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PREFACE

Welcome to the CompactRISC C Compiler. The CompactRISC C Compiler generates high-
quality code for processors using the CompactRISC architecture. It is derived from the
well-known GNU C Compiler from the Free Software Foundation. It includes enhance-
ments, such as intrinsic functions, source code register control, and full structure lay-
out control, specifically for the development of embedded code.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

CompactRISC is a trademark of National Semiconductor Corporation.
National Semiconductor is a registered trademark of National Semiconductor Corporation.
Dinkum and Dinkumware are registered trademarks of Dinkumware Ltd.
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Chapter 1

OVERVIEW

1.1 INTRODUCTION

This manual describes National Semiconductor’s CompactRISC C
Optimizing Compiler for its family of CompactRISC processors.

The GNU C based CompactRISC compiler implements the C language as
described by the ANSI C standard.

In addition, the CompactRISC C Optimizing Compiler includes important
extensions for programming embedded applications like interrupt/trap
handling in C, intrinsic functions and an extended asm statement. The
compiler is available as a cross compiler running on Windows 95, and
Windows NT operating systems.

This manual is organized as follows:

Chapter 1 Overview (this chapter), briefly describes the contents of each chapter,
and defines the intended audience.

Chapter 2 Invoking the Compiler, describes the compiler structure, its command
line options, and the environment variables that you can use to control
its functionality.

Chapter 3 Optimizations, provides an overview of optimization techniques used by
the optimizer. This chapter provides further guidelines to help you avoid
problems that can occur when using the optimizer.

Chapter 4 Extensions to the C Language, describes several language features, pro-
vided by the compiler, which are not found in ANSI standard C. These
features include pragma directives, using variables in specified regis-
ters, assembler instructions, and intrinsic functions.

Chapter 5 Libraries, describes the various libraries that provide run-time support
for the CompactRISC C Compiler.

Appendix A Standard Calling Conventions, describes standard routine-calling conven-
tions. These conventions enable routines in one module to communicate
with routines in other modules, even if they are written in different pro-
gramming languages.
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Appendix B Compatibilities with GNX C Compiler, details the compatibilities, and in-
compatibilities, with GNX when the CompactRISC C compiler is run in
GNX-compatible mode.

Appendix C Guidelines for Using the Compiler, provides some guidelines for using the
compiler to port programs, using optimization options to maximum ef-
fect, and how to avoid some common programming errors.

Appendix D Implementation-Defined Behavior, defines the behavior of the Compact-
RISC C Compiler for cases which, according to the ANSI C standard, are
implementation-defined.

Appendix E Compiler Limitations, lists some compiler limitations, of which you
should be aware.

1.2 INTENDED AUDIENCE

This manual is for experienced C programmers.  The information provid-
ed covers compiler options, extensions to the standard C programming
language, and implementation issues.  A knowledge of optimization
techniques is useful, but not essential.

Less experienced programmers should use this manual in conjunction
with a standard C compiler manual, such as those listed below:

• ANSI C standard (ANSI X3.159-1989).

• Harbison, Samuel and Steele, Guy. C, A Reference Manual, 2nd. ed.,
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1984.

• Kernighan, Brian and Ritchie, Dennis. The C Programming Lan-
guage, 2nd ed., Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,
1989.
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1.3 FEATURES

The following are the main features of the C Optimizing Compiler:

• Fully compatible with ANSI C industry standard.

• Compatible with National Semiconductor’s GNX C compiler for the
Series 32000 architecture.

• Based on stable, proven GNU technology.

• Allows for programming of interrupt/trap handlers in C.

• Optimizations can be tuned either to improve speed or save space.

• Global variables may be placed in registers for the entire program.

• Allows the use of inline functions.

• User-controlled alignment of variables and structure members.

• Assembly output can be annotated with source lines.

• Fast compilation mode to check for errors.

• Dump error and warning messages to file.



CompactRISC C Compiler Reference Manual INVOCATION AND OPERATION  2-1

Chapter 2

INVOCATION AND OPERATION

2.1 INVOKING THE COMPILER

This chapter describes the compiler structure, its command line op-
tions, and the environment variables that you can use to control its
functionality.

2.2 COMPILER STRUCTURE

The CompactRISC Compiler consists of three programs:

• Driver

• Macro preprocessor

• C Language processor

The driver, crcc , is a program that parses and interprets the command
line, and then calls each of the other programs in sequence, depending
on its input programs and the command line options.

The macro preprocessor is the C preprocessor, cpp . Its input is a pro-
gram file optionally containing preprocessing commands.

The C language processor program parses and optimizes its input C
program, and generates an assembly program. The program's output
must be assembled by the CompactRISC Assembler to produce an ob-
ject code program.

The assembler is automatically called by the driver program (unless you
use the -S  option).

You produce an executable program by using the CompactRISC Linker
to link one or more object files and, optionally, run-time libraries. The
linker is automatically called by the driver program (unless you specify
the -c  option).
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2.3 COMMAND-LINE OPTIONS

2.3.1 The Invocation Syntax

The invocation syntax of the C Compiler is:

crcc  [ {option | filename | @argfile} ]...

The compiler accepts one, or more, file arguments and compilation op-
tions. Compilation options start with a dash (-). In addition, the compil-
er can take all, or parts, of the arguments from an argument file. An
arguments file is denoted by an at-sign (@) followed by a file name.

It produces an executable file, object file(s), or assembly file(s), accord-
ing to the options specified. Normally, the compiler accepts C program
sources, although other types of files (e.g., assembly and object files) are
also accepted. A file type is recognized by its suffix.

2.3.2 Filename Conventions

Files are identified by the compiler according to their suffix.  Files with
names ending with .c  or .i  are C source programs.

Files ending with .c  pass through the macro preprocessor (cpp ) before
compilation. Files ending with .i compile directly, and assemble to
produce object programs.

The compiler also accepts files with a .s  suffix as assembly source pro-
grams. These files are assembled (to produce .o  files) and linked.

All other files (normally .o  or .a  files) are assumed to be compatible ob-
ject programs or archives of object programs, typically produced by pre-
vious runs of the compiler and/or archiver, and are passed directly to
the linker.  The object files link into one executable file with the default
name cr.x .

Table 2-1. Filename Conventions

File Name Suffix File Type

.c C source file

.i Preprocessed C source file

.s Assembly source file

other (.o, .a , etc.) Object code or library-archive file
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2.3.3 Compiler Options

You can specify the following compilation options in the invocation line.
Note that some options have both a short-form name and a full name.
If you use the short form, crcc  expands it into the full name.

Code Generation Options

-O (OPTIMIZATION)
Performs optimizations. Specify -O on the command line for the
fastest possible code, without an undue increase in code size, or
a significantly longer compilation time.

-Os (SPACE OVER SPEED)
Performs optimizations, and prefers space-over-speed in the op-
timization process.

or

-O -mspace

-ON (LOOP UNROLLING)
Performs loop unrolling optimization, in addition to default opti-
mizations.

or

-O -funroll-loops

-Oi (VOLATILE)
Performs optimizations, and treats global static variables, and
all pointer dereferences, as volatile.

-g (COMPILE FOR DEBUGGING)
Produces symbolic debugging information. This option makes it
possible to debug the code at source level.

-c (COMPILE BUT DO NOT LINK)
Directs the compiler to perform the compilation process up to,
but not including, linking. Output is one, or more, object files
whose names, by default, end with .o . This option is useful
when you want to invoke the linker independently at a later
stage. For example:

crcc -c sample.c utils.c

creates the files sample.o and utils.o . No executable file is
created.
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-S (COMPILE BUT DO NOT ASSEMBLE)
Directs the compiler to terminate the compilation process before
assembly. The assembly output is one, or more, files whose
names are those of the source, with .s  substituted for the origi-
nal suffix. For example:

crcc -S sample.c utils.c

creates the files sample.s  and utils.s .  No executable or ob-
ject file is created.

-n (EMBED C SOURCE LINES AS COMMENTS IN ASSEMBLY)

or

-mannotate

Puts the C source lines into the assembly output file as comments.
The -n option is only useful together with the -S option.

-o out (RENAME THE OUTPUT FILE)
Redirects the output file from the compilation process to a file
named out .  For example:

crcc sample.c utils.c -o sample

generates the executable file sample  from the two source files,
and:

crcc -S sample.c -o new_sample.s

generates the assembly file new_sample.s .

- Jwidth-in-bytes

or

-mbiggest-struct-alignment- width-in-bits
(ALIGNMENT WITHIN STRUCTURES)
Sets the structure-member alignment to bytes (width = 1),
words (width = 2) or double-words (width = 4).
A structure member is aligned to a boundary, whose value is
the smallest of width  and the member alignment requirement.
In addition, the whole  structure is padded to make its size a
multiple of the maximum alignment of the structure members
(calculated as above).
The default value for width  is the width of the internal data bus
of the architecture e.g., 2 for CR16 and 4 for CR32A.

Example:

crcc -J1 -c prog.c

instructs the compiler to use one-byte alignment or, in other
words, not to generate gaps between structure members. This
command line is equivalent to:

crcc -mbiggest-struct-alignment-8 -c prog.c
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Notes 1. If you use -mbiggest-struct-alignment , you must specify
width-in-bits  in bits (width  = 8, 16 or 32).

2. For correct execution of your program, all its compilation units
(i.e., all the C files) must be compiled with the same width .

-KBwidth

or

-mbiggest-alignment- width-in-bits

(SET TARGET BUSWIDTH)
Allows you to tune the compiler to the bus width of the target
system. The bus width specification guides the compiler to allo-
cate memory for local variables, which reside on the program
stack, in the most efficient manner. A local variable is aligned to
a boundary whose value is the smallest of width  and the variable
alignment requirement. The width  parameter is specified in
bytes (width  = 1, 2 or 4).
The default value for width  is the width of the internal data bus
of the architecture e.g., 2 for CR16 and 4 for CR32A.
Note, if you use -mbiggest-alignment , you must specify
width - in-bits  in bits (width  = 8, 16 or 32).

-fshort-enums (OPTIMIZE SIZE OF ENUMERATION TYPES)
Selects the shortest possible size for each enumeration type. By
default the size of an enumeration type is equal to the size of an
integer.

-finline-functions   (INLINE FUNCTIONS)
Integrates all simple functions into their callers. The compiler
heuristically decides which functions are simple enough to be
worth integrating in this way. If all calls to a given function are
integrated, and the function is declared static , then the function
is not normally output as assembler code in its own right. This
option works only if the -O option is also used.

-fkeep-inline-functions
(KEEP BODY OF INLINE FUNCTIONS)
Outputs a separate, run-time callable, version of the function,
even if all calls to a given function are integrated, and the func-
tion is declared static . This option works only if the -O option
is also used.

-ffixed- REG(DO NOT USE A CERTAIN REGISTER)
Treats the register, REG, as a fixed register; generated code
should never refer to it. REG must not be used for passing pa-
rameters, or returning a value from a routine (e.g., -ffixed-r8 ).

-sbrel
(USE STATIC-BASE RELATIVE ACCESS MODE FOR GLOBAL
AND STATIC VARIABLES)
Instructs the compiler to generate code that accesses all the glo-
bal and static variables (CR32A), or part of them (CR16), using a
static-base (SB) relative mode to save code. The static base is a
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contiguous block of memory that contains all (CR32A), or part
(CR16), of the global and static variables, and is pointed to by
register R13 (R12 for CR16B large programming model). The SB
relative mode is a register-relative addressing mode, where the
base register is R13 (R12 for CR16B large programming model).
In SB relative addressing mode, the compiler always uses medi-
um size displacement (CR32A), or small size displacement
(CR16), thus reducing the code size.
For CR16 the -sbrel  option is used in conjunction with the
#pragma sbrel  directive.
For detailed information see Section 3.2.

-msmall  (CR16B only)
(GENERATE SMALL MODEL CODE)
Instructs the compiler to generate code for the CR16B small
programming model. This is the default.

In this model, code pointers are 16 bits wide.

-mlarge  (CR16B only)
(GENERATE LARGE MODEL CODE)
Instructs the compiler to generate code for the CR16B large pro-
gramming model.

In this model, code pointers are 20 bits wide.

-mcr16a  (CR16 only)
(GENERATE CR16A COMPATIBLE CODE)
Instructs the compiler to generate code for the CR16A core. In
this model the code pointers are 16 bits wide.

-mbank  (CR16A-BASED CHIPS WITH BANK SWITCHING HARDWARE
SUPPORT)
This option enables the Bank Switching mechanism. This mech-
anism is needed for CR16A applications with code size larger
than 128 Kbytes.

Warning and Error Options

-ansi   (STRICT ANSI)
Accepts only strict ANSI standard C programs. This option re-
jects non-ANSI programs.

-Wimplicit (WARN ABOUT IMPLICIT FUNCTION DECLARATIONS)
If this option is used, the compiler issues a warning message for
each function which is called and its prototype declaration is
missing. In this case, the function prototype is implicitly set by
the compiler according to the function call. Note: the standard
I/O functions (e.g., printf ) are an exception. If you fail to de-
clare a standard I/O function prototype (e.g., do not include
stdio.h ) the compiler implicitly sets its prototype to that of the
ANSI-C standard i.e., the same prototype that appears in
stdio.h .
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-w (NO WARNING DIAGNOSTICS)
Suppresses the warning diagnostics, which the compiler nor-
mally prints if there are inconsistencies in the input program.

-Q (ERROR CHECKING ONLY)
Allows quick error-checking compilation. No code is generated.

or

-fsyntax-only

-v (VERBOSE MODE)
Lists the subprograms of the compiler as they are executed by
the driver program.

-vn  (SHOW BUT DO NOT ACTUALLY EXECUTE)
Lists the compiler subprograms that are called by the compiler’s
driver program, while compiling an existing file, without actually
executing these subprograms. Can be used to verify operation of
other compiler options.

-z   (DUMP ERRORS AND WARNINGS INTO ERROR FILE)
Dumps errors and warnings into filename.err  file, where
filename  is the base name of the input file. For example:

crcc -z test.c

generates the error file test.err .

Note, using this flag causes the linker to dump its errors and
warnings into filename.err , where filename  is the output
filename. For example:

crcc -z test1.c test2.c test3.c -o test.x

generates the following error files:
- test.err  for the linker errors
- test1.err test2.err test3.err  for compiler and assembler

errors

-zn filename  (DUMP ERRORS AND WARNINGS INTO ERROR FILE)
Dumps errors and warnings into the specified filename.
For example:

crcc -zntests.log test1.c

generates the error file tests.log . Note, there must be no
space between zn  and filename .

Preprocessor Options

-E (RUN cpp  ONLY)
Terminates the compilation after preprocessing; only the cpp
preprocessor is invoked, and its output is sent to the standard
output, stdout .
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-P (RUN cpp  ONLY, REDIRECT OUTPUT TO .i FILE)
This option is similar to -E , except that the output of cpp  is
sent to a file with a .i  extension. For example:

crcc -P sample.c utils.c

creates the files sample.i  and utils.i .

-C (LEAVE COMMENTS IN)
Prevents the preprocessor from removing the comments from its
output. This option can be useful when cpp ’s output must be
examined. It can only be used in conjunction with the -E  option.

