
CompactRISC

Assembler

Reference Manual

Part Number: 424521772-003

August 1998

ΤΜ

ii

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGES

0.6 August 1995 First beta release.

0.7 January 1997 Minor changes and corrections.

1.0 August 1996 CR16A Product Version.
CR32A Beta Version.

1.1 February 1997 Minor modifications and corrections.

2.a September 1997 Alpha release for CR16B.

2.0 January 1998 Beta release.

2.1 August 1998 Product release.

iii

PREFACE

The CompactRISC Development Toolset supports development of software for National
Semiconductor’s CompactRISC microprocessor family. This manual describes the
CompactRISC Assembler which is a part of the CompactRISC Toolset.

The assembler program takes a CompactRISC assembly language program and creates
a relocatable object file which is then used as an input to the CompactRISC Linker.

This manual describes both the CompactRISC Assembler and the CompactRISC assembly
language.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

CompactRISC is a trademark of National Semiconductor Corporation.
National Semiconductor is a registered trademark of National Semiconductor Corporation.

CompactRISC Assembler Reference Manual CONTENTS-iv

CONTENTS

Chapter 1 OVERVIEW

1.1 INTRODUCTION ... 1-1

1.2 OVERVIEW OF ASSEMBLER FEATURES .. 1-2

1.3 DEFINITION OF TERMS... 1-3

Chapter 2 INVOKING THE ASSEMBLER

2.1 INTRODUCTION ... 2-1

2.2 INPUT AND OUTPUT FILES USED/GENERATED BY THE ASSEMBLER 2-1

2.3 ASSEMBLER INVOCATION ... 2-2

2.3.1 Assembler Symbolic Debugging .. 2-5

2.4 ASSEMBLER OUTPUT LISTINGS ... 2-6

2.4.1 Assembler Symbol Table Listing .. 2-8

2.4.2 Cross-Reference Table Listing ... 2-9

2.5 ASSEMBLER ERRORS .. 2-10

2.6 ASSEMBLER LIMITATIONS... 2-10

Chapter 3 ELEMENTS OF THE ASSEMBLY LANGUAGE

3.1 INTRODUCTION ... 3-1

3.2 CHARACTER SET .. 3-1

3.3 ASSEMBLER STATEMENTS ... 3-2

3.4 STRING AND NUMBER SYNTAX .. 3-4

3.4.1 Integer Syntax .. 3-4

3.4.2 Floating-Point Number Syntax ... 3-5

Decimal Floating-Point Syntax ... 3-5
Hexadecimal Floating-Point Syntax ... 3-6

3.4.3 Character Constant Syntax .. 3-7

3.4.4 String Syntax .. 3-8

3.5 SYMBOLS ... 3-9

3.5.1 Symbol Names ... 3-9

3.5.2 Symbol Types ... 3-10

3.5.3 Global Symbols .. 3-11

Labels ... 3-12

CompactRISC Assembler Reference Manual CONTENTS-v

Temporary Labels .. 3-12
Defining Symbols with the .set Directive 3-13
Defining Uninitialized Symbols with the .bss Directive 3-13
Defining Common Symbols .. 3-13

3.6 LOCATION COUNTER ... 3-14

3.7 EXPRESSIONS.. 3-15

3.7.1 Rules for Expressions .. 3-18

3.7.2 Types in Expressions ... 3-18

3.7.3 Encoding of Expressions .. 3-21

Chapter 4 ASSEMBLER PROGRAMS

4.1 INTRODUCTION ... 4-1

4.2 ASSEMBLER PROGRAM STRUCTURE.. 4-1

4.3 PROGRAM SEGMENTS... 4-2

4.4 USER-DEFINED, DUMMY AND COMMENT SEGMENTS................................. 4-3

Chapter 5 INSTRUCTION OPERANDS

5.1 REGISTER OPERANDS... 5-1

5.2 REGISTER PAIR OPERAND (CR16B LARGE MODEL ONLY) 5-1

5.3 PROCESSOR REGISTER OPERANDS ... 5-2

5.4 REGISTER RELATIVE OPERANDS... 5-2

5.5 PROGRAM COUNTER RELATIVE OPERANDS.. 5-3

5.6 FAR RELATIVE OPERANDS.. 5-4

5.7 IMMEDIATE OPERANDS ... 5-5

5.8 ABSOLUTE OPERANDS .. 5-6

5.9 STATIC-BASE RELATIVE OPERANDS ... 5-7

5.10 EXCEPTION OPERANDS... 5-7

Chapter 6 ASSEMBLER DIRECTIVES

6.1 INTRODUCTION ... 6-1

6.2 SYMBOL CREATION DIRECTIVE.. 6-1

6.2.1 .set .. 6-2

6.3 DATA GENERATION DIRECTIVES.. 6-2

6.3.1 .ascii ... 6-3

6.3.2 .byte .. 6-4

CompactRISC Assembler Reference Manual CONTENTS-vi

6.3.3 .word ... 6-6

6.3.4 .double .. 6-7

6.3.5 .float .. 6-8

6.3.6 .long .. 6-9

6.3.7 .field .. 6-10

6.4 STORAGE ALLOCATION DIRECTIVES... 6-11

6.4.1 .blkb .. 6-12

6.4.2 .blkw ... 6-13

6.4.3 .blkd .. 6-14

6.4.4 .blkf ... 6-14

6.4.5 .blkl ... 6-15

6.4.6 .space ... 6-16

6.5 LISTING CONTROL DIRECTIVES ... 6-17

6.5.1 .title ... 6-17

6.5.2 .subtitle ... 6-18

6.5.3 .nolist .. 6-18

6.5.4 .list .. 6-19

6.5.5 .eject ... 6-20

6.5.6 .width .. 6-20

6.6 LINKAGE CONTROL DIRECTIVES.. 6-21

6.6.1 .globl ... 6-21

6.6.2 .comm ... 6-22

6.6.3 .code_label ... 6-22

6.7 SEGMENT CONTROL DIRECTIVES.. 6-23

6.7.1 .dsect .. 6-24

6.7.2 .text ... 6-25

6.7.3 .data .. 6-25

6.7.4 .bss ... 6-26

6.7.5 .udata ... 6-27

6.7.6 .section ... 6-27

6.7.7 .org ... 6-28

6.7.8 .align ... 6-29

6.7.9 .ident ... 6-31

6.8 FILENAME DIRECTIVE .. 6-31

6.8.1 .file .. 6-31

6.9 SYMBOL TABLE ENTRY DEFINITION DIRECTIVES 6-32

6.9.1 .def ... 6-33

CompactRISC Assembler Reference Manual CONTENTS-vii

6.9.2 .dim ... 6-34

6.9.3 .line ... 6-35

6.9.4 .scl .. 6-35

6.9.5 .size .. 6-36

6.9.6 .tag ... 6-37

6.9.7 .type .. 6-38

6.9.8 .val .. 6-39

6.9.9 .endef ... 6-39

6.10 LINE NUMBER TABLE CONTROL DIRECTIVE... 6-40

6.10.1 .ln .. 6-40

6.11 MACRO-ASSEMBLER DIRECTIVES ... 6-41

6.11.1 .macro .. 6-41

6.11.2 .endm ... 6-42

6.11.3 .if ... 6-42

6.11.4 .elsif .. 6-43

6.11.5 .else .. 6-43

6.11.6 .endif ... 6-43

6.11.7 .repeat .. 6-44

6.11.8 .irp .. 6-44

6.11.9 .endr ... 6-45

6.11.10.exit .. 6-45

6.11.11.macro_on and .macro_off ... 6-45

6.11.12.include ... 6-46

6.11.13.mwarning .. 6-46

6.11.14.merror ... 6-47

Chapter 7 MACRO AND CONDITIONAL ASSEMBLER

7.1 INTRODUCTION .. 7-1

7.1.1 Overview of the Major Macro-Assembler Features 7-1

7.2 THE MACRO-PROCESSING PHASE... 7-5

7.3 INVOCATION .. 7-7

7.4 MACRO VARIABLES .. 7-7

7.5 ARITHMETIC MACRO-EXPRESSIONS ... 7-8

7.6 MACRO LISTS .. 7-11

7.7 BUILT-IN MACRO FUNCTIONS ... 7-11

7.8 CONDITIONAL ASSEMBLY.. 7-13

CompactRISC Assembler Reference Manual CONTENTS-viii

7.8.1 Conditional Block .. 7-13

7.9 REPETITIVE DIRECTIVES ... 7-14

7.9.1 .repeat Directive ... 7-14

7.9.2 .irp Directive ... 7-15

7.9.3 .exit Directive .. 7-16

7.10 MACRO PROCEDURES (MACROS).. 7-16

7.10.1 Macro Procedure Definition .. 7-16

7.10.2 Macro Procedure Call and Expansion .. 7-17

7.10.3 Predefined Macro Procedure Variables ... 7-18

7.11 .MACRO_ON AND .MACRO_OFF DIRECTIVES ... 7-19

7.12 TEXT INCLUSION... 7-20

7.13 MACRO WARNING AND ERROR MESSAGES ... 7-20

7.13.1 .mwarning Directive .. 7-20

7.13.2 .merror Directive ... 7-21

7.14 LISTING CONTROL.. 7-21

7.15 STRING FUNCTIONS ... 7-27

7.15.1 String Length .. 7-27

7.15.2 String Comparison .. 7-27

7.15.3 Substring Extraction ... 7-27

7.15.4 Substring Search .. 7-28

7.16 MACRO-LIST FUNCTIONS .. 7-28

7.16.1 Get Element From List ... 7-29

7.16.2 Sublist Extraction .. 7-29

7.16.3 Find An Element In List .. 7-29

7.16.4 Replace An Element In A List ... 7-30

7.16.5 Insert An Element Into A List .. 7-30

7.16.6 Delete An Element From A List .. 7-30

7.16.7 Number Of Elements In A List .. 7-31

7.16.8 Example of Macro-List Function Usage ... 7-31

7.17 DATA CONVERSION FUNCTIONS.. 7-32

7.17.1 Convert To Integer Hexadecimal .. 7-32

7.17.2 Convert To Float Hexadecimal ... 7-32

7.17.3 Convert To Long Float Hexadecimal .. 7-33

7.18 INSTRUCTION OPERAND FUNCTIONS ... 7-33

7.18.1 Recognize The Type Of An Operand ... 7-33

7.18.2 Operand Subfields .. 7-34

CompactRISC Assembler Reference Manual CONTENTS-ix

Appendix A DIRECTIVE SUMMARY

Appendix B RESERVED SYMBOLS

Appendix C GLOSSARY

INDEX

CompactRISC Assembler Reference Manual FIGURES-x

FIGURES

Figure 2-1. Input and Output Files for the CompactRISC Assembler 2-2
Figure 2-2. Sample Assembly Program . 2-6
Figure 2-3. CompactRISC Assembler Listing File (Annotated) . 2-7
Figure 2-4. A Sample Program Containing Errors . 2-8
Figure 2-5. CompactRISC Assembler Listing File With Error Message 2-8
Figure 2-6. Sample CompactRISC Assembler Symbol Table Source File 2-8
Figure 2-7. Sample CompactRISC Assembler Symbol Table Listing 2-9
Figure 2-8. Sample CompactRISC Assembler Cross-Reference Source File 2-9
Figure 2-9. Sample Assembler Cross-Reference Table Listing . 2-9

CompactRISC Assembler Reference Manual TABLES-xi

TABLES

Table 2-1. Options Syntax . 2-3
Table 3-1. Escape Sequences . 3-7
Table 3-2. Operator Precedence . 3-16
Table 3-3. Types and Operators . 3-17
Table 7-1. Macro Operation Precedence . 7-9

CompactRISC Assembler Reference Manual OVERVIEW 1-1

Chapter 1

OVERVIEW

1.1 INTRODUCTION

CompactRISC Assembler is a software development tool that assembles
CompactRISC Assembly Language source programs and generates relocat-
able object modules. Relocatable object modules may be linked to create
executable load modules which may be run on CompactRISC family micro-
processor-based systems that support the Common Object File Format
(COFF) as implemented by National Semiconductor. The CompactRISC lan-
guage tools provide linkage and library maintenance programs.

This manual describes the CompactRISC Assembler in detail. It is orga-
nized as follows:

Chapter 1 Overview (this chapter), introduces the CompactRISC Assembler, sum-
marizes its features, and describes the registers.

Chapter 2 Invoking the Assembler, describes the CompactRISC Assembler, assem-
bly options, output files, and error messages.

Chapter 3 Elements of the CompactRISC Assembly Language, describes the format
of the CompactRISC Assembly Language statements, constants, values,
symbols, and expressions.

Chapter 4 CompactRISC Assembler Programs, describes program segments, linkage,
and relocation.

Chapter 5 Instruction Operands, describes the syntax of the CompactRISC Assem-
bly Language instruction operands.

Chapter 6 CompactRISC Assembler Directives, defines the syntax and function of
the CompactRISC Assembler directives.

Chapter 7 Macro and Conditional Assembly, describes the new macro-assembler.

Appendix A Directive Summary, summarizes the CompactRISC Assembler directive
syntax and function.

Appendix B Reserved Symbols, lists the CompactRISC Assembler reserved symbols.

Appendix C Glossary, provides a glossary of CompactRISC terms.

CompactRISC Assembler Reference Manual OVERVIEW 1-2

1.2 OVERVIEW OF ASSEMBLER FEATURES

The CompactRISC Assembler provides a number of features for efficient
assembly language programming.

Input and Output Files. The CompactRISC Assembler generates an ob-
ject code file, an optional listing file, an optional cross-reference listing,
and an optional symbol table dump from an assembler source file. The
object code file consists of assembled statements suitable for execution
after the appropriate linking process. The listing file consists of the
source file statements, and the assembled code, if the source file assem-
bles successfully; otherwise, the listing file consists of error messages and
source file statements that caused the error. Input and output files, list-
ing file format, cross-reference listing, symbol table dump, and error mes-
sages are described in Chapter 2.

Architecture Support. The CompactRISC Assembler supports the com-
plete instruction set, including the integer, boolean, string, array, pro-
cessor control, and processor service instructions.

The CompactRISC Assembler supports all the addressing modes sup-
ported by the CompactRISC architecture.

Data Types. The CompactRISC Assembler recognizes a variety of oper-
and data types including integers (byte, word, double-word), and single-
and double-precision floating-point numbers. The CompactRISC Assem-
bler supports all the data types supported by the CompactRISC archi-
tecture.

Assembler Directives. The CompactRISC Assembler provides directives
to create symbolic labels, generate data, allocate storage, control pro-
gram listings, control linkage, control line number table, control pro-
gram segments, define module table entry, define symbol table entry,
define macros, and define file name.

