUTION OF INPUT FILE...................................... 4-24

4.26 SAVECONFIG — SAVE CURRENT DEBUGGER CONFIGURATION 4-24

CompactRISC Debugger Reference Manual CONTENTS-vi

4.27 SAVESTATE — SAVE CURRENT DEBUGGING STATE 4-25

4.28 SET — DEFINE DEBUGGER VARIABLES AND STRINGS............................. 4-25

4.29 SETSTATE — RESTORE DEBUGGING STATE ... 4-26

4.30 SOFTBREAK — SET SOFTWARE BREAKPOINT... 4-27

4.31 SRCMODE — SET SOURCE FILE DISPLAY MODE....................................... 4-28

4.32 SRCPATH — SET DIRECTORY PATH FOR SOURCE FILES 4-28

4.33 STDIO - REDIRECT VIRTUAL I/O STANDARD FILES 4-29

4.34 STEP — STEP ONE SOURCE LINE .. 4-30

4.35 STEPINS — STEP ONE ASSEMBLY INSTRUCTION 4-31

4.36 SYMBOL — DISPLAY SYMBOL CHARACTERISTICS.................................... 4-32

4.37 SYNC — SYNCHRONIZE SOURCE FILE DISPLAY.. 4-33

4.38 VERBOSE — MONITOR COMMUNICATION TRAFFIC TO TARGET............. 4-33

4.39 VIEW — VIEW VALUE OF STRUCTURE OR SYMBOL 4-34

4.40 WATCH — SELECT VARIABLES FOR AUTO DISPLAY 4-37

4.41 WHERE — DISPLAY CURRENT CONTEXT.. 4-38

Appendix A QUICK REFERENCE GUIDE

Appendix B TROUBLE-SHOOTING HINTS

Appendix C DEBUGGER LIMITATIONS

Appendix D PERFORMANCE SIMULATION CONFIGURATION FILE

Appendix E PERFORMANCE SIMULATION TRACE OUTPUT

INDEX

CompactRISC Debugger Reference Manual OVERVIEW 1-1

Chapter 1

OVERVIEW

1.1 INTRODUCTION

The CompactRISC Debugger is a GUI debugger for the CompactRISC
family. It is available for IBM PC-compatible computers, running Mi-
crosoft Windows 95, or Windows NT. It supports symbolic debugging of
code written in C, or in assembly language. The Release Letter, supplied
with your software, contains instructions for installing and configuring
the debugger, and the remaining CompactRISC tools.

To help you evaluate a CompactRISC microprocessor, or to develop soft-
ware for it, National Semiconductor provides an Application Develop-
ment Board (ADB) kit for your particular member of the CompactRISC
family. The CompactRISC Debugger communicates with the ADB, as
well as with the instruction level simulator running on the host plat-
form, using the Debugger Communication Interface (DBGCOM) soft-
ware, which is supplied with the release package.

Intended
audience

This manual assumes a knowledge of the C language, and is addressed
to embedded-systems engineers involved in:

• evaluating a CompactRISC processor

• developing software for a CompactRISC processor

This manual is applicable to processors and Evaluation/Development
Boards for the entire CompactRISC family. For information unique to a spe-
cific processor and board you are using, see the appropriate documents.

CompactRISC Debugger Reference Manual OVERVIEW 1-2

1.2 DEBUGGER FEATURES

The CompactRISC Debugger offers the following features and benefits:

• Supports C or assembly programs

• Initialization files for automatic initialization and restart

• On-line Help

• User-configurable buttons

• Executes commands from a preconstructed command (input) file

• Records debugging session, for later analysis and/or re-execution.
Facilitates automation of regression test suites

• Function call stack display in a window

• Traverse data structures (lists, etc.) through pointers using a mouse

• ALIAS and SET commands, for customizing the command interface

• Recall, editing, and re-execution of previous commands

• Multiple commands on a single line

• Mixed-mode debugging

• Save and restore debug environment

• Call user subroutines/functions from command level

• Access to host file system using Virtual I/O (see Section 5.1 of the
CompactRISC Toolset - C Compiler Reference Manual)

1.3 DEVELOPMENT ENVIRONMENT

The debugger, communicating with its instruction-level simulator, pro-
vides a complete, software-based, evaluation or development environ-
ment. It supports all the capabilities necessary for effective and efficient
development of your target program.

However you will eventually need to debug your application on real
hardware. In this case, the application runs on an Application Develop-
ment Board (ADB). The host computer communicates with the ADB
through an RS-232, RS-422 or JTAG connection. For RS-422 or JTAG
connections you will need a PC add-on card installed in your PC, and
connected to the ADB.

As a user, you will find no noticeable difference between debugging with
the Simulator and hardware-assisted debugging with an ADB. The tools
and interface are identical. In both cases, the debugger communicates
with the target (either the simulator running on the host platform, or an
ADB) with a standard API using the Debugger Communication Interface
(DBGCOM) software.

CompactRISC Debugger Reference Manual OVERVIEW 1-3

Figure 1-1. Debugging Using a Functional/Performance Simulator

Figure 1-2. Debugging the Program on a Target ADB Board

1.3.1 Instruction-Level Simulator (ILS) Environment

The major functions of the Simulator are:

• Provide a tool for evaluating a particular target chip (CPU) before
the first silicon is available.

• Provide a software tool (less expensive than hardware) for software
application development.

Features The Simulator provides the following functional capabilities:

• Instruction-level simulation of the operation of your program.

• Instruction traces of the operation of all or part of your program.

• Performance evaluation of all, or parts, of your program, including
accurate execution-time estimates and program profiling. To make
this more accurate, memory wait states may be simulated.

Simulator
Debugger &

Simulator

ADB

RS-422

JTAG

 Add-in Board

RS-232

Debugger &

CompactRISC Debugger Reference Manual OVERVIEW 1-4

Limitations The Simulator has the following limitations:

• ILS does not simulate hardware aspects of instruction execution,
such as caching or pipelining. However, it does include factors in
its performance estimation to allow for caching, etc.

• Performance information available from the ILS is a very accurate
estimate, but is not exact.

• The ILS does not simulate the operation of any memory manage-
ment peripherals. Therefore, any addresses used within a program
are physical, not logical or virtual.

• The maximum real memory that can be simulated is limited, and is
dependent on the host.

1.3.2 Board Environment

The Application Development Board (ADB) is product-specific, supporting
a particular member of the CompactRISC family. The CompactRISC
Debugger communicates with an ADB using the DBGCOM standard in-
terface. Before you can communicate with any ADB, you must first in-
stall the DBGCOM software.

Board/host
connection

You can connect the ADB to your host system via one of the communi-
cation channels supported by the DBGCOM software (e.g., RS-232).

See the Debugger Communication Interface (DBGCOM) Installation Guide
for details of how to define a communication channel between the
CompactRISC Debugger and an ADB.

See the relevant ADB Reference Manual for general installation and op-
erating instructions.

ADBs have a monitor, Target MONitor (TMON), to aid debugging. It pro-
vides the following features:

• Control of program execution and debugging.
The debugger can download your program to on-board memory. It
can then execute commands for starting, stopping, single-stepping,
and setting breakpoints within your program.

• Data exchange.
The debugger enables you to display, and change, data located in
the on-board memory, and CPU general-purpose and special-
purpose registers.

• Run-time environment.
TMON supports library routines that can be used by your program
to access the host computer file system via the debugger (Chapter
2, Virtual I/O).

CompactRISC Debugger Reference Manual OVERVIEW 1-5

• Reset and initialization.
On reset, the monitor initializes itself and some of the board and
chip registers. It may perform a small set of diagnostic tests to en-
sure that the board is operational.

1.4 MANUAL ORGANIZATION

Chapter 1 Overview (this chapter).

Chapter 2 Debugger Features, explains how the commands are used to perform
various debugging operations. It describes the CompactRISC Debugger
environment, and shows how to invoke it.

Chapter 3 Debugger User Interface, describes the debugger graphical user inter-
face, including the purpose and content of the windows and the
CompactRISC Debugger menus.

Chapter 4 The Debugger Commands, is a reference section which describes the
syntax of the commands, the equivalent GUI facility and provides some
examples.

Appendix A Quick Reference Guide, summarizes the CompactRISC Debugger com-
mands and arguments.

Appendix B Trouble-shooting Hints, suggests solutions to some common problems,
including responses to error messages,

Appendix C Debugger Limitations, lists the known limitations.

Appendix D Performance Simulation Configuration File, shows how to configure the
wait-state parameters of the simulated memory through a simulator
configuration file.

Appendix E Performance Simulation Trace Output, describes detailed program execu-
tion information the simulator sends to a file.

1.5 REFERENCE DOCUMENTS

The following National Semiconductor publications provide related study
and reference material:

1. CompactRISC Toolset - Introduction.

2. CompactRISC Toolset - C Compiler Reference Manual.

CompactRISC Debugger Reference Manual OVERVIEW 1-6

3. CompactRISC Toolset - Assembler Reference Manual.

4. CompactRISC Toolset - Object Tools Reference Manual.

5. Debugger Communication Interface (DBGCOM) Installation Guide.

6. CompactRISC Toolset - CR16A Programmer’s Reference Manual.

7. CompactRISC Toolset - CR16B Programmer’s Reference Manual.

8. CompactRISC Toolset - CR32A Programmer’s Reference Manual.

9. User’s Manuals for the various Evaluation/Development Boards
provided by National Semiconductor Corporation.

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-1

Chapter 2

DEBUGGER FEATURES

2.1 INTRODUCTION

The CompactRISC Debugger is used to debug programs, either by exe-
cuting them on a National Semiconductor Application Development
Board (ADB), or with an Instruction-Level Simulator running on the
host platform. The debugger provides the same interface for both the
development board and the Simulation environment.

2.2 DEBUGGING WITH THE DEBUGGER

2.2.1 Installing the Debugger

The debugger must be installed in your host as described in the release
letter. It requires a number of external files (help file, resource files for
window, etc.) which are supplied with the release package. These files
are installed in the installation directory, which must be included in
your system’s PATH variable.

Before using the debugger you must install the DBGCOM software, in-
cluded in the release package.

2.2.2 Debugger Initialization and Configuration

The debugger uses the following initialization and configuration files:

Global
environment file
(crdb.env)

This optional file contains configuration commands for color, size and
position of the windows, and communication parameters. The debugger
first looks for this file in the directory indicated by the environment
variable, CRDBENV. If CRDBENV is not set, the debugger looks in the cur-
rent directory. See Section 2.2.14.

Local
initialization file
(crdb.ini)

This optional file contains local setup commands, used to customize the
debugging environment for a particular project e.g., alias definitions,
standard input command file, executable file to be downloaded, source
path directories and standard logging file. It must reside in the current
working directory, and may contain any legal debugger command.

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-2

2.2.3 Invoking the Debugger

You can invoke the debugger by double-clicking on the debugger icon
from the CompactRISC Program Group. To run the debugger with the
Run option of Windows Start menu, use the following invocation syntax:

crdb [exec_file] [-c= core] [-e= command_file] [-l= log_file]

Executable
file

exec_file is the file name (including the path, if necessary) of the ex-
ecutable COFF file to be debugged. This file must have been generated
using the CompactRISC C Compiler or the CompactRISC assembler,
preferably with the debug option. Refer to the CompactRISC Toolset - C
Compiler Reference Manual and to the CompactRISC Toolset - Assembler
Reference Manual for more information about compiling for debugging.

The CompactRISC Linker generates executable files in COFF format. A
COFF file consists of two major parts: code and data that make up your
program, and the symbol table, which contains debugging information
about your program. The manual, CompactRISC Toolset - Introduction
describes the procedure for compiling and linking your program.

Core
specification

In the invocation line you can specify the name of the CompactRISC
CPU core, which is the target of the debugging session. To do this use
the -c=core option. Possible values of core are CR16A, CR16BS, CR16BL.
You can also set the core from the debugger command line after the in-
vocation. If no core is specified, the default is CR16BS.

Command
file

if you invoke the debugger with the -e= command_file option, it imme-
diately executes the debugger commands in command_file . You can
use your text editor to create a file of the debugger commands, or use a
log file previously created by the debugger (Section 4-18). You can also
execute commands from a file, during the debugging session, using the
INPUT command (Section 4.15).

Log file log_file is the file which holds the information logged (recorded) by
the debugger during the debugging session. Specify the -l option on the
command line to set up a log file to record the debugging session.

Startup and
initialization

When invoked, the debugger executes commands from the two initial-
ization files, crdb.env and crdb.ini , in that order.

If you invoke the debugger without any arguments, it completes its ini-
tialization, and awaits further commands from you.

If you specify the executable file, the debugger reads and downloads the
file to the target.

If you specify the -e option, the debugger executes the commands from
the command_file .

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-3

Debugging
session

To enter the commands, select the command line edit area in the upper
part of the Debugger Window by clicking it with the left-button of the
mouse, and type in the command (see Chapter 4 for details of the de-
bugger commands). After entering the command, press ENTER to pro-
cess the command.

Exiting the
debugger

Terminate a debugging session with the QUIT command, or open FILE

and select QUIT.

2.2.4 Accessing On-line Help

Select the help button, on the main menu, to obtain help information.
Select a topic from the list by double clicking on the left button of the
mouse.

Alternatively, enter a question mark (?) as the only argument to a com-
mand to get help with its syntax.

2.2.5 Selecting the Target

You can select the target environment in which you want to debug the
program. This can be either simulator or development board. The de-
fault target is simulator.

Simulator Use the COMM -S command (Section 2.2.5), or open CONFIG and select
SIMULATOR, to select the simulator.

Development
board

Before you can use the development board, you must connect it to your
host through one of the communication channels supported by the DB-
GCOM software, and define an appropriate communication channel us-
ing the DBGCOM setup procedure.

Use the command:

COMM -[s|f] <communication channel name>

where <communication channel name> is the name you chose for the
communication channel to the ADB during DBGCOM setup. Note that
<communication channel name> can contain only letters and digits.

Alternatively, open CONFIG and select TARGET BOARD.

For detailed information, and installation instructions, for your DBG-
COM, see the Debugger Communication Interface (DBGCOM) Installation
Guide supplied with this package.

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-4

2.2.6 Selecting the Core

You can select the CPU core using the CORE command (Section 4.8). The
default, if no core is specified, is CR16BS. On downloading code (see be-
low), the debugger automatically selects the core according to the Magic
Number which appears in the executable file header. This Magic Num-
ber is set during the compilation process according to the user-specified
target core.

2.2.7 Working with Executables and Source Files

Specifying an
executable file

The DEBUG command (Section 4.9) specifies the name of the executable
COFF file to be used by the debugger, and optionally downloads code
and symbols. DEBUG updates the Source Window (Section 3.2) display.
After a file has been downloaded, the debugger issues a RESET com-
mand (Section 4.24).

C or Assembly
mode display

SRCMODE (Section 4.31) specifies the display mode for your source files.
You can specify source code only, or a mixture of source and assembly
code.

Source file
operations

The current source file, or the currently requested text file, is always dis-
played in the Source Window. To look at a particular area in your source
file, if you know its location, use the LIST command (Section 4.16). If
you do not know where to look, but you know something about the con-
text, such as some structure, or variable, referenced there, you can use
FINDSRC (Section 4.12) to find each of the possible locations. SYNC (Sec-
tion 4.37) returns the Source Window to the execution point in the
source file.

Specifying
directories

If your source files are in several directories, use SRCPATH (Section 4.31)
to tell the debugger where to find them.

CD (Section 4.6) sets the current working directory for the debugger;
INFO (Section 4.14) displays the setting of CRDBENV, the current directo-
ry paths used by the debugger when searching for source files, and the
names of the files currently in use.

2.2.8 Working with Breakpoints

There are two types of breakpoints: hardware and software. The hardware
breakpoints (BREAK, Section 4.4) are less numerous and less flexible, but
operate in near real-time. Software breakpoints (SOFTBREAK, Section 4.30)
are more numerous and more flexible but do not operate in real-time.