-D symbol[=def] (DEFINE cpp  SYMBOL)
Defines symbol  equal to def  to the preprocessor. If no explicit
value is given, symbol  is defined as having the value 1. This op-
tion is equivalent to putting:

#define symbol def

at the beginning of each C source file. For example:

crcc -DMODE=DEVELOPMENT sample.c

acts as if the following define was at the head of sample.c :

#define MODE DEVELOPMENT

-U symbol (UNDEFINE cpp  SYMBOL)
Using this option is equivalent to putting:

#undef symbol

at the beginning of each C source file.

-I dir (SPECIFY DIRECTORY FOR INCLUDED FILES)
Instructs cpp  to use the specified directory as the default direc-
tory for included files. Include files that are called using double
quotes, for example:

#include “filename”

are sought first in the directory of the compiled file, then in the
directories specified by -I , and finally in directories on a stan-
dard list (CRDIR/include/ ), where CRDIR is the root directory of
the CompactRISC Development Toolset.

If you explicitly name the file to be included using the complete
path, for example:

#include ”/a/mydir/filename”

the named file is sought directly.
If angle brackets are used instead of double quotes, for example:

#include <filename>

the file is sought first in the directories specified by -I , and
then in the directories on a standard list (CRDIR/include/ ).
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-M (RUN cpp  ONLY, GENERATE MAKEFILE DEPENDENCIES)
Runs only the cpp  macro preprocessor on the named C pro-
grams, requests it to generate makefile dependencies and then
sends the result to the standard output, stdout .
For example:

crcc -M test1.c  test2.c > new.mak

runs cpp  on two C programs in the current directory and gener-
ates all makefile dependencies for them. These dependencies
are then sent to the file new.mak .

Linking Options

-l name specifies a program library. By default, the linker looks for the
library lib name.a  in CRDIR/lib  (where CRDIR is the root direc-
tory of the CompactRISC development toolset), and links it with
the program.

-KFemulation
(INCLUDE THE FLOATING-POINT EMULATION LIBRARY)
If you use the compiler driver to invoke the linker (as it is by de-
fault), this option instructs the compiler to include the floating
point emulation library (libhfp ) as one of the linker inputs. By
default, the compiler does not include this library. This option is
necessary if the program includes floating-point operations.

-L dir (SPECIFY THE LIBRARY DIRECTYORY)
Use this option to define the directory in which the linker first
searches for a library specified with the -l invocation option.

The -L  option must precede any -l  option. The linker searches
for libraries specified through the -l  invocation option first in
dir , and then in the default library locations.
(See the CompactRISC Toolset - Object Tools Reference Manual).

General Options

It is possible to pass any option to the various phases of the compiler.

-Wphase , option
(PASS OPTIONS TO COMPILATION PHASE phase )
Passes options to the C preprocessor (phase  = p), the compiler
(phase = c), the assembler (phase  = a), or the linker (phase  = l).
The options must not contain embedded spaces, unless quoted.
An option is passed as one argument whether it contains spaces
or not. To pass multiple arguments, use commas.
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For example, the command:

crcc -Wl,-d,linker.def

instructs the linker to use the file linker.def  as the linker def-
inition file.

2.4 ENVIRONMENT VARIABLES

The following environment variables are used by crcc :

TMPDIR This environment variable defines the location at which tempo-
rary files are created in the compilation process. If TMPDIR is
not defined, the compiler looks for the TMP variable, and then
for TEMP. If none of the above exist, the default location for tem-
porary files is the current directory. For example, to direct tem-
porary files to the directory c:\temp  type the following:

set TMPDIR=c:\temp

CRDIR This variable must be set to the directory where the Compact-
RISC Toolset is installed. The installation procedure of the
CompactRISC Toolset takes care of this.

CRINC If this variable is set, its value is used as an additional search
path for header files. The value is a string which represents a
list of directories, in the same format as the PATH environment
variable. The compiler appends this directory list to the list of
directories which are specified using the -I  compilation option.
In other words, for each directory in CRINC the compiler adds
an implicit -I  option, with this directory as parameter.

2.5 PREDEFINED CPP SYMBOLS

The following cpp  symbols are predefined by the CompactRISC compiler
as if they were specified by the -D  option, or with the cpp #define direc-
tive:

Symbol Comments

__CR__ Always defined.

__GNU__ Always defined.

__CR16A__ Always defined by the CR16A compiler (ver1.x).
Defined by the CR16B compiler when in cr16a model.

__CR16B__ Always defined by the CR16B compiler.

__CR16BS__ Defined by the CR16B compiler in small model only.
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__CR16BL__ Defined by the CR16B compiler in large model only.

__CR32A__ Always defined by the CR32A compiler.

__OPTIMIZE__ Defined only when -O  is specified

__STDC__ Defined only when -ansi  is specified

__STRICT_ANSI__ Defined only when -ansi  is specified

Symbol Comments
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Chapter 3

OPTIMIZATIONS

3.1 INTRODUCTION

This chapter describes some of the advanced optimization techniques
used by the CompactRISC compiler.

The most important optimization techniques are:

•  Constant folding

•  Arithmetic simplifications

•  Function inlining

•  Jump optimization

•  Common sub-expression elimination

•  Loop optimization

•  Flow optimization

•  Register allocation

3.2 OPTIMIZATION TECHNIQUES

Constant
folding

If an expression or condition consists of constants only, it is evaluated
by the compiler into one constant, saving computation at run-time.

Arithmetic
simplifications

Arithmetic simplifications, such as the Distributive Law, are carried out
on expressions.

Function
inlining

Function inlining integrates all simple functions into their callers. The
compiler heuristically decides which functions are simple enough to be
worth integrating in this way. If all calls to a given function are integrat-
ed, and the function is declared static, the function is not normally out-
put as assembler code in its own right. This optimization is enabled by
a special option (-finline-functions ) or by marking a function as in-
lined, see Section 4.5.

Jump
optimization

Jump optimization simplifies:

• jumps to following instructions

• jumps across jumps

• jumps to jumps
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In addition, jump optimization performs jump threading. It converts
code, originally written with jumps, into sequences of instructions that
directly set values as a result of comparisons.

Example if (j>k) b=0 else b=1;

becomes:

b=j<=k

The jump threading optimization deduces information from the conditional
jump test, and uses this information to optimize the taken flow path.

Example The code:

if (i>5) {
if (i<=5) i = 0;
i++;

}

is transformed into the equivalent code:

if (i>5) {
i++;

}

Common
subexpression
elimination

Searches for a common subexpression, and saves the result of the first
computation in a temporary location (usually a register). This saved re-
sult is employed in any further use of the expression.

Example a = b + c;
d = b + c;

b + c  is a common subexpression. If the values of b and c  do not
change between the two expressions, the compiler calculates the values
of b + c  once, assigns the result of the calculation to a temporary loca-
tion, and uses that location instead of recalculating the expression.

Loop
optimization

Loop optimizations consist of moving constant expressions out of loops,
strength-reduction, and optionally, loop unrolling.

Strength
reduction

Strength reduction optimization replaces complex operations with sim-
pler ones. This is primarily useful for reducing complex array-subscript
computations, typically by turning multiplications into additions inside
a loop.

Example The loop:

int a[15];
for (i=0; i<15; i+=1) {

a[i] = 1;
}
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is transformed into the equivalent of:

int a[15],*ptr;
for (ptr=a; ptr < &a[15]; ) {

*ptr++ = 1;
}

which is smaller and faster.

Loop
unrolling

Loop unrolling duplicates the body of a loop. This reduces the number
of times that the loop control code is executed. Loop unrolling improves
performance, but it increases code size.

Loop unrolling is performed only for loops whose number of iterations
can be determined at compile time, or before execution of the loop.

Loop unrolling is not performed by default. (It is enabled by the option
-On or -funroll-loops .)

Flow
optimization

Flow optimization deletes unreachable code, and computations whose
results are never used.

Register
allocation

Allocates registers to frequently used variables and subexpressions.
Only non-address-taken automatic variables (automatic variables whose
addresses were taken using the & operator), or constants, or a subex-
pression which is a combination of both, are allocated to a register.

Space
optimization

These optimizations are intended to reduce code size and memory usage.

1. Prefer space over speed
Usually there is no contradiction between improving program speed
and reducing its code size. If there is such a contradiction, by de-
fault, the CompactRISC C Compiler optimizes for speed. However,
when you use the -Os  option, the compiler prefers space over speed
and changes its optimizations accordingly. The following optimiza-
tion is performed when you use -Os :

a. Save-emul optimization (CR16A/CR32A only)
The compiler replaces a routine entry/exit sequence by a call to
a special routine which performs a save/restore of the registers.
The save/store emulation routines are located in the libc li-
brary.
Note: the save-emul optimization is not necessary for the
CR16B because PUSH and POP instructions, which can save/re-
store several registers within a single instruction are available
on this CPU core.

Example A save-emul optimization replaces an entry sequence:
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addw $-8,sp
storw r10,6(sp)
storw r9,4(sp)
storw r8,2(sp)
storw r7,0(sp)

By:

addw $-8,sp
bal r1,___save_r7_to_r10

b. Register allocation
When the -Os  compiler option is used, the compiler changes its
criteria for allocating registers to local variables. It gives rela-
tively less weight to loop-nest considerations (e.g., variables
which are used inside loops) and more weight to code-size relat-
ed considerations (e.g., variables which are used several times
along the function regardless of loops).

c. Prefer multiply instruction
When a variable is multiplied by a constant, the compiler can
generate a combination of shifts and adds which is faster than
the multiply instruction. However, if you specify the -Os  option
the compiler uses the multiply instruction to save code.

d. Loop code size optimization
By default, the compiler generates code which tests a for loop
condition, once before the loop, and then at the end of each
loop. This saves one branch. With the -Os  option, the compiler
checks for the loop condition only at the end of the loop, in or-
der to save code.

e. Switch optimization
By default, code the compiler generates for a switch statement
may implement a binary search.  This improves the speed when
searching for the case in the statement to which control should
be transferred.  With -Os , the compiler prefers a sequantial
check of the different case values. This generates slower, but
more compact, code.

2. Static-Base (SB) relative access mode optimization
This optimization can significantly reduce the code size, and in most
cases does not adversly affect the speed.

The -sbrel  option instructs the compiler to generate code which ac-
cesses global and static variables, using a static-base (SB) relative
mode, to save code.

The static base register is defined as follows:
- R13 for the CR16A, CR32A and the CR16B, small model
- R12 in the CR16B large model.
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The static base memory is a contiguous block, and is limited to 32
bytes for the CR16, due to the limitation of small size displace-
ments, or ±32 kbytes for the CR32A due to the limitation of medium
size displacements. The compiler always uses medium size displace-
ment (CR32A), or small size displacement (CR16), thus reducing the
code size significantly: only 4 bytes per variables access (CR32A),
and only 2 bytes per variables access (CR16). The compiler directs
static base variables to a special section, .sb .

The linker must be given the address of the static base by defining the
symbol __STATIC_BASE_START in the linker directives file. In addition,
the SB register must be initialized to the address of the static base as
part of the start-up routine as in the following example:

movw $__STATIC_BASE_START,r13

Warning To avoid using the static base register for other purposes when
compiling with -sbrel , we advise you to compile all the pro-
gram C source files with this option.
If some of the source files are intentionally compiled without
this option, we recommend using the -ffixed-r13  (-ffixed-r12
in CR16B large programming model) compiler option for these files,
to prevent any usage of the SB register which changes its contents.

CR16 The static base can contain up to 17 1-byte variables (e.g., char )
and any number of 2-byte variables (e.g., int short ) as long as the
total size of the static base is not more than 32 bytes. All these vari-
ables must be global/static uninitialized variables.
You can specify the variables to be part of the static base using the
#pragma sbrel  directive (see Section 4.3.4). You should prefer the
most frequently accessed global or static variables of your applica-
tion to achieve maximum code saving. For the CR16 the symbol
__STATIC_BASE_START points to the start address of the static base.

The following line (from the CR16A default linker directives file)
shows how to allocate the static base:

__STATIC_BASE_START = ADDR(.sb);

SB Register

.sb

32
 B

yt
es
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CR32A The symbol __STATIC_BASE_START should point to the middle point
of the static base. The following line (from the CR32A default linker
directives file) shows how to allocate the static base:

__STATIC_BASE_START =
ADDR(.data) + (SIZEOF(.data)/2)+ (SIZEOF(.bss)/2);

This example assumes that the program data resides in two sections
which are consecutive in memory: the .data  section (initialized data)
and the .bss  section (uninitialized data). It locates the Static Base in
the middle of the memory region that is formed by these two sections.

Note: all non-constant global and static variables are included in the
static base. It can be hazardous to use variables in your program
that are defined in the linker directives file, and are bound to specif-
ic addresses (e.g., to memory-mapped I/O registers). Consider the
following variable:

extern volatile unsigned char io_reg;

which is defined in the linker directives file, and bound to a specific
address as follows:

_io_reg = 0xfc00;

The compiler attempts to use the SB relative mode when accessing this
variable. However, this variable is most probably located outside the con-
tiguous memory block of the .data  and .bss  sections, which form the
static base, and hence cannot be accessed using the SB relative mode.

To avoid this probelm, you can use the following method to access
memory-mapped I/O registers in your C code:

#define IO_REG *((volatile int *)0xfc00)

Now, instead of a variable we have a constant address, IO_REG. The
compiler does not attempt to use the SB relative mode to access this
address. See also Section 7.10.4 .

Another problem which may occur is that the total size of the .data
and .bss  sections in your aplication is greater than 64K. In this
case, you must decide which variables not to put in the sb area. You
should define the less frequently accessed variables as part of a user
section (see Section 4.3.3). Since only the variables that are in the
default sections are referenced through sbrel , variables in the user
section are referenced normally.

SB Register

.sb
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The following example shows how to define a variable in this man-
ner:

#pragma section (“.ex_zone”, var1,var2)

int var1[100];

char var2;

The variables var1 and var2 are put in the .ex_zone  section, and
are not referenced through sbrel. The .ex_zone  section must be de-
fined in your linker definiton file.
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Chapter 4

EXTENSIONS TO THE C LANGUAGE

4.1 INTRODUCTION

The CompactRISC C compiler provides several language features not
found in ANSI standard C. Some of these extensions originate from the
GNU C compiler on which the CompactRISC compiler is based. The
goals of these extensions are:

• To enable better programming in an embedded environment.

• To enable programmers to take advantage of specific features of the
CompactRISC architecture.

• To allow more control over the compilation process.

4.2 FAR VARIABLES (CR16 ONLY)

The __far  qualifier, recognized by the CR16 compiler, is used to denote
variables whose memory address can be 65536 (64K), or above.

The CR16 architecture supports a data address-space in the range 0-
256K (18-bit addressing). However, data in the range 64K - 256K (which
we call "far data") has a unique aspect. If a pointer to data is below 64K,
the compiler generates code which accesses this data using a register-
relative addressing mode. The pointer value is copied to the register pri-
or to accessing the data. Since a CR16 register has 16 bits, it can point
to any address in the range 0-64K. For a pointer to far data, the com-
piler must use the far-register relative addressing mode. Two consecu-
tive registers are required to hold the value of the pointer, since it
contains more than 16 bits. Therefore, if you have a pointer that may
point to far data you must use the __far  qualifier to inform the compil-
er. For example:

__far int *p;

Clearly, using a far pointer is slower than using a normal pointer, since
a far pointer must be loaded into two registers rather than one. You
should, therefore, declare a pointer as a far pointer only if you are sure
that it is going to point to far data at some stage.