Macro-preprocessor. The CompactRISC Assembler has a built-in macro
preprocessor. Macro processing is performed as the first pass of the as-
sembly process. The powerful macro preprocessor simplifies assembly
programming.

CompactRISC Assembler Reference Manual OVERVIEW 1-3

1.3 DEFINITION OF TERMS

The following terms are used throughout this document:

• Software Module
A software module is a portion of a program that may be separately
compiled or assembled and linked together with other software
modules into an executable program image.

• Relative Value
A relative value is a symbol or expression that specifies an address
within one of the Common Object File Format (COFF) sections or
the corresponding assembly program segment. Because such ad-
dresses are not bound to actual memory locations until link time,
their values are relative to the base or starting address of the mod-
ule. Relative values are called relocatable addresses.

• Absolute Value
An absolute value is a symbol or expression that specifies a numeric
address. An absolute value or absolute address is unaffected by
linkage.

CompactRISC Assembler Reference Manual INVOKING THE ASSEMBLER 2-1

Chapter 2

INVOKING THE ASSEMBLER

2.1 INTRODUCTION

The CompactRISC Assembler generates object code from CompactRISC
assembly language source files and optionally produces a listing file, a
symbol table file, a cross-reference file, and debugging information.
Each assembly source file produces one object file, that may consist of
a text (code) section and an initialized data section. This object file can
be later linked with other object files using the CompactRISC Linker to
generate an executable object file.

This chapter describes the input and output files used by the Compact-
RISC Assembler, assembler invocation, listing file, symbol table listing,
the cross-reference table, assembly errors, and the CompactRISC As-
sembler limitations.

2.2 INPUT AND OUTPUT FILES USED/GENERATED BY THE
ASSEMBLER

The files used as input and those generated as output by the assembler
are shown in Figure and described below.

Source file Input. The source file is a text file containing the source program to be
assembled.

Object file Output. The object file contains the relocatable object code and data
produced by the assembler, as well as optional debugging information.
When no filename for the object file is given, the default name is the
name of the source file with the .s suffix, if any, stripped off and a .o
suffix appended. For example, if the source file is named build.s , the
name of the object file is build.o . The object file is suitable for use as
input to the linker or librarian.

Listing file Output. The listing file, created with the -L option, contains the pro-
gram listing produced by the assembler. The default listing file is the
standard output (stdout). If a filename is specified with the listing op-
tion, this file is used as the listing output.

CompactRISC Assembler Reference Manual INVOKING THE ASSEMBLER 2-2

Symbol table
file

Output. The symbol table file, created with the -y option, contains a dump of
the symbol table. For each symbol it gives its name, value, section and if it is
external. The default symbol table file is the standard output (stdout). If a
filename is specified with the symbol table option, this file is used as the list-
ing output.

Cross-
reference file

Output. The cross-reference file, created with the -x option, contains,
for each symbol, the lines on which it is used together with the line on
which it is defined. The default cross-reference file is the standard output
(stdout). If a filename is specified with the cross-reference option, this
file is used as the listing output.

Figure 2-1. Input and Output Files for the CompactRISC Assembler

The CompactRISC Assembler creates a number of temporary files dur-
ing the assembly process. These files are created in a directory specified
by the value of the TMPDIR environment variable. If TMPDIR is not set,
the current directory is used for temporary files.

After the assembly process, the CompactRISC Assembler deletes these
temporary files.

2.3 ASSEMBLER INVOCATION

You invoke the CompactRISC Assembler from a command prompt by
entering the crasm command, followed, if required, by options, and a
source filename. In addition it is possible to specify all, or part, of the
arguments from an argument file. An arguments file is denoted by an at-
sign (@) followed by a file name. The assembler command line syntax is:

crasm [{options | sourcefile | @argfile] ...

Object FileSource File

Symbol Table
CompactRISC Assembler

Listing File

 File

Cross

 File
Reference

CompactRISC Assembler Reference Manual INVOKING THE ASSEMBLER 2-3

The source filename and the options may appear in any order with the
exception of the -c option which must come before the -D, -U, or -I
options. Only one source filename is permitted. See Table 2-1 for a list
of the options, their syntax, and their definitions.

Examples 1. crasm
2. crasm myfile.s
3. crasm -L myfile.s
4. crasm -L -o myfiledebug.o myfile.s
5. crasm -L myfile.s > myfile.lis
6. crasm -Lmyfile.lis myfile.s

Example 1 does not specify any filename or option. The assembler waits
for input from stdin and creates an object file .o

Example 2 assembles the source file myfile.s and generates an object
file with the default name myfile.o. No listing file is produced.

Example 3 generates both an object file, myfile.o, and a listing file
from the source file myfile.s. The listing file is output to stdout .

Example 4 generates the object file myfiledebug.o from the source file
myfile.s . Because the -L option is specified, a listing is produced on
stdout .

Examples 5 and 6 generate a listing file from the source file myfile.s
and output it to myfile.lis . The object file generated is myfile.o .

Table 2-1. Options Syntax

Option Definition

-ds | -dm | -dl
Sets the default displacement size to small, medium, or
large. The default is large (l). If there are only two possible
sizes in the architecture, medium is the same as large.

-c
Runs the C compiler pre-processor (cpp) on the input
to the assembler.

-r
Incorporates the data segment into the text segment. Off
by default.

-s
Saves compiler-generated labels in the symbol table of
the object file.

-V Writes the version number of the assembler to stderr.

-v
Uses memory for intermediate storage rather than a tem-
porary disk file.

-L [filename]
If filename is given, produces the listing in that file. If
not, the listing is sent to the standard output.

CompactRISC Assembler Reference Manual INVOKING THE ASSEMBLER 2-4

-n Disables displacement size optimization.

-o objfile
Names the output object file as objfile . By default, the
output filename is formed by removing the .s suffix, if it
is present, from the input filename and adding a .o suffix.

-mlarge
(CR16B only) Generate code for CR16B large program-
ming model.

-msmall
(CR16B only) Generate code for CR16B small program-
ming model (default).

-mcr16a Generate code for CR16A.

-t
Causes the assembler to show all the utilities it calls.
This option is useful for tracing all processes executed by
the assembler.

@filename Reads arguments from file filename .

-w Suppresses assembly warning messages.

-y [filename]
Produces a symbol table listing in filename . If
filename is omitted, it is sent to the standard output.

-x [filename]
Produces a cross-reference file in filename . If file-
name is omitted, it is sent to the standard output.

-D name or
-D name=def

Defines name to cpp , as if by “#define ’’. If no definition
is given, name is defined as 1. The -c option must pre-
cede this option.

-U name Removes initial definition of a cpp predefined symbol name.

-I dir

First searches “#include ’’ files, that do not begin with
/ , in the filename directory, then the directory named
in this option, then the directories on a standard list. The
-c option must precede this option.

-g
Produces additional line number information for symbolic
debugging.

-MO Invokes only macro-processing phase.

-MP[filename] Prints the macro processor output.

-MLfilename Includes macro library file.

-MI dir Specifies an include search directory for the macro processor.

-MDname
-MDname=def

Defines a name to the macro processor, as if by macro
assignment statement.

Table 2-1. Options Syntax (Continued)

Option Definition

CompactRISC Assembler Reference Manual INVOKING THE ASSEMBLER 2-5

2.3.1 Assembler Symbolic Debugging

When you invoke the assembler with the -g option, it generates a line
number entry in the object file for every source line of the input assem-
bly file where a breakpoint can be inserted. The information from the
line number entries allows you to reference the line numbers when us-
ing a software debugger.

Code segments are grouped by the assembler to form dummy proce-
dures. Dummy procedures start at the first statement and end at the
last statement of the assembly source file. The name of the dummy pro-
cedure is of the form .X basename_number , where basename is the
source file name without the .s suffix; and number is the file segment
number.

Every assembler label with a storage allocation directive (e.g., .double ,
.blkd) is given a type based on the storage allocation. Types are assigned
as follows:

-z

Dumps errors and warnings into filename .err file,
where filename is the base name of the input file.
For example:

crasm -z test.s

generates the error file test.err .

-zn filename

Dumps errors and warnings into filename file. For ex-
ample:

crasm -zntest.x new_test.s

generates the error file test.x .

Note, there must be no space between zn and filename .

Table 2-1. Options Syntax (Continued)

Option Definition

Storage Allocation Directives Corresponding Type

.byte , .blkb unsigned char

.word , .blkw short int

.double , .blkd int

.float , .blkf float

.long , .blkl double

.ascii char

CompactRISC Assembler Reference Manual INVOKING THE ASSEMBLER 2-6

When the .ascii directive is used or when a repetitive factor is speci-
fied for any other storage allocation directive, the associated label is
considered an array of the corresponding type.

If the input source file contains .ln directives (see Section 6.10.1), the
assembler assumes that symbolics were generated by the compiler and
no symbolic debugging information is prepared; instead, information
from the .ln directive is used to generate the line number entry.

2.4 ASSEMBLER OUTPUT LISTINGS

Figure 2-2 shows a sample assembly language program. The annotated
listing produced when the program is assembled is shown in Figure 2-3.

Example #PIKE encoding
.globl _j
.data
_j:

.word 1
.text
.globl _max
_max:

loadw _i,r1
loadw _j,r0
cmpw r1,r0
ble .L2
movw r1,r0

.L2:
cmpw r2,r0
ble .L4
storw r2,_i
jump ra

.L4:
storw r0,_i

.L5:
jump ra

.globl _i

.bss _i,2,2

Figure 2-2. Sample Assembly Program

CompactRISC Assembler Reference Manual INVOKING THE ASSEMBLER 2-7

Example (1) (2)
CompactRISC Assembler (CR16A) Version 0.6 (rev 3) 6/21/95 Page:1

(3)
File "ex1.s"

(4) (5) (6) (7)

1 .globl _j
2 .data3

D00000000 _j:
4 D00000000 0100 .word 1
5 .text
6 .globl _max
7 T00000000 _max:
8 T00000000f9a32400loadw _i,r1
9 T00000004f9a12000loadw _j,r0
10 T00000008e360 cmpw r1,r0
11 T0000000a044e ble .L2
12 T0000000c8361 movw r1,r0
13 T0000000e .L2:
14 T0000000ee560 cmpw r2,r0
15 T00000010084e ble .L4
16 T00000012 f9e52400storw r2,_i
17 T000000165d5c jump ra
18 T00000018 .L4:
19 T00000018f9e12400storw r0,_i
20 T0000001c .L5:
21 T0000001c5d5c jump ra
22 .globl _i
23 .bss_i,2,2

Callouts 1 - 7:

1 Version number of a tool.

2 Listed file page number.

3 Source file name. Reflects included files.

4 Source file line number.

5 Address of the current line. Preceded by the letter
representing the section of address.

6 Code or value of source line.

7 User source line itself.

Figure 2-3. CompactRISC Assembler Listing File (Annotated)

A sample program with one error is shown in Figure 2-4. When the pro-
gram is assembled, the error is flagged as shown in Figure 2-5. Assem-
bly errors are discussed in Section 2.5.

CompactRISC Assembler Reference Manual INVOKING THE ASSEMBLER 2-8

Example #PIKE
_main::
addw $-4,
storw r4,0(sp)
addw $-4,sp

Figure 2-4. A Sample Program Containing Errors

Example CompactRISC Assembler (CR16A) Version 0.6 (revision 3)6/21/95 Page:
1

File "ex2.s"

1 _main::
2 addw $-4,

"ex2.s", line 2: Operand 2: general-purpose register expected

3 storw r4,0(sp)
4 addw $-4,sp
5

ERRORS DETECTED : 1.

Figure 2-5. CompactRISC Assembler Listing File With Error Message

2.4.1 Assembler Symbol Table Listing

The symbol table listing is entitled “Symbol Table Dump.” It is preceded
by a formfeed, and is output to the file specified on the invocation line.
If no output file is specified, the symbol table is output to stdout. Fig-
ure 2-6 shows a sample source file, and Figure 2-7 shows a sample
symbol table listing.

Example #SR
.set x,10
br foo
movw $f00,r0
foo:
.globl blap
movw $blap,r0

Figure 2-6. Sample CompactRISC Assembler Symbol Table Source File

CompactRISC Assembler Reference Manual INVOKING THE ASSEMBLER 2-9

Example CompactRISC Assembler (CR32A) Version 0.6 (revision 3)

Symbol Table Dump
Symbol Value Section
blap 0X0 undefined, external
f00 0X0 undefined, external
foo 0Xa .text

Figure 2-7. Sample CompactRISC Assembler Symbol Table Listing

The symbols are listed in the order in which they are encountered. The
first column of the output is the name of the symbol, the second col-
umn is the value (in hexadecimal) of the symbol, and the last column is
the name of the section to which it belongs.

2.4.2 Cross-Reference Table Listing

The cross-reference listing is entitled “Cross-Reference Table”. It is pre-
ceded by a formfeed, and is output to the file specified on the invocation
line. If no output file is specified, the cross reference is output to std-
out. Figure 2-8 shows a sample source file, and Figure 2-9 shows a
sample cross-reference table listing.

Example .set x, 10
bsr foo
movd foo, r0

foo:
.globl blap
movd blap, r0

Figure 2-8. Sample CompactRISC Assembler Cross-Reference Source File

Example CompactRISC Assembler (CR16A) Version 0.6 (revision
3)6/21/95 Page: 1

Cross Reference Table
blap 5+ 6
foo 2 3 4^
x 1-

Figure 2-9. Sample Assembler Cross-Reference Table Listing

Symbols are listed in alphabetical order. The numbers listed beside the
line numbers are the source lines where the symbol appears. A ^ beside
a line number indicates that the symbol is declared on that line. A + be-
side a line number indicates that the symbol is imported/exported (de-
clared with a .globl directive) on that line. A - beside a line number
indicates that the symbol is set (or reset with a .set directive) on that
line.

CompactRISC Assembler Reference Manual INVOKING THE ASSEMBLER 2-10

2.5 ASSEMBLER ERRORS

When the assembler finds an error, it provides an error message
through standard error file (stderr). If you selected the -L option, the
assembler includes the error message in the listing file following the line
containing the error. Most errors inhibit the assembler from generating
any further object code (refer to Figure 2-5). If you selected the -z or
-zn filename option, the assembler dumps errors into a file, in addition
to the standard error file.

2.6 ASSEMBLER LIMITATIONS

This section contains a list of limitations of the CompactRISC Assembler.

Expression Expressions are calculated as 4-byte integers. High order bytes/bits are
filled with zeros.