Hardware breakpoints are provided by either the chip or the simulator.
They are available for the CR16B and CR32A.

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-5

Hard-break Depending upon the implementation, a hard breakpoint may support
breakpointing on data read/write/any access, and PC match. You can
manage your hardware breakpoint list with the BREAK command.

PC match with occurrence count is implemented through software, and
hence affects the real-time performance.

CR16B with bit
manipulation

Note that CR16B bit-manipulation instructions that refer to a specific
bit in a word, only access the byte in the word in which the bit is locat-
ed. Therefore, when trying to detect access to a specific bit, always use
the address of its byte.

For example:

cbitw $9,0x1000

The address that is actually accessed is 0x1001, where bit 9 of the word
is located. To generate an address match in this case, define the break-
point at address 0x1001.

Soft-break SOFTBREAK provides PC breakpointing based on occurrence count
and/or based on a conditional expression. Use the SOFTBREAK com-
mand (Section 4.30) to manage the software breakpoint list. Double-
click on a particular source line to set or unset a software breakpoint.

If a software breakpoint is set on a source file line displayed in the
Source Window, the affected line is marked with an “S” at the left edge
of the Source Window.

Temporary
breakpoints

If you do not want to use a breakpoint for a while, you can disable it
and later re-enable it. You can also set a temporary breakpoint, which
is automatically removed after it has been executed once. If you set a
new hardware breakpoint, and expect it to be executed immediately,
you must ensure that your BREAK list is enabled.

You can use the WATCH command (Section 4.40) to set up a list of vari-
ables to display and AUTOCOMMAND (Section 4.3) to list the commands to
be executed when the next breakpoint is recognized.

Attaching
commands to
break

AUTOCOMMAND specifies a set of commands to be executed whenever the
program stops after execution due to breakpoints.

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-6

2.2.9 Executing the Program

Start execution Use GO (Section 4.13), to start executing your program. When the pro-
gram reaches a breakpoint, the debugger stops the execution, updates
the Watch Variables Window, executes the AUTOCOMMAND list
(Section 4.3), and updates the display in the Source Window to point to
the current source line or instruction.

RESET and
debugging of
startup code

The RESET command (Section 4.24) issues a software reset to the ADB
with the help of the DBGCOM software. By default, the debugger exe-
cutes up to main .

To debug your startup code, use DEBUGMODE (Section 4.10) to stop at
the entry point, or to execute up to main , the logical ‘C’ start function.
The Source Window display is updated accordingly.

Single stepping The debugger provides single stepping at the source level (STEP Section
4.34) as well as at instruction level (STEPINS Section 4.35). It also pro-
vides stepping over at source level (NEXT Section 4.19) and stepping over
at the instruction level (NEXTINS section 4.20).

Aborting
execution

Open EXECUTE and select ABORT to abort any executing command. Con-
trol returns to the debugger prompt level. If you select abort while an
input file is being executed, execution of the input file is also aborted.

If you are executing your program on a development board, you may
abort execution by pressing the ISE switch on the ADB board. You may
have to restart the program later.

If the simulator is executing your program when you abort, you may re-
set and restart the program later.

2.2.10 Looking at Memory and Variables

Whenever the program is stopped, the debugger provides various ways
of looking at the memory or program variables.

Inspecting
program stack

WHERE (Section 4.41) displays the current program context, and the current
function stack in the Output Window. You can also open the Stack Win-
dow to see the current call chain; open SHOW and select STACK WINDOW.

Looking at
memory

LIST , with -m option (Section 4.16), and Memory window (Section 3.2)
display memory in various widths and formats. You can use the Memo-
ry window or MODIFY to modify the memory location.

Viewing
program
variables

VIEW (Section 4.39) displays the program variables in a variety of C
printf -like formats. The debugger also provides several different win-
dows to view variables.

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-7

The Local Variables window (open SHOW and select LOCAL VARIABLES) dis-
plays the arguments, and C-local variables.

The Watch window (open SHOW and select WATCH VARIABLES) lets you de-
fine a set of variables or expressions to be automatically displayed
whenever the program stops.

The Symbol Window (open QUERY MENU) displays any variable in the C-
Program context. This window also lets you expand or contract struc-
tures, and includes a facility to get symbol-type information via this
window.

Viewing
registers

VIEW also displays registers, using the Register window (open SHOW and
select REGISTER).

Modifying
memory,
registers and
variables

MODIFY modifies memory location and variables. You can modify regis-
ters, variables, or memory by double clicking on the entry in the Regis-
ter, Query, and Memory windows respectively.

2.2.11 Virtual I/O Support

Virtual I/O enables your program, running on an ADB, or under control
of the simulator, to access the host system, normally through the de-
bugger. The low-level virtual I/O functions are included as part of the C
library. Virtual I/O operations are listed in Chapter 7, and described in
the CompactRISC Toolset - C Compiler Reference Manual.

STDIO (Section 4.33) directs the output of I/O functions to standard
files, a host disk file, the Output Window, or to the terminal from which
you invoked the debugger.

2.2.12 Performance Estimation

The ability to measure the performance of various parts of the software
is an important requirement of embedded system programming. For ex-
ample, we need to know the time required to perform a particular task,
or execute a particular function.

To get any kind of performance measurement for your program, open
CONFIG, select SIMULATOR and check the PERFORMANCE ON checkbox.

The simulator slows down when collecting data for program profiling. If
you do not need to profile a particular part of your program, open CON-

FIG, select SIMULATOR and uncheck the PERFORMANCE ON checkbox.

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-8

By default, after RESET, if the performance simulator is on, the debug-
ger turns the performance simulator off, and turns it on when it reach-
es main . If you want performance information on the startup code,
change the debug mode, as explained in Section 2.2.9.

Profiling You can profile the performance of your program. Profiling provides an
indication of where bottlenecks occur, and where the program spends
most of its execution time. The simulator samples the program counter at
a predetermined rate, and then estimates performance based on the fre-
quency distribution of the program counter values.

On completion of the portion of your program you want to profile, open
SHOW and select PERFORMANCE to display the Performance Window. A bar
graph shows an execution profile of either files, or functions, for your
program. Double click on the bar to go to the next level of granularity.
The levels of granularity are: files, functions, lines and instructions.

The bar graph reflects the percentage of execution time your program
spent in each of the displayed portions relative to the time spent in all
the code that was executed with performance mode on. The numbers
shown by the bar elements indicate the time spent in that section of
code only; they do not include any time spent in any section called from
this section of the code. This display of function, lines and instructions
includes only portions of code containing symbolics.

Note Turning the performance simulation off, does not delete the data base.
To reset the data base, either select RESET from the PERFORMANCE WIN-

DOW menu or push the RESET button in the Simulator Configuration
dialog box.

Note We recommend that you execute the measured part of the program contin-
uously, without interruptions such as breakpoints or single steps. Break-
points and single-steps each add a few cycles to the total cycle count, and
thus adversely affect the performance measurement.

Chapter 3 describes the graphical aspects of the Performance Window.

Tracing With performance simulation you can get a cycle-level trace of your pro-
gram, or part of it, with full information about instructions being exe-
cuted and the processor pipeline status.

The trace information is directed to a log file, which you specify. Select
CONFIG ➼ SIMULATOR ➼ PERFORMANCE ON. Click the SETUP button and
mark the LOG ON/OFF box in the dialog box, and select an output file
name.

Pushing the RESET button in the Simulator Configuration dialog box
resets the simulation timer and the instruction counter.

For details of the output format, refer to Appendix E.

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-9

Config You can specify configuration parameters for the performance simula-
tion. These parameters deal with memory wait-states. By default, all
parts of the memory are assumed to be accessed with zero wait-states.

If you want to override this configuration, specify a configuration file
name. Select CONFIG ➼ SIMULATOR ➼ PERFORMANCE ON. Click the SETUP

button aND in the dialog box, next to SIM CONFIG FILE, specify the con-
figuration file name.

For convenience, you can also generate a configuration file template
from the Setup dialog box. Type a name for the template file in the field
next to the GEN TEMPLATE button, then click this button. For a detailed
explanation of the configuration file format, see Appendix D.

Note You can clear the existing configuration by pushing the CLEAR button in
the SETUP dialog box. Passing an empty string as the name of the con-
figuration file causes the default configuration to be valid.

2.2.13 Working with Debugger Command Scripts

To make command entry and debugging more convenient, the debugger
provides two commands: alias (Section 4.2) and set (Section 4.28). In
addition to the standard command buttons, the debugger provides a set
of custom buttons. To use this feature, open CONFIG and select CUSTOM

BUTTONS.

Command
aliasing and
macro variables

alias defines short forms, or more meaningful names, for single com-
mands, and defines substitution macros for frequently-used sequences
of commands.

set assigns short, meaningful, names to long, complex, strings e.g., an
addressing expression for a nested structure.

alias and set definitions may conveniently be placed in the debugger
initialization files, or in input (command) files. You can specify more
than one command on a line, separated by semicolons (;). If a command
is interactive, or results in an error, the debugger ignores commands
which follow on the same line.

This capability can be used to separate commands within strings for the
alias and set commands.

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-10

Log files
(crdb.log)

You can record the commands which the debugger receives during a de-
bugging session, and optionally, the responses to the commands. In ad-
dition, you can request the debugger either to expand aliased names, or
to record them as input. Recording the commands is particularly useful
if you want to rerun the debugging session later, either because you are
chasing a specific bug which requires some setup of the environment,
or you want to use the session as a regression test for your program.
Recording the debugger responses allows you to analyze the output at
your convenience.

To record a log file, either specify -l = log_filename on the invocation
line, or if you are already in a debugging session, open FILE and select
LOG FILE or use the LOG command (see Section 4.17).

Commands are recorded in a log file just as they were typed. Result
lines are displayed with a leading pound sign (#), making them com-
ments so that the log file can later be used as a command file. If the
original input was from a command file, comments in that file are pre-
ceded by two pound signs.

Comments To put annotations/comments into your log file for later reference, pre-
cede them (each individual line) with a pound character (#), the com-
ment character. If # is the first non-whitespace character, the rest of the
line is ignored. To place a comment on a command line you must pre-
cede the comment with both a semicolon (;) and a pound sign (#):

Example break main;# set a breakpoint at main()

Replaying
scripts

You can use a recorded file as a debugger command file either by spec-
ifying its name as an executable_file on the command line (Section
2.2.3) or by using INPUT (Section 4.15) during a debugging session.

You can also create a command file using a text editor, and run it with
this facility. Such files are useful for debugger initialization, setting up
particular target system states as a prelude to further debugging, or
setting up a particular set of commands, possibly with expected re-
sponses, to be executed as a regression test for your program. The de-
bugger initialization files (Section 2.2.2) are examples of such files.

To pause, during command file execution, to read output, or execute
one or more external debugger commands, insert a pause command
(Section 4.21) in your command stream. To continue execution, use re-
sume (Section 4.25).

CompactRISC Debugger Reference Manual DEBUGGER FEATURES 2-11

2.2.14 Saving and Restoring the Debugging Context

The following three functions make the debugger convenient to use.

Debugger
initialization

When you initially invoke the debugger, you have only rudimentary ini-
tialization files. After you have become familiar with the debugger com-
mands, you will have discovered a set of commands that configure the
debugger for your use. These include setting communication parame-
ters, and the target chip name. When you are satisfied with your envi-
ronment, you can save it in a specified file, possibly one of the
initialization files, using SAVECONFIG (Section 4.26). For succeeding de-
bugging sessions, the debugger sets this environment automatically. Re-
fer to the command description to see what environmental
characteristics are saved by the command. Alternatively, open FILE and
select SAVESETUP to save the current window configuration.

Saving
debugging
setup

You can stop your debugging session in the middle, and continue it lat-
er. End a session with SAVESTATE (Section 4.27) to save data such as
the break/softbreak lists and current filename. Specify the name of the
file into which the state is saved. The default name is crdb.ctx .

Restoring
debugging
setup

In a later session, when you are ready to continue debugging, use the
SETSTATE command (Section 4.29) to restore the previous debugging
setup.

Open FILE and select SAVESTATE to save the current state, select LOAD-

STATE to restore it.

2.2.15 Working with the Monitor Commands

Debugger-
monitor
traffic

The debugger sends a series of monitor commands to the monitor to ac-
complish each command. Use VERBOSE (Section 4.38) to monitor the
traffic between the monitor and the debugger. The Output Window dis-
plays traffic in both directions. This information may be useful in un-
derstanding communication, monitor, or debugger problems.

2.3 USING THE SIMULATION ENVIRONMENT

One of the tools provided by the debugger to aid you in your program de-
velopment is the simulator. The simulator accurately interprets and exe-
cutes your program, one machine instruction at a time. As the simulator
executes your program, it maintains an up-to-date copy of your registers
and data memory, so that at any time during your work with the simula-
tor, you may use the standard debugger features to control the execution
of your program and manipulate your registers and data memory.

You can invoke the simulator with the COMM command (Section 4.7).

In addition, the simulator can estimate performance, and display data
and profiles (bar charts) reflecting the theoretical performance of all, or
portions, of your program. This can be very useful in determining pro-
gram performance, locating bottlenecks, etc.

In executing a target program, the simulator accurately simulates the
external functionality of machine instructions, but does not simulate
the hardware functionality (pipelining, cache simulation, etc.), thus per-
formance measurements are best estimates. When Simulator Perfor-
mance Measurement is turned on, the simulator maintains a clock
giving simulation time. This clock is set to zero at the beginning of the
simulation and after pressing RESET in the Simulator Configuration dia-
log box.

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-1

Chapter 3

DEBUGGER USER INTERFACE

3.1 DEBUGGER GUI INTERFACE

When you invoke the debugger, it displays the Main Window (Figure
3-1). This window contains the Main Menu bar, programmable buttons,
the command line, source window and output window.

Figure 3-1. Main Window

3.1.1 GUI Operations

Using
Pull-down
menus

To access a menu with the mouse, move the mouse cursor to the menu and
hold down the Left button. When the menu is displayed, move the mouse
cursor up or down the list until the desired command is highlighted; then
release the mouse button. Section 3.3 lists the selections available on each
menu.

If after you select a menu, you decide not to use it, click outside the
menu to de-select it.

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-2

Using config-
urable buttons

The second row contains configurable buttons. To configure these but-
tons, open CONFIG and select CUSTOM BUTTONS. The debugger is shipped
with the following default settings, most of which can be re-configured:

File Menu
deals with file-related commands, e.g., user COFF file, text
files, command files, save and restoring of the debugger’s
state or environment.

Execute Menu controls program execution.

Break Menu
sets breakpoints, autocommands to be executed upon reaching
a breakpoint, and performs time measurements.

Source Menu manipulates source file characteristics.

Config Menu
configures your debugging environment (target, color, button
mappings etc.).

Show Menu makes any debugger window active.

Help Menu invokes the Help system.

Reset issues a reset command.

Stop at sets a Software Breakpoint at the selected source line.

Return
executes till control returns to the caller of the current func-
tion.

Go Till
begins execution of the target program at the address indi-
cated by the current contents of the PC, and continues until
the currently selected source line is reached.

Step executes a single source statement of the target program.

Next
steps the target program to the next statement, executing
any called functions, i.e., it steps over the next source state-
ment.

Go
begins execution of the target program at the address indi-
cated by the current PC.

Print
prints the contents of a highlighted variable.
This button is not configurable.

Query

opens a dialog box which displays variables which are visible
under current scope. Variables which are structures can be
expanded or contracted. Double clicking on an expanded
variable opens a dialog box for modifying the contents of the
variable.
This button is not configurable.

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-3

Figure 3-2. Query Window

Interactive com-
mands

To enter commands, click on the command line (the third row) and type
the commands. Chapter 4 describes the syntax of the command. You can
retrieve, edit and re-execute previous commands with the up and down ar-
row keys.