Arrays in the far-data address range should also be declared as far. For
example:
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__far char a[1000];

In addition to far pointers, you should also declare any variable in the
far-data address range, whose address may be taken, as far. For example:

__far int i;
void foo(__far int *);
...
foo(&i);

In general, it is a good practice to define any variable that may reside in
the far data address space as far.

Note that declaring a variable as far does not automatically place it in a
memory address above 64K. To place a far variable above 64K, use the
section pragma (Section 4.3.3).

4.3 PRAGMAS

ANSI C defines a #pragma  directive which is the universal method for
extending the space of directives.

The CompactRISC C Compiler uses the #pragma  directive in the follow-
ing cases:

• #pragma interrupt

• #pragma trap

• #pragma set_options

• #pragma reset_options

• #pragma section

• #pragma sbre l

4.3.1 Interrupt/Trap Pragma

The interrupt/trap handler is written as a regular C routine, in the usu-
al C function definition syntax.

Example void hndlr_foo(void)
{

printf("division by zero");
exit (1);

}

The function is designated as an interrupt/trap handler by using a spe-
cial #pragma  to mark it as such.
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Syntax for interrupts:

#pragma interrupt ( function_name )

Syntax for traps:

#pragma trap (function_name )

function_name  is the name of the function to be marked as an inter-
rupt/trap handler.

Example #pragma trap(hndlr_foo)

Only the registers used in the interrupt/trap routine (and the scratch
registers if the interrupt/trap calls another function) are saved. For
further details about the standard calling convention, see Chapter 6.

The compiler issues a warning if a function is marked as an inter-
rupt/trap handler using the #pragma directive, but no definition of the
function was found in the compiled module.

Multiple #pragma  directives with the same function name are consid-
ered errors, unless they are identical.

Restriction The #pragma  directive must appear before any declaration or definition
of the function.  The placement of the #pragma  interrupt/trap in any
other location results in an error message.

Using
interrupt/trap
handlers

It is your responsibility to install the address of the interrupt/trap han-
dler in the proper entry of the interrupt dispatch table (see the example
presented in Appendix C for further information).

You may not call an interrupt/trap handler directly from the C code.
This is because the instructions for returning from the interrupt/trap
routine, and those for returning from a regular routine, are different.

Note, although trap and interupt pragma have the same effect, for fu-
ture compatability we recommend that you use different pragma for
trap and interrupt routines.

4.3.2 Set/reset Options Pragma

This pragma is used for setting/resetting compilation options from with-
in the source file. The set_options  pragma receives as a parameter a
constant string which consists of a list of compiler options separated by
spaces. The set_options  pragma adds the options received as a pa-
rameter to those that are currently set.
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The reset_options  pragma has no parameters and resets the options
to those set at the start of the compilation.

Notes The pragma can appear only between function definitions.

If an option has two notations, you must use the second one (full
name), and not the short form, which the set_options  pragma
does not recognize. See Section 2.3.3 for more details.

Example Consider two functions, f1  and f2 , both containing loops that we want
to optimize using loop unrolling. In addition, we do not want f2  to use
r10  as it calls a function which destroys r10 .

#pragma set_options("-funroll-loops")
f1(){

<loop>
...

}

#pragma set_options("-ffixed-r10")
f2(){

<loop>
destroy-r10();
...

}

#pragma reset_options()

4.3.3 Section pragma

The section pragma allows you to place variables in specific user-
defined sections. This is especially useful when there are special mem-
ory areas in which you would like to place specific variables.

#pragma section( section_name , var1 , ..., varn )

The first parameter section_name  is a constant string. It should be
limited to six characters. The following parameters, varn , are variable
names.

The variables received as parameters are placed in a section whose
name is section_name  followed by an underscore ( _ ) and the align-
ment of the variable (i.e., 1, 2 or 4). The separation into different sec-
tions, based on the alignment, minimizes the amount of wasted space in
the allocation of the variables.

The type of the section (bss, const, initialized data) is determined
according to the first variable in its list.  You can not mix different types
of variables in one user-defined section. An attempt to do so, results in
a warning message.
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The section pragma must precede the declaration of the variables to
which it refers.

Example You have an area of fast memory between addresses 0xff00 and 0xffff
(inclusive). To place frequently-used global variables in that memory,
you declare the variables as follows:

#pragma section (“.fast”, glob_flags, glob_counter)

unsigned char glob_flags;
short glob_counter;

The generated assembly file appears as follows:

.globl  _glob_flags

.section        .fast_1,”b”

.align  1
_glob_flags:

.space  1

.globl  _glob_counter

.section        .fast_2,”b”

.align  2
_glob_counter:

.space  2

To link this file (and any other files that were similarly compiled) so that
these variables reside in the fast memory, the linker definition file
should take the following form:

MEMORY {
...
/* Define fast memory area */
fast_mem:       origin=0xff00, length=0x100
...

}

SECTIONS {
...
/* Direct the .fast section (a unification of all
    .fast_* input sections) to fast memory.
*/
.fast ALIGN(4) INTO(fast_mem):

{*(.fast_4) *(.fast_2)*(.fast_1)}
...

}

4.3.4 SB Relative Pragma (CR16 only)

With the SB relative pragma you select the variables that are directed to
the static base when you use the -sbrel  option (see Pages 2-10 and
3-4).
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#pragma sbrel(var1, var2, ...)

If you select a variable for the static base with #prgama sbrel , it is ac-
cessed in SB relative mode, which saves code (only two bytes per ac-
cess). Since the static base is limited in space to 32 bytes (see Page 3-4)
it makes sense to select the most frequently accessed variables in the
program for the static base.

The SB relative pragma must precede the declaration of the variables to
which it refers.

Either uninitialized variables or constant variables may be selected for
the static base. However, you can not select variables of both types, i.e.,
all the selected variables must be either uninitialized variables, or con-
stant variables.

4.4 VARIABLES IN SPECIFIED REGISTERS

The CompactRISC C compiler allows you to force global and local vari-
ables into specific hardware registers.

Registers that are assigned to global variables are reserved throughout
the program.  This is useful in programs which have a few global vari-
ables that are frequently accessed.

When a local variable is specified to be in a specific register, the compil-
er does not necessarily reserve that register for the variable throughout
the function. The compiler analyses the function, and if there are code
segments in which the value in the variable is not used until the next
write to the variable, or until the end of the function, the compiler might
use the register for other purposes.

Global
register
variables

In the CompactRISC C Compiler, you can define a global register vari-
able by adding an asm statement, whose parameter is the name of the
register, to a register variable declaration. For example:

register int *foo __asm__("r9");

where r9  is the name of the register which should be used.

Assigning a certain register to a global variable reserves that register en-
tirely for this use, at least within the current compilation unit. The reg-
ister is not allocated for any other purpose in the functions in the
current compilation unit.



CompactRISC C Compiler Reference Manual EXTENSIONS TO THE C LANGUAGE  4-7

Always choose a non-scratch register (i.e., r7  to r13 and r7  to r12  for
CR16B large programming model) for a global variable. Non-scratch reg-
isters are saved and restored by function calls, and thus library rou-
tines do not clobber them. For more details about scratch and non-
scratch registers refer to Chapter 6.

Furthermore, if you intend to access a global register variable from in-
terrupt or trap handlers, or from more than one thread of control, and
you are using the CompactRISC run-time libraries, we strongly recom-
mend that you use only registers r11 , r12 , r13  for global variables (r10 ,
r11 , r12  for CR16B large programming model). Since the CompactRISC
run-time libraries do not use these registers, you can safely access a
global register variable (from interrupt or trap handlers, or from more
than one thread of control), only if it is located in one of those registers
(assuming the program uses the run-time libraries). Remember, if you
use the -sbrel  option, r13  (or r12  in case of CR16B large programming
model) is used as a pointer to the static-base, and therefore should not
be allocated for a global variable in this case.

It is not safe for a function, foo , that uses a global register variable to
call another such function, bar , by way of a third function, lose , that
was compiled without knowledge of this variable (i.e., in a different
source file in which the variable was not declared).  This is because
lose  might save the register, and put some other value there.

Example x.c :
register int globreg __asm__(“r11”);
foo()
{

globreg = something;
lose();

}

bar()
{

use(globreg);
}

y.c :
lose()
{

...
bar();
...

}

As you can see, if y.c  is compiled without the knowledge that r11  is
used as a global register variable, lose  might use it for other purposes
and then bar  will not see its original value.



CompactRISC C Compiler Reference Manual EXTENSIONS TO THE C LANGUAGE  4-8

In conclusion, we recommend that you distribute the information about
the usage of any register as a global variable to all the program’s source
files. There are two possible ways of doing this:

• Define the global register variable in a header file, and include this
header file in all the source files.

• Compile all the source files which do not use the global register
variable using the -ffixed- REG option (where REG is the register
allocated for the global variable) to prevent the functions in these
files from using REG for any purpose.

Global register variables may not have initial values. An executable file
has no means of supplying initial contents for a register. In addition,
the extern  storage class specifier may not be used for global register
variables, since memory allocation is, in any case, not performed.

Local register
variables

You can define a local register variable, with a specified register, in a
similar manner to a global variable, except that a local variable appears
within a function.

Defining such a register variable does not reserve the register; it re-
mains available for other uses in places where flow control determines
that the variable's value is not needed. Excessive use of this feature
may leave too few available registers to compile certain functions.

Note If you use the -Os  option, and you also allocate registers for vari-
ables, the way you select those registers may affect the compiler-
generated code.
When you use -Os , the compiler selects non-scratch registers as fol-
lows:

If one non-scratch register is required then r7  must be selected,
if two non-scratch registers are required then r7  and r8  must
be selected, if three then r7 , r8  and r9  must be selected and so
on.

Thus a contiguous range of non-scratch registers, starting with r7 ,
must be selected. If, for a variable, you allocate a non-scratch regis-
ter that the compiler would otherwise use, you disturb the compiler
and the resulting code may not be optimal. Therefore, when select-
ing registers for variables, start first with r13  (r12  for CR16B large
programming model), then if you need another register select r12
and so on. This disturbs the compiler as little as possible.
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4.5 INLINE FUNCTIONS

By declaring a function inline , you can direct the compiler to integrate
its code into the code for callers. This makes execution faster by elimi-
nating the function-call overhead. In addition, if any of the actual argu-
ment values are constants, you do not need to include all of the inline
function’s code, which allows simplifications at compile time.

The compiler respects a declaration of function as an inline  function
only when optimizations are in effect (-O option is used).

To declare a function inline, use the __inline__  keyword as a qualifier
in its declaration.

Example __inline _
int
inc (int *a)
{

(*a)++;
}

The option -finline-functions  makes the compiler try to inline sim-
ple functions. Note that certain usages in a function definition can
make it unsuitable for inline substitution.

If all calls to a function, that is both inline and static , are integrated
into the caller, and the function’s address is never used, the function’s
own assembler code is never referenced. The compiler does not actually
output assembler code for the function.

For various reasons, some calls can not be integrated (in particular,
calls that precede the function’s definition, and recursive calls within
the definition). For non-integrated calls, the function is compiled to as-
sembler code as usual. A function must also be compiled as usual if the
program refers to its address, because that can not be inlined.

When an inline function is not static , the compiler assumes that there
are calls from other source files; since a global symbol can be defined
only once in any program, and calls therein can not be integrated. A
non-static  inline function is, therefore, always compiled on its own in
the usual fashion, although it may be inlined in functions that are in
the file in which it is defined.

If you specify both inline and extern  in a function definition, the defi-
nition is used only for inlining. A function is never compiled on its own,
not even if you refer to its address explicitly. Such an address becomes
an external reference, as if you had only declared the function, and had
not defined it.
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The combination of __inline__  and extern  can be used like a macro.
Put a function definition in a header file, with these keywords, and copy
the definition (without __inline__  and extern ) to a library file. The
definition in the header file causes most calls to the function to be in-
lined. Any remaining uses of the function refer to the copy in the li-
brary.

4.6 DOUBLE SLASH (‘//’) COMMENTS

Similar to C++, a double slash (‘//’ ) can be used to denote a comment.
Anything following the double slash until the end of the current line, is
treated as comment.
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Chapter 5

RUN-TIME LIBRARIES

5.1 INTRODUCTION

The CompactRISC run-time libraries provide run-time support for the
CompactRISC C Compiler. The following list summarizes the contents of
these libraries according to functional groups:

5.1.1 The libc  Library

Standard
ANSI-C Library
Functions

The CompactRISC standard ANSI-C library is based on the Dinkum C
library by Dinkumware Ltd. This library includes functions such as
standard I/O functions (e.g., printf() ), string processing functions
(e.g., strcpy() ), dynamic memory allocation functions (e.g., malloc() ),
and mathematical functions (e.g. sin() ).

Low-level I/O
functions

This group includes low-level I/O functions, which implement the
CompactRISC virtual I/O mechanism. This mechanism enables a pro-
gram, which is executed on a development board, to read data from, or
write data to, a host computer (including file access), using a communi-
cation protocol with the CompactRISC debugger which runs on the
host. This group includes functions like read() , write() , or open() .
These low-level functions are used by some of the standard ANSI-C
functions which deal with standard I/O.  You may also call them direct-
ly; see Section 5.3 for details.

32-bit emulation Applicable for the CR16 development toolset only. This group includes
functions which provide long int (32-bit) emulation for CR16. The CR16
C compilers automatically calls these routines to implement certain 32-
bit operations, such as multiplication and shift. See Section 5.4 for
more details.

Division emula-
tion

This group includes division and modulu emulation functions. Currently,
the CompactRISC architectures do not provide a hardware division-
instruction, and therefore division must be emulated in software. The
CompactRISC C compiler automatically calls these functions to imple-
ment division and modulu operations. See Section 5.5 for more details.

Series 32000 in-
struction emu-
lation

This group includes emulation functions for National Semiconductor Series
32000 microprocessor instructions. Thus they also provide backward com-
patibility with the GNX compiler. See Section B.4 for more details.
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5.1.2 The libhfp  and libd  Libraries

Floating-point
emulation

This group includes floating-point emulation functions. The Compact-
RISC C Compiler automatically calls these functions to implement float-
ing-point operations when a floating-point unit is not available in the
target hardware.

If your program does not need floating-point operations, you can use a
floating-point dummy library, libd , instead of libhfp . This is necessary
if parts of the program can perform floating-point operations, but are not
executed (for example, although the printf  function can print variables
of type float  and double , many programs do not require this facility).

5.1.3 The libstart  Library

ADB support
functions

This group includes functions which support the development of software
for an Application Development Board (ADB). These functions include the
default start-up routine, default interrupt dispatch table and default trap
handlers, which are essential for debugging the application program.