Line The length of the input line is limited to 64K characters.

Range of
values

The range of values for displacements is architecture dependent. See
the datasheet for the relevant microprocessor.

The range of values for floating-point constants is:

single precision: 1.17549436 x 10**−38 to 3.40282346 x 10**38 and
−1.17549436 x 10**-38 to −3.40282346 x 10**38

double precision: 2.2250738585072014 x 10**−308 to
 1.7976931348623157 x 10**308 and
−2.2250738585072014 x 10**-308 to
−1.7976931348623157 x 10**308

The range of values for integer constants is:

byte constants: −128 to 255

word constants: −32768 to 65535

double-word constants: −2147483648 to 2147483647
i.e.: −2**31 to (2**31−1)

Section The length of a section name as specified with the .section directive
must be up to eight characters.

The number of sections, within one assembly source file, is limited to
32. The first three sections are reserved for: .text , .data and .bss .

CompactRISC Assembler Reference Manual INVOKING THE ASSEMBLER 2-11

If there are .ident directives there is a .comment section. Therefore,
you can define only 28 sections in the assembly source level.

String The string length is limited to 256 characters.

Symbol name The length of a symbol name in the Cross-reference Table (-x option) is
truncated to 14 characters.

The length of a symbol name in the Symbol Table (-y option) is truncat-
ed to 14 characters.

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-1

Chapter 3

ELEMENTS OF THE ASSEMBLY LANGUAGE

3.1 INTRODUCTION

This chapter describes the elements of the CompactRISC Assembly Lan-
guage. The following topics are discussed:

• Character set

• Statements

• Constants

• Symbols, symbol types, and values

• Location counter

• Expressions

3.2 CHARACTER SET

The CompactRISC Assembly Language character set consists of the fol-
lowing subset of the standard ASCII character set:

• Upper- and lower-case letters A through Z of the English alphabet.

• Digits 0 through 9.

• Blanks (ASCII 32), Tabs (9), Vertical Tabs (11), and Form Feeds
(12).

• The following printable characters:

Character Name Character Name

’ Single Quote/Apostrophe + Plus Sign

(Left Parenthesis / Slash

) Right Parenthesis : Colon

. Period ; Semi-Colon

_ Underscore @ Ampersand Sign

, Comma [Left Square Bracket

- Minus Sign/Hyphen] Right Square Bracket

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-2

Carriage Return and Line Feed serve as line terminators; therefore, they
cannot be entered directly into source code statements. They can be en-
tered as their ASCII value. Any other ASCII character may appear only
within quoted strings.

The CompactRISC Assembler is case sensitive, i.e., the assembler dis-
tinguishes between upper- and lower-case letters. Reserved symbols
must be typed in lower-case. User symbols are interpreted exactly as
they are typed.

3.3 ASSEMBLER STATEMENTS

The CompactRISC Assembly Language consists of lines of text that con-
tain one or more statements separated by semicolons and an optional
comment. A statement is an optional label followed, optionally, by a
mnemonic plus its operands. Statements are composed of user-defined
symbols (names and labels representing variable quantities or memory
locations), reserved symbols, constant values, and delimiters.

CompactRISC Assembly Language statements are of two kinds: assem-
bly language instructions and assembler directives. The assembly lan-
guage instructions are translated directly into machine instructions so
that their meanings are carried out at execution time. The Assembler di-
rectives, on the other hand, are commands to the assembler itself to
carry out some action during program translation, e.g., allocating a
block of memory.

Lines of CompactRISC Assembly Language code have the following form:

"([label : [:]] " [mnemonic [operands]] [;]),,, [# comment] .

* Asterisk " Double-Quote

\ Back Slash % Percent

~ Tilde # Pound Sign

^ Caret | Vertical Bar

& Ampersand < Left Angle Bracket

$ Dollar Sign > Right Angle Bracket

? Question Mark

Character Name Character Name

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-3

label is an optional label. The label must be a valid symbol
name and must be followed by one or two colons. See the
syntax descriptions of CompactRISC assembly language
directives in Chapter 6 for those directives that do not al-
low labels.

mnemonic is an instruction mnemonic or assembler directive. It
must end with a space, tab, end-of-line, or semicolon.

operands are the operands of the instruction or of the assembler di-
rective. The number of operands depends on the instruc-
tion or directive type. Each operand must be separated
from the next operand by a comma. Spaces between oper-
ands are ignored. If the statement contains no instruction
or directive, the operands must also be omitted.

comment is the optional comment. A comment must be preceded by
a pound sign (#) or double slash (//).
If you use a pound sign, and the -c option is given, com-
ments should not begin in column 1.

A line of CompactRISC Assembly Language code must conform to the fol-
lowing rules:

1. Multiple statements (i.e., label, mnemonic, and operands) must be
separated by a semicolon (;).

2. If a line is terminated with a backslash (\), the next line is consid-
ered as a continuation. This is the only way to break one statement
into more than one line.

3. The code line may begin in any column.

4. A line of code may be up to 64K characters in length (including EOL,
the end-of-line character). However, in the listing, lines longer than
132 characters (including NL, the new-line character) are truncated.

5. A code line may consist of zero or more statements, i.e., label,
mnemonic, and operands, separated by semicolons, and optionally
followed by a comment.

Examples 1 br START # a branch instruction and its
one operand

2 movw r2, r3 # a move word instruction and
two operands

3 END: # a label only

4 START:movb r0, r1 # a label, instruction, and
operands

5 # a comment only

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-4

3.4 STRING AND NUMBER SYNTAX

There are four basic types of constants in CompactRISC Assembly Lan-
guage statements: integer values, floating-point values, character con-
stants, and strings. The syntax for each type of constant is defined in
Section 3.4.1 through 3.4.4.

3.4.1 Integer Syntax

Integer syntax has the following form:

[sign] [base] digits

sign specifies the sign. By default, the sign is positive. A nega-
tive sign may be specified with the minus sign (−).

base specifies the base. It may be one of the following:
Binary − B’ or b’
Octal − O’, o’, Q’, q’ or 0 (leading digit zero)
Decimal − D’ or d’
Hexadecimal − H’, h’, X’, x’, 0x (digit zero), or 0X (digit zero)
Default is decimal.

digits specifies the integer. Digits must be compatible with the
specified base. Binary − 0 to 1
Octal − 0 to 7
Decimal − 0 to 9
Hexadecimal − 0 to 9 and A to F or a to f

Integer constants may have the following range of values, depending on
the context in which the constant is specified: −128 to 255 for byte con-
stants, −32768 to 65535 for word constants, and −2147483648 to
2147483647 (−231 to 231 − 1) for double-word constants.

Decimal constants are sign-extended to double-words. Hexadecimal, oc-
tal and binary constants are zero-extended to double-words.

Examples Binary Octal Decimal Hexadecimal

B’11110001 O’077 D’1492 H’12ff
-B’11 -Q’5077 -999 -X’302F
b’11 123 1457 0xAB03

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-5

3.4.2 Floating-Point Number Syntax

Floating-point values may be specified in one of two forms: as a decimal
number in scientific notation, or as a hexadecimal value. The Compact-
RISC Assembler expects floating-point numbers specified as hexadeci-
mal values to be correctly encoded in internal floating-point format.
Therefore, hexadecimal notation is most useful to the writers of compil-
ers or optimizers.

Decimal Floating-Point Syntax

Decimal floating-point syntax has the following form:

[decimal prefix] decimal value

decimal prefix
specifies whether the constant is short or long floating-
point format. It may be one of the following:
{0f | 0F} − short format floating-point value (float).
{0l | 0L} − long format floating-point value (long).

decimal value
specifies a floating-point value in scientific notation.

A decimal floating-point constant has two parts, an optional prefix that
specifies short format (32 bits) or long format (64 bits) and a decimal
value expressed in scientific notation.

The decimal value format is:

[sign] digits [. [digits]] [{ E | e }[sig n] digits]

Mantissa Exponent

sign specifies the sign. A negative sign may be specified (−); by
default, the sign is positive.

digits specify the value. Only decimal digits are permitted (0 to
9). At least one digit must precede the decimal point.

. is the decimal point.

E | e is the exponent flag. It is required when specifying an ex-
ponent.

The decimal value must be in the appropriate range for the prefix size
specified or in the format that is required by the instruction. See note
below.

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-6

Examples Valid Invalid Comments

3.14152 .0125 # digit before decimal point required
971. -0.00FF # decimal digits only
0f0.1E-14 0.125E999 # exponent exceeds limit

Note Assembler recognizes two types of floating-point constants: single-preci-
sion (float) and double-precision (long). Single-precision numbers occu-
py four bytes.
The most positive single-precision value is 3.40282346 x 1038; the least
positive value is 1.17549436 x 10-38.
The most negative value is the negative of the most positive value. Dou-
ble-precision numbers occupy eight bytes.
The most positive double-precision number is 1.7976931348623157 x
10308; the least positive value is 2.2250738585072014 x 10-308. The
negative range is the negative of the positive value.

Hexadecimal Floating-Point Syntax

Hexadecimal floating-point syntax is of the following form:

hexadecimal prefix
hexadecimal digits

hexadecimal prefix
is one of the following:
{f’ | F’ | 0y | 0Y} − short format.
{l’ | L’ | 0z | 0Z} − long format.

f ’ | F’ | 0y | 0Y
specifies an encoded short (32-bit) floating-point value.
Must be followed by eight hexadecimal digits, if not, the
assembler might generate unpredictable results.

l ’ | L’ | 0z | 0Z
specifies an encoded long (64-bit) floating-point value.
Must be followed by sixteen hexadecimal digits, if not, the
assembler might generate unpredictable results.

hex digits specify the value. Only hexadecimal digits are permitted
(0 to F or f). The encoded value is an exact bit representa-
tion of the resultant 32- or 64-bit value.

Examples Valid Invalid Comments

f’E01267AC -F’A7261CD5 #no sign permitted

L’12A945BD4266ECF0 L’E596C.4BF5DB46A26 #no decimal point
permitted

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-7

3.4.3 Character Constant Syntax

Character constants have the following form:

{ ASCII char | escape sequence }
ASCII char is any single ASCII encoded character.

escape sequence
is one of the special escape sequences, described below.

A character constant is a single ASCII character enclosed by single
quotes, as in ’A’ . If the desired character is a special character, for ex-
ample, the single quote itself, or if the character is not a printable char-
acter, then an escape sequence may be used to represent the character.
The following rules apply to escape sequences:

• Except as noted in Table 3-1, any character preceded by the escape
character backslash (\) represents that character.

• A backslash followed by one to three octal digits represents the
character whose ASCII encoding is the octal value.

• Certain special characters are represented by the escape sequences
specified in the escape sequence table below.

If the character constant is itself a single quote, the quote must be es-
caped, that is, preceded by the escape character backslash (\). Thus,
the character constant single quote is (\’). Similarly, if the character
constant is a backslash it must be escaped. The character constant
backslash is (\\).

Other non-printable or special characters may be generated by the es-
cape sequences in Table 3-1

Character constants may be used in expressions. The value of the con-
stant is its ASCII encoding. If the character constant is used as an im-
mediate operand or in an expression, it is zero-extended to the
appropriate number of bytes.

Table 3-1. Escape Sequences

Escape Value

\n newline

\t horizontal tab

\b backspace

\r carriage return

\f form feed

\\ backslash

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-8

3.4.4 String Syntax

String syntax has the following form:

" ({ ASCII char | escape sequence }) ..."

ASCII char is an ASCII encoded character

escape sequence
is a character sequence used to represent special or non-
printable ASCII encoded characters. Refer to Table 3-1.

A string is a sequence of ASCII encoded characters enclosed by double-
quotes. The same rules and escape sequence definitions specified in the
description of character constants may be used in string constants.
Special consideration must be given if a double-quote mark is part of
the string. Strings enclosed in double-quote marks which also contain
double-quotes are allowed. However, each quote which is a part of the
string must be escaped, that is, it must be preceded by the escape char-
acter backslash (\). It is not necessary to escape the single-quote char-
acter in a string constant.

Strings may not be used in expressions.

Examples Strings Coded In Source Statements Generated String

"This is a string" This is a string
"Five O’Clock" Five O’Clock
"\"A\" for Ampere" "A" for Ampere

\’ single quote

\0 ASCII character 0, or null, the C string terminator

\ddd
an arbitrary byte-sized bit pattern, where ddd is one to
three octal digits, i.e., the character constant ‘‘\0’’ repre-
sents the character with value zero.

Table 3-1. Escape Sequences (Continued)

Escape Value

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-9

3.5 SYMBOLS

A symbol is a name that refers to a memory location. Each symbol has
a type and a value. The type of a symbol is either the segment in which
the symbol is defined, external if the symbol is not defined in the as-
sembly file, or absolute if the symbol is a numeric address. The value
of a symbol is the address of the memory location. A symbol may have
the attribute global. A symbol with the global attribute may be refer-
enced from any software module in the program. By default, all symbols
referenced but not defined are considered global.

Reserved
names

Some symbol names are reserved, i.e., the instruction mnemonics, di-
rective mnemonics, names for the registers, address mode indicators,
options, scaled index qualifiers, the delimiters, and operators. You may
not redefine the reserved symbols. Appendix B contains a list of the re-
served symbols in the CompactRISC Assembly Language. The rest of
this section and all of Section 3.6 deal with user-defined symbols.

3.5.1 Symbol Names

The name of a user-defined symbol is composed of one or more letters,
digits and the characters underscore (_) and period (.). Except for tem-
porary labels, the first character of the name may not be a digit. The
name’s length is limited to 64 characters.

Symbol names which include the character period (.) are assumed to be
internal names generated by the CompactRISC language tools, e.g.,
compiler labels, Common Object File Format (COFF) section names, and
reserved names. Assembly programmers should not use names which
include the character period (.).

Case sensitive The assembler is case sensitive, that is, it differentiates between upper-
and lower-case letters in a user-defined symbol name. Thus, for exam-
ple, the names ALPHA and Alpha are not identical and can be defined
as separate symbols.

Examples Valid Invalid Comment

SYMBOL $YMBOL # ‘‘$’’ dollar-sign character illegal
_ALPHA 2ALPHA # first character cannot be number
REG2 r1 # r1 is reserved symbol

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-10

3.5.2 Symbol Types

The type of a symbol specifies the segment of the object file in which it
occurs. All labels defined within a segment have the type of that seg-
ment. For example, all symbols defined in the .text segment (i.e., fol-
lowing the .text directive) are of type text. The address of symbols
associated with object file segments must be updated at link time, when
the linker associates the object file segment with memory locations.