You can copy and paste to the command line from other windows. The
repeat button, on the right side, repeats the last command you typed.

Using a dialog
box

Dialog boxes pop up when additional information is required from you
e.g., file and conditional break point selection. Dialog boxes are indicat-
ed by three dots following the menu entry. Use the conventions of the
host system to enter information in a dialog box.

Many dialog boxes are closed with a DONE button. Operations performed
in such dialog boxes can not be undone automatically. You must explic-
itly undo the operations using the appropriate commands.

Selecting win-
dows

To use a window, you must first select it. Selecting a window brings it
to the front, and highlights its title bar to indicate that it is active.

To select a window with the mouse, move the mouse cursor to the visi-
ble portion of the window, and click the left button.

Alternatively, you can select a window by clicking on its name in the
SHOW menu.

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-4

The Menu bar is overlaid by all windows. Thus, when you select a win-
dow, the menu bar shows the current window’s menus.

When you install the debugger in a program group, make sure that you
select the current directory appropriately. The debugger reads, by de-
fault, files like crdb.env , crdb.ini or crdb.ctx . from this directory.

To select an iconized window, double-click on it with the left button.

Programming
function keys

To scroll with the keyboard, use the up-arrow, down-arrow, PGUP, PGDN,
HOME, and END buttons for vertical scrolling, and the left-arrow and
right-arrow for horizontal scrolling.

A hot key is a single key on your keyboard which, by itself or in combi-
nation with a control key such as ALT, executes a debugger function.
Some menu items are mapped to pre-defined hot keys, as indicated in
the Menu Item.

3.2 THE DEBUGGER WINDOWS

Source
Window

This window (Figure 3-2) is part of the Main Window and displays the
contents of source files and text files. It is centered on the current dis-
play line, which is marked with a ‘>’. The current execution line (where
the program counter is positioned) is marked with reverse video.

Use the scroll bar, or the arrow keys, to scroll through a file. If you
scroll down with the mouse, the text scrolls until the last line is brought
into view, and no further. In this case, the last line is not the current
line. You can use the mouse to reposition the current line to the last line.

The format of a source line is:

BS lineno hex-addr source line

where:

B denotes a hardware breakpoint.
S denotes a software breakpoint.
> denotes the current display line.
lineno is the line number starting at the beginning of the

source file.
hex-addr is the hex-format code address for executable lines.

hex-addr appears only in mixed mode.

Example B 233 i = i + j;

To show the code in C followed by the assembly lines open SOURCE and
select DISPLAYMODE ➼ MIXED option (Section 4.31)

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-5

If you use debug (Section 4.9) to specify another COFF file, this window
is updated to the appropriate source file.

The fourth row on the Main window is associated with this window and
the three entries in that row show the current module, current function
and the current line number corresponding to current line display line.
To bring another file or function or line in to source window, just type in
the new name on the corresponding position in this row and press re-
turn. Use LIST (Section 4.16) to bring any module/function/line belong-
ing to the COFF file into this window. The filename field is updated
appropriately.

If you bring in a file that does not belong to the COFF file, it is dis-
played as plain text. You can not set breakpoints, etc.

In this window, the mouse keys have special meaning:

Left button
single-click: repositions the current display line.
double-click: toggles a soft breakpoint at the current dis-
play line.

Right button
single-click: Executes from the line addressed by current
PC up to

the selected line.

Status
Window

The Status Window (Figure 3-3) shows the address in the program
counter, and the source file reference corresponding to the current pro-
gram counter. It is updated whenever there is a change of state in the
debugging environment.

Figure 3-3. Status Window

The individual fields are:

Current PC
displays the current contents of the program counter, and the correspond-
ing source-file line number.

Current Line
shows symbolic information, or the instruction being executed if no symbolic in-
formation is available, for the current program counter.

Chip Status shows whether the chip is stopped, running, or reset.

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-6

Register
Window

The Register Window (Figure 3-4) shows the contents of the PC, SP, PSR
and other general-purpose and processor registers in hexadecimal for-
mat. You can double click on any register name to open a dialog box for
modifying the value in that register.

Figure 3-4. Register Window

Output
Window

The Output Window (Figure 3-1) allows scrolling, and can show the last
few hundred lines of output from the debugger.

Stack
Window

The Stack Window (Figure 3-5) displays the current caller stack. Open
SHOW-STACK, on the main menu bar, to display the window. The top line
is the currently executing function.

Figure 3-5. Caller Stack Window

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-7

The format of each line in this window is:

To bring the source of the calling function (mentioned in that line) into
the Source Window, position the cursor on one of these lines, double
click on that line. To return to the current execution line, open SOURCE

and select DISPLAY PC.

Watch
Variables
Window

The Watch Variables Window (Figure 3-6) displays variables selected with
the WATCH command. It is updated every time there is a change of state in
the debugger or target environment. This window does not let the debugger
modify the variables. To modify variables, use the Query window.

Figure 3-6. Watch Variables Window

Local Variables
Window

The Local Variables Window displays the values of the local variables of
the currently executing function and its arguments. The name of the
function is displayed in the title bar of the window. This window does
not let the debugger modify the variables. To modify variables, use the
Query window.

Memory
Window

The Memory Window (Figure 3-7) displays a memory region in the select-
ed format. You can specify the address, the format and the number of
units to be displayed from that address in that format. The address can
be an expression, (see list -m , Section 4.16). Change any one of these,
and press return, to bring in the new values. Double click on any item to
open a dialog box for modifying the contents of the selected address.

function-nn (arg1, ..., argn)

....

....

function-2 (arg1, ..., argn)

function-1 (arg1, ..., argn)

main (argc,argv)

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-8

Figure 3-7. Memory Window

Performance
Window

After you have collected performance data on all, or a portion, of your
program, you may display the data, both numerically and in a chart, in
the Performance Window (Figure 3-8).

Figure 3-8. Performance Window

The menu bar in this window contains the following (from left-to-right):

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-9

On row two of the Performance Window, the debugger displays the total
number of cycles simulated (Total Cycles), the number of PC samples
taken during data collection (Total PCs), and the total number of in-
structions simulated (Total instructions).

The dominant feature of the Performance Window is a bar chart show-
ing execution time and percentage by program units, for either program
files or C functions.
If files are listed, you can double-click on any file name to see the exe-
cution time of that file, broken down by function.
If functions are displayed, you can double-click on a function name to
see the execution time of that function, broken down by line.
If line numbers are displayed, you can double-click on a line number to
see the execution time of that line, broken down by instruction.
If you request the breakdown of a second file, function or line, the cur-
rently displayed breakdown is removed.
The third row of the window indicates the current Expansion level, by
file and function name.

Help
Window

The debugger provides on-line help on general topics and individual
commands (see Figure 3-9). The on-line help is intended for users who
do not want to read manuals.

Customize Select the items to be displayed in the bar graph:

Granularity: select top level display as files or functions.

Entries: filter entries to be displayed on the graph instead of
all the files or functions.

Performance On:
enable or disable performance simulation. Same as
selecting Config -> Simulator -> Performance On.

Graph Select various update options:

Redisplay: refresh the bar graphs.

Print to log file: Print the displayed data to the debugger’s log file.

Track with source:
update the source window corresponding to the
current file or function or line selection using the
bar graph.

Track with execution:
update these bar graphs whenever the program
stops.

Reset: Reset the data base for the Performance Simulator.

Quit: Remove the Performance Window from the display.

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-10

Figure 3-9. Help Window

3.3 MENU DESCRIPTIONS

File menu The entries on the FILE menu are:

• Load COFF File : selects an executable file for loading (Section 4.9)

• View Text : selects any text file for display. (Section 4.16)

• Log File : selects a file for display. (Section 4.17)

• Command File : executes a file containing debugger commands.
(Section 4.15)

• Work Directory : changes the working directory. (Section 4.6)

• Save Setup : saves the current environment, window layout and col-
or of the debugger to crdb.env file. (Section 4.26

• Save State : saves settings related to debugging in crdb.ctx . (Sec-
tion 4.27)

• Load State : restores the settings related to debugging from a
crdb.ctx . (Section 4.29)

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-11

• About : displays information about the current version of the debugger

• Quit : exits the debugger

Execute menu The entries on the EXECUTE menu are:

• Go: begins execution of your program. (Section 4.13)

• Reset : reset the system (Section 4.24)

• Rerun : executes your program from the beginning

• Go Till : executes your program until the selected source line is
reached

• Step source line : executes the machine instructions contained in
the current source line. If the instruction contains a function call,
execution stops in that function. (Section 4.34)

• Next source line : executes the machine instructions generated by
the current source line. If the instructions contain a function
call(s), executes the entire function and returns. (Section 4.19)

• Step instruction : executes one machine instruction. (Section 4.35)

• Next instruction : executes one machine instruction. If the cur-
rent source-level instruction contains a function call, execute the
entire function. (Section 4.20)

• Debug mode: enables or disables debugging of startup or exit code.
This is a toggle switch.

• Advanced : selects options for Run, StepSource or StepIns , NextIns
or Step Source

• Abort Execution : aborts execution of your program by sending a
signal to the target. There may be some delay before the target
stops and responds. (Section 2.2.9)

Break menu The entries on the BREAK menu are:

• Soft Break : manages software breakpoints. (Section 4.30)

• Break : manages hardware breakpoints. (Section 4.4)

• Cmds on Break : manages the command list to be executed whenev-
er the debugger stops (Section 4.3)

Source menu The entries on the SOURCE menu are:

• Show PC Line : re-centers the Source Window display on the source
line addressed by the program counter. (Section 4.37)

• DisplayMode : sets the display mode for the Source Window display
to Source or Mixed. (Section 4.31)

CompactRISC Debugger Reference Manual DEBUGGER USER INTERFACE 3-12

• Source Path : adds a new path to the list of pathnames for finding
source files (Section 4.32)

• Search String : searches for a string in source window (Section 4.12)

Config menu The entries on the CONFIG menu are:

• Core: configures the member of the CompactRISC CPU core family.
(Section 4.8)

• Target Board : configures the debugger to use the required commu-
nication channel (Section 4.7)

• Simulator : configures the debugger to use the Instruction-Level
Simulator (Section 4.7)

• Radix : sets the global radix for debugger output displays (Section 4.23)

• Verbose : displays all communications between the debugger and
the monitor. (Section 4.38)

• Custom Buttons: Configure the configurable buttons (Section 3.1.1)

• Color : configures the color for all the windows

Show menu The SHOW menu allows you to activate any debugger window. The win-
dows are:

• Registers

• Status

• Local Variables

• Watch Variables

• Memory

• Performance

Help menu The Help menu opens the help sub-system, and allows you to look at
the various sections of the on-line help.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-1

Chapter 4

THE DEBUGGER COMMANDS

4.1 INTRODUCTION

This chapter describes the debugger commands in alphabetical order.

Arguments, modifiers, and options for all commands are defined in
Section A.2.

4.1.1 Symbol References in Commands

In general, symbol references are the same as in a C program. The debugger
applies the scope rules of C to resolve the symbol references. In addition,
there are the following special notations and modifiers for certain symbols;

• To specify a function within a particular file, use:
file_name@func_name

• The function names also take the following modifiers:

$b Address of the absolute beginning of a function (the prologue).

$c Address of the first instruction in the body of the function (after
the prologue).

$e Address of the first instruction in the epilogue.

$x Address of the RETURN instruction at the end of the function.

These modifiers can be used in any command where function name
may be used, for example, arcsin$e .

• To reference a line number within a file, use:
file_name#line_no
Line numbers are counted from the beginning of the file.

• An address range is specified as:
start_address//end_address

• The current PC can be specified as . (period):
break .

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-2

• The address of return PC for the current C function can be speci-
fied as .. (period period):
break . .

• The current source line can be specified as #(pound symbol):
break #

• The source line corresponding to the current PC can be specified as &:
break &

4.1.2 Command Entry and Formats

You enter the debugger commands in the command-line editing area. Select
the command line by clicking on the line (Section 3.1.1). Inputs must be
lowercase. You do not have to type the complete command name, only suffi-
cient characters to differentiate it from other commands or aliases.

4.1.3 Command Descriptions

The descriptions of the commands are in the following format:

• The command name, and a short description of its functionality.

• The syntax of each the command’s formats, together with a detailed
description of the operation of the command.

• How to execute the function with the hot keys, or the mouse.

• Any cautions which need to be observed when using the command.

• Examples of command usage, where necessary.

Most commands have a syntax of the following format:

command-name [-option] [-option] arg1 ,.., argn

Some commands do not have options or arguments. Whenever an aster-
isk (*) is specified as an argument, it denotes wildcard operation. The
debugger provides limited wildcard support.

If you do not specify an operator/argument for a command, which re-
quires one, the debugger usually responds with the current values. For
example:

Command> radix
Radix : 10

You can see the syntax of any command by entering the command
name followd by a question mark. For example:

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-3

Command> radix ?
radix
radix 8|10|16

Inputs are specified in standard C language constant format (0x as a
prefix for hexadecimal, 0 as a prefix for octal, no prefix for decimal).
Generally, outputs are displayed in the decimal format. Some com-
mands have options to change the display format.

4.1.4 Common Command Modifiers

The following modifiers are common to many commands, and are not
repeated for each individual command

List control modifiers:

-r removes an entry from a list.

-d disables an entry from a list.

-e enables an entry from a list.

4.2 ALIAS — DEFINE MACRO

Maps a command, or list of commands to a name which you can use in-
stead of the command(s). An alias can consist of up to eight alphanu-
meric characters; the first character is alphabetic.

Aliases are not expanded within other aliases, and thus recursion is not
allowed. During command validation, the alias table is searched before
the command table.

Aliases may be expanded in the log file (Section 4.17).

alias name = “command; command ...”

sets an alias. Specify double quotes if the command contains argu-
ments, or commas, or command separators.

alias name = “command $$, $$”

defines an alias with arguments, where each “$$” is a placeholder for an
argument. Arguments are substituted one-at-a-time, in order, into the
macro definition.

When using the alias, you must provide the exact number of argu-
ments. otherwise, an error is issued.

alias name prints the alias for the name.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-4

alias prints all aliases.

alias -r {name| *}
removes a name from the alias table.

Examples To imitate the command names of another popular debugger, define
them as aliases of the debugger commands:

> alias bd=break -d

>alias bc=break -r

>alias be=break -e

To execute break -r and go as a sequence of commands, create an
alias, e.g., freerun . When you execute freerun :

>alias freerun=”break -r *; go”

To create a short notation for softbreak , create the following alias.
When you enter bp 0x200, 0x300 , softbreak is executed with 0x200
and 0x300 as arguments.

>alias bp=”softbreak $$,$$”

4.3 AUTOCOMMAND — SPECIFY COMMANDS FOR AUTO
EXECUTION

Specifies a list of commands that are executed following an execution
command such as step , next , reset or go. The specified commands
are not validated until they are executed.

autocommand lists the current entries in the autocommand list.

autocommand command

adds a command to the list. Commands can be: view , list , find , or
where . Do not specify execution commands (e.g., step , next , go).

autocommand {-r | -d | -e } %id | *

A command is identified by its ordinal number, as shown by the output
of autocommand without an argument.

Mouse Open BREAK and select CMDS ON BREAK. Fill in the dialog box.

Examples To display the stack history after each breakpoint, step , or next :

>autocommand where -c

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-5

To display the value of the PC after each breakpoint, step , or next :

>autocommand view %PC
[2] - view %PC

To display the current list:

>autocommand
[1] where -c
[2] - view %PC

To remove command number 2:

>autocommand -r %2

To display the value of the structure member, salary, addressed by the
pointer, e_list:

>autocommand view e_list->salary

To display the value of the string contained in structure member name,
of the structure in entry 0 of the array of structures p_tab:

>autocommand view p_tab[0].name

4.4 BREAK — SET HARDWARE BREAKPOINT

Manages the hardware breakpoint list. A breakpoint may be specified
on a PC-match, a read reference, on a write reference, or on either read
or write. You may also attach an occurrence count and or logical condi-
tions to a given address .