5.1.4 Using the Libraries

The CompactRISC libraries are used as inputs to the CompactRISC
linker. There are two ways of including the CompactRISC libraries in the
link process, automatic invocation and direct invocation.

• When the linker is automatically invoked by the compiler driver
(crcc ), some CompactRISC libraries are specified to the linker by
default, and you can add others.

• When the linker is invoked directly, you must specify each library
required by your program to complete the link process.

Automatic link-
er invocation

The default invocation of the crcc  driver tells the linker to include the
following libraries in the linking process: libstart , libc , and libd .

If your program needs to perform any floating-point operations, or one
of the standard mathematical functions (which themselves perform
floating-point operations), invoke crcc  with the -KFemulation  option.
In this case, the compiler tells the linker to use the real floating-point
emulation library (libhfp ) rather than the floating-point dummy library
(libd ). Alternatively, If you invoke the linker directly (i.e., using the cr-
link  command and not via crcc ) add the -lhfp  option to the invoca-
tion line. The linker then uses libhfp  in the link process.
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Direct linker in-
vocation

If you invoke the linker directly, use -l library-name-extension to specify
each library you want to use, where library-name-extension is the name
of the library, excluding the lib  prefix. For example, to include the
same libraries as used by the compiler by default in the linking process,

invoke the linker as follows:

crlink ...  -lstart -lc -ld

To include floating-point emulation, replace -ld  by -lhfp , or use the
-KF emulation option.

To use libraries that are compatible with TMON versions lower than 2.1,
replace -lstart  with -ladb .

Refer to the CompactRISC Toolset - Object Tools Reference Manual. for
detailed explanations of the CompactRISC linker invocation.

CR16A, CR16B
large and small
model libraries

The CR16B toolset includes three sets of run-time libraries. Two sets
are used for CR16B: one for programs that use the small programming
model, and one for programs that use the large programming model.
The third set is CR16A compatible. The CompactRISC linker automati-
cally selects the appropriate set of run-time libraries according to the
type of the objects being linked.

5.1.5 Re-entrant Aspects of Libraries

What is a
re-entrant
function?

A function is re-entrant if it can be interrupted during execution, and
invoked by a call from within an interrupt or a parallel task. The new
instance of the function has no effect on the interrupted instance. The
two instances of the function do not interfere with each other. The in-
terrupted instance of the function resumes processing at the same point
that it was interrupted. This cycle can be performed any number of
times.

If you want a function to be re-entrant, avoid writing to global and stat-
ic variables.

All library functions are re-entrant, except for the standard I/O func-
tions, dynamic memory allocation functions, and a few other functions
as detailed in the lists of standard functions in Section 5.2.

I/O functions are not re-entrant since they use global opened file
arrays, and each stream uses one I/O buffer that could be incorrectly
maintained if both the interrupting, and the interrupted routines use
the same stream.

Memory allocation functions, like malloc()  are not re-entrant, since
they use static variables to maintain the free-memory-list.
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For a complete list of re-entrant and non re-entrant functions, see Sec-
tion 5.2.

5.1.6 Initialization Requirements

An important issue in embedded systems software is the initialization of
the program’s data. The CompactRISC development tools provide a
mechanism that supports the following type of initializations:

• Copying initialized data from ROM to RAM.

• Clearing the uninitialized data to binary zeros.

Refer to the CompactRISC Toolset - Object Tools Reference Manual for de-
tailed explanation of data initialization.

You can choose to use, or not use, these initializations as part of your
program. However you should be aware that part of the CompactRISC
library functions assume that data initialization is performed at the be-
ginning of the program. Library functions, which require any kind of
data initialization, are indicated as such in the detailed descriptions be-
low.

5.2 STANDARD ANSI C LIBRARY FUNCTIONS

The standard library conforms to the ANSI standard, with a few excep-
tions due to environment limitations, efficiency and re-entrancy consid-
erations. For detailed descriptions of the functions, refer to any
Standard C library documentation. The non-ANSI exceptions are:

• Time functions are not supported.

• Locale functions are not supported.
The environment is set to the defaults defined in the ANSI stan-
dard. ASCII code is assumed. Multi-byte characters are not sup-
ported.

This section lists all the supplied standard library functions. It details
any data-initialization requirements for each function, I/O low-level
calls that are made by each function, and whether the function is re-en-
trant or not. It also contains additional information, extensions and ex-
ceptions from a standard ANSI C library reference manual. The list is
organized according to the standard header-files containing each func-
tion prototype. Make sure that you use the appropriate header file when
using each library function.

The standard header-files reside in the include  directory, located in
the CompactRISC development tools root directory.
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assert.h

The diagnostic message format of assert()  is:

<file>:<source file> <failed condition> -- assertion failed
abort -- terminating

ctype.h

All functions have macro overrides. To make a function call instead of
using the macro, use parenthesis around the function name. For exam-
ple, (isdigit)(c)  is not translated as a macro by the cpp .

errno.h Error codes, in addition to the standard EDOM and ERANGE, are detailed
for each low-level function that uses them. Functions that use errno
global variable are not re-entrant.

float.h CR32A uses 32-bit representation for float type, and 64-bit representa-
tion for double type, to conform to the IEEE 754 standard for floating
point.

CR16 uses 32-bit representation for both float and double types.

math.h The CR32A compiler uses 64-bit representation for double type; the
CR16 compiler uses 32-bit representation. Thus the precision of math-
ematical functions, from math.h . differs between cores.

Routine
Zero-Initialization

Required
I/O Low-level Calls Re-entrant

assert() no write() no

Routine
Zero-Initialization

Required
I/O Low-level Calls Re-entrant

isalnum() no none yes
isgraph() no yes
isspace() no yes
isalpha() no yes
islower() no yes
isupper() no yes
iscntrl() no yes
isprint() no yes
isxdigit() no yes
isdigit() no yes
ispunct() no yes
tolower() no yes
toupper() no yes
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For each double-precision function, there is an equivalent single-
precision function. Single-precision functions have the same names as
double-precision functions, with an added f  (e.g., acos()  becomes
acosf() ). In the CR16 libraries, all functions work in single precision,
(e.g., acos()  and acosf()  are both the single precision version)

Mathematical functions use floating-point emulation routines. To use
the mathematical library, invoke crcc  with -KFemulation . This links
your program with the floating-point emulation library. If you invoke
crlink  directly, specify -lhfp  after -lc .

The mathematical functions are listed below:

setjmp.h

Routine
Zero-Initialization

Required
I/O Low-level Calls Re-entrant

acos() no yes
asin() no yes
atan() no yes
atan2() no yes
ceil() no yes
cos() no yes
cosh() no yes
exp() no yes
fabs() no yes
floor() no yes
fmod() no yes
frexp() no yes
ldexp() no yes
log() no yes
log10() no yes
modf() no yes
pow() no yes
sin() no yes
sinh() no yes
sqrt() no yes
tan() no yes
tanh() no yes

Routine
Zero-Initialization

Required
I/O Low-level Calls Re-entrant

setjmp() no no
longjmp() no no
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signal.h signal()  and raise()  only handle internal program-signals. External
signals are not handled. signal()  installs handlers that can be invoked
by raise()  from inside the program.

stdarg.h

stddef.h Provides standard definitions.

stdio.h File-handling functions and macros. Files are handled as streams, that
hold file information, and maintain I/O buffering. In order to implement
the I/O operations, these functions call some low-level I/O function
(such as read() , write() , etc.), that interfaces with the host file-sys-
tem through the debugger in development environment.

You can use the extension fileno(FILE *fp)  to get the file descriptor
associated with a stream. This returns the integer file-descriptor used
by the stream.

A buffer is allocated for each file from the first I/O operation it involves,
until you close the stream. You may use setvbuf()  standard function
to allocate your own buffer of any size. Unless you allocate the file by
yourself, a buffer of size BUFSIZ (496 bytes) is allocated on the heap (by
malloc ). Be careful to allocate enough space to the heap in this case. If
you are working simultaneously on N files (including stdin , stdout
and stderr ), you need 496 x N bytes on the heap just for the streams’
buffers.

Stream functions are not re-entrant.

The printf()  and scanf() %p  conversion specification is treated as %x.
lp  does the same as %lx . You may use these qualifiers to print near or
far pointers.

To print far strings, you can use the %S qualifier instead of the %s qualifier.

If you want to handle floating-point entities in formatted I/O you must
invoke crcc  with -KFemulation , or, if you invoke crlink  directly, use
the -lhfp  flag. This links your program with the floating point emula-
tion library libhfp . By default, programs are linked with a dummy
floating point emulation library libd , in order to save code.

Routine
Zero-Initialization

Required
I/O Low-level Calls Re-entrant

raise() yes no
signal() yes no

Routine
Zero-Initialization

Required
I/O Low-level Calls Re-entrant

va_arg no yes
va_start no yes
va_end no yes
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Among stdio  functions, only sprintf() , vsprintf()  and sscanf()
are re-entrant.

Standard I/O functions require initialization of the program’s data, in
addition to the zero-initialization requirements detailed below.

Routine
Zero-Initialization

Required
I/O Low-level Calls Re-entrant

clearerr() no no
fclose() no close() no
feof() no no
ferror() no no
fflush() no write() no
fgetc() no read() no
fgetpos() no lseek() no
fgets() no read() no
fopen() no open() no
fprintf() no write() no
fputc() no write() no
fputs() no write() no
fread() no read() no
freopen() no open(), close() no
fscanf() no read() no
fseek() no lseek() no
fsetpos() no lseek() no
ftell() no lseek() no
fwrite() no write() no
getc() no read() no
getchar() no read() no
gets() no read() no
perror() yes no
printf() no write() no
putc() no write() no
putchar() no write() no
puts() no write() no
remove() no unlink() no
rename() no rename() no
rewind() no lseek() no
scanf() no read() no
setbuf() no no
sprintf() no yes
sscanf() no yes
tmpfile() no no
tmpnam() yes no
ungetc() no no
vfprintf() no write() no
vprintf() no write() no
vsprintf() no yes
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The following functions have macro overrides:

fgetpos() , fseek() , fsetpos() , ftell() , getc() , getchar() ,
putc() , putchar() .

stdlib.h The allocation functions (malloc  and calloc ) allocate blocks of memory
space on the heap using the sbrk()  function, as detailed below.

The macro NULL expands to (void *) 0 .

sbrk()  allocates memory in heap.

char *sbrk(int incr)

sbrk()  allocates incr  bytes of memory from the unallocated memory
heap and returns the address of its lowest byte. The heap is defined as
a continuous area which resides between two symbols - _HEAP$_START
and _HEAP$_MAX, predefined in the linker directive file. For the CR16,
the heap area must reside in the lowest 64 Kbytes of memory (far point-
ers are not handled by sbrk ). By default, the heap area resides under
the program stack, such that the stack grows down towards the heap,
and the heap grows up towards the stack. In such a case, sbrk()  en-

Routine
Zero-Initialization

Required
I/O Low-level Calls Re-entrant

abort() no close() no
abs() yes yes
atexit() yes no
atof() no yes
atoi() yes yes
atol() yes yes
bserach() no yes
calloc() yes no
div() yes yes
exit() yes close() no
free() no no
getenv() no getenv() no
labs() no yes
ldiv() no yes
malloc() yes no
qsort() no yes
rand() yes no
realloc() yes no
srand() yes no
strtod() no yes
strtol() no yes
strtoul() no yes
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sures that the upper limit of the heap is at least 1024 bytes under the
stack pointer, otherwise it does not allocate any more space. As there is
no run-time check of the stack, you must take care to allocate enough
space for both the heap and the stack, according to your specific re-
quirements. See also the linker-directive file in the CompactRISC Toolset
- Object Tools Reference Manual.

The exit()  routine first calls atexit()  to execute any functions that
you selected for execution on program termination. It then calls either
_exit() or _eop() . The _exit()  function is called by exit()  only if
the program performed virtual I/O. It performs the necessary cleanup,
i.e., file closing, before final exit. The _eop()  function is mapped to the
monitor, and is called for final exit.

string.h

The CompactRISC CR16 library routines support only near pointers
(16-bit). To handle far pointers, an additional set of functions is provid-
ed. These functions are of the form: far_ original-function-name
(i.e., far_memcpy()  performs the same as memcpy() , but handles and
returns far pointers).  All these functions are listed below:

Routine
Zero-Initialization

Required
I/O Low-level Calls Re-entrant

memchr() no yes
memcmp() no yes
memcpy() no yes
memmove() no yes
memset() no yes
strcat() no yes
strchr() no yes
strcmp() no yes
strcpy() no yes
strcspn() no yes
strlen() no yes
strncat() no yes
strncmp() no yes
strncpy() no yes
strpbrk() no yes
strrchr() no yes
strspn() no yes
strstr() no yes
strtok() yes no
strerror() no yes

Routine
Zero-Initialization

Required
I/O Low-level Calls Re-entrant

far_memchr() no yes
far_memcmp() no yes
far_memcpy() no yes
far_memmove() no yes



CompactRISC C Compiler Reference Manual RUN-TIME LIBRARIES  5-11

5.3 LOW-LEVEL I/O FUNCTIONS

To implement I/O and file-handling functions, the standard library calls
low-level functions that have a direct interface to the monitor. These
functions can be thought of as system calls; their interface is similar to,
but not fully compliant with, that of the POSIX API. Thus we use the
term “system calls” to refer to these low-level routines.

All I/O is performed via file descriptors, which are small integer num-
bers. When a program starts, the file descriptor 0 is associated with the
console terminal in read mode (i.e., the keyboard) and file descriptors 1
and 2 are associated with the console terminal in write mode (i.e., the
screen).

Programs open files on the host system with the open()  function, and
perform I/O and other file operations with the functions detailed below.
All standard functions which handle I/O and files, call these functions.

These low-level functions are dependent on the development-board
monitors. You may use them for debugging during the program develop-
ment phase (e.g., writing error messages to the terminal, storing and re-
trieving results from files, etc.). However, a program that depends on
these functions does not work in any other target system.

While these simulated “system calls”, and the libraries built on them,
provide a very easy and conceptually clean interface, they may be too
bulky for applications which do not require extensive I/O support. For
such applications you must trim the library according to your needs.

far_memset() no yes
far_strcat() no yes
far_strchr() no yes
far_strcmp() no yes
far_strcpy() no yes
far_strcspn() no yes
far_strlen() no yes
far_strncat() no yes
far_strncmp() no yes
far_strncpy() no yes
far_strpbrk() no yes
far_strrchr() no yes
far_strspn() no yes
far_strstr() no yes
far_strtok() yes no

Routine
Zero-Initialization

Required
I/O Low-level Calls Re-entrant
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The system calls documented here only work in conjunction with the
CompactRISC Debugger. They use the debugger to perform I/O on the
host file-system.

For independent programs, you can make your own I/O routines. This
section provides the guide lines for making a system-dependent set of
routines for any system. The rest of the library functions work correctly
as long as the simulated system calls are replaced with compatible rou-
tines.

Two include files, fcntl.h  and unistd.h , contain all the low-level I/O
functions prototypes and related macros. Theses functions are de-
scribed below:

fcntl.h Includes the open()  function prototype, and the flags macro definition.

close closes  a file

#include <unistd.h>

int close(int fd)

close()  closes a file and removes its descriptor from the file descriptors
reference table.

open opens a file for reading or writing or creates a new file

#include <fcntl.h>

open() (char *path, int flags, int mode)

open()  opens the file path  for reading and/or writing on the host sys-
tem, as specified by the flags  argument, and returns a descriptor for
that file.