Undefined sym-
bols

Undefined symbols are of type external. The value of an undefined sym-
bol is resolved by the linker. Numeric addresses are of type absolute.
The value of absolute symbols is unaffected by linkage.

A symbol’s type determines the default addressing mode the assembler
uses when the symbol is referenced. The following table lists symbol
types, the associated object file segment and the default addressing
mode for references to the symbol.

The type of a symbol limits the places where the symbol may be used
as an operand and the way its value may be manipulated in expres-
sions. Expressions also have one of the above types. The type of an ex-
pression is determined by the types of the symbols it contains.

Following are descriptions of each of the symbol types:

Text symbols • All symbols defined in the .text segment, i.e., labels following a
.text directive, are of type text. All symbols or expressions of type
text represent addresses within the text segment of the program’s
object code. The text segment contains program code and read-only
data.

Data symbols • All symbols defined in the .data segment, i.e., labels following a
.data directive, are of type data. All symbols or expressions of type
data represent addresses within the initialized data segment of the
program’s object code.

Type Segment Default Addressing Mode

Text Text or code segment PC Relative

Data Initialized data segment Absolute

Bss Uninitialized data segment Absolute

External - Absolute

Absolute - Absolute

<user-defined> <defined by attributes> Absolute

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-11

Bss symbols • All symbols defined in the uninitialized data (.bss) segment are of
type bss. Symbols defined by the .bss directive are of type bss, as
are labels defined after a .udata directive. All symbols or expres-
sions of type bss represent addresses within the uninitialized data
segment of the program’s object code.

External
symbols

• All undefined symbols are of type external. Symbols defined using
the .comm directive are also of type external.

Absolute
symbols

• All symbols assigned numeric values are of type absolute. Absolute
symbols specify an absolute numeric address. They are not relative
to any segment of the object file. Symbols of type absolute may only
be defined using the .set directive.

User-defined
symbols

• All symbols defined in a section, following the .section definition,
are of the type of the section.

3.5.3 Global Symbols

Global symbols are used by multiple software files. The symbol must be
defined exactly once. The defining module exports the symbol, that is,
makes the symbol available for import by one or more additional soft-
ware files. Global symbols must be declared for export by the defining
module with the .globl directive. Undefined symbols intended to be
imported from other software modules should also be declared with the
.globl directive, although this is not required.

Except for temporary labels, every user-defined symbol must be defined
exactly once. A symbol definition assigns a value and type to a symbol
name. There are several formats for defining symbols. The formats form
four groups:

• Labels.

• Symbols defined by the .set directive.

• Uninitialized symbols defined by the .bss directive.

• Common symbols defined by the .comm directive.

External, or undefined, user symbols may be declared for import with
the .globl directive. Such a declaration does not define the symbol.
Any symbol that is referenced in an assembler statement but not de-
fined within the assembly is assigned type external.

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-12

Labels

The formats permitted for label definitions are:

symbol name :
or

symbol name ::
or

symbol name : assembly statement
or

symbol name :: assembly statement

assembly statement
may be any assembly statement except those directives
that do not accept labels. See Chapter 6 for detailed de-
scription of the syntax of all the CompactRISC assembly
language directives.

In each case, the current value and the type of the location counter is
assigned to the symbol, see Section 3.7. The second construction (using
“:: ”) also sets the global attribute on the symbol, see Section 6.6.

Temporary Labels

temporary label:

temporary label
consists of a digit from 1 to 9.

A temporary label consists of a digit from 1 to 9, followed by a colon.
Reference to the label is via the symbols nf and nb, where n specifies
temporary label n, where f means forward, and b means backwards. All
referenced temporary labels must be defined somewhere within the pro-
gram. Temporary labels may not be exported. There is no limit on the
number of times that a temporary label may be redefined. The following
symbols are reserved:
1f 2f 3f 4f 5f 6f 7f 8f 9f 1b 2b 3b 4b 5b 6b 7b 8b 9b
Temporary labels are most useful in conjunction with macros.

Example 1 #SR encoding
2 T00000000 9:
3 T00000000 84008400 .space 10

84008400
8400

4 T0000000a aabe0a00 br 7f
5 T0000000e aabef2ff br 9b
6 T00000012 aa2e br 9f
7 T00000014 7:

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-13

8 T00000014 9:
9 T00000014 7:
10 T00000014 aa0e br 7b

In this program, the branch on line 3 refers to label 7 on line 6, the
branch on line 4 refers to label 9 on line 1, the branch on line 5 refers
to label 9 on line 7, and the branch on line 9 refers to label 7 on line 8.

Defining Symbols with the .set Directive

The format for symbol definition using the .set directive is:

.set symbol name, expression

The statement assigns the value and type of expression to the symbol.
The expression may not be of type external (undefined), nor a forward
reference. For more information, see Section 6.2.1.

Defining Uninitialized Symbols with the .bss Directive

The format for the definition of uninitialized symbols using the .bss di-
rective is:

. bss symbol name, expression1, expression2

This form is used only for uninitialized data (bss) symbols. The symbol
is assigned type bss and the value of the current bss location counter
after it is aligned to a multiple of expression2 . See Section 6.7.4 for a
description of the .bss directive.

Defining Common Symbols

The format for the definition of uninitialized, common symbols using
the .comm directive is:

.comm symbol name, expression

The type of common symbols is external. If no software module defines
a global symbol by this name, the linker allocates an uninitialized stor-
age area whose size is the largest expression specified by any .comm
directive for this symbol . See Section 6.6.2 for a description of the
.comm directive.

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-14

3.6 LOCATION COUNTER

The CompactRISC Assembler manages a location counter that keeps
track of the current relocatable memory address. The current location
counter is set to the type of the segment that is being assembled and
the value of the next available address within the segment. The current
location counter is initialized to the TEXT segment, address 0 at the
start of assembly.

The assembler re-initializes the current location counter to a new value
(i.e., a new type and offset) each time a segment control directive is en-
countered. The segment control directives determine the segment into
which the following code should be assembled. On encountering a seg-
ment control directive, the assembler saves the next available address
in the previous segment before entering the new segment, so that it is
able to restore the previous address if the previous segment is re-
opened. The assembler maintains a saved location counter for each ob-
ject file segment (text, data, bss, user-defined sections and dsects) as
well as each user-defined segment.

When a statement is processed, the assembler increments or decre-
ments the location counter by the number of bytes of object code gen-
erated or by the amount of data storage allocated.

The location counter symbol, (.) period, is a special token which may be
used in expressions or instruction operands to specify the location
counter’s current value (before it has been incremented). The symbol may
appear alone or as a term in an arithmetic expression (addition or subtrac-
tion only).

Examples 1. .set A, .

2. bne .-8

In example 1, (.) specifies the current address. The symbol A is as-
signed the current location counter address.
In example 2, the expression .-8 specifies the current address minus 8.

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-15

3.7 EXPRESSIONS

An expression is a combination of terms and operators which evaluate
to a single value and type. Valid expressions include addresses and in-
teger expressions. Floating-point expressions are not valid.

Terms in expressions may be constants or symbols, including the loca-
tion counter symbol (.), see Sections 3.4, 3.5 and 3.6. The type of the
term determines the way in which the term may be combined with oth-
er terms and operators. Section 3.7.2 defines the effect the type of a
term has on the result of an expression.

In architectures where some pc bits are implied (i.e., CR16) relative
terms may have a special attribute, in addition to the section. There
may be terms with code-label attributes. See Sections 6.3.3, 5.7, and
6.6.3.

Operators Operators in expressions are the special symbols which define arith-
metic and logical operations. An operator has the following characteris-
tics:

• An operator has a level of precedence which affects the order in
which the CompactRISC Assembler evaluates an expression con-
taining the operator.

• An operator defines the type of the term(s) that may be used with
the operator and the location of the term(s) relative to the operator.

Table 3-2 lists all CompactRISC Assembly Language operators in order
of precedence.

Table 3-3 defines the type and order of the terms that may be used with
the operators.

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-16

Table 3-2. Operator Precedence

Precedence Operator Name Operation

Unary Operator

1 - Unary minus Two’s complement.

1 ~
Unary
complement

One’s complement.

Binary Operator

2 * Multiply Multiply 1st term by 2nd.

2 / Divide Divide 1st term by 2nd.*

2 % Modulus
Remainder from 1st term divided
by 2nd.**

2 << Shift left
Shift 1st term by 2nd; emptied
bits are zero-filled.

2 >> Shift right
Shift 1st term by 2nd; emptied
bits are zero-filled.

2 ~
Logical OR /
complement

Bit-wise OR of 1st term and
one’s complement of 2nd term.

3 & Logical AND
Bit-wise AND of 1st and 2nd
terms.

3 | Logical OR
Bit-wise OR of 1st and 2nd
terms.

3 ^ Logical XOR
Bit-wise XOR of 1st and 2nd
terms.

4 + Add Add 1st and 2nd terms.

4 - Subtract Subtract 2nd term from 1st term.

* Rounds toward 0, e.g., -7/3 = -2 and 7/3 = 2

** e.g., -7%3 = -1 and 7%3 = 1.

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-17

Table 3-3. Types and Operators

Unary Operators

Operator Term1 Operation

- abs Type abs.

~ abs Type abs.

Binary Operators

Term1
Type

Operator
Term2
Type

Result Type

abs * abs Type abs.

abs / abs Type abs.

abs % abs Type abs.

abs << abs Type abs.

abs >> abs Type abs.

abs ~ abs Type abs.

abs & abs Type abs.

abs | abs Type abs.

abs ^ abs Type abs.

abs + abs Type abs.

abs - abs Type abs.

rel + abs Type rel.*

rel - abs Type rel.*

rel - rel Type abs.**

ext + abs Type ext.

ext - abs Type ext.

Note

abs Any term of type absolute.

rel Any term of relative type, i.e., text, data , etc.

ext Any term of type external, undefined.

* The type of the result matches the type of the relative term in the expression.

** Term1 and Term2 must be the same type, the result is type absolute.

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-18

3.7.1 Rules for Expressions

The rules for forming and evaluating expressions are as follows:

• All unary operators must precede a single term and cannot be used
to separate two terms.

• All binary operators must separate two terms. For example, the ex-
pression 8*4 is legal, but 8**4 is not.

• Compound expressions are valid. An expression may be construct-
ed from other expressions using unary and binary operators. For
example, the two individual expressions A+1 and B+2 may be com-
bined with a multiply operator and parentheses to form the single
expression (A+1)*(B+2) . Note that the parentheses override the
default precedence rules.

• Evaluation of an expression is governed by three factors:

– Parentheses - expressions enclosed in parentheses are always
evaluated first. For example, the expression 8/4/2 evaluates to 1,
but the expression 8/(4/2) evaluates to 4.

– Precedence Groups - an operation of a higher precedence group is
evaluated before an operation of a lower precedence whenever pa-
rentheses do not otherwise determine the evaluation order. For ex-
ample, the expression 8+4/2 is evaluated as 10, but the expression
8/4+2 is evaluated as 4.

– Left to Right Evaluation - expressions are evaluated from left to
right whenever parentheses and precedence groups do not deter-
mine evaluation order. For example, the expression 8*4/2 is eval-
uated as 16, but the expression 8/4*2 is evaluated as 4.

3.7.2 Types in Expressions

The type of the result of an expression depends on the type of the terms
and the operations performed. The rules for types in expressions are as
follows:

• Expressions with terms having absolute type
Terms with absolute type may be added, subtracted, multiplied,
etc. All operators are allowed. The result is always an absolute type.

Examples 1. 21 * 5 # result is 105

2. 21 / 5 # result is 4

3. 21 % 5 # result is 1

4. 21 & 5 # result is 5

5. 21 << 5 # result is 672

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-19

6. 21 >> 5 # result is 0

7. 21 + 5 # result is 26

8. 21 - 5 # result is 16

9. 21 | 5 # result is 21

10. 21 ̂ 5 # result is 16

• Expressions combining terms having relative and absolute types
The only valid operations between terms with relative types and
terms with absolute type are addition and subtraction. The opera-
tions take place between the values of the first and the second
terms and the result is assigned the type of the relative term.

Addition Addition is commutative. An absolute term may be added to a relative
term or a relative term may be added to an absolute term, the result is
the same in either case.

Subtraction Subtraction is not commutative. An absolute term may be subtracted
from a relative term. A relative term may not be subtracted from an ab-
solute term.

Example 1 .set ZERO, 0
2 .set TEN, 10
3 .set COUNT, 30
4
5 .udata
6 Size: .blkd
7 Start: .space (COUNT * 4)
8 End: .blkd
9
10 .text
11 movb $ZERO, Start + ZERO
12 movb $TEN, TEN + Start
13 movd (End - TEN), r0

In the preceding example several symbols and expressions are used.
The symbols ZERO, TEN, and COUNT are of type absolute. The symbols
Size, Start, and End are of type bss, refer to Section 3.5.2.

The expression “(COUNT * 4)” in line 7 combines two absolute terms,
the result is absolute.

The expression “Start + ZERO” in line 11 adds a relative type to an ab-
solute type. The result is type bss.

The expression “TEN + Start” in line 12 adds an absolute type to a rel-
ative type. The result is type bss.

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-20

The expression “End - TEN” in line 13 subtracts an absolute type from
a relative type. The result is type bss.

• Expressions combining terms having relative types
Terms with relative or absolute type may be subtracted from terms
with the same type. No other operator is allowed. The result is al-
ways an absolute type.

Example 1 .set COUNT, 30
2
3 .udata
4 Size: .blkd
5 Start: .space (COUNT * 4)
6 End: .blkd
7
8 .text
9 movw $(End - Start)/4, Size

The expression “End - Start” in line 9 subtracts a relative term from an-
other relative term. Since both symbols are of the same type (bss), this
is a legal expression. The result is of type absolute, i.e., the absolute
number of bytes between the two labels. The result of the subtraction is
then divided by 4, both terms are type absolute and the result is type
absolute.

Note that “(End - Start)/4” is not a legal expression without parenthe-
ses. Division is of higher precedence than subtraction, but a relative
term may not be divided.

• Expressions with terms having external and absolute type.
Terms with absolute type may be added to or subtracted from
terms with external type. No other operations are allowed. The re-
sult always has external type. A term of type absolute may be sub-
tracted from a term of type external, but a term of type external
may not be subtracted from a term of type absolute. The first term
of the subtraction must be the term of type external.