For a general discussion of how to use breakpoints, see Section 2.2.8.
The debugger assumes the qualifier as PC-MATCH, if the address is a
code address, and as ACCESS, if the address is data address.

If a break address starts on a line, the source line corresponding to that
line is marked with a B in the first column. This mark disappears when
the breakpoint is removed.

Some options of this command may affect real-time operation. You are
notified whenever a real-time breakpoint occurs.

Caution Hardware breakpoints are provided by the CR16B and CR32A chips,
and their simulators. Hardware limitations permit only one breakpoint
to operate at any one time.

Mouse To set a complex breakpoint, open BREAK and select BREAK. Fill in the
dialog box.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-6

break [-t] brkaddr_list [,c=RLexp][,o=occ_cnt][,q=qualifier][,s=size]
adds entries as hardware break.

-t adds temporary breakpoints. These breakpoints are deleted
after they occur.

brkaddr_list
list of break points, code address or data address depending
on the target, to be added. See Appendix A for the syntax.

c=RLexp specifies the relational, or logical, expression which must be
evaluated as TRUE to satisfy the break condition. This op-
tion may affect real-time operation, because the condition is
being evaluated by the debugger.

o=occ_cnt sets the number of times the given address must be refer-
enced before execution is actually interrupted. Specifying
this option along with a condition may result in non real-
time operation.

q=qualifier
specifies the type of access which makes the break become
effective.

E to stop whenever code is executed at this address. It is
also known as PC-MATCH. This is the default when the ad-
dress specified is a code address.

A to stop whenever the address is accessed, i.e., read or writ-
ten to. This is the default when the address is data address.

R to stop whenever the address is read.

W to stop whenever the address is written to.

s=size sets the number of bytes for which the data break is applica-
ble. This field is meaningful when the qualifier is A, R or W.

By default, the debugger sets the size based on the data
type of the symbol (subject to hardware limitations), other-
wise it sets the size to the size of the target integer (2 for a
16-bit core and 4 for a 32-bit core).

After you set a breakpoint, the debugger responds with the message:

[id] : command string

The id is used with a percent sign (%id) to disable, enable, or remove
the breakpoint (see below).

break {-r |- d | -e} %id | *

break lists the break points in the following format:

[id1] - command1

[id2] - command2

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-7

Examples To set the breakpoint at the current source display line:

>break #

To set the breakpoint at the current PC:

>break .

To set the breakpoint at the beginning of the line containing the PC:

>break &

To set the breakpoint at line 36 in the file main.c :

>break main.c#36

To delete a breakpoint after its first occurrence, use the temporary
breakpoint feature:

>break -t main.c#36

To set the breakpoint at the start of the first executable line of the func-
tion initerm :

>break initerm$c

To set the breakpoint at the first line of the epilogue of function init-
port :

>break isdn1.c@initport$e

To set the breakpoint at the final return of the function:

> break main$x
[4] E (0x7DAF) main.c#19@main

To set the breakpoint upon a reference to initflag if the current value is
not equal to 2. Note that condition option affects real-time performance

>break initflag,c= (initflag!= 2)

To set the breakpoint upon a reference to initflag if the current values
of initflag and fileflag are non-zero:

>break initflag,c= (initflag && fileflag)

To set the breakpoint at line number 258 in the current source file

>break #258

To set the breakpoint at the beginning of the prologue of function
is_prime1, in module stmts1.c

>break stmts1.c@is_prime1$b

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-8

To set the breakpoint at line number 164 of the current source file if
the value of j is zero and the value addressed by temp is equal to the
value addressed by str.

>break #164,c= (!j && *temp == *str)

To set the breakpoint at the second occurrence when the program is at
line 236 of module stmts3.c if the value of str[k] equals the value of ch
and the value of j is greater than the value of k.

>break stmts3.c#236,c= (str[k] == ch && j > k),o=2

To disable breakpoint number 4:

> break -d %4
[4] - disabled “main$x”

To list the current breakpoint

> break
[1] E (0xE800) crdb_ch2.c#15@ main

To set a breakpoint on a local variable of a function.
This differs from other breakpoints because each local variable in a
function (which is allocated space on the stack) is created only when
the function is called, and disappears when the function is exited. Thus,
if you set a breakpoint on a local variable, you should remove it when
the local variable goes out of the scope. Otherwise, it continues to stop
whenever the breakpoint condition is met for that stack location.

>break i1
[1] E (0x3E0023C4) Var : i1 Q: A; S: 4

4.5 CALL — EXECUTE USER FUNCTION

call func_symbol (arg1,arg2,...,argn)

executes any C function in your program. After execution, control usually
returns to the debugger with the environment unchanged, except for any
side-effects of the function. The type and number of arguments must
match.

One use of this command is to execute a previously written debugging
function, e.g., to print out a complex program structure in a more cus-
tomized manner than can be done by the debugger. You may also use a
function to set up inputs, such as arrays or structures, to be processed
by later stages of your program.

call prints the return value (if any) of the called function.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-9

Caution When executing an arbitrary set of functions, it is possible to lose con-
trol if you are not aware of function flow. This command saves all the
registers before it calls the function, and restores them on return from
the function. Hence, global variables used as registers may have their
values restored.

There is no support for functions with variable number of arguments.
The debugger does not accept literal strings as arguments.

Example >call toint(‘9’)

Return value:

9

The function toint has a prototype int toint(char c) , hence when
it is called with a character ‘9’ , it converts into integer and prints 9.

4.6 CD — CHANGE WORKING DIRECTORY

cd [path] sets the current working directory for creating/reading log and other
files. The quit command returns you to the directory from which you
invoked the debugger.

cd displays the current working directory.

Mouse Open FILE and select WORK DIRECTORY

Examples To change the current working directory to /usr/ISDN/SRC :

>cd c:\test

To display the current working directory:

>cd
c:\test

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-10

4.7 COMM — SET COMMUNICATIONS CHANNELS

Sets the communication channel required to communicate with an Ap-
plication Development Board (ADB), or a simulator running on the host
platform.

To communicate with an ADB, you must first define a communication
channel, using the Debugger Communication Interface (DBGCOM) set-
up procedure. For more details of how to define a communication chan-
nel see the Debugger Communication Interface (DBGCOM) Installation
Guide.

comm -s sets the debugger to communicate with a simulator running on the host
platform.

comm -s <communication _channel _name> [,Pid]

sets the debugger to communicate with an ADB using the required com-
munication channel.

<communication _channel _name>
one of the available communication channels, which you
defined using the DBGCOM setup procedure.

Pid The id of the processor on the selected ADB. Supported only
for communication channels using the JTAG protocol.

comm -f <communication _channel _name> [,Pid]

Sets the debugger to communicate with an ADB, using the specified
communication channel, while forcing the DBGCOM to open this chan-
nel. Required only if DBGCOM refuses to open a communication chan-
nel used by other debugger, but no other debugger is currently
functional (e.g., it was killed before closing the communication channel).

comm -c close the current communication channel.

comm -l displays all available communication channels names as defined with
the DBGCOM setup procedure.

comm displays the current settings.

Mouse Open CONFIG and select TARGET BOARD or SIMULATOR. Set up the com-
munication parameters in the dialog box.

Examples To set the debugger to communicate with a simulator:

>comm -s
Target is Simulator.

To select a communication channel called “MY_RS422”:

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-11

>comm -s MY_RS422
Target is MY_RS422.

To list available communication channels:

>comm -l
Communication channel 1 is: MY_RS422
Communication channel 2 is: JTAG_01
Target is Simulator.

To display the current communication setting:

>comm
Target is Simulator.

4.8 CORE - SET THE CURRENT CPU CORE

core [CR16A|CR16BL|CR16BS]
specifies the member of the CompactRISC CPU core family which is the
target of the debugging session. For the CR16B, the small, or large, pro-
gramming model is also specified.
This command is not relevant for the 32-bit CompactRISC core debugger.

core displays the current CPU core.

Mouse Open CONFIG and select CORE. Select the required CPU core.

Examples To select CR16BL CPU core small programming model:

> core CR16BL

4.9 DEBUG — SELECT THE EXECUTABLE FILE FOR DEBUGGING

debug [-x | -n | -xn] executable

specifies a COFF file, downloads its code, and reads its symbol tables to
the target board or Simulator.

-n do not download the executable file to be downloaded.

-x do not read symbol table.

Mouse Open FILE and select LOAD. Enter or select the filename for down loading.

Examples To select browser.cof

>debug browser.cof

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-12

To select fax.exe , and download to target, without reading its symbol
tables.

>debug -x fax.exe

To select the executable file prog , and read the symbol tables without
downloading code from the COFF file to the target.

>debug -n prog

4.10 DEBUGMODE — SELECT DEBUGGING MODE

debugmode {-e | -d } [startup | exitcode]
enables or disables the debugging of C startup code, non-symbolically
linked object modules, or C exit code. The default settings are:

• Debugging of startup code is disabled. i.e., the debugger executes
up to main() and stops at the start of the main function.

• Debugging of non-symbolically linked object modules is disabled.

• Debugging of C exit code is disabled.

exitcode refers to the exit routine that is executed after returning
from main .

In simulator mode, disabling the debugging of startup code, disables per-
formance data collection on the startup code, even if performance mode
on is selected.

Caution If the C startup code is not assembled with symbols for debugging, and
the code is in ROM, the reset command may be slow.

Mouse Open EXECUTE and select DEBUGMODE.

Examples To allow debugging of startup code that has been modified:

>debugmode -e startup

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-13

4.11 FIND — FIND VALUE IN MEMORY

find {-a | -b | -c | -w | -f | -p | -l | -i } value , addr_range

Finds a pattern in memory. The options are:

-a ASCII string

-b byte

-c char

-w word

-f float

-p pointer

-l long

-i assembly instruction (Not yet supported)

If you do not specify a qualifier, the debugger finds the pattern in mem-
ory with a qualifier based on the size of the value.

Examples To search memory, beginning with the address pointed to by stepte, for
the string “uphill.” Displays the memory address where found.

> find -a “uphill”, stepte

To search the memory range 0xc000//0xcfff for “string2.”

> find -a “string2”, 0xc000//0xcfff

To search for 345.67 in memory address range 0xd800//0xd8ff.

> find -f 345.67, 0xd800//0xd8ff

To report if the instruction “stor r0, flag” is in memory in the ad-
dress range 0xe800//0xe8ff.

> find -i “stor r0, flag”, 0xe800//0xe8ff

4.12 FINDSRC — FIND STRING IN A SOURCE FILE

findsrc [-f | -b | -n] [string] [, file_name]
f inds a specified string in the current source file, or the file specified by
file_name , and updates the Source Window to the selected line. If the
string is not found, the Source Window is not changed. If the current
source file is used, findsrc begins the search at the currently dis-
played line. The options are:

-f f or forward search

-b for backward search

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-14

-n for next

string is the specified search string (NULL on first reference). Use dou-
ble quotes to enclose words separated by blanks or commas. If string
is not specified for the -n option, the last specified search string is
used. For option -f or -b , you are prompted for input.

The file name can contain wildcard characters. The default is the cur-
rently displayed file in the source window.

Mouse Open SOURCE and select SEARCH STRING.

Examples To search for “getnum” in all files of the current working directory with
the extension c:

> findsrc “getnum”, *.c

To search for “backhandle” in the current source file, from the current
display line to the end of the file, and then from the beginning of the file
to the current source line.

> findsrc -f “backhandle”

To search for string “malloc” in the current source file, from the current
display line to the beginning of the file, and then from the end of the file
to the current display line.

> findsrc -b “malloc”

To search for the string specified in the previous findsrc command in
the same direction as for the previous command.

> findsrc -n

4.13 GO — EXECUTION OF USER PROGRAM

go [-c] [from_addr][//end_addr]
issues a go command to the target.

If you specify the -c option (continue), the debugger does not stop at a
break condition, but updates the windows, issues autocommand (Section
4.3), and continues execution. The Status Window shows the trigger con-
dition.

from-addr and stop-addr are any valid code addresses.

If the debugger encounters a breakpointed state, and -c is not speci-
fied, it stops and updates the Source Window. The source line corre-
sponding to the address contained in the PC is highlighted.

After a GO command, the debugger waits for a response from the target.
To regain control, open EXECUTE and select ABORT.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-15

When the -c option is specified, execution is handled asynchronously,
and you retain some control over the debugger and can use the menus.
To abort the target, Open EXECUTE and select ABORT. The debugger up-
dates the Status and Source Windows upon receiving a response from
the target.

from_addr must be a valid code address for the execution starting
points. end_addr must be a valid code address for the stopping point.
Otherwise, results are unpredictable.

Mouse To go from the current PC, open EXECUTE and select GO, or select the GO

button from the configurable buttons.

To go from the current PC until you reach the current source line, open
EXECUTE and select GOTILL.

To re-execute the code from the beginning, open EXECUTE and select GO.

For continuous execution, or to specify a range, open EXECUTE and se-
lect ADVANCED to select your options.

To restart from the beginning of the program, open EXECUTE and select
RERUN.

Examples To start debugging, for breakpoint address 0xE809, current module
crdb_ch2.c , current line number 20, and current function main :

> go
Realtime breakpoint
Breakpointed at :
[1] (0xE809) crdb_ch2.c#20@ main

To execute from line 10 to line 12 of the current display file:

>go #10//#12

To execute from address 0xd800 to address 0xd810 without stopping at
breakpoints. Control returns to you immediately.

>go -c 0xd800//0xd810

To execute from the current PC to the return address of the current ‘C’
function:

>go -c ..

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-16

4.14 INFO — DISPLAY DEBUGGER INFORMATION

info prints the current settings of the following parameters:

• Debugger name and version.

• Target information (See comm, Section 4.7).

• Target core family name (See core , Section 4.8).

• Environment variable CRDBENV.

• Current working directory (See cd , Section 4.6).

• Source directory path (See srcpath , Section 4.32).

• Environment file name.

• Initialization file name.

• Current program name (See debug , Section 4.9).

Log file name (See log , Section 4.17).

4.15 INPUT — EXECUTE COMMAND SCRIPT FILE

input file_name

executes the commands from an input (command) file (see Section
2.2.13). An input recursion of up to four levels is allowed.

Specify pause (Section 4.21) to suspend the execution of commands
from the input file. Use resume (Section 4.25) to continue the execution
of commands from the input file after pause .

Section 2.2.13 describes the debugger facilities provided for use with input files
and explains how to use them.

If an abort (Section 2.2.9) is issued while an input file is being executed,
execution of this file, as well as its parent files are aborted.

Mouse Open FILE and select COMMAND FILE.

4.16 LIST — LIST MEMORY OR FILE

list -m [h|o|d] [b | c | w| f | p | l | i] address | addr_range

lists the contents a memory range. The options are:

-h print the values in hexadecimal

-o print the valued in octal

-d print the value in decimal

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-17

-b byte

-c char

-w word

-f float

-p pointer

-l long

-i assembly instructions

radix command (Section 4.23) affects the output this command format.

When you specify the address as a numeric expression or in register no-
tation (e.g., %PC) or in expression format (e.g., errno+5), the debugger
evaluates the expression and uses the result as the address.

When you specify the symbolic name (e.g., errno), the debugger dis-
plays the contents of the variable.

Mouse To list a particular section of memory, open SHOW and select MEMORY

window.

list qualified_lineno

brings the specified source or text file into the Source Window. Use
srcmode (Section 4.31) to set the display mode. The file is displayed in
the Source Window.

You can also view files that do not belong to the current COFF file (e.g.,
header files). The debugger searches for these files in the directories
specified by srcpath (Section 4.32).

qualified_line_no can be described as follows:

[filename][@func_symbol] const_lineno

The requested line, and as many of the following lines as possible, are
displayed in the Source Window.