The flags  argument may indicate that the file is to be created if it does
not already exist (by specifying the O_CREAT flag).

path  is the address of a string of ASCII characters representing a path-
name, terminated by a null character.

To form the flags specified, OR the following values:
O_RDONLY opens for reading only
O_WRONLY opens for writing only
O_RDWR opens for reading and writing
O_APPEND appends to the file if exists
O_CREAT creates file if it does not exist
O_TRUNC truncates size to 0
O_EXCL error if create and file exists
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Opening a file, with O_APPEND set, appends to the end of the file, if the
file exists.  If O_TRUNC is specified, and the file exists, the file is truncat-
ed to zero length. If O_EXCL is set with O_CREAT, and the file already ex-
ists, open()  returns an error.

This can be used to implement a simple exclusive access-locking mech-
anism.  Upon successful completion, a non-negative integer termed a
“file descriptor'' is returned.

No program may have more than _FOPEN_MAX file descriptors open si-
multaneously.

In the event of an error, errno  is set:

EPERM The pathname contains a character with the high-order bit
set.

ENOTDIRA component of the path prefix is not a directory.

ENOENT O_CREAT is not set and the named file does not exist.

EACCES A component of the path prefix denies search permission.

EACCES The required permissions (for reading and/or writing) are
denied for the named file.

EISDIR The named file is a directory, and the arguments specify it
is to be opened for writing.

EROFS The named file resides on a read-only file system, and the
file is to be modified.

EMFILE Too many open files.

ENXIO The named file is a character-special or block-special file,
and the device associated with this special file does not ex-
ist.

ETXTBSYThe file is a pure procedure (shared text) file that is being
executed, and the open()  call requests write access.

EFAULT path  points outside the process's allocated address space.

EEXIST _EXCL has been specified and the file exists.

See Also close(), lseek(), read() and write()

unistd.h Includes prototypes of low-level functions detailed below.

lseek moves the read/write pointer

off_t lseek(int fildes, off_t offset, int whence)



CompactRISC C Compiler Reference Manual RUN-TIME LIBRARIES  5-14

The descriptor fildes  refers to a file on the host system or device open
for reading and/or writing.
lseek()  sets the file pointer of fildes  as follows:
If whence  is L_SET, the pointer is set to offset  bytes.
If whence  is L_INCR, the pointer is set to its current location plus offset .
If whence  is L_XTND, the pointer is set to the size of the file plus offset .
L_SET, L_INCR  and L_XTND are defined in sys /type-h , automatically
included in unistd.h .
Upon successful completion, the resulting pointer location, as measured
in bytes from the beginning of the file, is returned.

Return Value Upon successful completion, a non-negative integer, the current file
pointer value, is returned. Otherwise, the file pointer remains un-
changed, a value of −1 is returned and errno  is set to indicate the error:

EBADF fildes  is not an open file descriptor.

EINVAL whence  is not a proper value.

EINVAL The resulting file pointer is negative.

See Also open()

read reads input

int read(int fildes, char *buf, int nbytes)

read()  attempts to read nbytes  of data from the object referenced by
the descriptor fildes  into the buffer pointed to by buf .

The read()  starts at a position given by the pointer associated with
fildes , see lseek() .

Upon return from read() , the pointer is incremented by the number of
bytes actually read.

Upon successful completion, read()  returns the number of bytes actu-
ally read and placed in the buffer.

The system guarantees to read the number of bytes requested if the de-
scriptor references a file which has that many bytes remaining before
the end-of-file, but in no other cases.

If the returned value is 0, then end-of-file has been reached.

Return Value If successful, the number of bytes actually read is returned. Otherwise,
−1 is returned and the global variable errno  is set to indicate the error:

EBADF fildes  is not a valid file descriptor open for reading.

EFAULT buf  points outside the allocated address space.

See Also open()
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rename changes the name of a file

int rename(char *old, char *new)

rename()  changes the file named old  to a file named new.  The filena-
me old  is effectively removed.  If new already exists, rename() ’s behav-
ior is undefined.

Return Value rename()  returns zero if the operation succeeds, nonzero if it fails.  The
global variable errno  indicates the reason for the failure. See the list of
Return Values below.

unlink removes directory entry of a file

unlink(char *path)

unlink()  removes the file on the host system whose name is given by
path .

Return Value Upon successful completion, a value of 0 is returned. Otherwise, a val-
ue of −1 is returned and errno  is set to indicate the error:

EPERM The path contains a character with the high-order bit set.

ENOENT The pathname is too long.

ENOTDIRA component of the path prefix is not a directory.

ENOENT The named file does not exist.

EACCES Search permission is denied for a component of the path
prefix.

EACCE Write permission is denied on the directory containing the
link to be removed.

EPERM The named file is a directory and the effective user ID of
the process is not the superuser.

EBUSY The entry to be unlinked is the mount point for a mounted
file system.

EROFS The named file resides on a read-only file system.

EFAULT path  points outside the process's allocated address space.

ELOOP Too many symbolic links have been encountered in trans-
lating the pathname.

See Also close()

write writes to a file

write(int fildes, char *buf, int nbytes)

write()  attempts to write nbytes  of data to the object referenced by
the descriptor fildes  from the buffer pointed to by buf .
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write  starts at a position given by the pointer associated with fildes ,
see lseek() .

Upon return from write() , the pointer is incremented by the number
of bytes actually written.

Return Value Upon successful completion, the number of bytes actually written is re-
turned.  Otherwise, the file pointer remains unchanged, −1 is returned
and errno  is set to indicate the error:

EBADF fildes  is not a valid descriptor open for writing.

EFBIG An attempt is made to write a file that exceeds the process
file size limit or the maximum file size.

See Also lseek()  and open()

5.4 32-BIT EMULATION

The CR16 compiler issues these function calls to emulate each long int
operation.

Unless it is essential, avoid using long variables in CR16 programs, be-
cause this involves extra emulation code.

The library includes the following functions:

long __lshlsi3(long, int) /* logical left shift */

long __lshrsi3(long, int) /* logical right shift */

long __ashlsi3(long, int) /* arithmetic left shift */

long __ashrsi3(long, int) /* arithmetic right shift */

long __mulsi3(long, long) /* multiplication */

long __divsi3(long, long) /* signed division */

unsigned long __udivsi3(unsigned long, unsigned long)
/* unsigned division */

long _ _modsi3(long, long) /* signed remainder */

unsigned long __umodsi3(unsigned long, unsigned long)
/* unsigned remainder */
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5.5 DIVISION EMULATION

Division and remainder operations are performed by software emulation
routines. The compiler replaces each division, or remainder, operation
with these function calls:

int _fast_quo(int, int) /* division of two integers */

int _fast_uquo(unsigned int, unsigned int)
/* division of two unsigned integers */

int _fast_rem(int, int) /* remainder from two integers division */

int _fast_urem(unsigned int, unsigned int)
/* remainder from two unsigned integers
division*/

5.6 FLOATING-POINT EMULATION

The Floating-Point Emulation Library (libhfp ) is used to create float-
ing-point programs for those CompactRISC micro-processors that lack
Floating-Point Unit hardware (FPU). libhfp  is a library of floating-point
arithmetic emulation routines.  It provides an efficient, low-cost, float-
ing-point solution for systems without an FPU, by emulating floating-
point unit instructions in software.

The CompactRISC libhfp  is partly based on floating-point emulation
code distributed among the source files of gcc  (GNU C Compiler).

The libhfp  floating-point emulation library supports virtually all the
arithmetic operations (see Table 5-1) of the IEEE 754 format floating-
point operands. However, libhfp  does not support the full flexibility
advocated by the ANSI IEEE Standard for Binary Floating-Point Arith-
metic (ANSI/IEEE Std 754-1985), such as a selection of four rounding
modes.  Issues of compatibility and conformity to IEEE/754 standards
are discussed in Section 5.6.1.

Using libhfp  has an adverse effect on the size of your program code.
Floating-point operation is translated to an emulation function call,
whose code is included in the final executable object file.

5.6.1 libhfp  Technical Specifications

The libhfp  library consists of fast emulation routines for the CR float-
ing-point instructions.
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When a program is compiled with the -KFemulation  option, the
CompactRISC compiler puts floating-point entities into an integer regis-
ter (or register pair if needed) and generates an emulation call whenever
a floating-point operation is required. The floating-point operands are
passed to the emulation routine in integer registers, using the standard
calling convention (see Appendix A). You can examine the generated
code by using the -S  compiler option.

The emulation routines are re-entrant; floating-point code may therefore
be used in signal and interrupt handlers.

Conformity to
IEEE/754

The libhfp  library is arithmetically compatible to the round-to-nearest
rounding mode of the IEEE 754 standard. It implements single and
double-precision floating-point numbers, using the IEEE 754 standard
formats.

In particular, the following ANSI/IEEE 754 features are emulated:

• Basic single-precision format (float)

• Basic double-precision format (long)

• Signed zero

• Round-to-nearest

The following IEEE/754 features are not supported by libhfp :

• Special (NaN, denormalized, infinity) arithmetic

• Round towards + ∞, round towards − ∞, round towards zero

• Unordered compare

• Inexact exception

• Reserved operand exception by the cmpf  and cmpl  instructions

• Division-by-zero exception

• Invalid operation exception

• Overflow/underflow exceptions

In addition, the libhfp  emulation routines have several other attributes
which may impact the way your code works:

• Floating-point emulation is re-entrant and interruptible. Thus inter-
rupt handlers may also use floating-point instructions. However, an
access to double-precision floating-point variables is not always an
atomic operation. This means that some code (such as an interrupt
handler) may cease to work, if it relies on the fact that the high-order
four bytes and the low-order four bytes of a global double precision
variable are atomically consistent (Floating-point data cannot have
the volatile property).

• Most floating-point instructions are emulated by libhfp  routine
calls. This means that the stack above the stack-pointer is corrupt-
ed. This is normally not a problem.
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The libhfp in-
terface

The CompactRISC C Compiler issues libhfp  function calls as follows:

The operands of the floating-point operation are passed to the emula-
tion routine in a group of consecutive integer registers, according to the
standard calling convention (see Appendix A). Double-precision oper-
ands are passed in consecutive pairs of registers, lower-order bits (man-
tissa lower part) are passed in the lower numbered register, and higher
order bits (exponent + sign + high-order bits of mantissa) are passed in
the higher numbered register.

In the CR32A architecture, the result of the floating-point operation per-
formed by the routine is returned in r0  if it is a single-precision oper-
and, or in r0  - r1  if it is a double-precision operand.

In the CR16 architecture, the result is always returned in r0  - r1 .

Example 1 The following code:

float i,j,k;
i = j*k;

is transformed in CR32A to:

loadd _j,r2
loadd _k,r3
bal ra,__mulsf3
stord r0, _i

Example 2 The following code:

double i,j,k;

i = j*k;

is transformed in CR32A to:

loadd _j,r2
loadd _j+4,r3
loadd _k,r4
loadd _k+4,r5
bal ra,_ _adddf3
stord r0,_i
stord r1,_i+4
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Table 5-1. Instructions Emulated By Calls to libhfp  Routines

* only in CR32A

Operation Emulation Routine

Add two floats float _ _addsf3 (float a1, float a2)

Add two doubles * double _ _adddf3 (double a1, double a2)

Subtract two floats float _ _subsf3 (float a1, float a2)

Subtract two doubles * double _ _subdf3 (double a1, double a2)

Multiply two floats float _ _mulsf3 (float a1, float a2)

Multiply two doubles * double _ _muldf3 (double a1, double a2)

Divide two floats float _ _divsf3 (float a1, float a2)

Divide two doubles * double _ _divdf3 (double a1, double a2)

Negate a float float _ _negsf2 (float a1)

Negate a double * double _ _negsf2 (double a1)

Convert double to float * float _ _truncdfsf2 (double a1)

Convert float to double * float _ _extendsfdf2 (double a1)

Convert long to float float _ _floatsisf (register long a1)

Convert long to double * float _ _floatsidf (register long a1)

Convert float to long long   _ _fixsfsi (float a1)

Convert double to long * long   _ _fixdfsi (double a1)

Convert float to unsigned long unsigned long _ _fixunssfsi (float a1)

Convert double to unsigned long * unsigned long _ _fixunsdfsi (double a1)

Return 0 if a1 = a2 int _ _eqsf2 (float a1, float a2)

Return non-zero if a1 ≠ a2 int _ _nesf2 (float a1, float a2)

Return value > 0 if a1 > a2 int _ _gtsf2 (float a1, float a2)

Return value ≥ 0 if a1 = a2 int _ _gesf2 (float a1, float a2)

Return value < 0 if a1 < a2 int _ _ltsf2 (float a1, float a2)

Return value ≤ 0 if a1 = a2 int _ _lesf2 (float a1, float a2)

Return 0 if a1 = a2 * int _ _eqdf2 (double a1, double a2)

Return non-zero if a1 ≠ a2 * int _ _nedf2 (double a1, double a2)

Return value > 0 if a1 > a2 * int _ _gtdf2 (double a1, double a2)

Return value ≥ 0 if a1 = a2 * int _ _gedf2 (double a1, double a2)

Return value < 0 if a1 < a2 * int _ _ltdf2 (double a1, double a2)

Return value ≤ 0 if a1 = a2 * int _ _ledf2 (double a1, double a2)
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Exception
handling

The following exception handling is performed by the libhfp  routines:

• An overflow in the result of a floating-point operation returns infin-
ity (either positive or negative, according to the sign of the result).

• An underflow (denormalized number) in the result of a floating-
point operation returns zero (positive or negative, according to the
sign of the result).

• A zero divisor in a division routine (_ _divsf3 , _ _divdf3 ) returns
quiet NAN.

5.6.2 Floating-point Emulation Examples

The following examples illustrate compiling and linking with floating-
point emulation:

Example 1 Compile and link the whetstone.c  benchmark program with libhfp .

crcc whetstone.c -O -KFemulation -o whetstone

Example 2 Assemble and link the w.s  program with libhfp .

crasm w.s
crlink w.o -lc -lhfp
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Chapter 6

STANDARD CALLING CONVENTIONS

6.1 CALLING CONVENTION

The calling convention is defined as part of the CompactRISC architec-
ture, and is supported by the CompactRISC Development Tools. The
calling convention consists of a set of rules which form a handshake be-
tween different pieces of code (subroutines), and define how control is
transferred from one to another. It thus defines a general mechanism
for calling subroutines and returning from subroutines.

If you develop your entire application in the C language, you may not be
aware of the calling convention since it is handled by the CompactRISC
C Compiler. To ensure compatibility between a calling subroutine (C
function) and a called subroutine use ANSI C function prototypes. This
ensures that a call to a function is compatible with its definition. In oth-
er words, it ensures that all arguments are correctly transferred from
the calling function to the called function.