Example 1 .set ZERO, 0
2 .set TEN, 10
3 .set COUNT, 30
4
5 .globl Start
6 .globl End
7
8 .text
9 movb $ZERO, Start + ZERO
10 movb $TEN, TEN + Start
11 movw (End - TEN), r0

CompactRISC Assembler Reference Manual ELEMENTS OF THE ASSEMBLY LANGUAGE 3-21

The expression “Start + ZERO” in line 9 adds an absolute type to an ex-
ternal (undefined) type. The result is type external.

The expression “TEN + Start” in line 10 adds an external type to an ab-
solute type. The result is type external

The expression “End - TEN” in line 11 subtracts an absolute type from
an external type. The result is type external.

• Expressions with character constants.
Character constants may appear as terms in expressions. When a
character constant is used this way, it is converted to an integer
constant. Integer constants are stored in four bytes; the assembler
fills the higher order bytes with zero.

Examples 1. .set UPCASE, ’A’ - ’a’ # result is -32

2. .set LOWCASE, ’a’ - ’A’ # result is 32

3.7.3 Encoding of Expressions

Expressions are encoded according to their size, and the addressing
mode.

Some expressions cannot be resolved by the assembler since they con-
tain a reference to an external symbol. If the assembler can not resolve
the expression, it assumes the maximum size for it, unless explicitly
specified otherwise. You may determine the size of the encoding using
the modifier exp_len .

Example br extsym+100:m

As an alternative you can force all the unresolved expressions in a file
to a maximum size using the command line option -d exp_len . Possible
values for exp_len are s, m or l . The exact meaning of the value de-
pends on the particular architecture and the addressing mode. General-
ly speaking s , m, and l stand for small, medium and large respectively.
A smaller encoding size is generally suitable for expressions that are re-
solved to smaller numbers. However, due to some encoding peculiarities
designed to save code space, this is not always the case.

The directive .code_label affects the encoding of symbols that appear
in immediate operands. In this case there is an implied zero least sig-
nificant bit for the symbol address (since it’s a CompactRISC instruction
address is always even) and so only bits 1-16 of the symbol are encoded
and bit 0 is not. Refer to Section 6.6.3.

CompactRISC Assembler Reference Manual ASSEMBLER PROGRAMS 4-1

Chapter 4

ASSEMBLER PROGRAMS

4.1 INTRODUCTION

This chapter describes the structure of CompactRISC Assembly Lan-
guage programs and how the CompactRISC Assembler assigns memory
addresses to symbols, instructions, and data. In particular, it describes:

• Program Structure

• Program Segments

• User-Defined Dummy and Comment Segments

• Linkage and Relocation Modes

4.2 ASSEMBLER PROGRAM STRUCTURE

The structure of a CompactRISC Assembly Language program reflects
the structure of the object file, and the layout of the program image in
memory. The structure allows instructions and data to be grouped into
logical segments that occupy contiguous memory. Each segment is
“atomic”, i.e., segments may be combined into larger units, but not bro-
ken into smaller units.

Program seg-
ments

Every object file contains at least three program segments: text, data
and bss. These segments correspond to the .text , .data , and .bss
sections of Common Object File Format (COFF). The text segment con-
tains program instructions and constant data, the data segment con-
tains writable, initialized data, and the bss segment contains
uninitialized data. No object file space is allocated for the bss segment.

You may create user-defined segments with the assembler directives
.dsect and .section , or comment segments with the assembler direc-
tive .ident . The CompactRISC Assembler maintains a location counter
for each object file segment.

In architectures which do not allow non-aligned references, i.e., an en-
tity referenced as a word/double-word must be on a word/double-word
boundary (SR) it is recommended to separate the data into sections ac-
cording to their alignment. Thus you can create two levels of separation:
BSS, read-only-data, and initialized data, where each is divided into
three according to its alignment to 4, to 2 and to 1. This ensures align-
ment at link time.

CompactRISC Assembler Reference Manual ASSEMBLER PROGRAMS 4-2

4.3 PROGRAM SEGMENTS

Every assembly program consists of one or more program segments. A
program segment is a block of sequential statements which are placed
in contiguous memory and treated as a unit with common properties,
e.g., access protection. Every program contains the following types of
segments:

• Text or Program Code Segment

• Initialized Data Segment

• Uninitialized Data Segment (bss)

A program segment begins and ends with one of the segment control di-
rectives (Section 6.7) and contains any number of statements.

Example .text # specifies the start of a program code segment
statement-1 # assembler statements
statement-2
.
.
.
statement-n
.data # specifies start of a data segment

a segment terminates with another segment
control directive or EOF

Text segment The text segment contains instructions and constant data. After every
statement, the text segment location counter is incremented by the
number of bytes generated for that statement. The location counter of
the text segment may not be decremented.

The text segment is written to the .text section of the object file. Each
text address maps to a location in the .text section of the object file.

All symbols defined in the text segment are of type text. References to
locations in the text segment are addressed in Program Counter Relative
addressing mode.

Related direc-
tive

.text (Section 6.7.2).

Initialized data
segment

The initialized data segment contains writable, initialized data. After ev-
ery statement, the data segment location counter is incremented by the
number of bytes generated for that statement. The location counter of
the data segment may not be decremented.

The data segment is written to the .data section of the object file. Each
data address maps to a location in the .data section of the object file.

CompactRISC Assembler Reference Manual ASSEMBLER PROGRAMS 4-3

All symbols defined in the .data section are of type data. References to
locations in the data segment are addressed in Absolute addressing
mode.

Related direc-
tive

.data (Section 6.7.3).

Uninitialized
data (bss)
segments

The uninitialized data or bss segment consists of storage allocated for
uninitialized data. After every statement following the .udata section
control directive, the bss segment location counter is incremented by
the number of bytes allocated by that statement. The bss location
counter is also updated by the .bss directive. No code or data may be
generated in the bss segment. The location counter of the bss segment
may not be decremented.

Each bss address maps to a location in the .bss section of the object
file, although the .bss section of the COFF file contains no actual data.
Storage space is allocated and zeroed at load time.

All symbols defined in the .bss section are of type bss. References to lo-
cations in the bss segment are addressed in Absolute addressing mode.

Related direc-
tives

.udata (Section 6.7.5), .bss (Section 6.7.4).

4.4 USER-DEFINED, DUMMY AND COMMENT SEGMENTS

This section describes user-defined, dummy and comment segments.

User-defined
segments

User-defined segments are generated with the .section directive.
These segments occupy real space in the object file and, depending on
the attributes selected, may appear in the linked file. Symbols declared
in these segments are addressed via the absolute addressing mode.

Related direc-
tives

.section (Section 6.7.6).

Dummy seg-
ments

The dummy segments are generated with the .dsect directive. These
segments do not allocate storage, nor do they contain generated code or
data. If the dummy segment is of a relative type, it overlays some portion
of that type of segment. For example, a user-defined dummy segment
might be used to overlay one or more structured data types on a pool of
storage. Dummy segments of type absolute may be used to generate sym-
bolic positive or negative offsets from the stack register for function argu-
ments or local variables.

CompactRISC Assembler Reference Manual ASSEMBLER PROGRAMS 4-4

Every statement following a .dsect directive increments or decrements
the location counter for the dummy segment by the number of bytes
specified by that statement.

Related direc-
tive

.dsect (Section 6.7.1).

Comment Seg-
ments

Comment segments are generated with the .ident directive and corre-
sponds to the .comment section of the COFF file.

CompactRISC Assembler Reference Manual INSTRUCTION OPERANDS 5-1

Chapter 5

INSTRUCTION OPERANDS

5.1 REGISTER OPERANDS

register

r<n> is a general-purpose register
sp is the stack pointer register (and is also a general-purpose

register)
ra is the register holding the return address of a function

(and is also a general-purpose register)

era (CR16B large programming model only) is a register that
holds the most significant bits of the return address (and
is also a general-purpose register). It replaces r13 in other
programming models.

A register operand specifies a general-purpose register. The register con-
tains the operand for the instruction.

Examples 1. movw r0,r1
2. jump ra

The first example copies a word from r0 to r1 .

The second example jumps to the address which resides in register ra .

5.2 REGISTER PAIR OPERAND (CR16B LARGE MODEL ONLY)

(register<n+1>, register<n>)

A register pair operand is any pair of consecutive general purpose-
registers (in descending order). The operand address is formed by con-
catenating the values of the two registers. Note that the most significant
bits of the address are always in the register with the higher index.

Examples 1. movd $label,(r6,r5)
2. jump (era,ra)

The first example loads an address of a label into the register pair r5-r6 .

CompactRISC Assembler Reference Manual INSTRUCTION OPERANDS 5-2

The second example jumps to an address which resides in the register
pair ra-era . This is the common way to return from a function in the
CR16B large programming model.

5.3 PROCESSOR REGISTER OPERANDS

procreg

Specifies a dedicated register. procreg must be one of the following reg-
ister names1:

pc - Program Counter.
isp - Interrupt Stack Pointer
intbase - Interrupt Base Register
psr - Processor Status Register.
cfg - Configuration Register.
dsr - Debug Status Register.
dcr - Debug Condition Register.
car - Compare Address Register.

The functions of the dedicated registers are described in the datasheet
of the relevant microprocessor.

1. Only part of this register list is available on all Compact-
RISC architecture derivatives. A register name is recog-
nized by the assembler only if it is supported by the
target architecture.

Examples 1 lpr r1,psr
2 spr cfg,r0

The first example loads the value in r1 into the Processor Status Regis-
ter, psr .

The second example stores the value of the Configuration Register, cfg ,
into r0 .

5.4 REGISTER RELATIVE OPERANDS

expression{:exp_len}(register)

expression is an expression which evaluates to an absolute value, or
to a relative value type (see Section 3.6).
During assembly, or link process, the expression is evalu-
ated to produce an intermediate value.

CompactRISC Assembler Reference Manual INSTRUCTION OPERANDS 5-3

: exp_len is an optional field that determines the length of the ex-
pression field in the instruction’s encoding.
The colon is required.
exp_len can be one of the following (see Section 3.7.3):
s - specifies small.
m - specifies medium.
l - specifies large.

(register) is one of the general purpose registers, r<n> , or the stack
pointer, sp , or the return address register r17 .
Parentheses are required.

A Register Relative operand specifies an operand at a memory address.
The address is the sum of the evaluated expression and the contents of
the register.

The architecture supports a few different sizes of intermediate values, to
decrease code size. Intermediate value can be of small, medium, or large
size. (See the datasheet of the relevant microprocessor.) When exp_len is
not specifically mentioned in the instruction, the assembler attempts to
use the smallest size that can still hold the expression value. For expres-
sions that are not defined at assembly time, large displacement is used.
You may overwrite this default by explicitly specifying the exp_len option
of the operand. If the evaluated expression does not fit in the desired
length, an error is issued.

Example loadb 5(r0),r1

This example takes the contents of r0 , adds 5, and uses the result as
the address of the operand to be loaded to r1 .

5.5 PROGRAM COUNTER RELATIVE OPERANDS

expression{ :exp_len }

expression is a legal expression of any type which is the target of a
branch instruction.

:exp_len is an optional field that determines the length of the ex-
pression field in the instruction.
The colon is required.
exp_len can be one of the following (see Section 3.7.3):
s - specifies small.
m - specifies medium.
l - specifies large.

CompactRISC Assembler Reference Manual INSTRUCTION OPERANDS 5-4

A Program Counter relative operand specifies an operand at a memory ad-
dress which is the destination of a branch instruction. The assembler con-
verts the address to an offset from the current value of the location
counter.
To minimize the code size of branch instructions, the evaluated expres-
sion field can be small, medium or large size (See the datasheet of the
relevant microprocessor.) When exp_len is not specifically mentioned
in the instruction, the assembler attempts to use the smallest size that
can still hold the expression value. For expressions that are not defined
at assembly time, large displacement is used. You may overwrite this
default by specifying the exp_len option of the operand. If the evaluat-
ed expression does not fit in the desired length, an error is issued.

The most common way of specifying Program Counter relative operands
is by writing a “label” at the branch target, and specifying this “label” as
the operand to the branch instruction. Alternatively, write an expres-
sion of the form “*+absolute_value”; in this case the assembler uses
only the absolute value specified when encoding the instruction.

Example br L1:m

The assembler generates a branch instruction with a medium size dis-
placement whose content is the difference between the address of the
branch statement and the address of L1.

5.6 FAR RELATIVE OPERANDS

expression{(register, register)

expression is an expression which evaluates to an absolute value, or
to a relative value type (see Section 3.6).
During assembly, or the link process, the expression is
evaluated to produce an intermediate value.

(register , register)
two consecutive general purpose registers of the type:
(Rb+1, Rb).

The far relative mode is an extension to the register relative mode de-
signed for 16-bit architectures like the CR16A and CR16B. The CR16A
and CR16B have 18-bit and 21-bit address spaces, respectively. You
can not use the register relative addressing mode to refer to an address
which is greater than, or equal to, 65536 (216), since the base register,
which is a general-purpose register, is only 16-bit wide. In this case,
you can use the far relative addressing mode. In far relative addressing
mode, the base address is stored in two consecutive general-purpose
registers.

CompactRISC Assembler Reference Manual INSTRUCTION OPERANDS 5-5

 Example loadw 50(r2,r1),r3

takes the address that is formed by concatenating the contents of r2
and r1 , adds 50, and uses the result as the address of the operand to
be loaded to r3 .

5.7 IMMEDIATE OPERANDS

$[qualifier] expression{:exp_len}

qualifier hi or low in architectures where the address space is
larger than can be expressed in a word.
hi expression yields the higher word and low expres-
sion yields the lower word.

expression is one of the following:
- character constant
- a legal expression of any type (See Section 3.7)

:exp_len is an optional field that determines the length of the ex-
pression field in the instruction’s encoding.
The colon is required.
exp_len can be one of the following (see Section 3.7.3):
s - specifies small.
m - specifies medium.
l - specifies large (CR32 only).

Immediate operands are encoded into the Immediate addressing mode;
thus the operands’ value is stored in the instruction stream.

If the expression is a relative type or an external, undefined type, the
assembler generates a relocation entry for the operand. The linker uses
the relocation entry to update the operand address at link time.

If the expression is of type code-label (see Section 6.6.3) then in archi-
tectures where the pc has implied bits, the expression is adjusted ac-
cordingly. In CR16, for example, it is divided by two. In CR32A there are
no implicit bits.

To minimize the code size of immediate operands, the evaluated expres-
sion field can be small, medium or large size. When exp_len is not spe-
cifically mentioned in the instruction, the assembler attempts to use the
smallest size that can still hold the expression value. For expressions
that are not defined at assembly time, the maximum available displace-
ment is used. You may overwrite this default by specifying the exp_len
option of the operand. If the evaluated expression does not fit in the de-
sired length, an error is issued.