Mouse Position the cursor on the Line box on the fourth row of the Main Win-
dow. Highlight the currently displayed line number, enter the new line
number, and press RETURN. Similarly, you can use the FILE and FUNC-

TION entries on the row to display a particular file or function.

Examples To list memory within the range sCStr1//sCStr1+60, in floating-point
format:

> list -mf sCStr1//sCStr1+60

To list the contents of the array slice, a_3i[1][0][0]//a_3i[2][0][0]:

> list -mw a_3i[1][0][0]//a_3i[2][0][0]

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-18

To disassemble the code in the function TestUnion within the module
vars2.c :

> list -mi vars2.c@TestUnion$b//vars2.c@TestUnion$e

To list the file test1.c in the Source Window:

> list test1.c

To list the file tmp.c in the Source Window, and place the current dis-
play at the function form_list :

> list tmp.c@form_list

4.17 LOG — RECORD DEBUGGER COMMAND SESSION

Records the sequence of commands issued to the debugger and, option-
ally, the responses returned by the debugger.

log [-a] [file_name]
-a appends the recording to an existing file.

file_name specifies the log-file name. The default is crdb.log .

Invoking the debugger with -l option is the same as issuing the log
command with no arguments or options. (See Section 2.2.3.)

log [-d | -e] -d disables the log.

-e enables (default) the log.

log [-i | -o] -i signifies input only. This is a sticky option.

-o signifies output also (default).

log [-f | -u] -f specifies full form (expanding alias, set, etc.). This is a sticky option.

-u specifies unexpanded form (default).This is a sticky option.

If no arguments are given, the debugger records both the commands
and their responses in a file named crdb.log . There is no default for
the file name’s extension.

Specify -a to append the commands, and possible responses, to an existing
file. Otherwise, the debugger creates a new file for logging.

A sticky option apply to all the log operation until it is explicitly dis-
abled. For example, if you open another file_name the sticky options
do not reset to their default values.

log -s displays the current status of the log-options.

For information on the log file, see Section 2.2.13.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-19

Mouse Open FILE and select LOGFILE. Fill in the dialogue box.

Example To log all subsequent commands, and output into the commands.log
file in the current working directory:

> log commands.log

4.18 MODIFY — MODIFY CONTENTS OF MEMORY OR SYMBOLS

modify [-b |-c | -w | -f | -p | -l | -i] address | addr_range [, value [,value]]
-b byte

-c char

-w word

-f float

-p pointer

-l long

Modifies memory locations in various formats. addr_range can be any
valid text/data address, or a symbol reference, or an address range. The
default format for address is byte, and for a symbol is based on the
type of variable. The value should conform to the format; otherwise, a
conversion is applied whenever possible.

If an addr_range is specified, and the number of values specified is less
than the number of locations in the address range, the values are writ-
ten into memory repeatedly.

modify -a string_pointer,string

-a string copy

If the -a option is specified, the debugger puts a string copy of string
into the location pointed to by the value of string_pointer. If
string_pointer is defined as a character, you may specify &string_pointer
in the command. See example below.

modify % reg_name , value

If the % option is specified, the debugger sets the specified register to
the new value. Register names are target-specific, and are specified in
the appropriate appendix.

If value is omitted, modify becomes an interactive command. If an ar-
ray or structure is specified, the debugger displays an element at a
time and accepts a new value for each element, or press RETURN if the
current value is not to be modified. The addresses displayed by the de-
bugger are spaced in memory according to the length of the values to be
specified. If a single address is specified, the debugger queries one time
for the new value.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-20

Caution The debugger does not keep track of the proper memory alignments for
length values greater than 1; you must do this yourself.

Mouse Open SHOW and select the MEMORY or REGISTERS window to modify the
programs.

Examples To store the characters ‘A’, ‘B’, ‘C’, and ‘D’ into the array elements
a[0]//a[3]:

>modify &a[0]//&a[3],‘A’,‘B’,‘C’,‘D’

To store the string into the locathe 3edressed by. st5

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-21

next [from_addr [//end_addr]]
executes the source lines in the given range. If only from_addr is spec-
ified, the single statement beginning at that address is executed. If no
range is specified, the single statement addressed by the current con-
tents of the PC is executed.

from_addr must be a valid code address for the execution starting
points. end_addr must be a valid code address for the stopping point.
Otherwise, results are unpredictable.

After each source line completes executing, the commands specified in
the autocommand list (Section 4.3) are executed.

After the debugger executes a next command, it displays, for example:

Next to 0xE8B0 : crdb_ch2.c : plus_ab #52

where 0xE8B0 is the current address, crdb_ch2.c is the current mod-
ule, plus_ab is the current function, and 52 is the current line number.

After next , the debugger waits for a response from the target. To regain
control, open EXECUTE and select ABORT to abort the command.

Mouse To execute a single statement (executing through a function), select
NEXT on the configurable menu, or open EXECUTE and select NEXT

SOURCE LINE. For continuous execution, or to specify a statement count
or range, first open EXECUTE and select ADVANCED.

Caution Attempting a next over a complex source line may cause the debugger
to use software breakpoints internally.

Examples To execute the next source lines, starting at line 10 up to line 12 of the
displayed source file:

>next #10//#12

To execute the next source lines, starting at line 10 up to line 12 of the
displayed source file. If any of your breakpoints are detected, they are
reported and execution continues.

>next -c #10//#12

To execute the next 10 source lines, one at a time:

>next -n 10

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-22

4.20 NEXTINS — EXECUTE NEXT ASSEMBLY INSTRUCTION (STEP
OVER)

The debugger executes the next assembly instruction. If the instruction
is a Jump to Subroutine, the entire subroutine is executed and the de-
bugger stops on the instruction following the Jump to Subroutine. This
is similar to the next command but at instruction level.

nextins -c executes instructions until the end of the program.

nextins -n number

executes the given number (n) of instructions.

nextins [from_addr [//end_addr]]
executes the instructions in the given range. If only from_addr is spec-
ified, the single instruction beginning at that address is executed. If no
range is specified, the single instruction addressed by the current con-
tents of the PC is executed.

from_addr must be a valid code address for the execution starting
points. end_addr must be a valid code address for the stopping point.
Otherwise, results are unpredictable.

After each instruction has been executed, the commands specified in
the autocommand list (Section 4.3) are executed.

After a nextins command, the debugger waits for a response from the
target. To regain control, press CTRL-C. If you specify the -c option,
control returns to you before the command is completed. In this case,
open FILE and select ABORT to abort the command.

Mouse To execute a single instruction, executing through a function, open
EXECUTE and select NEXT INSTRUCTION. For continuous execution, or to
specify an instruction count or range, first open EXECUTE and select AD-

VANCED.

Open EXECUTE and select ABORT EXECUTION to abort the command.

Examples To execute the next 10 instructions, starting from the current PC:

>nextins -n 10

To execute the instructions between line 10 and line 12 in the displayed
source file:

>nextins -c #10//#12

To execute the machine-language instructions from address 0xd800
through address 0xd810:

>nextins 0xd800//0xd810

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-23

4.21 PAUSE — SUSPEND INPUT FILE EXECUTION

pause suspends execution of commands from the input file, and prompt for
input at the Command Window.

When a pause is executed, the debugger displays the following message:

*** PAUSED for input, type ‘resume’ to continue

You can execute several commands via the Command Window. To re-
sume execution of the input file commands, use resume (Section 4.25).

This command is only useful in an input file.

4.22 QUIT — EXIT FROM THE DEBUGGER

quit quits debugging session, without waiting for confirmation.

Mouse Open FILE and select QUIT.

Caution To continue your debugging session at a later stage, use savestate (Sec-
tion 4.27). To resume at the same point, use setstate (Section 4.29).

4.23 RADIX — SET RADIX FOR OUTPUT DISPLAY

radix [8 | 10 | 16]
sets the radix for displaying output values to octal (8), decimal (10), or
hexadecimal (16). The default radix is decimal.

When no argument is specified, the debugger displays the current radix.

The command affects the default behavior of the watch , view , where ,
and list commands with -m option.

Mouse Open CONFIG and select RADIX.

Caution This command sets the radix for outputs only. Specify input values us-
ing the standard syntax for C language constants. radix does not affect
the output of the memory window.

Examples To display the current radix:

> radix

To set the radix to 16 (hexadecimal):

> radix 16

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-24

4.24 RESET — RESET THE DEBUGGER AND THE TARGET BOARD

reset The debugger issues a reset command to the target board. The source
file display is synchronized to the beginning of the program.

By default, the debugger executes your program up to the first instruc-
tion in the main program (main$b). See debugmode (Section 4.10) if you
want to change this behavior.

Mouse Select RESET on the main menu, or open EXECUTE and select RESET.

Caution To debug program initialization code, which has been modified while de-
veloping a C application for CompactRISC, invoke debug with the -e op-
tion, and specify the directory containing the source file as your source
path (Section 4.32). If the debugger does not find the file in the source
path, it prompts for an alternative directory.

The target system’s response to the reset command is hardware-
dependent.

4.25 RESUME — RESUME EXECUTION OF INPUT FILE

resume Resumes execution of an input file that was suspended with pause
(Section 4.21). Other commands can be executed before resume .

4.26 SAVECONFIG — SAVE CURRENT DEBUGGER CONFIGURATION

saveconfig [file_name]
saves current configuration setting in file_name , (default crdb.env), in
the directory pointed to by CRDBENV, or in the startup directory if CRD-
BENV is not set.

• target core family name

• communication parameters

• display colors

• window sizing information

Since parameters are saved in the form of debugger commands, you can
execute these commands with INPUT.

Mouse Open FILE and select SAVESETUP.

Caution If you do not specify file_name , crdb.env , if it already exists, is copied
into the file crdbenv.old , and crdb.env is overwritten.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-25

Examples To save the configuration in the default file crdb.env , in the default lo-
cation:

>saveconfig

To save the configuration in config.in , in the current working directory:

>saveconfig config.in

4.27 SAVESTATE — SAVE CURRENT DEBUGGING STATE

savestate [file_name]
Saves the current debugging settings in file_name in the current work-
ing directory, or in the default file, crdb.ctx . The file contains informa-
tion about the current state of the debugger, including break/softbreak
lists, current COFF file, cd , and autocommand , watch , alias , set , and
srcpath lists. Use savestate and setstate (Section 4.29) to quit the
debugger, and later restore the saved settings.

Mouse Open FILE and select SAVE STATE.

Caution The environment depends on the state of the debugger, the target, and
the target chip. savestate and setstate only save and restore the
state of the debugger. If you are unsure about the state of the target, re-
start your program.

If you specify no arguments and crdb.ctx already exists, it is overwritten.

Examples To save the current state of the debugger in crdb.ctx , in the current working
directory.

>savestate

To save the current state of the debugger in save.fil , in the current working
directory.

>savestate save.fil

4.28 SET — DEFINE DEBUGGER VARIABLES AND STRINGS

Defines debugger variables and function keys.

set name=string

defines name to have the value string . Whenever you specify $name, in
a command string is substituted.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-26

set -r name| *

removes name from the list of defined names. Specify an asterisk (*) to
remove every name from the list.

set name displays the current value of name.

set displays all of the values currently in the list of defined names.

Examples To set a symbol uart to 100:

>set uart = 0x100

You can make use of the symbol uart in a command by specifying
$uart :

> list -mw $uart

4.29 SETSTATE — RESTORE DEBUGGING STATE

setstate [file_name]
restores the debugging state as saved by savestate (Section 4.27). The
debugger automatically downloads your previous COFF file.

The debugger reads file_name from the current working directory. The
default filename is crdb.ctx .

Mouse Open FILE and select LOAD STATE.

Caution The debugger assumes that the state of the target has not changed
since savestate was executed.

The debugging environment depends on the states of the debugger, tar-
get, and target chip. savestate and setstate (Section 4.29) only save
and restore the state of the debugger.

Examples To set the state of the debugger to the state captured in the file
crdb.ctx in the current working directory:

>setstate

To set the state of the debugger to the state captured in the file
save.fil :

>setstate save.fil

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-27

4.30 SOFTBREAK — SET SOFTWARE BREAKPOINT

Similar to break (Section 4.4), but the breakpoint is implemented by software;
hence, the program does not operate in real-time mode if an occurrence count
or conditional expression is specified. This mode does not have the global
break occurrence count or break qualifier. The break occurs only on an op-
code fetch.

For a general explanation of breakpoints, see Section 2.2.8.

softbreak [-t] softbreak_list [,c =RLexp] [,o =occ_cnt]
adds a soft break.

c=RLexp specifies a condition

o=occ_cnt sets the occurrence count. During operation, the occurrence
count is decremented only if the breakpoint condition is met.

-t adds temporary software breakpoints. These breakpoints
are deleted after they occur.

softbreak_list
lists the code addresses at which the breakpoints are set.

softbreak { -r | -d | -e } %id | *

-r removes breakpoint

-d disables breakpoint

-e enables breakpoint

softbreak lists the current softbreak items.

Mouse To set a complex breakpoint, open BREAK and select SOFTBREAK. Fill in
the dialog box.

To set a simple execution breakpoint on a particular line of your source
file, use the fourth row editable fields like File, Module, Line in the Main
Window (Section 3.2) to select and display the appropriate line in the
Source Window, and then click the left mouse twice to set softbreak .
The debugger acknowledges the setting of the breakpoint by displaying
an S at the left end of the source line. Double-click again to remove the
breakpoint.

You can also set a software breakpoint by pressing the corresponding
button in the second row of the Main Window (Section 3.2) when the
cursor is on the desired source line.

Caution These breakpoints are implemented by software, and may result in non
real-time operation. The total number of soft breakpoints that can be set
at a time is limited, and depends on the target. Refer to the appropriate
manual for the target.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-28

Examples To set a software breakpoint at the final return of the function
TestVars in module vars3.c :

>softbreak vars3.c@TestVars1$x

To set a software breakpoint at the current display line:

>softbreak #

To set a temporary software breakpoint at line number 10 in the cur-
rent module:

>softbreak -t #10

4.31 SRCMODE — SET SOURCE FILE DISPLAY MODE

Sets the Source Window display mode. By default, source-only is enabled.

srcmode [-s | -m]
sets the display mode for the Source Window.

-s enables source-only display.

-m enables mixed mode display.
(Displays both the source line and lines of generated assembly
code.)

Mouse Open SOURCE and select DISPLAYMODE.

Note A source line may be associated with two separate blocks of assembly
code (e.g., a for loop line for which the compiler generates code both be-
fore and after the loop body). In this case, if you select mixed mode dis-
play, you may find the results confusing; there are two non-contiguous
blocks of assembly code after the source line. Although this might be
confusing at first sight, it is correct and reflects the reality.

The disassembled code shown in the source window is obtained by dis-
assembling the instructions from the COFF file. Hence, this does not re-
flect code changes which are made to the target memory.

4.32 SRCPATH — SET DIRECTORY PATH FOR SOURCE FILES

Sets the directory pathname for the source files search. The last entry
added, or enabled, is the first directory to be searched.

srcpath pathname_list

adds a pathname or list of pathnames.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-29

srcpath -r pathname | *

removes a pathname. Specify an asterisk, to remove all pathnames.

srcpath displays the current source search path. If it does not find a source file
for display, the debugger asks for the name of the directory to be
searched.

Mouse Open SOURCE and select SOURCE PATH. You have more control here to de-
lete or add a directory.