6.1.1 Calling a Subroutine

The CompactRISC architecture usually uses the bal  or jal  instruction to
call a subroutine. Each of these instructions performs two operations:

• Saves the address of the following instruction in a specified general-
purpose register (pair of general-purpose register in CR16B large
model). This address is used as a return address for the called sub-
routine. According to the calling convention, the return address is
always saved in the ra  register (era-ra  register pair in CR16B large
model).

• Transfers control to a specified location in the program (the subrou-
tine address).

Example 1 bal ra, s # call the subroutine "s"

or

jal ra, r7 # call the subroutine whose address is stored
in r7

Example 2 For CR16B large model only:

bal (era,ra), s# call the subroutine "s"
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or

jal (era,ra), (r8,r7)# call the subroutine whose address is
   # stored in the register pair r7-r8

6.1.2 Returning from a Subroutine

The jump  instruction is used to return from a subroutine. The program
jumps to the return address, which is stored in the ra  register (era-ra
register pair in CR16B large model).

Example 1 jump ra # return to caller

Example 2 For CR16B large model only:

jump (era,ra)# return to caller

In the CR16B, the popret  instruction might also be used to return from
a function:

popret $1,ra

6.2 CALLING CONVENTION ELEMENTS

The elements of the calling conventions are as follows:

6.2.1 Passing Parameters to a Subroutine

The calling sequence loads some of the arguments to registers according
to a predefined convention. The registers used are the integer registers
r2 , r3 , r4 , r5 .

The arguments list is comprised of arguments which can be passed in
registers (qualified arguments) and arguments which can not be passed
in registers (non qualified arguments).

Qualified argu-
ments

Qualified arguments are of the following types:

• Integer types, pointer types.

• Structures with size less than, or equal to, the size of two registers
(e.g., 4 bytes in the CR16 compiler and 8 bytes in the CR32A com-
piler), and aligned to the size of one register.
If a structure member must be split between two registers, the
structure is disqualified.
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• In the CR16 compiler, long integers arguments and far pointers ar-
guments are passed in a pair of registers.

Non-qualified
arguments

Non-qualified arguments are of the following types:

• C structures or unions, other than those specified above.

• Arguments for which all the parameter registers are already allocat-
ed to other arguments.

6.2.2 Parameter Passing Algorithm

The following algorithm determines how parameters are passed to a giv-
en routine:

• The parameter list is scanned from left to right.

• Registers are allocated in ascending order (i.e., r2  is allocated be-
fore r3  etc.).

• A parameter, which is qualified to be passed in a register, is allocat-
ed the next free register (in the range r2 -r5 ).

• If a structure is to be passed in registers, its layout within the reg-
isters is as in memory. Fields are allocated in the order they are de-
clared, starting at the lower register. If two members reside in the
same register, the first is put in the least significant bits. The align-
ment of members within the structure is kept by also passing the
padding bytes.

• If a parameter cannot be passed in a register (either because it is
not qualified, or because the registers have been entirely allocated
to previous parameters), it is passed on the stack. Each parameter
on the stack is aligned to a size which is fixed per architecture (2
for CR16, 4 for CR32A). This alignment is relative to the address of
the first parameter on the stack, and not absolute.

Note A type mismatch between formal and actual parameters may pro-
duce incorrect results.  Use function prototypes to check parameter
consistency at compile time.

There is one exception to the rule stated above:

For C routines with a variable number of arguments, that are de-
clared as such using the ANSI C VARARGS declaration, all parame-
ters are put on the stack by the calling routine.  None of the
arguments are passed in a register.

The compiler recognizes some library routines as variable-number-of-
arguments routines (e.g., printf ).
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Note Failure to declare a routine with a variable number of arguments as
such, may result in erroneous results due to a mismatch between
caller and callee.

6.2.3 Returning a Value

A subroutine can return one value to its caller. The calling convention
uses the r0  register for passing the return value to the caller.

For example, consider the following C code:

return 5;

The assembly code generated from this line is:

Example 1 movw $5, r0 # pass return value
jump ra # return to caller

Example 2 For CR16B large model only:

movw $5, r0 # pass return value
jump (era,ra) # return to caller

When the returned value is of size greater than that of a single register,
the r0  - r1  pair is used (r0  having the lsb). This is the case for CR16
longs, single-precision fp values, far pointers, and for CR32A double-
precision fp values.

The only exception to this rule is a function that returns a structure. In
this case, the calling function puts the address of a structure in which
to store the result in r0 , and is responsible for the allocation needed.
The called function then uses r0  as a pointer to the resulting structure

6.2.4 Scratch and Non-scratch Registers

The calling convention divides the registers into two groups:

Scratch registers. Any of these registers can be freely modified by any
subroutine, without first saving a backup of their previous value. The
caller cannot assume that their value will remain the same after a sub-
routine has returned. If, for any reason, the caller needs to keep this
value, it is responsible for saving the scratch register, either on the
stack or in a non-scratched register, before calling the subroutine, and
to restore it after the subroutine has returned.
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Non-scratch registers. Before using any of these registers, a subrou-
tine must first store its previous value on the stack. On returning to the
caller the subroutine must restore this value. The caller can always as-
sume that these registers are clobbered by any subroutine that it has
called.

The calling convention defines r0  - r6  as scratch registers. All the other
general-purpose registers are defined as non-scratch, except sp  which is
used as a stack pointer and thus does not belong to any of these cate-
gories.

Note An exception to the rule for using scratch registers is an inter-
rupt/trap subroutine. This kind of subroutine must always save
and restore any scratch register that can be used during the inter-
rupt trap. This is because there is no real caller. The interrupt, or
trap, suspends another subroutine which is not aware of, or pre-
pared for, this interception. To protect it, its scratch registers must
be saved and restored so that the interrupt or trap is transparent.

6.2.5 Program Stack

The program stack is a contiguous memory space that can be used by
your program for:

• Allocating memory for local variables which are not in registers

• Passing arguments in special cases (see passing arguments to a
subroutine)

• Saving registers before calling a subroutine, or after being called
(see scratch registers)

The stack is a dynamic memory space which begins at a fixed location
(stack bottom) and grows towards lower memory addresses. Its lowest
address (also called top of stack) is changed dynamically and is pointed
to by the Stack Pointer register (SP). The stack pointer is kept aligned,
at all times, to the internal bus width, e.g., 2 for CR16, 4 for CR32A.
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Any subroutine can allocate space on the stack by changing the value
of the SP register to adjust the top of stack. When this subroutine re-
turns it must restore the SP to its previous value, thereby releasing the
temporary space that it had occupied on the stack during its life-time.

In your application program, allocate space for the program stack, and
initialize the sp register to the stack bottom. This is done in the start-
up routine. For more details about the start-up routine, see Section 5.7
in the CompactRISC Toolset - Introduction.

6.2.6 Alignment of Variables

Local Variables. Local variables on the stack are aligned to the mini-
mum between their size and the bus width, as specified by the -KB  op-
tion. The default bus width is the internal bus width of the specific
architecture i.e., 2 for CR16 and 4 for CR32A.

Parameters on Stack. Parameters that are passed on the stack are al-
ways aligned to the default bus width (2 for CR16, 4 for CR32A). The
alignment is relative to the bottom of the stack. Parameter alignment is
not affected by any compiler option and this ensures compatibility be-
tween functions from different modules.

Bottom of stack

Top of stack
      (SP)

Stack
space

Address 0

Highest memory
address
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Structures. Members are aligned within the structure, relative to the
beginning of the structure. Each member is aligned to the minimum be-
tween its size and the structure member alignment, as specified by the
-J  compiler option. The default value for structure member alignment is
2 bytes for CR16 and 4 bytes for CR32A. Padding bytes are inserted be-
fore fields to keep their alignment, if necessary.  The structure itself is
aligned in memory to the smaller of the size of its largest member and
the structure member alignment. In addition, the structure is padded
such that its total size is a multiplication of its alignment boundary.

Since alignment of structure members is controlled by the -J  option, C
modules which access the same structures must be compiled with the
value for the -J  option. In general, we recommend compiling all the
modules in your program with the same value. Do not worry about the
CompactRISC libraries, since their structures were designed to be unaf-
fected by the value of the -J  option.

Unions. A union is aligned to its largest member. The union is padded
such that its total size is a multiplication of its alignment.

Bit-Fields. Bit-fields are packed consecutively, in groups. Each such
group is aligned to the minimum between the base-type size of the first
bit-field in the group, and the struct-align-width set by the -J  option.
Bit-fields are then packed consecutively, as long as they remain in the
same memory unit whose size is the maximum between the group first
bit-field base-type and the struct-align-width.

If, because of the bit-fields, the structure does not terminate on a byte
boundary, padding bits are added to fill it up to the end of the last byte
it occupies. Additional padding bytes may be needed as mentioned
above.

Strings. Strings are aligned to a word.
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Chapter 7

GUIDELINES FOR USING THE COMPILER

7.1 INTRODUCTION

The following sections are provided as guidelines for using the
CompactRISC C Compiler.

7.2 OPTIMIZATIONS

Experienced programmers should understand this compiler’s optimiza-
tion techniques in order to:

• Avoid using programming tricks based on the way ordinary compil-
ers generate code.

• Avoid performing “manual optimizations” that the optimizer does
anyway.

• Avoid writing code that may prevent certain optimizations.

• Select command line optimization options for optimal performance.

See Chapter 3 for a complete description of the optimization techniques.

Optimization
options

The -O option enables the optimizer.  Specify -O on the command line
for the fastest possible code without an undue increase in code size.

In special cases, e.g., compiling a compact code with space limitations,
you may need to refine the optimization phase by specifying optimiza-
tion options.

Individual optimization options can be specified by adding additional
options.

The parser and the code generator perform some local optimizations,
even when optimization is not enabled.

Default
optimization
options

There is normally no reason to turn off any of the optimization options;
the default produces the best results.
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Speed
optimization

Use the following options to get the best time performance from your
program:

-O, -ON, -finline-functions.

Space
optimization

Use the following options to compile your program with the minimum size:
-Os, -msave-emul (see also “Space optimization” on page 3-3)

7.3 PORTING EXISTING C PROGRAMS

Most programs, which run when compiled by other C compilers, com-
pile and run on the CompactRISC C Compiler with no change in the
sources. However, a few programs may perform differently, when com-
piled by the compiler. In addition, some programs which seem to work
when compiled without the optimizer, may not work when optimized.
The following sections describe some of the reasons for this phenome-
non.

Undetected pro-
gram errors

The single most-common reason for a non-functioning program is an
undetected program error, which only becomes apparent when compil-
ing under a different compiler, or when optimizing. Many such errors
result from the program author relying on the way the compiler com-
piled, and thus creating a program which is clearly non-portable.

Some of the most common problems are:

• Uninitialized local variables.
Since the memory and register allocation algorithms of the
CompactRISC C Compiler are very different from those of other
compilers, a local variable may be put in a completely different
place.  For example, a programmer may not initialize a local vari-
able, assuming that it contains zero at the start of the program.
This may become false as a result of the register allocation phase of
the CompactRISC C Compiler.

• Relying on memory allocation
You cannot assume that two variables will be allocated in the same
order they are declared. Thus a program that uses address calcula-
tions to go from one declared variable to another declared variable
may not work.

• Failing to declare a function
A char  returning function returns a value in the lower-order byte
of R0, without affecting the other bytes.  Failure to declare that
function where it is used may result in an error.

Example assume that get_code()  is defined to return a char , then
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main() {
int   i;
if ((i = get_code()) == 17)   do_something();

}

might never execute do_something  even if get_code  returns 17 since
the whole register is compared to 17,  not just the low-order byte.
A similar problem exists for functions which return short  or float , or
those which return a structure

Compiling
embedded
application
code

Embedded application code is distinguished from general “high-level’’
code, by the fact that it is machine-dependent, often contains real-time
aspects and interspersed asm statements, and is often driven by asyn-
chronous events, such as interrupts.  Examples of such code are inter-
rupt routines and device handlers.  From the optimizer’s point of view,
ordinary looking global variables can actually be semaphores or memo-
ry-mapped I/O, that can be affected by external events, which are not
under the optimizer’s control.  Even so, it is still possible to optimize
such code, by taking some precautions, and by activating some special
optimization options. Some of these aspects are discussed in the follow-
ing sections.

• Volatile variables
Volatile variables are variables which might be used or changed by
asynchronous events, such as I/O or interrupts. The -Oi  qualifier
treats all global variables, static variables, and pointer dereferences
as volatile, which means that they are not subject to any optimiza-
tions. As a result, the number and nature of memory references to
them do not change.  Remember that individual identifiers can be
declared as volatile by using C volatile type qualifiers.   The following
examples demonstrate the consequences of volatile variables and
pointer dereferences.

Examples 1. x = 17; x = 18;

If x  is volatile, both of the two assignments to x  are executed even
though the first one seems redundant.

2. x = 9
y = x + 1 ;

If x  is volatile, this program segment is not optimized to:

y = 10 ;

3. short count ;
count++;

The CompactRISC-family processors do not support atomic memory
operations. If changing the value of count  should be an “atomic” op-
eration, it is not sufficient to declare count  as volatile. This com-
mand is interpreted as:
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loadw _count,r0
addw $1,r0
storw r0,_count

To make count++  a real atomic command, see Section 7.10.6 (sema-
phores).

Timing
assumptions

Optimizing a program changes the timing of various constructs.  In par-
ticular, delay-loops may run faster than before.

Relying on reg-
ister order

A program that relies on the fact that a given register variable resides in
a specific register must be compiled using the -Ou  option. If this option
is not used, a request to allocate a specific register for a specific vari-
able may not be honored.

Relying
on frame
structure

A program, that relies on a specific frame structure, may not work.

Referring to variables on the frame of a different function (such as the
caller of this function) by complex pointer arithmetic may also cease to
work. See Chapter 6 for more details.

Using asm
statements

The code inserted by asm statements may cease to work because the
surrounding code produced by the CompactRISC C Compiler is normal-
ly different from another compiler’s code. See Section 7.6.

7.4 DEBUGGING OPTIMIZED CODE

Most of the time, you should not need to debug an optimized program.
The majority of bugs can be found before optimization.  However, there
are some rare bugs which appear only when the optimizer is intro-
duced; bugs that are difficult to find without a debugger.

The problem is that code motion optimizations and register allocation
obsolete most of the symbolic debugging information generated by the
compiler. The following “rules of thumb” can be employed when using
symbolic debug information together with the optimizer:

• Line number information is correct, but the code performed at the
specified lines may be different from non-optimized code as a result
of various code motion optimizations, e.g., moving loop invariant ex-
pressions out of loops.

• Symbolic information for global variables, and variables whose ad-
dress is taken, is always correct since they are never put in regis-
ters.

• Local variable values can be printed. However you must exercise
caution when the variable is not active since it may contain an in-
valid value.
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It is helpful to have an assembly listing of the program in question
which has been compiled with the -S  and -n qualifiers.  Such a listing
contains the assembly code with C code annotations.

7.5 ADDITIONAL GUIDELINES FOR IMPROVING CODE QUALITY

The following programming guidelines show how to take advantage of
the CompactRISC C Compiler optimizations.