CompactRISC Assembler Reference Manual INSTRUCTION OPERANDS 5-6

The range of immediate operands is limited by the length specifier of the
instruction (see the datasheet of the relevant microprocessor).
No floating point expressions are allowed.

Examples movb $5,r0

loads the value 5 to the least significant byte of r0 .

movd $_stremp,r0

loads the address of the function stremp into r0 .

CR16A
.code_label _func
movw $_func, r0

loads the address of _func , shifted right by 1, into r0 .

CR16A
movw $hi table, r1
movw $low table, r0

loads the higher word of table into r1 , and the lower word into r0 .

CR16B
.code_label _func
movd $_func, (r1,r0)

loads the address of _func , shifted right by 1, into register pair r0-r1 .

5.8 ABSOLUTE OPERANDS

expression {: exp_len }

expression is a legal expression of any type (see Section 3.7).

:exp_len is an optional field that determines the length of the ex-
pression field in the instruction.
The colon is required.
exp_len can be one of the following (see Section 3.7.3):
s - specifies small.
m - specifies medium.
l - specifies large (CR32 only).

As absolute operand specifies the absolute memory address of an operand.

CompactRISC Assembler Reference Manual INSTRUCTION OPERANDS 5-7

To minimize the code size of instructions that use absolute operands,
the evaluated expression field can be small, medium or large size. When
exp_len is not specifically mentioned in the instruction, the assembler
attempts to use the smallest size that can still hold the expression val-
ue. For expressions that are not defined at assembly time, the maxi-
mum available displacement is used. You may overwrite this default by
specifying the exp_len option of the operand. If the evaluated expres-
sion does not fit in the desired length, an error is issued.

Example loadw _a, r0

puts the contents of _a in r0 .

5.9 STATIC-BASE RELATIVE OPERANDS

^expression

expression is an absolute expression.

A static-base relative operand is a special case of register-relative oper-
and. The operand is encoded relative to a predefined based address and
this base address is assumed to be the contents of r13 (r12 in the
CR16B large programming model). This kind of operand may be useful
as an alternative to absolute operand e.g., if you want to refer to all
symbols using a register-relative addressing mode rather than absolute
addressing mode. A relocation entry of the form SBREL is generated to
enable the linker to modify the displacement. The linker encodes the
displacement relative to the predefined base address given by the sym-
bol _STATIC_BASE_START. It is the programmer’s responsibility to as-
sign this address to r13 (r12 in CR16B large programming model) e.g.,
at program initialization.

This operand type is currently supported only in the CR32A architec-
ture.

Example storw r1, ̂ _a

stores the contents of r1 in _a and uses register-relative addressing
mode with r13 (r12 in the CR16B large programming model) as the
base address register.

5.10 EXCEPTION OPERANDS

exception_name
exception_number

CompactRISC Assembler Reference Manual INSTRUCTION OPERANDS 5-8

exception name
is one of the valid exceptions defined for the CompactRISC
architecture. For a list of valid exception names, refer to
the appropriate CompactRISC core architecture specifica-
tion.

exception_number
is the number of the exception entry in the trap vector.

Exception name/number operands are legal only as operands of the
EXCP instruction. Each exception that is defined in the architecture has
a name associated with it, and a number which the assembler puts in
the instruction in place of this name. The assembler treats the excep-
tion names as reserved words; they may not be used as labels or as op-
erands to instructions other then EXCP.

Example 1. excp bpt

2. excp 8

The excp instruction activates a trap according to the number of the in-
terrupt vector associated with the exception name specified.

In example 1, bpt stands for break-point trap.

Example 2 is similar to example 1, except that the specific number is in
the instruction instead of the name.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-1

Chapter 6

ASSEMBLER DIRECTIVES

6.1 INTRODUCTION

Directives are commands to the assembler which allow the programmer
to control the assembler in its generation of object code and production
of listings.

The CompactRISC Assembler directives are divided into functional
groups as follows:

The remainder of this chapter discusses these directives in detail.

6.2 SYMBOL CREATION DIRECTIVE

The symbol creation directive causes the assembler to compute the val-
ue of an expression and assign that value to a symbol name.

Directive Function Section

Symbol Creation Assigns a name, type, and value to a symbol. 6.2

Data Generation Initializes a block of memory with constant values. 6.3

Storage Allocation Reserves a block of memory for data storage. 6.4

Listing Control Controls format of program listings. 6.5

Linkage Control Exports and imports data and procedures. 6.6

Segment Control Defines physical or logical image segments. 6.7

Filename Names the source file. 6.8

Symbol Table Specifies symbol table entry data. 6.9

Line Number Table Specifies a line number table entry. 6.10

Macro Support Provides macro and conditional assembly support. 6.11

Directive Function

.set creates a symbol name

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-2

6.2.1 .set

.set symbol, expression

.set is the directive name.

symbol is a symbol name as defined in Section 3.5.

expression is a constant or an expression. It may evaluate to any
type.

The .set directive causes the CompactRISC Assembler to compute the
value of expression and assign this value to the symbol name. ex-
pression may evaluate to any type except undefined, refer to Section
3.7. The expression may not be of type external (undefined), nor a for-
ward reference.

For each symbol defined with the .set directive, the CompactRISC As-
sembler enters the symbol name and value in its internal symbol table.
The symbol may then be used in expressions in subsequent portions of
the assembly.

Example 1 .set SYMBA, 5
2 .set SYMBB, LABELA + SYMBA
3 .set SYMBC,’ A’

Line 1 defines the symbol SYMBA and assigns it the value 5.

Line 2 defines the symbol SYMBB and assigns it the value of LABE-
LA+SYMBA. If SYMBA has the value 5, then SYMBB is assigned the val-
ue of LABELA+5 and the type of LABELA.

Line 3 defines the symbol SYMBC and assigns it the value of the ’A’ ex-
pression. Note that only single character constants may be used in ex-
pressions (refer to Section 3.7.2).

6.3 DATA GENERATION DIRECTIVES

The data generation directives place constant data in the instruction
stream during assembly-time. The data generation directives are:

Directive Function

.ascii assigns ASCII encoded textual data

.byte assigns byte-long data

.word assigns word-long data

.double assigns double word-long data

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-3

Each of the above directives places one or more bytes of data in the ob-
ject code of the program currently assembling. Data generation direc-
tives may be specified only in Program Code segments where data is
written to the object file (i.e., when the location counter is in the text
segment, the data segment, or a user-defined segment).

All the numeric data generation directives, i.e., all directives listed ex-
cept .field and .ascii , have the following form:

[label]directive ({[[repetition-factor]] expression |
 string}),,,

The directive stores the expression value in the instruction stream.
If a repetition-factor is specified, the directive stores the expres-
sion value in consecutive locations as specified by the repetition-
factor . A label is optional.

The .byte , .word , .double , .float, and .long directives may specify
one or more expressions . Multiple expressions must be separated by
commas. Each expression is evaluated and stored in the number of
bytes specified by the directive. An expression must evaluate to an ab-
solute value within the range specified by the directive, but expres-
sions for the .long and .float directives should evaluate to a long
value. (The assembler evaluates all floating-point expressions as long
floating-point numbers. If necessary, the result is then converted to a
single-precision floating-point value.) If no expression is specified, the
CompactRISC Assembler issues an error message and terminates code
generation.

A repetition-factor may be any expression which evaluates to a pos-
itive absolute value. The repetition-factor expression may use sym-
bolic values, but no forward symbol references are allowed.

The .byte , .word , and .double directives may be used for both signed
and unsigned numbers.

6.3.1 .ascii

[label] .ascii "string"

label is an optional label.

.float assigns single-precision floating-point number

.long assigns double-precision floating-point number

.field assigns bit field

Directive Function

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-4

.ascii is the directive name.

"string" specifies a string constant. The string must not contain
an embedded new-line. You may use the escape sequence
"\n" to enter a new-line into a string constant.

The .ascii directive generates textual data. The CompactRISC Assem-
bler places the text in the instruction stream at the current address
specified by the location counter. The assembler stores the ASCII value
of each character in the string in one byte, placing the first character
of the string at the lowest byte address and the last character of the
string at the highest byte address. Unprintable ASCII characters may be
included via the escapes defined in Section 3.4.3. No special string ter-
minator is implied or inserted by the assembler.

Example 1 .data

2 D000000004572726f.ascii "Error: unknown command.\n"
723a2075
6e6b6e6f
776e2063
6f6d6d61
6e642e0a

3 D0000001855736167.ascii"Usage: list [-tdrx]"
653a206c
69737420
5b2d7464
72785d20

Line 2 places the ASCII character string "Error: unknown command."
followed by a new-line character (\n) in consecutive bytes beginning at
address 0 of the data segment.

Line 3 places the character string "Usage: list [−tdrx]" in consecutive
bytes starting at address 00000018 in the data segment.

6.3.2 .byte

[label].byte({[[repetition-factor]] expression | string }),,,

label is an optional label.

.byte is the directive name.

[repetition-factor]
(optional) specifies the number of occurrences of the spec-
ified data byte. It must be an expression which evaluates
to a positive absolute value. If the repetition-factor is
specified, it must be enclosed in ‘‘[]’’ brackets.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-5

expression specifies the data byte value. This value must be in the
range of -128 to 255.

string specifies a string constant. The assembler issues a warn-
ing if the string contains an embedded new-line. There-
fore, it is preferable to use the ‘‘\n’’ escape sequence.

The .byte directive generates one or more byte constants. The
CompactRISC Assembler places the constants in the instruction stream
at the current address specified by the location counter. If multiple con-
stants are specified (e.g., repetition-factor is greater than one or
more than one expression is given), the constants are stored in con-
secutive bytes beginning at the current address.

If a string is specified, the assembler places the string , starting with
the first character in the string, in one or more bytes beginning at the
current address. The assembler stores the ASCII value of each character
in the string in one byte. Character constants appearing as terms in
the expression are converted to integers (see Section 3.7.2).

Example 1 T00000000 81 .byte 129
2 T00000001 03030303 .byte [5] 3

03
3 T00000006 414243 .byte "ABC"
4 T00000009 034142 .byte 3,"AB"
5 T0000000c 2202 .byte ’f’/3,’f’/’3’
6 T0000000e 81 .byte -127

Line 1 places 81 in a byte at address 000000 of the text segment.

Line 2 places 3 (repeated 5 times) in five consecutive bytes starting at
address 000001 in the text segment.

Line 3 places the ASCII values of “ABC” in three consecutive bytes start-
ing at address 000006 in the text segment.

Line 4 places 3 in the byte at address 000009 in the text segment fol-
lowed by the ASCII values of “AB” in two consecutive bytes.

Line 5 places the value of the expressions ’f’/3 and ’f’/’3’ in consecutive
bytes beginning at address 00000C in the text segment. The value of
’f’/3 (0x22) is first, followed by the value of ’f’/’3’ (0x02).

Line 6 places 81 in a byte at address 00000E in the text segment.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-6

6.3.3 .word

[label] .word ({[[repetition-factor]] expression |
string }),,,

label is an optional label.

.word is the directive name.

[repetition-factor]
(optional) specifies the number of occurrences of the spec-
ified data word. It must be an expression which evaluates
to a positive absolute value. If the repetition-factor is
specified, it must be enclosed in “[]” brackets.

expression specifies the data word value. It must evaluate to an abso-
lute value within the range of −32768 to 65535.

string specifies a string constant. If the string is not composed of
an even multiple of two characters, it is null padded by
the appropriate amount.

The .word directive generates one or more word length constants. The as-
sembler places the constants in the instruction stream at the current ad-
dress specified by the location counter. The assembler stores the least-
significant byte at the lower address and the most-significant byte at the
higher address.

If the expression is a relative type or an external, undefined type, the
assembler generates a relocation entry for the operand. The linker uses
the relocation entry to update the operand address at link time.

If the expression is of type code-label (see Section 6.6.3) then in architec-
tures where the pc has implied bits, the expression is adjusted accordingly.
In CR16, for example, it is divided by two. In CR32A there are no implicit
bits.

If multiple constants are specified (e.g., repetition-factor is greater
than one, or more than one expression is given), the constants are
stored in consecutive words beginning at the current address.

When a string is specified as an operand of the .word directive, it is
output as a byte string beginning at the lowest address and padded at
the high address to an even multiple of two bytes if necessary.

Example 1 T0000000 0180 .word 32769
2 T0000002 34123412 .word [2] 0x1234
3 T0000006 41004142 .word ’A’, "AB"
4 T000000a 0100 .word 0x41424344/0x41424344
5 T000000c 0180 .word -32767
6 .code_label Func1
7 T000000e 0009 .word Func1

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-7

8 T000010 0012 .word Func2
9 Func1:
10 Func2:

Line 1 places the constant 32769 in a word at the address 000000 in
the text segment.

Line 2 places the constant 0x1234 (repeated twice) in two consecutive
words.

Line 3 places the word values of the character constant ’A’ and the
string “AB” (evaluated as integers) in two consecutive words.

Line 4 places the value of the expression 0x41424344/0x41424344 in a
word at the address 00000A in the text segment.

Line 5 places 0x8001 (−32767) in a word at address 00000C in the text
segment.

Line 6 places the address of function Func1, shifted by 2, at address
00..0e.

Line 7 places the address of function Func2 in a word at address 0010.

6.3.4 .double

[label] .double ({[[repetition-factor]] expression |
string }),,

label is an optional label.

.double is the directive name.

[repetition-factor
(optional) specifies the number of occurrences of the spec-
ified double-word. It must be an expression which evalu-
ates to a positive absolute value. If the repetition -
factor is specified, it must be enclosed in "[]" brackets.

expression specifies the double-word value. It must evaluate to an
absolute value within the range of -231 to 231 − 1.

string specifies a string constant. If the string is not composed of
an even multiple of four characters, it is null padded by
the appropriate amount.

The .double directive generates one or more double-word constants.
The assembler places the constants in the instruction stream at the
current address specified by the location counter. The assembler places
the bytes in ascending order, beginning with the least-significant byte at
the lowest address.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-8

If multiple constants are specified (e.g., repetition-factor is greater
than one, or more than one expression is given), the constants are
stored in consecutive double-words, beginning at the current address.
When a string is specified as an operand of the .double directive, it is
output as a byte string, beginning at the lowest address and padded at
the high address to an even multiple of four bytes if necessary.