Examples To add ..\test to the set of source paths:

>srcpath..\test

To remove ..\data from the set of source paths:

>srcpath -r ..\data

To display the current set of source paths:

>srcpath

4.33 STDIO - REDIRECT VIRTUAL I/O STANDARD FILES

STDIO directs the output of standard I/O functions (Section 2.2.11) to
standard files, to a host disk file, to the Output Window. By default,
stdin , stderr and stdout are redirected to the Output Window.

stdio -i <filename>

maps the stdin operations to the specified file.

stdio -o [a]<filename>

maps the stdout operations to the specified file. If you specify the -a
option, new output is appended to the current file.

stdio -e [a] <filename>

maps the stderr operations to the specified file. If you specify the -a
option, new output is appended to the current file.

stdio -oe [a] <filename>

maps the stdout operations and stderr operations to the file specified.
If you specify the -a option, new output is appended to the file.

stdio [-i|-e|-o]w

maps the specified operations, stdin , stdout , or stderr , to the Pro-
gram Output Window.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-30

stdio [-i|-e|-o]r

maps the specified operations, stdin , stdout , or stderr , to the pro-
gram invocation terminal.

stdio lists the current mappings of I/O operations.

4.34 STEP — STEP ONE SOURCE LINE

The debugger executes the current, or given source line, i.e., C-language
line, as a whole. After the execution of source line(s), the commands
specified in the autocommand list (Section 4.3) are executed.

To regain control, during a step command, open EXECUTE and select
ABORT EXECUTION to abort the command.

step -c executes source lines continuously until the end of program. If a soft-
break or break occurs in this process, the debugger issues a report and
continues stepping.

step -n number

executes the given number (n) of source lines.

step [from_addr [//end_addr]]
executes the source lines in the given range. If only from_addr is spec-
ified, the single source statement beginning at that address is executed.
If no range is specified, the single source line addressed by the current
contents of the PC is executed.

from_addr must be a valid code address for the execution starting
points. end_addr must be a valid code address for the stopping point.
Otherwise, results are unpredictable.

Mouse To step a single source line, press function key F4, or click on the STEP

button, or open EXECUTE and select STEP SOURCE LINE. For continuous
execution, or to specify a source line count or range, first open EXECUTE

and select ADVANCED.

Open EXECUTE and select ABORT EXECUTION to abort this command.

Caution Attempting a step over a complex source line may cause the debugger
to use either hardware or software breakpoints, and may result in non
real-time operation.

Examples To execute source lines from line 10 through line 12 of the source file
displayed in the source window. If a breakpoint is detected, it is report-
ed and execution continues until line 12 is executed.

>step -c #10//#12

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-31

To step 10 source lines, starting from the current PC:

>step -n 10

4.35 STEPINS — STEP ONE ASSEMBLY INSTRUCTION

Executes the current assembly instruction or given instruction.

Upon completion of each instruction, the commands specified in the
autocommand list (Section 4.3) are executed.

After a stepins command, the debugger waits for a response from the
target. To regain control, open EXECUTE and select ABORT EXECUTION to
abort the command.

stepins -c executes instructions continuously until the end of program.

stepins -n number

executes the given number (n) of instructions.

stepins [from_addr [//end_addr]]
executes the instructions in the given range. If only from_addr is spec-
ified, the single instruction beginning at that address is executed. If no
range is specified, the single instruction addressed by the current con-
tents of the PC is executed.

from_addr must be a valid code address for the execution starting
points. end_addr must be a valid code address for the stopping point.
Otherwise, results are unpredictable.

Mouse To step a single instruction in an assembly program, open EXECUTE and
select STEPINSTRUCTION.

For continuous execution, or to specify an instruction count or range,
first open EXECUTE and select ADVANCED.

Open EXECUTE and select ABORT EXECUTION to abort this command.

Examples To execute instructions from address 0xd800 to address 0xd810. If a
breakpoint is detected during execution, it is reported and execution
continues.

>stepins -c 0xd800//0xd810

To execute 10 instructions, starting with the instruction addressed by
the current PC:

>stepins -n 10

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-32

Note A limitation of the CompactRISC architecture makes it impossible to
perform a single step if the next instruction modifies the entire contents
of the PSR register. Do not use the stepins command if the next in-
struction is RETX, or LPR with PSR as the second operand.

4.36 SYMBOL — DISPLAY SYMBOL CHARACTERISTICS

Displays the characteristics of the symbols.

symbol {* | pattern *}
displays all symbols matching the pattern. The pattern can be
symbol_name or symbol_qualifier (any sequence of characters which
can begin a valid symbol). The asterisk is a pattern wildcard, standing
for zero or more additional characters.

symbol -l { * | pattern * }
displays only local (automatic variable) symbols from the current function.

symbol -t {datatype /tagname | symbol_name | *}
displays the tag or type of the structure or symbol name.

symbol -f qualified_modulename

displays all the symbols from the specified module. Since global sym-
bols are not attached to any specific module, they are not displayed.

symbol -g [pattern *]
lists all the names of the globals beginning with pattern . If pattern is
omitted, the names of all the global symbols are listed.

symbol address

attempts to find the symbolic mapping of address

Mouse Open QUERY to get a dialog box. (Section 3.2). Use the info button to get
the details on the symbol.

Examples To search for the symbol, getnum , in the current scope and display the
characteristics:

>symbol getnum

To search for the symbol new_int in the current function and display
the characteristics:

>symbol -l new_int

To display the tag of the symbol k_struct :

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-33

>symbol -t k_struct

To display all the symbols defined in the module temp.c :

>symbol -f temp.c

To display all the global symbols:

>symbol -g

To display the symbolic mapping of address 0x28c:

>symbol 0x28c
iSNum2:

Scope : Static to file
Declared in : vars1.c
At address : 0x28c
Size (bytes) : 2
Declaration :

static int iSNum2;

4.37 SYNC — SYNCHRONIZE SOURCE FILE DISPLAY

sync brings the source line corresponding to the current PC into the Source Win-
dow. This is helpful when you are looking at a source file other than the cur-
rent file, and want to restore the display to the current execution context.

Mouse Open SOURCE and select SHOW PC LINE.

4.38 VERBOSE — MONITOR COMMUNICATION TRAFFIC TO TARGET

verbose enables or disables the monitoring of traffic between target and the de-
bugger. Each specification toggles the previous state. Upon startup, the
mode is disabled. This command is for diagnosis purposes only.

Mouse Open CONFIG and select VERBOSE.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-34

4.39 VIEW — VIEW VALUE OF STRUCTURE OR SYMBOL

view expression [, print_specifier]
Computes the value of expression . expression may be a C language
symbol, or structure element reference. When a symbol or structure ele-
ment is specified, without any print_specifier , it displays the symbol
based on the symbol type and the current RADIX setting (Section 4.23).

view % reg_name [, print_specifier]
displays the value of the specified register. Register names are target-specific.

expression is a C-language symbolic expression.

print_specifier is one of:

d signed decimal

i signed decimal

o unsigned octal

x unsigned hexadecimal using “a, b, c, d, e, f”

X unsigned hexadecimal using “A, B, C, D, E, F”

u unsigned decimal integer

e floating-point in engineering notation

E floating-point in engineering notation

f floating-point

g double-signed value printed in +/- format

G double-signed value printed in +/- format

c single character

s character string

hd short-signed decimal integer

hi short-signed decimal integer

ho short-unsigned octal integer

hX short-unsigned hexadecimal integer using “ABCDEF”

hx short-unsigned hexadecimal integer using “abcdef”

hu short-unsigned decimal integer

ld long-signed decimal integer

li long-signed decimal integer

lo long-unsigned octal integer

lX long-unsigned hexadecimal integer using “ABCDEF”

lx long-unsigned hexadecimal integer using “abcdef”

lu long-unsigned decimal integer

Le long-double in engineering notation (lowercase e for exponent)

LE long-double in engineering notation (uppercase E for exponent)

Lf long-double floating-point

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-35

Mouse You can use any of the following options to view a variable:

• Select QUERY in the main window.

• Open SHOW and select WATCH VARIABLES, to specify the variable
names to be watched continuously.

• Open SHOW and select LOCAL VARIABLES, to print the current values of
the local variables and arguments of the currently executing functions.

• Highlight a variable, with the mouse, and select PRINT.

Examples To view the value of the expression sStr1+4:

>view sStr1+4

To view the value addressed by the pointer pPtr4:

>view *pPtr4

To view the sum of the value addressed by pPtr2 and 4:

>view *pPtr2+4

To view the value addressed by the sum of the contents of sXStr1 and
18, where sXStr1 is a pointer variable:

>view *(sXStr1+18)

To view the value of the array element a_2c[1][1]:

>view a_2c[1][1]

To view the value addressed by the array element days[5], where days
is an array of pointers

>view *days[5]

To view the value of the array element days[5]:

>view days[5]

To view the value of member next, of the structure addressed by mem-
ber next, of the structure addressed by the contents of e_list

>view e_list->next->next

Lg

long-double signed value printed in f or e format, whichever is
more compact for the given value and precision. The e format is
used only when the exponent of the value is less than −4 or
greater than the specified precision. Trailing zeros are truncated
and the decimal point appears only if one or more digits follow it.

LG
long-double signed value, identical to the g format except that G
introduces the exponent (where appropriate) instead of E.

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-36

To view the high byte of the value of hCNum3 as a hexadecimal number:

>view hCNum3,hx

To view the high byte of the value of hCNum1 as an octal number:

>view hCNum1,ho

To view the value 2, shifted left the number of bits indicated by
iCNum1+10, as a long integer:

>view 2<<(iCNum1+10),ld

To view the value of iCNum1 modulo 3:

>view iCNum1%3

To view the product of the sizes of union2 and union4, multiplied by 2:

>view sizeof(union2)*sizeof(union4)*2

To view the value of iCNum2, if the value of iCNum1 is greater than 4,
otherwise, view the value of iCNum3:

>view (iCNum1>4)?iCNum2:iCNum3

To view the value of the Stack Pointer:

>view %sp

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-37

4.40 WATCH — SELECT VARIABLES FOR AUTO DISPLAY

Manages a list of expressions to be displayed in the Watch Window (Sec-
tion 3.2). The Variable Window is updated whenever there is a change
of state of the debugger, or the target environment, such as the occur-
rence of a breakpoint.

watch expression [,print_specifier]
adds an entry to the watch list.

expression Refer to Appendix A.

print_specifier See the VIEW command (Section 4.39).

watch {-r | -d | -e } %id | *

watch lists the current entries on the watch list.

Mouse To look at the Variables Window, open SHOW and select VARIABLES.

Examples To add namebuf to the display list. The watch window is updated with
its value:

>watch namebuf

To display the variable namebuf from the watch list:

>watch -d namebuf
[1] - Disabled

To remove the variable namebuf from the watch list:

>watch -r namebuf

To disable display of variables on the watch list:

>watch -d *

To add iCNum1 to the display list, and display its value in hexadecimal
format:

>watch iCNum1, x

CompactRISC Debugger Reference Manual THE DEBUGGER COMMANDS 4-38

4.41 WHERE — DISPLAY CURRENT CONTEXT

where [-c | -v] [func_symbol [@symbol]]
shows the program context at any point.

where [-v] displays the current source line and function with arguments. If -v is
specified, it also displays the total variables and their values.

where -c displays current function call stack history with arguments

where -cv [func_symbol [@symbol]]
with no arguments specified, displays the current stack history with the
local variables for each function.

If only func_symbol is specified, where displays the current stack his-
tory with local variables for only the specified function.

If func_symbol and symbol are specified, where displays the current
stack history and the value of the local variable, symbol , defined in
function func_symbol .

The format is based on current radix setting (Section 4.23).

Mouse Open SHOW and select STACK to bring a window containing the function
call stack. Double click on any of the output lines to bring the source
for this line into the source window. Correspondingly, the local variables
window is updated if the local variable window is already open.

Examples To display the current function with arguments:

>where -c

To display the current stack history with local variables for the called
functions:

>where -v

To display the stack history and the local variables of function getnum:

>where -cv getnum

CompactRISC Debugger Reference Manual QUICK REFERENCE GUIDE A-1

Appendix A

QUICK REFERENCE GUIDE

A.1 CRDB COMMAND SYNTAX

Command Definition Syntax Section

alias

Define macro <name> = command

4.2
Define substitution macro <name> = "command $$, $$"

List macro <name>

Remove macro -r {<name> | * }

autocom-
mand

Adds entry <command>

4.3
Removes, disables, enables
entry

{ -r | -d | -e }%<id> | *

List autocommands

break
Adds entry

[-t] <brkaddr_list>[,c=<RLexp>]
[,o=<occ_cnt>][,q=<qualifier>][,s=<size>]

4.4
Removes, disables, enables
entry

{ -r | -d | -e }%<id> | *

call Call function <func_name>(arg1,arg2,..,argn) 4.5

cd Change working directory [<path>] 4.6

comm

Switch to simulator mode -s

4.7
Set communication channel
name and processor id

-{s | f} <communication_channel_name>
[,Pid]

List all available communi-
cation channels

-l

core Set cpu core <core_name>

debug Select file [-x| -n| -xn] <file_name> 4.9

debug-
mode

Select debugging modet [- e | -d] {startup | exitcode } 4.10

find Find value
[-a | -b | -c | -w | -f | -p | -l | -i]
<value>, <addr_range>

4.11

findsrc Find string [-f | -b | -n] [<string>] [,<file_name>] 4.12

CompactRISC Debugger Reference Manual QUICK REFERENCE GUIDE A-2

go Go [-c] [<from_addr>][//<end_addr>] 4.13

info Debug info 4.14

input Execute input file <file_name> 4.15

list
List memory

-m [h| o| d] [b | c | w | f | p | l | i]
<addr_range> 4.16

List source <qualified_lineno>

log

Create or append to file

Disable or enable log

Log input only or also output

Expand aliases, or not

[-a]<file_name>

[-d |-e]

[-i | -o]

[-f | -u]

4.17

Display logging status -s

modify

Modify memory
[- b |-c | -w |-f |-p |-l]
<address> | <addr_range>
[,<value>[,value]] 4.18

Modify string -a <string_pointer>,<string>

Modify register %<reg_name>,<value>

next

Continuous execution till
end of program

Stepover <number> of
source lines

Stepover source lines in the
address range

-c

-n <number>

[<from_addr> [//<end_addr>]]

4.19

nextins

Continuous execution till
end of program

Stepover <number> of as-
sembly instructions

stepover assembly instruc-
tions in the address range

-c

-n <number>

[<from_addr> [//<end_addr>]]

4.20

pause Pause for user input during
command file processing

4.21

quit Quit the debugger 4.22

radix Set radix [8 | 10 | 16] 4.23

reset Reset the target 4.24

Command Definition Syntax Section

CompactRISC Debugger Reference Manual QUICK REFERENCE GUIDE A-3

resume Resume execution from
command file after pause

4.25

savecon-
fig

Save configuration [<file_name>] 4.26

savestat
e

Save state [<file_name>] 4.27

set

Set a variable <name> = <string>

4.28Undefine a name -r <name> | *

Display a variable assignment <name>

setstate Set state <file_name> 4.29

soft-
break

Adds breakpoint
[-t] <softbreak_list> [,<c=<RLexp>]
[,o=<occ_cnt>] 4.30

Removes, disables, enables {-r | -d | -e }%<id> | *

srcmode Set source mode [-s | -m] 4.31

srcpath
Set source path <pathname_list>

4.32
Remove source path -r {<path> | *}

stdio

Map stdin to a file -i <filename

4.33

Map stdout to a file -o[a] <file name>

Map stderr to a file -e[a] <file name>

Map stdout, stderr to a file -oe[a] <file name>

Map stdin, stdout, stderr to
output Window

-[ieo]w

Map stdin, stdout, stderr to
debugger output Window

-[ieo]r

List current mappings

step

Countinuous execution till
end of program

Step <number> of source
lines

Step source lines in the ad-
dress range

-c

-n <number>

[<from_addr> [//<end_addr>]]

4.34

Command Definition Syntax Section

CompactRISC Debugger Reference Manual QUICK REFERENCE GUIDE A-4

stepins

Continuous execution till
end of program

Step <number> of source
instructions

Step source instructions in
the address range

-c

-n <number>

[<from_addr> [//<end_addr>]]

4.35

symbol

Display symbol info {* | <pattern>*}

4.36

Display watch symbols -l {* | <pattern>*}

Display symbol tag
-t {<datatype>/<tagname>|
<symbolname> | *}

Display module symbols -f <qualified_modulename>

Display global symbol -g <pattern>*

sync Synchronize source window 4.37

verbose Display Monitor traffic 4.38

view
View data <expression [,<print_specifier>]

4.39
View register %<reg_name> [,<print_specifier>]

watch
Adds entry <expression> [,<print_specifier>]

4.40Removes, disables, enables
entry

{ -r | -d | -e } %<id>| *

where Locate self [-v] -c [-v [<func_symbol>[@<symbol>]] 4.41

Command Definition Syntax Section

CompactRISC Debugger Reference Manual QUICK REFERENCE GUIDE A-5

A.2 ARGUMENTS

Read the string, “:=”, as “is defined as”. “null” represents the empty set.
.