Integer
variables

Many operators, including index calculations, are defined in C to oper-
ate on integers, and imply a conversion when given non-integer oper-
ands.  Therefore, to avoid frequent run-time conversions from char  to
int , define integer variables, particularly variables which serve as ar-
ray-indices, as type int  and not long  or char .

Local
variables

Use local variables as much as possible, particularly when they are em-
ployed as loop counters or array indices, as they have a chance of being
placed in registers.

Global
variables

Optimizations are not carried out on global variables. If you use a global
variable extensively in a routine, we recommend that you assign its val-
ue to a local variable at the beginning of the routine, and, if necessary,
store it back at the end. This enables the compiler to optimize referenc-
es to this variable.

Floating-point
computations

In programs which do not require double-precision floating-point com-
putations, you can achieve a significant run-time improvement by pay-
ing attention to the following points:

• define all functions as returning float type, not double

• define all constants to be ‘float’ using the f  suffix or cast expres-
sions explicitly to float

• use the single precision version of the standard floating-point rou-
tines such as fabs()  instead of abs() , fsin()  instead of sin() ,
etc.

Common
subexpression
optimization

The optimizer normally recognizes multiple uses of the same expression,
and saves that expression in a temporary variable (usually a register).
This cannot be done when worst case assumptions are made about refer-
ences or changes of value.  Expressions that contain pointer dereferences
or global variables are vulnerable; therefore, if many uses of the same ex-
pression span across procedure calls, it is advisable to save them in local
variables.

Example foo1(p->x);
foo2(p->x);
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If p is global, the expression p->x  cannot be recognized by the optimizer
as a common subexpression because foo1()  may change its value.
The following manual optimization may help:

t = p->x; /* t is local, therefore */
foo1(t); /* not potentially defined by foo1() */
foo2(t); /* so its value is still valid for foo2()
*/

Here you are using your knowledge that p->x  is not changed by foo1()
to make this optimization.  The optimizer cannot do the same because
it assumes the worst case.

7.5.1 Long Functions

If you write a long function, for which the optimizer is unable to provide
sufficient registers for local variables, performance is degraded. There
are two ways to avoid this problem:

• Split long functions into several shorter ones. This assists the opti-
mizer, and is usually good programming practice.

• Use different local variables for different tasks.

Example foo()
{ int i;

for (i=0; i<5000;i++) /* first use of i  */
{...}

/*... code that does not use i*/
for (i=0; i<40;i++) /* second use of i */

{...}
}

in this example, the second loop could use another local variable (say j )
as loop index. This kind of variable splitting can assist the optimizer in
producing better code.

7.5.2 Register Allocation

The C language is unique in that the programmer can specify (or rather
recommend) that some variables be allocated to machine registers. The
optimizer normally ignores these recommendations, since it turns out
that in most cases the optimizer’s own register allocation algorithms are
as good as, or superior to, the programmer’s recommendations. There
are several reasons for this:
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• You can use a register for one variable only.  The optimizer however al-
locates a register along live ranges of variables, making it possible for
several variables with non-conflicting live ranges to use the same reg-
ister.

• You can allocate variables in safe registers only (i.e., not clobbered
by a function call). Therefore, every register which is used has to be
saved/restored at the entry/exit of the procedure.  The optimizer al-
locates variables that do not live across procedure calls in unsafe
registers. Therefore, these registers need not be saved/restored.

7.5.3 Long Variables

Most 32-bit operations are not supported by the CR16 architecture. You
should, therefore, avoid using long variables as much as possible as
this may require calls to emulation routines.

7.5.4 Bit-field Operations

The manipulation of bit fields requires a lengthy sequence of
CompactRISC instructions. We advise you to optimize such references
manually.

Example struct {int a:4; int b:4:} s;

Replace:

s.a = 0:
s.b = 0;

by:

*(char*)&s = 0;

Note: the CR16B architecture has bit manipulation instructions, thus
the above bit assignments are implemented as atomic operations.
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7.6 ASM STATEMENTS AND INTRINSIC FUNCTIONS

There are two kinds of asm statements, each of which requires different
treatment.

Regular asm
statements

A regular asm statement has the form __asm__(“asm string”) .
The compiler puts the string, as is, in the assembly output. Take great
care, if you use this kind of asm statement, since you are interfering in
the compiler code generation.

Advanced asm
statements

With advanced asm statements it is possible not only to embed an as-
sembly instruction into the compiler generated code, but also to provide
information to the compiler regarding the side effects of this instruction.
For example, it is possible to report to the compiler which registers are
clobbered, whether memory is modified or not, and whether condition
code is modified or not. The full syntax of advanced asm statements is
beyond the scope of this manual. Readers who are interested in this in-
formation can find it in Using and Porting GNU CC.

For your convenience, the CompactRISC toolset provides a set of mac-
ros, which are implemented using advanced asm statements, and enable
you to safely embed any CompactRISC instruction into your C code.
This is discussed in the following sections.

High-level inter-
face to machine
instructions

A high-level interface is provided for most CompactRISC machine in-
structions in the header file asm.h . This file contains a set of macros
which are implemented using advanced asm statements. These macros
allow usage of machine instructions in conjunction with C variables.
Each macro may expand to one, or more, machine instructions depend-
ing on the context. The usage of advanced asm statements in these mac-
ros ensures that the assembly instructions are safely embedded into the
code, and do not hurt compiler optimizations.

To embed the CompactRISC instruction addw, write:

#include <asm.h>
short i,j;
...
_addw_(i,j);

More useful examples are the _spr_  and _lpr_  macros. They provide
access to the special purpose registers (e.g., PSR, ISP ), which is not oth-
erwise available from a C program. For example:

#include <asm.h>
unsigned int tmp;
...

/* Store the PSR contents in variable ‘tmp’ */
_spr_(“psr”, tmp);
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Two other useful macros, set_i_bit  and clear_i_bit , are available
for a specific purpose: setting and clearing the PSR.I  bit. This bit must
be set after reset in order to enable interrupts. In addition, trap and in-
terrupt routines may want to set and clear this bit to enable and disable
nested interrupts. For example;

#include <asm.h>
...

set_i_bit(); /* Set the PSR.I bit */

The following table lists all the macros which are available in asm.h .

_addb_ _bhs_ _loadw_ _sgt_

_addw_ _blt_ _loadd_  (CR32) _sle_

_addd_  (CR32) _bge_ _lshb_ _sfs_

_addub_ _br_ _lshw_ _sfc_

_adduw_ _cmpb_ _lshd_  (CR32) _slo_

_addud_  (CR32) _cmpw_ _movb_ _shs_

_addcb_ _cmpd_ (CR32) _movw_ _slt_

_addcw_ _di_ _movd_ (CR32) _sge_

_addcd_  (CR32) _ei_ _movxb_ _storb_

_andb_ _excp_ _movzb_ _storw_

_andw_ _jeq_ _movxw_ (CR32) _stord_  (CR32)

_andd_  (CR32) _jne_ _movzw_ (CR32) _subb_

_ashub_ _jcs_ _mulb_ _subw_

_ashuw_ _jcc_ _mulw_ _subd_  (CR32)

_ashud_  (CR32) _jhi_ _muld_  (CR32) _subcb_

_beq_ _jls_ _nop_ _subcw_

_bne_ _jgt_ _orb_ _subcd_  (CR32)

_bcs_ _jle_ _orw_ _tbit_

_bcc_ _jfs_ _ord_  (CR32) _xorb_

_bhi_ _jfc_ _retx_ _xorw_

_bls_ _jlo_ _seq_ _xord_  (CR32)

_bgt_ _jhs_ _sne_ _wait_

_ble_ _jlt_ _scs_ _lpr_

_bfs_ _jge_ _scc_ _spr_

_bfc_ _jump_ _shi_ set_i_bit

_blo_ _loadb_ _sls_ clear_i_bit
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7.7 SETJMP()

When you use setjmp()  and longjmp() , the only automatic variables
guaranteed to remain valid are those declared volatile. This is a conse-
quence of automatic register allocation. Consider the function:

#include <setjmp.h>
jmp_buf j;
foo()
{

int a
a = fun1();
if (setjmp(j))

return a;
a = fun2();
/* longjmp(j) may occur in fun3(). */
return a + fun3();

}

Here a may, or may not, be restored to its first value when the
longjmp()  occurs. If a is allocated in a register, its first value is re-
stored; otherwise, it retains the last value stored in it. If you use both
the -W and -O options together, the CompactRISC C Compiler issues a
warning if such a problem is likely to occur.

7.8 OPTIMIZING FOR SPACE

By default, the CompactRISC C Compiler optimizes for optimal speed
without undue increase in code size.  There are several things that can
be done to improve code density:

• Optimize with the -Os  option

• Do not use loop-unrolling optimization.
The optimizer uses a heuristic approach based on size consider-
ations, whether to perform loop-unrolling.  Nevertheless, if code
density is important, it is advisable not to use the loop-unrolling
optimization.

• Squeeze all structure definitions by using the -J1  option.

• Use the -sbrel  option to force register-relative addressing mode for
accessing all non-constant global and static variables (CR32), or a
selected group (using #pragma sbrel ) of variables (CR16).
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7.9 COMPILATION TIME REQUIREMENTS

Using the optimizer slows down the compilation process.  We therefore
recommend that you use the optimizer only on final production versions
of a program.  The resources required (time and memory) vary strongly
from program to program and actually depend on the size of the rou-
tines in the compiled program file. The larger a routine, the more time
and memory needed to optimize it.

7.10 EMBEDDED PROGRAMMING HINTS

The CompactRISC C Compiler provides several features which allow for
programming of embedded applications in C.  These features help solve
the following issues:

• full control over memory allocation - including RAM, ROM, stack
space, trap and interrupt vectors, peripheral memory-mapped con-
trol registers.

• start-up actions performed at system reset - including initializing
stack pointers, configuration registers, peripheral control registers,
and timers.

• initialization of RAM data variables - usually by copying from ROM
or by zeroing.

• interrupt/trap handling.

This section provides suggestions and examples for using the C compil-
er in embedded applications.

7.10.1 Volatile and Const Type Qualifiers

The const  and volatile  type qualifiers can be used in embedded ap-
plications to indicate ROM entities and memory mapped entities, re-
spectively.  A general overview of the semantics and use of these
qualifiers is explained below.  For further details see the ANSI C stan-
dard.

const The value of an object (any value expression) whose type includes the
const  qualifier cannot be modified.  The const  qualifier is mainly used
to make constant strings and variables a part of the program code and
place them into ROM.

A non-volatile global or static object declared as const , is allocated in
read-only memory (the .rdata  sections) if it is initialized.
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Example const int i = 137;  /* i is defined as const */
i = 17; /* this is illegal !!   */
i += 12; /* this is illegal !!   * /

The const  syntax allows for the declaration of both constant pointers
and pointers to constants.

Example const char * pcc /* pcc is defined as pointer to*/
/* const char*/

char * const cpc; /* cpc is definedasconstpointer*/
/* to char*/

const char * const cpcc; /* cpcc is defined as const*/
/* pointer to const char*/

The types pointer to const object and const pointer to object, as in the
above example, have different meanings. The value of a pointer to const
object can be modified; however the value of the pointed object can not
be modified.  In contrast, the value of a const pointer to object can not
be modified; however the value of the pointed object can be modified.

Example const char * pcc; /* pcc is defined as pointer to */
/* const char              */

pcc ++; /* this is O.K.    */
*pcc = 17; /* this is an error */

Volatile The value of an object (any value expression) whose type includes the
volatile  qualifier can be used or changed by asynchronous events
(such as I/O or interrupts).  Such an object should not be subject to
any optimization that changes or delays references to it.

By using the volatile  qualifier, you can specify volatile objects.  There-
fore, full optimization is carried out on all other objects, including global
variables and pointer dereferences.

Example In the following code:

volatile int i;
int j;
.  .  .
.  .  .
foo() {

.  .  .

.  .  .
for (i=1 ; i<j; i++) {
.  .  .
.  .  .
}

}
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The compiler can put j  in a register.  This optimization is not permitted
for i .

The volatile  syntax allows for the declaration of both volatile pointers
and pointers to volatiles.

Example char * pc; /* pcis definedaspointertochar
*/

volatile char * pvc; /* pvc isdefinedaspointer to    */
/* volatile char              */

char * volatile vpc; /* vpc is definedvolatilepointer
*/

/* to char                   */
volatile char * volatile vpvc;

/* vpvc is defined as volatile
*/

/* pointer to volatile char    */

The types pointer to volatile object and volatile pointer to object, as in the
above example, have different meanings.  References to a pointer to vol-
atile object can be optimized; however references to the pointed object
can not be optimized.  In contrast, references to a volatile pointer to an
object can not be optimized; however references to the pointed object
can be optimized.

7.10.2 Memory Allocation

Memory allocation is performed by the operating system in native pro-
gramming environments.  However, embedded applications require the
ability to control memory allocation.  This is achieved by specifying in
the linker directive file:

• the memory ranges of various program sections.

• the division of program sections into ROM and RAM.

• the sections to be copied from ROM to RAM at program start-up.

A complete description of the linker directive file is provided in Chapter
3 of the CompactRISC Toolset - Object Tools Reference Manual.  An ex-
ample of a simple linker definition file for defining two areas of memory
is shown below:

MEMORY {
ROM : origin=0x1000  length=0x2000
RAM : origin=0x10000 length=0x80000

}
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SECTIONS {
.text INTO(ROM) : { *(.text) }
.data INTO(RAM) : { *(.data) }

 . . .
}

7.10.3 Initialized C Variables

The C programming language allows compile-time initialization of global
and static variables.  In addition, uninitialized global and static variable
are defined by the C language to have a zero value at program start-up.

In native environment, initialization is handled by the compiler and the
operating system. On the other hand, in the CompactRISC development
environment, these initializations are performed either by the debugger,
(when loading the program), or by the program itself, (when executing,
in which case the initialized data is copied from the ROM to the RAM).
By default, the second option is used, because this is required in pro-
duction mode.

The CompactRISC Linker directive file and the CompactRISC run-time
library are used to automatically initialize RAM variables.

Refer to the CompactRISC Toolset - Object Tools Reference Manual for
further details.

7.10.4 Programming Memory Mapped Devices

When writing code for the registers of memory mapped peripherals, cor-
rect and efficient access to these entities can be problematic.  However,
the CompactRISC C Compiler allows optimization of such code.

The volatile  qualifier should be used to specify the memory mapped
entities. This allows the optimizer to perform optimizations without
changing or delaying references to these entities.

Example The correct way to code memory mapped entities is:

#define CTRL_REG *((volatile short *)0xff01)
if (CTRL_REG & 0x0f)

j++;

results in:

#---if (*((volatile short *) 0xff01) & 0x0f)
loadw 65281,r0
andb $15,r0
cmpb $0,r0
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beq .L2
#--j++;

loadw _j,r0
addw $1,r0
storw r0,_j

.L2:

Note Do not define a global pointer variable, such as
volatile short *ctrl_reg = (volatile short *) 0xff01
for memory mapped entities. Dereferencing such a pointer, as in
*ctrl_reg , results in less efficient code.

7.10.5 Programming Trap/Interrupt Routines

The example used in this section is a clock display for the time of day.

The routine clock_handler()  handles a clock interrupt, which occurs
TICKS_PER_SECOND times per second.  The time display is updated ev-
ery second.