Example 1 T0000000 ffff0000.double 0x0000FFFF, 0xFFFF0000
0000ffff

2 T0000008 03000000.double [2] 3
03000000

3 T0000010 41424300.double ‘‘ABC’’
4 T0000014 01000000.double 0x41424344/0x41424344
5 T0000018 70ffffff.double -144, 257

01010000

Line 1 places the constants 0x0000ffff and 0xffff0000 in two consecu-
tive double-words.

Line 2 places the constant 3 (repeated twice) in two consecutive double-
words.

Line 3 places the value of the string “ABC” in a double-word.

Line 4 places the value of the expression 0x41424344/0x41424344 in a
double-word at address 00000014 in the text segment.

Line 5 places the value of the signed constants −144 and 257 in con-
secutive double-words.

6.3.5 .float

[label] .float ([[repetition-factor]] expression),,,

label is an optional label.

.float is the directive name.

[repetition-factor]
(optional) specifies the number of occurrences of the spec-
ified floating-point number. It must be an expression
which evaluates to a positive absolute value. If the repe-
tition-factor is specified, it must be enclosed in
brackets. “ []” .

expression specifies a single-precision floating-point constant (refer
to Section 3.4.2). Strings are not permitted.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-9

The .float directive generates one or more single-precision floating-
point constants. The assembler places the constants in the instruction
stream at the current address specified by the location counter. The as-
sembler stores a single-precision floating-point constant in a double-
word (32 bits).

If multiple constants are specified (e.g., repetition-factor is greater
than one, or more than one expression is given), the constants are
stored in consecutive double-words beginning at the current address.

Example 1 T0000000 4cdc3654 .float 3.14152E+12
2 T0000004 1ff47c3f .float [2]0.9881

1ff47c3f

Line 1 places the floating-point constant 3.14152E+12 in a double-word
at the current address.

Line 2 places the floating-point constant 0.9881 (repeated twice) into
two consecutive double-words.

6.3.6 .long

[label] .long ([[repetition-factor]] expression),,,

label is an optional label.

.long is the directive name.

[repetition-factor]
(optional) specifies the number of occurrences of the spec-
ified floating-point number. It must be an expression
which evaluates to a positive absolute value. If the repe-
tition-factor is specified, it must be enclosed in “[]”
brackets.

expression specifies a double-precision floating-point constant (refer
to Section 3.4.2). Strings are not permitted.

The .long directive generates one, or more double-precision floating-
point constants. The assembler places the constants in the instruction
stream at the current address specified by the location counter. The as-
sembler stores a double-precision floating-point constant in a quad-
word (64 bits).

If multiple constants are specified (e.g., repetition-factor is greater
than one, or more than one expression is given), the constants are
stored in consecutive quad-words beginning at the current address.

Example 1 T0000000 00002078 .long 3.14152E+12
89db8642

2 T0000008 3695efe2 .long 6.12E-23, [3] 0.9881

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-10

1e7f523b
e6ae25e4
839eef3f
e6ae25e4
839eef3f
e6ae25e4
839eef3f

Line 1 places the floating-point constant 3.14152E+12 in a quad-word
at the current address.

Line 2 places the floating-point constants 6.12E−23 and 0.9881 (repeat-
ed three times) in four consecutive quad-words.

6.3.7 .field

[label] .field ([subfield-size] subfield-value),,,

label is an optional label.

.field is the directive name.

[subfield-size]
(required) specifies the length in bits of the field being
generated. It may be any expression which evaluates to a
positive absolute value. No forward referencing of symbols
is permitted. The subfield-size must be enclosed in “[]”
brackets.

subfield-value (
required) specifies a field value. It may be any expression
which evaluates to a non-negative absolute value. It must
be within the range specified by the field size (e.g., 0 to 15
for a 4-bit field, 0 to 31 for a 5-bit field).

The .field directive generates one or more bit fields. The assembler
places the field(s) in the instruction stream at the current address spec-
ified by the location counter. The directive provides no default values;
thus, both subfield-size and subfield-value must be specified.

If the directive specifies more than one subfield-size/subfield-val-
ue pair, the values are placed in contiguous fields. If a field or a combi-
nation of fields do not extend to a byte boundary, the assembler zero-
fills the remaining bits.

If multiple constants are specified, the subfield-size/subfield-val-
ue pairs must be separated by commas. See lines 2 and 3 in the follow-
ing example.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-11

Example 1 T0000000 08 .field [4] 8
2 T0000001 3f .field [4] 15, [4] 3
3 T0000002 2143 .field [4] 1, [4] 2, [4] 3, [4] 4

Line 1 places 8 in a 4-bit field at address 0000000 in the text segment
and zero-fills the four high-order bits.

Line 2 places 15 and 3 in two consecutive 4-bit fields at address
0000001 in the text segment.

Line 3 places 1, 2, 3, and 4 in four consecutive 4-bit fields. The fields
occupy two bytes beginning at address 0000002 in the text segment.

6.4 STORAGE ALLOCATION DIRECTIVES

There are six storage allocation directives:

All storage allocation directives except .space have the following form:

[label] directive [expression]

The optional expression specifies the number of bytes, words, double-
words, or quad-words to be allocated. It must evaluate to a non-nega-
tive absolute value. If the expression evaluates to zero, no storage is
allocated. If no expression is specified, the default value is one. The
expression may use symbolic values, but no forward symbol referenc-
es are allowed.

When storage allocation directives occur in the text segment, the allo-
cated bytes, words, double-words, or quad-words allocated are initial-
ized to the nop instruction and appear in the program listing as
generated code. When storage allocation directives occur in the data
segment, the allocated bytes, words, double-words, or quad-words are
initialized to zero and appear in the program listing as generated code.
For all other segment types, the allocated space is uninitialized.

Directive Function

.blkb allocates byte storage

.blkw allocates word storage

.blkd allocates double-word storage

.blkf allocates double-word(s) for floating-point storage

.blkl allocates quad-word(s) for long floating-point storage

.space allocates a block of storage

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-12

Sections 6.4.1 through 6.4.6 define the syntax of these directives.

6.4.1 .blkb

[label] .blkb[expression]

label is an optional label.

.blkb is the directive name.

expression specifies the number of bytes to be allocated. It must be
an unsigned integer constant or an expression which
evaluates to a non-negative absolute value. The default
value is one.

The .blkb directive allocates zero or more consecutive bytes of memory
for data storage. The bytes begin at the current location counter ad-
dress.

Example 1 .data
2 D00000000 00 .blkb 1
3 D00000001 00000000 AA: .blkb 15

00000000
00000000
000000

4 D00000010 00000000 .blkb (.-AA)/3
00

5 D00000015 00 .blkb

Line 2 allocates a single byte for data storage. The byte is located at ad-
dress 00000000 in the data segment.

Line 3 allocates 15 consecutive bytes for data storage, beginning at ad-
dress 00000001 in the data segment. The label AA is assigned the ad-
dress of the first byte.

Line 4 allocates the number of bytes specified by the “(.−AA)/3” expres-
sion.
The expression evaluates to 5, i.e., (16 (data relative) − 1 (data relative))
= 15 (absolute), 15/3 = 5. Therefore, 5 bytes are allocated, beginning at
address 00000010 data segment relative.

Line 5 allocates a single byte for storage.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-13

6.4.2 .blkw

[label] .blkw [expression]

label is an optional label.

.blkw is the directive name.

expression specifies the number of words to be allocated. It must be
an unsigned integer constant or an expression which
evaluates to a non-negative absolute value.

The .blkw directive allocates zero or more consecutive words of memory
for data storage. The words begin at the current location counter ad-
dress.

Example 1 .text
2 T00000000 a2a2 .blkw 1
3 T00000002 a2a2a2a2 AA: .blkw 15

a2a2a2a2
a2a2a2a2
a2a2a2a2
a2a2a2a2
a2a2a2a2
a2a2

4 T00000020 a2a2a2a2 .blkw (. −AA)/3
a2a2a2a2
a2a2a2a2
a2a2a2a2
a2a2a2a2

5 T00000034 a2a2 .blkw

Line 2 allocates one word for data storage at address 00000000 in the
text segment.

Line 3 allocates 15 consecutive words for data storage, beginning at ad-
dress 00000002 in the text segment. The label AA is assigned the ad-
dress of the first word.

Line 4 allocates the number of words specified by the “(.−AA)/3” expres-
sion. The expression evaluates to 10, i.e., (32 (text relative) − 2 (text
segment relative)) = 30 (absolute), 30/3 = 10. Therefore, 10 words are
allocated, beginning at address 00000020 in the text segment.

 Line 5 allocates one word for storage.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-14

6.4.3 .blkd

[label] .blkd [expression]

label is an optional label.

.blkd is the directive name.

expression specifies the number of double-words to be allocated. It
must be an unsigned integer constant or an expression
which evaluates to a non-negative absolute value.

The .blkd directive allocates zero or more consecutive double-words of
memory for data storage. The double-words begin at the current loca-
tion counter address.

Example 1 .text
2 text_start:
3 .dsect lo_text, text_start
4 .blkd 1
5 AA: .blkd 15
6 .blkd (.-AA)/3
7 .blkd

Line 4 allocates one double-word for data storage, overlaid onto address
000000 of the text segment.

Line 5 allocates 15 consecutive double-words for data storage, overlaid
onto address 000004 of the text segment. The label AA is assigned the
address of the first double-word.

Line 6 allocates the number of double-words specified by the “(.−AA)/3”
expression. The expression evaluates to 20, i.e., (64 (text relative) − 4
(text relative)) = 60 (absolute), 60/3 = 20. Therefore, 20 double-words
are allocated and overlaid onto address 000040 of the text segment.

Line 7 allocates a single double-word for storage.

6.4.4 .blkf

[label] .blkf [expression]

label is an optional label.

.blkf is the directive name.

expression specifies the number of double-words to be allocated. It
must be an unsigned integer constant or an expression
which evaluates to a non-negative absolute value.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-15

The .blkf directive allocates zero or more consecutive double-words of
memory for storage of single-precision floating-point (32-bit) numbers.
The double-words begin at the current location counter address.

Example 1 .udata
2 .blkf 1
3 AA: .blkf 15
4 .blkf

Line 2 allocates one double-word for data storage at the address of the
bss segment.

Line 3 allocates 15 consecutive double-words for data storage, begin-
ning at the current address of the bss segment. The label AA is as-
signed the address of the first double-word.

Line 4 allocates one double-word for storage at the address of the bss
segment.

6.4.5 .blkl

[label] .blkl [expression]

label is an optional label.

.blkl is the directive name.

expression specifies the number of quad-words to be allocated. It
must be an unsigned integer constant or an expression
which evaluates to a non-negative absolute value.

The .blkl directive allocates zero or more consecutive quad-words of
memory for storage of double-precision floating-point (64-bit) numbers.
The quad-words begin at the current location counter address.

Example 1 .udata
2 .blkl 1
3 AA: .blkl 15
4 .blkl

Line 2 allocates one quad-word for data storage at address 00000000 of
the bss segment.

Line 3 allocates 15 consecutive quad-words for data storage, beginning
at address 00000008 of the bss segment. The label AA is assigned the
address of the first quad-word.

Line 4 allocates a single quad-word for storage at 00000128 of the bss
segment.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-16

6.4.6 .space

[label] .space [expression]

label is an optional label.

.space is the directive name.

expression specifies the number of bytes to be allocated. It must be
an unsigned integer constant or an expression which
evaluates to a non-negative absolute value.

The . space directive allocates a consecutive block of memory for data
storage. The block begins at the current location counter address. The
size in bytes of the storage block is specified by expression .

Example 1 .data
2 D00000000 00 .space 1
3 D00000001 00000000 AA: .space 15

00000000
00000000
000000

4 D00000010 00000000 .space (.-AA)/3
00

5 D00000015 00 .space 1

Line 2 allocates one byte for data storage. The byte is located at address
00000000 in the data segment.

Line 3 allocates 15 consecutive bytes for data storage, beginning at ad-
dress 00000001 in the data segment. The label AA is assigned the ad-
dress of the first byte.

Line 4 allocates the number of bytes specified by the “(.−AA)/3” expres-
sion. The expression evaluates to 5, i.e., (16 (data relative) − 1 (data rel-
ative)) = 15 (absolute), 15/3 = 5. Therefore, five bytes are allocated,
beginning at address 00000010 data segment relative.

Line 5 allocates a single byte for storage.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-17

6.5 LISTING CONTROL DIRECTIVES

The listing control directives control the format of the CompactRISC As-
sembler’s program listing:

Sections 6.5.1 through 6.5.6 describe the listing control directives in detail.

6.5.1 .title

[label] .title “ string ”

label is an optional label.

.title is the directive name.

string specifies the character string to be printed at the top of
the listing page. The string (required) may consist of any
combination of up to 126 letters, numbers, and text char-
acters and must be enclosed in double-quotes.

The .title directive causes the assembler to print the specified string
at the top of each new page of the program listing. The first .title di-
rective affects the current listing page as well as all previous pages.

If a program contains more than one .title directive, the last .title
directive to be specified before the page break affects subsequent pages.
If a page other than the first page has no .title directive, it receives
the title of the previous page.

If a program contains no .title directive, no title is printed.

No title is printed on the cross-reference page.

Example .title John’s Program

Directive Function

.title prints title at top of program listing

.subtitle prints subtitle at top of program listing

.nolist
suppresses the printing of lines of source program to
listing

.list restores printing of lines of source program to listing

.eject continues listing at top of next page

.width sets width of listing page

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-18

The preceding example causes the string “John’s Program” to be printed
at the top of the current page of the program listing. If it is the only
.title directive in the program, all pages have the same title.

6.5.2 .subtitle

[label] .subtitle “ string ”

label is an optional label.

.subtitle is the directive name.

string specifies the character string to be printed at the top of
the listing page. The string (required) may consist of any
combination of up to 126 letters, numbers, and text char-
acters and must be enclosed in double-quotes.

The .subtitle directive causes the assembler to print the specified
string at the top of each new page of the program listing. If a .title
directive is also specified, the subtitle string appears below the title
string .

The first .subtitle directive affects the current listing page as well as
all previous pages.

If a program contains more than one .subtitle directive, the last
.subtitle directive to be specified before the page break affects subse-
quent pages. If a page other than the first page has no .subtitle di-
rective, it receives the title of the previous page.

If a program contains no .subtitle directive, no title is printed.
No title is printed on the cross-reference page.

Example .subtitle “Written 7/7/81”

The preceding example causes the string “Written 7/7/81” to be printed
at the top of the current page of the program listing. If it is the only
.subtitle directive in the program, all pages have the same subtitle.

6.5.3 .nolist

[label] .nolist [qualifier_list]

label is an optional label.