<addr_range> := <address>//<address>

<address> := <numeric_expression> | <symbolic_address> | <symbolic_expr>

<brkaddr> :=
<addr_range> | <cur_pc> | <address> |
<line_for_cur_pc> | <cur_display_line>

<brkaddr_list> := <brkaddr><brkaddr_list> | null

<chipname> := refer to official chip name list

<command> := any debugger command

<const> := <integer>

<cur_display_line> := #

<cur_pc> := .

<datatype> := any legal C data type

<end_addr> := any valid code address

<expression> := any C symbolic expression

<frequency> = <decimal_integer> [MHz | KHz]
<file_id> = file identifier given by debug command

<file_name> := file name without the path

<fixed_symbol> := <global_symbol> | <static_symbol>

<from_addr> := any valid code address

<full_path> = [<path>]<file_name>

<func_line> := [file_name]<func_symbol>

<func_symbol> := symbolic name of a defined function

<global_symbol> := any valid C global symbol

<id> := <integer>

<length> = <integer>

<line_for_cur_pc> :=
& (represents the source line to which the current PC address
maps)

<const_lineno> := #<const>

<lineno> :=
<const_lineno> | <cur_display_line> | <line_for_cur_pc>
|<qualified_lineno>

<local_addr> := $b | $c | $e | $x

CompactRISC Debugger Reference Manual QUICK REFERENCE GUIDE A-6

<name> :=
a sequence of up to eight alphanumeric characters, of which
the first is alphabetic

<number> := <decimal_num> | <hex_num> | <octal_num>

<numeric_expression> := any legal C expression consisting of <number>s and <operator>s

<occ_cnt> := <integer>

<operator> := + | - | * | /

<opr> := any C relational or logical operator

<path> := any legal pathname

<pathname_list> := <path> | <pathname_list>,<path>

<print_specifier> One of the following:

d signed decimal

i signed decimal

o unsigned octal

x unsigned hexadecimal in lower case “a,b,c,d,e,f”

X unsigned hexadecimal in upper case “A,B,C,D,E,F”

u unsigned decimal integer

e floating-point in engineering notation

E floating-point in engineering notation

f floating-point

g double signed value printed in ± format

G double signed value printed in ± format

c single character

s character string

hd short signed decimal integer

hi short signed decimal integer

ho short unsigned octal integer

hX short unsigned hexadecimal integer in uppercase “ABCDEF”

hx short unsigned hexadecimal integer in lower case “abcdef”

hu short unsigned decimal integer

ld long signed decimal integer

li long signed decimal integer

lo long unsigned octal integer

lX long unsigned hexadecimal integer in upper case “ABCDEF”

lx long unsigned hexadecimal integer in lower case “abcdef”

lu long unsigned decimal integer

CompactRISC Debugger Reference Manual QUICK REFERENCE GUIDE A-7

Le long double in engineering notation (lowercase ‘e‘ for ex-
ponent)

LE long double in engineering notation (uppercase ‘E’ for ex-
ponent)

Lf long double floating-point

Lg long double signed value printed in f or ‘e’ format, which-
ever is more compact for the given value and precision.
The ‘e’ format is used only when the exponent of the val-
ue is less than -4 or greater than the specified precision.
Trailing zeros are truncated and the decimal point ap-
pears only if one or more digits follow it.

LG long double signed value, identical to the ‘g’ format, ex-
cept that ‘G’ introduces the exponent (where appropriate)
instead of ‘e’.

<qualified_code_address> := any valid <address> or <symbolic_address> in the code range

<qualified_lineno> := [<file_name>][@<func_symbol>][<const_lineno>]
<qualified_modulename> := <file_name>

<qual_time> = <positive_decimal_integer> [r | a][t | m | u | n | s]
<pattern> := <symbol> | <symbol_qualifier>

<range_length> = <integer>

<refresh_frequency> = <integer>[i | t]
<reg_name> = any valid register name for target chip

<RLexp> := any legal C expression consisting of <const>, <symbol>, and <opr>

<set_value> = <integer> | <full_path>

<simple_break> := <cur_pc> | <address> | <line_for_cur_pc> | <cur_display_line>

<softbreak_list> = <qualified code address>[,<softbreak_list>] | null

<static_symbol> := any valid C static symbol

<string> := a C language string

<string_pointer> := the address of a string or a <value> defined as char*.

<symbol> := any valid (defined) C symbol

<symbol_qualifier> := any sequence of characters which can begin a valid symbol

<symbolic_address> :=
<fixed_symbol> | <func_line> <local_addr> |
<mod_line><const_lineno> | <lineno>

<symbolic_expr> :=
Any legal C expression consisting of <const>s, <symbol>s,
<symbolic_address>es, and <operator>s

<tagname> := tagname of structures and unions

<value> :=
a legal value of the type implied by other arguments of the
command

<value_list> := <value> | <value>, <value_list>

$b the address of the absolute beginning of a function (the prologue)

$c
the address of the first instruction in the body of the function
(after the prologue)

$e the address of the first instruction in the epilogue

$x the address of the RETURN instruction at the end of the function

CompactRISC Debugger Reference Manual TROUBLE-SHOOTING HINTS B-1

Appendix B

TROUBLE-SHOOTING HINTS

B.1 TARGET ERROR MESSAGES

Communication errors are displayed in the following form:

Target Error/Warning: [error message]

where error message is one of the following:

• Emulator Time-out: No response from Emulator

• Emulator Line Too Long
The emulator’s inputs are too large (max. is 0x500)

• Emulator Output Unexpected

• Unexpected Communication results on <tmon command>
The <tmon command> failed.
<tmon command> can be one of the following:
“register read/write”, “memory read/write” or “go”.
Check that the core definition matches the core on the ADB, and
that the board is functional. Try to reset the target. You may have
to restart the debugger.

• Chip is Running
You have tried to send a request to the emulator while the chip is
running.

• Only 1 hard breakpoint allowed
This is really a limitation of your development board.

• Invalid range
The address range is invalid.

• Address out of range
The address is greater than the maximum address value.

• Chip is not Running

• Virtual I/O transmission
The debugger gets empty line from the emulator through virtual I/
O transmission.

• Search length too large
The search length exceeds the maximum (max is 0x500)

CompactRISC Debugger Reference Manual TROUBLE-SHOOTING HINTS B-2

• Bad occurrence count
Incorrect value of occurrence count for the soft break or hard
break.

• This command is unavailable now
The debugger does not support this command. Please report the
problem to National Semiconductor.

• Unknown EIM error
The debugger detected an unknown communication error.

CompactRISC Debugger Reference Manual DEBUGGER LIMITATIONS C-1

Appendix C

DEBUGGER LIMITATIONS

C.1 EDIT FIELD SIZE

The size of the edit fields in the dialog boxes is limited to 64 characters.

C.2 STEP/NEXT COMMANDS WHILE MEASURING PERFORMANCE

Using step /next commands, while measuring performance with the
performance simulator, may increase the number of cycles measured.
To get an accurate performance measurement, avoid breakpoints and
single steps during performance measurement.

C.3 TARGET ACCESS WHILE PERFORMING VIRTUAL I/O

You may not issue Debugger commands which access the target board,
or simulator running on the host platform, while the application is per-
forming virtual I/O.

C.4 OPEN SIMULATOR AS A TARGET BOARD

You may define, using the DBGCOM setup, a target communication
channel that communicates with a simulator running on the PC host.
This is useful if you are using a debugger other than National’s
CompactRISC Debugger. Since the type of communication is fully trans-
parent to the debugger, it relates to the simulator as if it were a board,
i.e. performance-related features are disabled.

If you are using National’s Debugger, and want on-line performance in-
formation, you should use the debugger’s simulation mode. However, if
you want to communicate with the simulator in target mode, you can
still get performance information, but this is saved in a log file rather
than presented on-line.

For more details of how to define a simulator communication channel,
refer to the Debugger Communication Interface (DBGCOM) Installation
Guide.

CompactRISC Debugger Reference Manual PERFORMANCE SIMULATION CONFIGURATION FILE D-1

Appendix D

PERFORMANCE SIMULATION CONFIGURATION FILE

You can configure the wait-state parameters of the simulated memory
through a simulator configuration file. The address space can be parti-
tioned into several sections, each with its own wait-state configuration.
You can define up to 10 (non-overlapping) sections. For each section
you can define different wait-states for different access types, according
to the type of access (load, store, fetch) and the size of access (byte,
word, 3 bytes, double-word).

In addition, different delay values can be defined for the “wait-state” de-
lay and for the “hold” delay.
(A “wait-state” delay is the number of cycles between the appearance of
an address on the address bus and the appearance of the correspond-
ing data on the data bus.
A “hold” delay is a delay typical of DRAM accesses. It is the number of
cycles between the appearance of data on the data bus and the time in
which a new address can be written to the address bus.)

Each “memory section declaration” in the simulator configuration file
consists of a reserved sequence, followed by a memory range, followed
by a list of wait-state parameters. For convenience and readability the
wait-state values should be written in a table format. Comments can be
added to the configuration file for clarity.

SYNTAX

A memory section declaration consists of the following parts:

• Section header.

[Address Range]

• Address range.
Two hexadecimal numbers marking the start and end addresses of
a memory section.

00000000 0000F000

• Wait-state values.
A list of “wait-state” and “hold” decimal values. The position in the
list determines the access type combination to which the values
correspond.

CompactRISC Debugger Reference Manual PERFORMANCE SIMULATION CONFIGURATION FILE D-2

1 1 1 1
0 0 0 0
0 0 0 1
0 2 2 2
0 3 0 1
0 0 0 0

• ‘;’ - Comments.
A comment begins with a semicolon and ends with EOL. The follow-
ing abbreviations are all comments, and appear in the configuration
only for clarity:

– ws - Memory wait-state cycles.

– hold - Memory hold cycles.

– L - Load access.

– S - Store access.

– F - Instruction fetch access.

Example [Address Range] 00000000 0000f000
; ACCESS SIZE (in bytes)/
; /
; 1 2 3 4 / ACCESS TYPE
;---------------;------
 1 1 1 1 ;ws L
 0 0 0 0 ;hold
;---------------;------
 0 0 0 1 ;ws S
 0 2 2 2 ;hold
;---------------;------
 0 3 0 1 ;ws F
 0 0 0 0 ;hold
;---------------;------

CompactRISC Debugger Reference Manual PERFORMANCE SIMULATION TRACE OUTPUT E-1

Appendix E

PERFORMANCE SIMULATION TRACE OUTPUT

The simulator sends detailed information of the program execution to a
file. The beginning of the file contains some general information: Simu-
lator version, date and time, and the wait-state configuration, as read
from the simulator configuration file. The simulator prints a cycle-by-cy-
cle status of the CPU’s pipeline.

Note that RESET closes the log file, and then opens a file with the same
name. Thus the contents of the log file are lost. To save this data, either
specify a different log file name to the debugger, or save the contents of
the log file to another file before RESET.

RESET also resets the simulation timer. This affects the cycle number
displayed on the file. In addition, RESET resets the instruction number.

PIPELINE STATUS SYNTAX

The CompactRISC CPU pipeline consists of three pipeline stages: Fetch,
Decode and Execute. The execution flow of a single instruction consists
of the following phases:

• An address is set on the address bus.

• One, or more, cycles later (depending on the wait-states) the corre-
sponding data appears on the data bus and enters the queue.

• When enough bytes to constitute a full, valid, instruction are resi-
dent in the queue, they are passed to the decoder.

• A single cycle after an instruction entered the decoder it is passed
to the execution stage for execution.

Under optimal conditions, all stages of the pipeline might be occupied
with instructions in various stages of their execution.

For more information regarding the execution flow refer to the Program-
mer’s Reference Manual for the core you are using.

The following is the structure of the pipeline status log.

CompactRISC Debugger Reference Manual PERFORMANCE SIMULATION TRACE OUTPUT E-2

• CYCLE No.
The number of clock cycles since the later of the following events:
RESET, or reset of the simulator data base.

• PROGRAM COUNTER
The address of the executing instruction.

• Inst. No.
The number of assembly instructions executed since the later of the
following events: RESET, or reset of the simulator data base. Only
the three least significant digits are displayed.

• EXECUTING INSTRUCTION
Disassembly of the executing instruction.

• Inst. Length
The number of bytes in the instruction.

• Q size
The number of valid bytes in the instruction queue. Valid queue
bytes are bytes fetched from memory, but not yet consumed by the
decoder.

• AB fetch
The number of transactions on the Address Bus that were triggered
by an Instruction Fetch (as opposed to Load/Store transactions).
The letters ‘a’ - ‘j’ (corresponding to the digits ‘0’ - ‘9’) represent the
least significant digit of the Address Bus Fetch counter.

– Lower-case letters indicate an instruction fetch bus transaction.

– ‘M’ indicates a Load or Store transaction on the bus.

– A hyphen ‘-’ indicates an idle bus cycle.

• DB fetch
The number of transactions on the Data Bus that were triggered by
an Instruction Fetch (as opposed to Load/Store transactions). The
letters ‘a’ - ‘j’ (corresponding to the digits ‘0’ - ‘9’) represent the least
significant digit of the Data Bus Fetch counter. A Data Bus trans-
action indicated by a letter in this column corresponds to the Ad-
dress Bus transaction indicated by the same letter in the ‘AB fetch’
column.

– Lower-case letters indicate an instruction fetch bus transaction.

– ‘M’ indicates a Load or Store transaction on the bus.

– A hyphen ‘-’ indicates an idle bus cycle.

– An asterisk ‘*’ indicates an idle bus cycle caused by a Non-Sequen-
tial Fetch.

• ID inst
The number of instructions decoded by the decoder. Only instruc-
tions that have reached the execution stage are counted. The digits
‘0’ - ‘9’ represent the least significant digit of the counter.

CompactRISC Debugger Reference Manual PERFORMANCE SIMULATION TRACE OUTPUT E-3

– Digits indicate an instruction decoding.

– A hyphen ‘-’ indicates an idle cycle.

• EX inst
The number of instructions executed by the CPU. The digits ‘0’ - ‘9’
represent the least significant digit of the counter. An instruction
indicated by a digit in this column corresponds to the decoding of
the same instruction indicated by the same digit in the ‘ID inst’ col-
umn.

– Digits indicate an instruction execution.

– A hyphen ‘-’ indicates an idle cycle.

• Delay cause
Under optimal circumstances a single instruction can be executed
on each and every cycle. When this is not the case, the cause may
be an instruction that takes more than a single cycle to execute, or
a full instruction that has not been yet fetched from memory. In ei-
ther case, this column indicates the cause for lack of execution. ‘IF’
indicates that the CPU is waiting for a full instruction to be fetched.
‘EX’ indicates that a long instruction is executing.