A trap/interrupt routine saves all the registers it uses. In addition,
scratch registers are also saved, if the routine calls another routine (as
in the following example where update_time_display()  is called).

The C code for the clock interrupt handler is:

#pragma interrupt(clock_int_routine)
void clock_int_routine(void){

static int counter;
static int hours;
static int minutes;
static int seconds;

counter++;
if (counter == TICKS_PER_SECOND){

seconds++;
counter = 0;
if (seconds == 60){

minutes++;
seconds = 0;
if (minutes == 60){

hours++;
minutes = 0;
if (hours == 24)
hours = 0;
}

}
update_time_display(hours,minutes,seconds);

}
}
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The CompactRISC microprocessor family operates in direct exception
mode. In this mode, the address of the interrupt handler (residing in the
interrupt dispatch table) is interpreted by the CPU as a pointer. The
clock interrupt entry in the interrupt dispatch table should be set to the
address of clock_int_routine . The following line is inserted to the
clock interrupt entry in the initialization of the interrupt dispatch table.

void (*const _dispatch_table[])() = {
...
_clock_int_routine
...
};

7.10.6 Semaphores

Many applications require semaphores. Semaphores protect the entry to
critical code segments, and protect the consistency of data (e.g., buffer
counter). In the CompactRISC family, the only way to protect such code
and data is to use the methodology described below.

The aim is to make critical sections exclusive to one task at a time. In
the CompactRISC family this is achieved by making the sections unin-
terruptable, using a special, efficient, CompactRISC mechanism.

The PSR register contains two bits that control interrupt enabling, the I
bit and the E bit. Maskable interrupts are enabled only when these two
bits are set.

The I  bit is the global interrupt enable bit. Upon reset it is cleared by
the CPU, and therefore maskable interrupts are disabled. An application
program typically sets this bit some time after reset in order to enable
interrupts.

The E bit is the local interrupt enable bit. Upon reset, it is set by the
CPU. The CompactRISC CPU has two dedicated instructions, di  and ei ,
that clear and set the E bit, respectively.

To protect a code section, call the _di_() macro, which clears the E bit.
When this section is exited, call the _ei_()  macro, which sets the E bit.
This process prevents an interrupt from occurring during the critical
code section, without changing the global interrupts status as reflected
in the I  bit.

Example Process A:

if (buffer_count < BUF_LIMIT) {
/* puts a new element in the buffer */
_di_();
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buffer_counter++;
_ei_();

}

Process B:

if (buffer_count > 0) {
/* gets an element from the buffer */
_di_();
buffer_counter--;
_ei_();

}

Processes A and B can now interleave with no consistency problem.

CR16B The CR16B architecture has bit manipulation instructions which are
not interruptable, thus if the above semaphore operations involve mod-
ifying one bit only, the _di_()  and _ei_()  macros are not required.

7.10.7 Alignment

The CompactRISC family allows non-aligned-to-size memory references,
although such accesses incur a penalty in memory access time.

Usually, the compiler aligns the memory address of all memory objects.
There are, however, a few cases (e.g., structures and cast operations)
where this is not so.

Structures
alignment

Structures elements alignment is controlled by the -Jalign_size
(align_size =1, 2, 4)  option. A smaller value, results in a smaller
structure size. The penalty is reduced performance.

Cast
operations

When casting variables to different types, a variable may be referenced
as a type of larger size. This may cause slower program execution be-
cause the smaller type object memory address will probably not be
aligned, as required by the larger memory reference, thus requiring
greater memory access time.

Example int foo(char *s){
/*probably inefficient memory access*/
return *(int *) s;

}
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7.11  LINKER INPUT SECTIONS GENERATED BY THE COMPILER

There are four groups of input sections generated by the compiler:
.text -  program code
.rdata -  read-only data
.data -  initialized data
.bss -  uninitialized data

The data (.data , .rdata  and .bss )sections are subdivided (according
to the alignment of the variables that reside in them, i.e., the actual
names of the sections have underscores (‘_’) followed by the alignment
(1, 2 or 4) appended to them. For example, section .rdata_1  includes
read-only variables whose alignment is 1, whereas .bss_4  includes un-
initialized variables whose alignment is 4.
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Chapter 8

IMPLEMENTATION-DEFINED BEHAVIOR

Annex G.3 of the ANSI C standard lists all the issues that are imple-
mentation defined. This Appendix defines those issues given by the
CompactRISC compiler.

8.1 TRANSLATION

When a diagnostic is detected, a message is given in the following for-
mat:

<file name>:<line number>:<diagnostic description>

8.2 ENVIRONMENT

• No arguments can be passed to the function main() .

• An interactive device is the terminal from which the debugger was
invoked.

8.3 IDENTIFIERS

• All characters in an identifier without external linkage are signifi-
cant.

• The first 999 characters, in an identifier with external linkage, are
significant.

• Case distinctions are significant in identifiers with external linkage.

8.4 CHARACTERS

• The source character set also includes the dollar sign ($).
The execution character set also includes the dollar sign ($), the at
sign (@) and the backquote (`).

• The number of bits in a character in the execution character set is
eight.
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• Each character in the source character set is mapped to the identi-
cal character in the execution character set.

• The value of a character that is not part of the execution character
set but is a member of the ASCII character set is its ASCII value.
Characters that are not members of the ASCII character set are il-
legal. The value of an escape sequence that is not represented in
the execution character set is the value of the octal or hexadecimal
constant following the escape sequence.

• The value of an integer character constant that contains more than
one character depends on the target architecture. If the target archi-
tecture is 16-bit CompactRISC, the value is always the second char-
acter. If the target architecture is 32-bit CompactRISC, the value is
the fourth character or the last character if there are less than four
characters.

The value of an integer character constant, that contains more than
one-wide character, is always the first wide character.

• The type char  has the same range of values as signed char .

8.5 INTEGERS

• The representation of positive integers is the same number in base
2. The representation of negative integers is the 2’s complement of
its absolute value.

The following table details the minimum and maximum values of
the various integer types:

The set of values for int  is the same as short int  when compiling
for the CR16 architecture, and is the same as long int  when com-
piling for the CR32A architecture.

 Type Min Max

signed char −128 127

short int −32768 32767

long int −2147483648 2147483647

unsigned char 0 255

unsigned short int 0 65535

unsigned long int 0 4294967295
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• The set of values for unsigned int  is the same as unsigned short
int  when compiling for the CR16 architecture, and is the same as
unsigned long int  when compiling for the CR32A architecture.

• The result of converting an integer to a shorter signed integer is the
low-order bytes of the integer. The number of bytes taken is the
same as the size of the smaller signed integer.

• The result of converting an unsigned integer to a signed integer of the
same length is the 2’s complement interpretation of the unsigned inte-
ger.

• The result of a bitwise operation in signed integers is the 2’s com-
plement interpretation of the result of the bitwise operation.

• The sign of the remainder on integer division is the same as that of
the dividend.

• The semantics of a right shift of a negative-valued signed integral
type is the same as that of a non-negative-value.

8.6 FLOATING POINT

• The size of type float  is 32 bits. The size of types double  and long
double  are 32 bits for the CR16 architecture and 64 bits for the
CR32A architecture. Their representation and range of values are
compatible with the IEEE standard for binary floating-point arith-
metic.

• The direction of truncation when an integral number is converted to
a   floating-point number that cannot exactly represent the original
value is towards the nearest value. If the original number is halfway
between two values, the even value (least significant bit = 0) is re-
turned.

• The direction of rounding when a floating-point number is convert-
ed to a narrower floating-point number is to the nearest value. If
the original number is halfway between two values, the even value
(least significant bit = 0) is returned.

8.7 ARRAYS AND POINTERS

• The type size_t  is equivalent to type unsigned int .

• The size of an integer needed to cast a pointer to an integral value,
or vice versa, is the size of type int . In the CR16 compiler there are
far pointers which need to be cast to long int . The same is true
for function pointers in CR16B large model.
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• The result of casting an integral value to a pointer is the address
represented by the integral value. There is one exception to this
rule: when an integral value is cast to a function pointer in the
CR16 compiler, it is first shifted by 1 to the left. The result of cast-
ing a pointer to an integral type is the 2’s complement interpreta-
tion of the address.

• The type ptrdiff_t  is equivalent to type int .

• In CR16A/CR16B a function pointer holds the actual function ad-
dress shifted by one to the right. The least significant bit of the ad-
dress, which is implied as zero, is excluded from the address
representation. Refer also to the CompactRISC - CR16A Program-
mer’s Reference Manual or CompactRISC - CR16B Programmer’s Ref-
erence Manual for details.

8.8 REGISTERS

• When compiling without the optimizer, the compiler will assign a
register to variables declared with ‘register’ storage, if they fit into a
register or a pair of registers, and if there are enough registers
available. When compiling with the optimizer, the compiler treats
any ‘register’ declaration as an ‘auto’ declaration.

8.9 STRUCTURES, UNIONS, ENUMERATIONS, AND BIT-FIELDS

• If a member of a union object is accessed using a member of a de-
fined type, the result is unpredictable.

• When compiling with the -J1  option, there is no padding between
structure members. When compiling with the -J2  option (default
for CR16 architecture) anything larger than a byte is word-aligned.
When compiling with the -J4  option (only relevant for CR32A archi-
tecture for which it is the default) anything larger than a word is
double-word-aligned and words are word-aligned.

• A “plain” int  bit-field is treated as a signed int  bitfield.

• The order of allocation of bitfield within a unit is low-order to high-
order.

• In the CR16 architecture a bitfield cannot straddle a word bound-
ary.

• In the CR32A architecture a bitfield cannot straddle a double-word
boundary.
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• The integer type chosen to represent the values of an enumeration
type is int .

8.10 QUALIFIERS

• An access to an object that has volatile qualified type, is either a
read or a write to that object.

8.11 DECLARATORS

• The maximum number of declarations that may modify an arith-
metic, structure, or union type is 4500.

8.12 STATEMENTS

• There is no limit on the number of ‘case’ values in a ‘switch’ state-
ment.

8.13 PREPROCESSING DIRECTIVES

• The value of a single-character constant in a constant expression
that controls conditional inclusion matches the value of the same
character constant in the execution character set. Single-character
constant may not have a negative value.

• The compiler looks for includable source files in the following plac-
es:

– in all the directories given with the -I  option

– in CRDIR/include  (where CRDIR is the directory in which the
CompactRISC toolset is installed.

• When the included file is a quoted name, it searches for it in the
current directory. If that fails then it will search for it in the same
manner as that of regular includable source file.

• The mapping of source file character sequences to specific files is ac-
cording to the operating system under which the compiler is being
run.
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• For the behavior of various recognized #pragma  directives, see
Chapter 4.

• The definitions of _ _DATE_ _ and _ _TIME_ _  are available.

8.14 LIBRARY FUNCTIONS

• The macro NULL expands to (void *)0 .
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Appendix A

COMPILER LIMITATIONS

A.1 INCLUDING EXECUTABLE C LINES

We do not recommend including a C file (or any file with executable
lines) in a C file, although it is possible to do so. This is due to a limi-
tation in COFF (Common Object File Format) files, which do not keep
the source-line number for an included file. As a result it is impossible
to perform source-level debugging of executable lines which belong to
an included file. These lines are, however, executed correctly.

A.2 LARGE ARRAYS (CR16 ONLY)

The CR16 compiler does not support arrays of size greater than 65535
bytes. This is because array indexing is carried out in 16-bit (integer
size) arithmetic.

A.3 NEGATIVE ARRAY INDEX (CR16 ONLY)

The CR16 compiler does not support array reference with a negative,
non-constant index.

Example int i = -1;
extern int arr[];

foo()
{

arr[i] = 1;
}

A.4 SWITCH STATEMENT CODE SIZE

The size of the code that is generated by the compiler for a single switch
statement is limited to 32K (32768) bytes. This is a reasonable limita-
tion that allows the compiler to generate compact jump tables in some
cases. Every entry in the jump table contains the offset between the be-
ginning of the switch statement and the code that is generated for a
specific case. The offset is a 16-bit signed integer, and hence the limita-
tion.
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A.5 JUMP TABLES MUST RESIDE UNDER 64K (CR16 ONLY)

When optimizing switch statements into jump tables, the data is direct-
ed into a .rdata  section. Make sure that the .rdata  section is located
below 64K.

A.6 RECURSIVE CPP MACROS

The compiler ignores a cpp  macro which calls itself recursively, and
does not issue an error or warning message.

Example #define mac(x) mac(x)

A.7 DOUBLE PRECISION FLOATING POINT VARIABLES (CR16 ONLY)

The CR16 compiler does not support double-precision floating-point
variables i.e., C variables of type double . For compatibility the double
keyword is recognized, but it is equivalent to float . In other words, in
the CR16 compiler, variables of type double  are single-precision vari-
ables.
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Appendix B

 COMPATIBILITIES WITH GNX C COMPILER

B.1 DOLLAR SIGN IN IDENTIFIER NAMES

In ANSI C, dollar signs are not allowed in identifier names. The
CompactRISC C Compiler, like other traditional compilers, allows such
identifiers. Identifier names that contain dollar signs are also valid
when running in compatible mode.

B.2 BITFIELDS

In ANSI C only three types of bit field are allowed: int , signed int  and
unsigned int .

The CompactRISC C Compiler contains no such restriction. Running
the compiler in compatible mode also allows the traditional bitfields.

B.3 VARIABLE AND STRUCTURE ALIGNMENT

The -J width option for alignment within structures is supported.
The -J width  option allows you to set structure-member alignment on
bytes (width =1), words (width =2), (or double-words (width =4) for
CR32).

B.4 COMPATIBILITY WITH GNX 32000 INTRINSIC FUNCTIONS

The CompactRISC tools enable you to compile and run code that uses
intrinsic 32000 commands. CompactRISC provides support via macros
and functions. Note that the use of these functions is not recommend-
ed, as they have no advantage in performance over regular user code or
functions.

These macros and functions are located in the CompactRISC libc  li-
brary, and the ns32000.h  header file found in the include  directory
under the development tools root directory.

The header file ns32000.h  contains the prototypes of all the 32000-
compatible functions, and all the 32000-compatible macro definitions.
The actual functions are located in the libc  library.
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To use a 32000-compatible function, you must include the header file,
ns32000.h , prior to any call to the function, and link with the libc  li-
brary. Note that for 32000 intrinsic functions implemented as macros
(e.g., _spr ) run-time checks for parameters are not carried out.

The following functions and macros are supported:

For more detailed information about these instructions, see the Series
32000 Programming Reference Manual.

B.4.1 Incompatibilities

The following 32000 intrinsic macros can not be implemented on the
CR32 due to hardware limitations:

_cbiti  - set bit interlocked
_sbiti  - clear bit interlocked
_movst  - move string and translate.

Functions Macros

_extd _lpr

_extw _spr

_extb _bpt

_ffsb _flag

_ffsw _cvtp

_ffsd _bicpsrw

_ins _bispsrw

_movsb

_movsw

_movsd

_movsb_b

_movsw_b

_movsd_b

_rotb

_rotw

_rotd

_svc

_cbit

_ibit

_sbit

_tbit
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