Example CRXX Performance Simulator, version X.X.X
Date: Sun Feb 4 15:23:25 1996

[Address] 1 00000000 - 0000f000
; ACCESS SIZE (in bytes)/
; /
; 1 2 3 4 / ACCESS TYPE
;-------------------------;------
 1 1 1 2 ;ws L
 0 0 0 0 ;hold
;-------------------------;------
 0 0 0 1 ;ws S
 0 2 2 2 ;hold
;-------------------------;------
 0 3 0 1 ;ws F
 0 0 0 0 ;hold
;-------------------------;------

CYCLE| PROGRAM-|Inst.| EXECUTING|Inst.| Q A D I E | de-|
No. | COUNTER| No.| INSTRUCTION|length| B B D X | lay|

		s f f i i	ca-
		i e e n n	use
		z t t s s	
		e c c t t	
		h h	

===
====
 1 || | 0 b - - - | IF|
 2 || | 4 c b - - | IF|
 3 || | 8 - c - - | IF|

CompactRISC Debugger Reference Manual PERFORMANCE SIMULATION TRACE OUTPUT E-4

 4 || | 8 - - 1 - | IF|
 5 | 00000000| 1 movw $0xb60:l,r06| 2 d - 2 1 ||
 6 | 00000006| 2 lpr r0,intbase2| 4 e d - 2 ||
 7 || | 0 d * - 2 | EX|
 8 || | 4 e d - - | IF|
 9 || | 8 - e - - | IF|
 10 || | 8 - - 3 - | IF|
 11 | 00000008| 3 movw $0x36b0:l,r06| 2 f - 4 3 ||
 12 | 0000000e| 4 movw r0,sp2| 4 g f - 4 ||
 13 || | 8 - g - - | IF|
 14 || | 8 - - 5 - | IF|
 15 | 00000010| 5 movw $0x3730:l,r06| 2 h - 6 5 ||
 16 | 00000016| 6 lpr r0,isp2| 4 i h - 6 ||
 17 || | 0 h * - 6 | EX|
 18 || | 4 i h - - | IF|
 19 || | 8 - i - - | IF|
 20 || | 8 - - 7 - | IF|
 21 | 00000018| 7 bal ra,*+8:l6| 0 i - 8 7 ||
 22 || | 4 j i - - | IF|
 23 || | 8 - j 8 - | IF|
 24 | 00000020| 8 addd $-4:s,sp2| 6 a - 9 8 ||
 25 | 00000022| 9 stord ra,0(sp)2| 8 M a 0 9 ||
 26 || | 8 - M 0 9 | EX|
 27 | 00000024| 10 movd $0:s,r02| 6 b - 1 0 ||
 28 | 00000026| 11 stord r0,0xc28:l6| 4 M b - 1 ||
 29 || | 4 c M 2 1 | EX|

CompactRISC Debugger Reference Manual INDEX-1

A

Accessing a menu with the mouse 3-1
Accessing files outside the COFF file 3-5
Accessing on-line help 2-3
ADB 2-1
Address range 4-1
ALIAS command 2-9, 4-3
Aliasing 2-9
Assembly source mode 4-28
AUTOCOMMAND command 2-5, 4-4

B

Beginning of a function 4-1
Benefits of using the debugger 1-2
BREAK command 4-5
Break Menu 3-2, 3-11
Breakpoint

hard 2-5
soft 2-5
temporary 2-5

Breakpoints 4-5

C

CALL command 4-8
CD command 4-9
Change working directory 4-9
COFF file 2-2
COMM command 4-10
Command

SRCPATH 2-4
TARGET 2-12

Command arguments A-5
Command descriptions 4-2
Command entry and formats 4-2
Command file 2-2
Command syntax A-1
Command Window 4-23
Commands

ALIAS 2-9, 4-3
aliasing 2-9
AUTOCOMMAND2-5, 4-4
BREAK 4-5
CALL 4-8
CD 4-9
COMM 4-10

CWD 4-9
DBUG 4-11
DEBUG 2-4
DEBUGMODE2-6, 4-12
FIND 4-13
FINDSRC 4-13
GO 2-6, 4-14
INFO 4-16
INPUT 4-16
LIST 2-4, 4-16
LOG 4-18
MODIFY 4-19
NEXT 4-20
NEXTINS 4-22
PAUSE 4-23
QUIT 4-23
RADIX 4-23
RESET 2-4, 4-24
RESUME 4-24
SAVECONFIG 2-11, 4-24
SAVESTATE 4-25
SET 2-9, 4-25
SETSTATE 2-11, 4-26
SOFTBREAK 4-27
SRCMODE2-4, 4-28
SRCPATH 4-28
STDIO 4-29
STEP 4-30
STEPINS 4-31
SYMBOL 4-32
SYNC 4-33
VERBOSE 4-33
VIEW 4-34
WATCH 4-37
WHERE 4-38

Communication parameters 4-10, 4-24
Config Menu 3-2, 3-12
Configurable buttons

using 3-2
Configuration commands 2-1
Configuration file 2-1
Control during simulation 2-12
crdb.ctx 4-25, 4-26
CRDBENV 2-1, 4-24
crdb.env 2-2, 4-24
crdb.ini 2-1, 2-2
crdb.log 2-10
Current program name 4-16
Current source file 4-13
Current source line 4-38
Current working directory 4-9, 4-16
Customizing the debugging environment 2-1
CWD command 4-9

INDEX

CompactRISC Debugger Reference Manual INDEX-2

D

DEBUG command 2-4, 4-11
Debugger

display information 4-16
invoking 2-1, 2-2

Debugger configuration commands 2-1
Debugging environment

customizing 2-1
DEBUGMODE command 2-6, 4-12
Define debugger variables and strings 4-25
Define macro 4-3
Dialog box 3-3

using 3-3
Directory search path name for the source file 4-28
Display

mixed mode 4-28
source-only 4-28

Display current context 4-38
Display debugger information 4-16
Display mode 2-4
Display symbol characteristics 4-32

E

-e option 2-2
Epilogue 4-1
Executable file 2-2
Execute

command file 4-16
next assembly instruction 4-22
next source statement 4-20
user function 4-8
user programs 4-14

Execute Menu 3-2, 3-11
Exiting the debugger 2-3

F

Features 1-2
File

COFF 2-2
command 2-2
executable 2-2
initialization 2-2
logging 2-2

File Menu 3-2
File menu 3-10
Find

string in a source file 4-13
value in memory or trace buffer 4-13

FIND command 4-13

CompactRISC Debugger Reference Manual INDEX-3

FINDSRC command 4-13
First instruction in the body of the function 4-1
Function

within a particular module 4-1
Function keys

programming 3-4

G

GO command 2-6, 4-14

H

Hardware breakpoints 2-4
list 2-5

HDB
Main Menu 3-1

help button 2-3
Help Menu 3-2, 3-12
Help Window 3-9
Hot keys 3-4

I

INFO command 4-16
Initial screen 3-1
Initialization 2-2
Initialization file 2-1, 2-2
INPUT command 4-16
Input file 4-23, 4-24
Installation 2-1
Installing the Debugger 2-1
Invoking the debugger 2-1, 2-2
ISE

set communication mode 4-33

L

-l option 2-2
Last instruction in the body of the function 4-1
Line numbers

within a module 4-1
LIST command 2-4, 4-16
List file 4-16
List of features 1-2
List trace buffer 4-16
Local Variables Window 3-7
LOG command 4-18

Log commands to debugger 4-18
Log file

annotations 2-10
comments 2-10

log_file 2-2
Logging file 2-2, 2-10

M

Measuring performance 2-7
Memory

looking at 2-6
modifying 2-7

Memory Window 3-7
Menu

Break 3-11
Config 3-2, 3-12
Execute 3-11
File 3-10
Help 3-12
Show 3-12
Source 3-11

Menus
accessing with mouse 3-1
Break 3-2
Execute 3-2
File 3-2
Help 3-2
Main 3-1
Show 3-2
Source 3-2

Mixed mode display 4-28
MODIFY command 4-19
Modify memory contents 4-19
Modifying memory, registers and variables 2-7

N

NEXT command 4-20
NEXTINS command 4-22

O

On-line help 2-3
Option

-e 2-2
-l 2-2

Output display 4-23
Output Window 3-6
Overview 1-1

CompactRISC Debugger Reference Manual INDEX-4

P

PATH 2-1
PAUSE command 4-23
Pause input file execution 4-23
Performance

estimation 2-7
measuring 2-8
profiling 2-8

Performance Window 3-8
Profiling performance 2-8
Program variables

modifying 2-7
viewing 2-6

Programming function keys 3-4
Prologue 4-1
PullDown menus

using 3-1

Q

Quick reference guide A-1
QUIT command 4-23

R

RADIX command 4-23
Redirect the output of standard I/O functions 4-29
Reference documents 1-5
Register Window 3-6
Registers

modifying 2-7
viewing 2-7

RESET command 2-4, 4-24
Reset debugger and the ISE 4-24
Restore debugging state 4-26
Restoring debugging setup 2-11
RESUME command 4-24
Resume execution of input file 4-24

S

Save current debugger configuration 4-24
Save current debugging state 4-25
SAVECONFIG command 2-11, 4-24
SAVESTATE command 4-25
Saving and restoring the debugging context 2-11
Saving debugging setup 2-11

CompactRISC Debugger Reference Manual INDEX-5

Scrolling using the keyboard 3-4
Select variables for auto display 4-37
Selecting the Target 2-3
Selecting windows 3-3
SET command 2-9, 4-25
Set Communications Parameters 4-10
Set debugging model 4-12
Set ISE communication mode 4-33
Set radix for output display 4-23
Set source file display mode 4-28
SETSTATE command 2-11, 4-26
Show Menu 3-2, 3-12
Single stepping 2-6
SOFTBREAK command 4-27
Software breakpoints 2-4, 4-27

list 2-5
Source directory path 4-16
Source file 2-4, 4-17, 4-28, 4-33

display 4-24
Source line format 3-4
Source Menu 3-2
Source menu 3-11
Source Window 2-5, 2-6, 3-4, 4-13, 4-14, 4-17, 4-

24, 4-27, 4-28, 4-33
Source-only display 4-28
Specify

COFF file 4-11
commands for auto execution 4-4
Hex file 4-11

Specifying directories 2-4
SRCMODE command 2-4, 4-28
SRCPATH command 2-4, 4-28
Stack history 4-38
Stack Window 2-6, 3-6
Start execution 2-6
Startup 2-2
Status Window 3-5, 4-14
Status Window field

Chip Status 3-5
Current PC 3-5
Trig Mode 3-5

STDIO command 4-29
STEP command 4-30
Step one assembly instruction 4-31
Step one source line 4-30
STEPINS command 4-31
SYMBOL command 4-32
Symbol references 4-1
SYNC command 4-33
Synchronize source file display 4-33

T

Target

development board 2-3
selecting 2-3, 2-4
simulator 2-3

TARGET command 2-12
Temporary breakpoints 2-5
Text file 2-4, 4-17

U

Using a dialog box 3-3
Using configurable buttons 3-2
Using pull-down menus 3-1

V

Variables Window 3-7, 4-37
VERBOSE command 2-11, 4-33
VIEW command 4-34
View value of structure or symbol 4-34
Viewing program variables 2-6
Viewing registers 2-7

W

WATCH command 4-37
WHERE command 4-38
Windows 3-4

Command 4-23
Help 3-9
Output 3-6
selecting 3-3
Source 2-5, 2-6, 3-4, 4-13, 4-14, 4-17, 4-24,

4-27, 4-28, 4-33
Stack 2-6, 3-6
Status 3-5, 4-14
Variables 3-7, 4-37

	CONTENTS
	OVERVIEW
	INTRODUCTION
	DEBUGGER FEATURES
	DEVELOPMENT ENVIRONMENT
	Instruction-Level Simulator (ILS) Environmen...
	Board Environment

	MANUAL ORGANIZATION
	REFERENCE DOCUMENTS

	DEBUGGER FEATURES
	INTRODUCTION
	DEBUGGING WITH THE DEBUGGER
	Installing the Debugger
	Debugger Initialization and Configuration
	Invoking the Debugger
	Accessing On-line Help
	Selecting the Target
	Selecting the Core
	Working with Executables and Source Files
	Working with Breakpoints
	Executing the Program
	Looking at Memory and Variables
	Virtual I/O Support
	Performance Estimation
	Working with Debugger Command Scripts
	Saving and Restoring the Debugging Context
	Working with the Monitor Commands

	USING THE SIMULATION ENVIRONMENT

	DEBUGGER USER INTERFACE
	DEBUGGER GUI INTERFACE
	GUI Operations

	THE DEBUGGER WINDOWS
	MENU DESCRIPTIONS

	THE DEBUGGER COMMANDS
	INTRODUCTION
	Symbol References in Commands
	Command Entry and Formats
	Command Descriptions
	Common Command Modifiers

	ALIAS — DEFINE MACRO
	AUTOCOMMAND — SPECIFY COMMANDS FOR AUTO EXECUT...
	BREAK — SET HARDWARE BREAKPOINT
	CALL — EXECUTE USER FUNCTION
	CD — CHANGE WORKING DIRECTORY
	COMM — SET COMMUNICATIONS CHANNELS
	CORE - SET THE CURRENT CPU CORE
	DEBUG — SELECT THE EXECUTABLE FILE FOR DEBUGGI...
	DEBUGMODE — SELECT DEBUGGING MODE
	FIND — FIND VALUE IN MEMORY
	FINDSRC — FIND STRING IN A SOURCE FILE
	GO — EXECUTION OF USER PROGRAM
	INFO — DISPLAY DEBUGGER INFORMATION
	INPUT — EXECUTE COMMAND SCRIPT FILE
	LIST — LIST MEMORY OR FILE
	LOG — RECORD DEBUGGER COMMAND SESSION
	MODIFY — MODIFY CONTENTS OF MEMORY OR SYMBOLS...
	NEXT — EXECUTE NEXT SOURCE LINE (STEP OVER)
	NEXTINS — EXECUTE NEXT ASSEMBLY INSTRUCTION (...
	PAUSE — SUSPEND INPUT FILE EXECUTION
	QUIT — EXIT FROM THE DEBUGGER
	RADIX — SET RADIX FOR OUTPUT DISPLAY
	RESET — RESET THE DEBUGGER AND THE TARGET BOA...
	RESUME — RESUME EXECUTION OF INPUT FILE
	SAVECONFIG — SAVE CURRENT DEBUGGER CONFIGURAT...
	SAVESTATE — SAVE CURRENT DEBUGGING STATE
	SET — DEFINE DEBUGGER VARIABLES AND STRINGS
	SETSTATE — RESTORE DEBUGGING STATE
	SOFTBREAK — SET SOFTWARE BREAKPOINT
	SRCMODE — SET SOURCE FILE DISPLAY MODE
	SRCPATH — SET DIRECTORY PATH FOR SOURCE FILES...
	STDIO - REDIRECT VIRTUAL I/O STANDARD FILES
	STEP — STEP ONE SOURCE LINE
	STEPINS — STEP ONE ASSEMBLY INSTRUCTION
	SYMBOL — DISPLAY SYMBOL CHARACTERISTICS
	SYNC — SYNCHRONIZE SOURCE FILE DISPLAY
	VERBOSE — MONITOR COMMUNICATION TRAFFIC TO TA...
	VIEW — VIEW VALUE OF STRUCTURE OR SYMBOL
	WATCH — SELECT VARIABLES FOR AUTO DISPLAY
	WHERE — DISPLAY CURRENT CONTEXT

	QUICK REFERENCE GUIDE
	CRDB COMMAND SYNTAX
	ARGUMENTS

	TROUBLE-SHOOTING HINTS
	TARGET ERROR MESSAGES

	DEBUGGER LIMITATIONS
	EDIT FIELD SIZE
	STEP/NEXT COMMANDS WHILE MEASURING PERFORMANCE...
	TARGET ACCESS WHILE PERFORMING VIRTUAL I/O
	OPEN SIMULATOR AS A TARGET BOARD

	PERFORMANCE SIMULATION CONFIGURATION FILE
	PERFORMANCE SIMULATION TRACE OUTPUT
	INDEX