.nolist is the directive name.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-19

qualifier_list
macro listing qualifiers to be set off. Can be any combina-
tion of the qualifiers: mac_source , mac_expansions and
label , as described in Section 7.14

The .nolist directive suppresses the printing of source program lines.
All lines following the .nolist directive are assembled but are not
printed to the program listing.

The .nolist directive does not affect the printing of error messages.

The .nolist directive may be inhibited by specifying a .list directive
(see Section 6.5.4).

Example .nolist
movd r0, r1
addb TEMP, r1
subb r1, r0
.list

In the preceding example, the .nolist directive suppresses printing of
the statement containing the .nolist directive and the following three
lines of source. Printing is restored by the .list directive. Only the
statement containing the .list directive is printed.

6.5.4 .list

[label] .list [qualifier_list]

label is an optional label.

.list is the directive name.

qualifier_list
macro listing qualifiers to be set off. Can be any combina-
tion of the qualifiers: mac_source , mac_expansions and
mac_directives , as described in Section 7.14

The .list directive restores the printing of lines of the source program
after suppression by a .nolist directive. All lines following the . list
directive are printed to the program listing. The statement containing
the .list directive is also printed to the program listing.

Example .nolist
movd r0, r1
addb TEMP, r1
subb r1, r0
.list

NXT: cmpb r1,r0

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-20

In this example, the .list directive restores printing after the previous
.nolist directive. Only the statement labelled NXT: and the .list
statements are printed.

6.5.5 .eject

[label] .eject

label is an optional label.

.eject is the directive name.

The .eject directive causes the program listing to continue at the top
of the next page. The statement containing the .eject directive is print-
ed in the program listing.

Example .eject

This example causes the program listing to continue at the top of the
next page. The statement containing the .eject directive is printed.

6.5.6 .width

[label] .width [expression]

label is an optional label.

.width is the directive name.

expression specifies page width in characters. It must be an unsigned
integer constant or expression which evaluates to an ab-
solute value within the range of 80 to 132.

The .width directive sets the width (in characters) of the program list-
ing lines which follow the directive. (The first .width directive effects all
preceding pages as well.) More than one .width directive is allowed,
with each directive effective until the next or until the end of the file. If
there is no .width directive, the width is 132 characters by default. The
new-line character is included in the maximum width.

If the expression value is outside the specified range, an error message
is generated.

Example .width MYPAGEWIDTH - 12

The preceding example sets the page width to the value of the expres-
sion MYPAGEWIDTH-12. The expression must evaluate to a number
within the range 80 to 132.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-21

6.6 LINKAGE CONTROL DIRECTIVES

The linkage control directives provide support for modular programming
by allowing symbols and procedures to be exported from, or imported
to, separately assembled modules. These directives are:

The .globl directive declares a symbol external, either for import or ex-
port, but does not define the symbol. The .comm directive is similar, ex-
cept an associated size is specified. At link time, symbols declared with
.comm are resolved and allocated in the bss segment. The .code_label di-
rective declares symbols to be in the code section. This is important in
architectures whose PC has implied bits.

Sections 6.6.1 through 6.6.3 describe the linkage control directives.

6.6.1 .globl

.global symbol

.global is the directive name.

symbol is the name of a symbol. If more than one symbol is spec-
ified, the symbols must be separated by commas.

The .globl directive declares a symbol to be external, that is, a symbol
intended to be used by multiple, separately assembled pieces of the
same program. The .globl directive guarantees that a symbol table en-
try is generated in the object file, marked external. The linker uses
these entries to resolve external symbol references at link time. Symbols
declared with the .globl directive may or may not be defined within
the current assembly. Defined symbols that are not declared to be ex-
ternal are assumed to be local symbols and may not be used to resolve
undefined external references at link time. Undefined symbols are as-
sumed to be external, with or without declaration, but it is good prac-
tice to declare all external symbols.

An alternate way to declare external symbols is to replace the colon of
the label definition with a double colon (::).

Directive Function

.globl declares external data symbols

.comm declares external undefined data symbols

.code_label declares that a symbol is in the code section

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-22

Example .globl FIRST, SECOND
FIRST:
SECOND:
THIRD::

This example defines and exports three symbols:
FIRST, SECOND, THIRD.

6.6.2 .comm

 .comm symbol , expression

.comm is the directive name.

symbol is the name of a data symbol referenced, but not defined,
in the current module.

expression specifies the number of bytes allocated for the symbol. It
may be any expression which evaluates to a positive abso-
lute value.

The .comm directive imports the specified symbol and assigns it an ex-
ternal undefined type. When the module is linked, the symbol is placed
in the .bss section. If a symbol is in the .comm section of two files, the
linker shares their areas.

Example 1 .comm SYM1,16
2 .comm SYM2,4
3 T00000000 14a8c000 movb SYM1,r0

0000
4 T00000006 57a8c000 movd SYM2,r1

0000

6.6.3 .code_label

.code_label symbol

.code is the directive name.

symbol is the name of a symbol. If more than one symbol is spec-
ified, the symbols must be separated by commas.

The .code_label directive qualifies a symbol as a label of code. In the
CR16 architectures this kind of label needs special treatment in specific
cases. Declaring a symbol as .code_label means that its value is shift-
ed by 1 to the right whenever it is referenced as an immediate value.
When it appears as an operand of a .word directive, it must also be
shifted. See Sections 5.7 and 6.3.3.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-23

Example # CR16A
.code_label _func
movw $_func, r0

loads the address of _func , shifted right by 1, into r0 .

Example # CR16B
.code_label _func
movw $_func, (r1,r0)

loads the address of _func , shifted right by 1, into register pair r1-r0 .

6.7 SEGMENT CONTROL DIRECTIVES

The segment control directives control the current segment type and the
value of the assembler’s location counter. These directives are:

The segment control directives permit definition of program segments. A
segment is a group of sequential statements whose addresses are all
relative to the same base. Segments permit data or instructions to be
processed as a unit and to be stored in a contiguous block within mem-
ory at run-time.

Sections 6.7.1 through 6.7.9 describe the syntax and operation of the
segment control directives.

Directive Function

.dsect sets the location counter to a user-defined segment

.text sets the location counter to the text segment

.data sets the location counter to the date segment

.bss
assigns space in the bss segment, updates the loca-
tion counter

.udata sets the location counter to the bss segment

.section defines a section with attributes

.org sets the location counter to specified value

.align sets the location counter to specified offset

.ident
places the string argument in the .comment section of
the object file

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-24

6.7.1 .dsect

.dsect symbol expression [, specifier]

.dsect is the directive name.

symbol specifies the name of the dummy section.

expression specifies the value and type of the location counter for the
segment. The expression is required the first time a
named dsect is invoked. Subsequent . dsect directives
using the same name may omit the expression.

specifier is a plus sign (+) or a minus sign (−). Specifier indicates
whether the location counter should be incremented or
decremented.

The .dsect directive defines a named, user-defined (or dummy) seg-
ment. A dummy segment is used to define symbols which may be used
in expressions or as instruction operands to access data. No code or ini-
tialized data may be generated in a dsect .

The assembler assigns a location counter to the segment with the value
and type specified by the expression. If the type of the expression is rel-
ative, for example text or data, the dummy segment may be thought of
as an overlay of an existing memory segment. For example, a dummy
segment might be used to define differing logical data structures that
occupy the same storage space, as in a C union or a Pascal variant
record.

An optional specifier may be used to indicate whether the location
counter for the dummy segment increments or decrements. If the op-
tional specifier is omitted, the value of expression determines whether
the location counter increments or decrements. If the value of the ex-
pression is negative, the assembler decrements the location counter. If
the value of the expression is positive or zero, the assembler increments
the location counter. In either case, labels are assigned the lowest byte
address of the following statement. That is, the location counter is post-
incremented and pre-decremented.

Example .dsect DATE_REC, 0
MONTH: .blkb
DAY: .blkb
YEAR .blkw

This example defines three absolute symbols in a dummy segment
named DATE_REC. The symbols have the absolute values of 0, 1, and 2.
The symbols can be used as offsets into any block of memory. In the ex-
ample below, r0 contains the address of a block of memory for storing
the data. The instructions in the example zero-fill the month, day, and
year fields.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-25

.udata
DATE: .blkb 4

.text
movd $DATE, r0
movw $0, r1
storb r1, MONTH(r0)
storb r1, DAY(r0)
storw r1, YEAR(r0)

6.7.2 .text

.text

.text is the directive name.

The .text directive indicates the beginning of a program text segment
or code segment. The assembler assigns the current location counter
the next available text segment address. Subsequent storage allocation,
data generation, or program statements generate code and constant
data that are placed in the .text section of the object file. Storage allo-
cated in the text segment is filled with nop instructions. The location
counter is incremented after every assignment, storage allocation, or
code generation.

Symbols defined in the text segment are of type text. The assembler
uses the Program Counter (PC) Relative addressing mode for all symbols
or expressions of type text. When the text segment is loaded into mem-
ory, it contains a module’s instructions and constant data and is, there-
fore, protected for read-only access.

Example .text

In the preceding example, the location counter is set to text segment
type. The offset is set to the next available offset. Instructions and data
directives that follow the . text directive generate code in the .text
section of the object file.

6.7.3 .data

.data

.data is the directive name.

The .data directive indicates the beginning of an initialized data seg-
ment. An initialized data segment contains writable data or program
code and are placed in the .data section of the object file. When the
data segment is loaded into memory, it is protected for read-write ac-
cess.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-26

The .data directive sets the location counter to the next available data
segment address. The location counter is incremented after every data
assignment or code generation. Symbols defined in the data segment
are of type data. The assembler uses the Absolute addressing mode for
all symbols or expressions of type data.

Example .data

In the preceding example, the location counter is set to the data seg-
ment. The offset is set to the next available data segment address. Sub-
sequent data directives, or instructions, are output to the .data section
of the object file.

6.7.4 .bss

.bss symbol , expression1 , expression2

.bss is the directive name.

symbol is a symbol name.

expression1 specifies the symbol size.

expression2 specifies an alignment value for the bss location counter.
The alignment value may not be zero.

The .bss directive defines a symbol in the bss or the uninitialized data
segment. There is no code or data in the object file associated with the
bss segment. The .bss directive is a shorthand way to align the location
counter associated with the bss segment, define a symbol, and allocate
the appropriate number of bytes of storage space. It does not change
the current location counter to the bss segment. Use .udata , Section
6.7.5, to change the current location counter.

The .bss directive performs the following actions:

– aligns the bss location counter to a multiple of expression2 . The
value of the location counter is incremented if necessary.

– defines the specified symbol. The symbol is assigned the current
value of the bss segment location counter and type bss. The assem-
bler uses the Absolute addressing mode to reference symbols or ex-
pressions of type bss.

– adds the number of bytes specified by expression1 to the bss lo-
cation counter.

Example .bss name_str, 25, 4

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-27

In the preceding example, the bss segment location counter is aligned to
the next multiple of four bytes, incrementing if necessary. The symbol
name_str is defined and assigned the value of the bss location counter.
The bss segment location counter is incremented by 25.

Note If you want the alignment to hold after link time, the bss section must
be aligned to the lowest common multiplier of all the alignment values
it contains.

6.7.5 .udata

. udata

.udata is the directive name.

The . udata directive indicates the beginning of a bss or uninitialized
data segment. It is used to define symbols and allocate storage space.
As with dummy sections, no code or data is generated in the object file.
However, storage space is accumulated. The total accumulated size of
the segment is recorded in the COFF header and the .bss section head-
er of the object file. Memory is allocated for the total size of the bss seg-
ment at load time.
. udata sets the location counter to the next available bss segment ad-
dress. Symbols defined in the bss (udata) segment are of type bss. The
assembler uses the Absolute addressing mode for all symbols or expres-
sions of type bss.

Example .udata

In the preceding example, the location counter is set to type bss. The
offset is set to the next available offset.

6.7.6 .section

.section section_name , string or

.section section_name

section_name is any legal identifier, only eight significant characters

string is a quoted string consisting of any combination of the fol-
lowing letters
b-> STYP_BSS
c-> STYP_COPY
i-> STYP_INFO
d-> STYP_DSECT
x-> STYP_TEXT
n-> STYP_NOLOAD

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-28

o-> STYP_OVER
l-> STYP_LIB
w-> STYP_DATA

The .section directive allows the assembly programmer to define a
section with attributes; refer to the CompactRISC Toolset - Object Tools
Reference Manual for a description of section attributes. Section_name
is the name of the section, and each character in string represents an
attribute. If string is not present, the section has no attributes. Sym-
bols declared within a section belong to the particular section. A section
is active until the next .section , .text , .data , or .udata directive. A
maximum of 24 sections are allowed including .text , .data , .bss,
and .comment . The .comment section is optional; therefore there can
only be 20 - 21, user-defined sections.

Example .section .init,"x"

istart:

This example declares a section called .init , whose section attribute is
STYP_TEXT. The label ‘‘istart’’ belongs to the .init section.

Note The compiler uses this directive to define special sections which allow
more efficient allocation of data.

6.7.7 .org

.org expression

.org is the directive name.

expression specifies the new value of the location counter. The ex-
pression must evaluate to type absolute or the type of the
current location counter.

The .org directive changes the value of the current location counter
within a segment. It sets the location counter to the value specified by
expression . The type of the expression should be compatible with that
of the current location counter (i.e., it should refer to the location
counter or to a label that is defined in the current segment). It can also
be an absolute expression (e.g., a constant), however in this case the
assembler generates a warning message, and sets the location counter
to the value specified by expression + the starting location of the cur-
rent segment.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-29

If the current segment is an object file segment, i.e., one of text or data,
then the value of the expression must be greater than, or equal to, the
current location counter (i.e., backstepping is not permitted). Further-
more, for object file segments, the CompactRISC Assembler fills the
bytes between the current and the new location with alignment values
as filled for the .align directive. The added bytes are included in the
program listing.

Example 1 .set NUM_CHNKS, 10
2 .set CHNK_SIZE, 4096
3
4 .udata
5 B00000000 c_ptr: .blkd 10
6 B00000028 pool: .org pool + (NUM_CHNKS *

(CHNK_SIZE)
7 B0000a028 mark: .blkd

This example uses the .org directive to leave a large area of memory
available in the bss segment.

6.7.8 .align

.align expression1 [, expression2]

.align is the directive name.

expression1 specifies the basis of a new location counter value. It
must evaluate to a positive absolute value. No forward
symbol references are permitted.

expression2 specifies the offset of the new location counter value. It
must evaluate to a non-negative absolute value and must
be less than the value of expression1 . Default value is
zero. No forward symbol references are permitted.

The . align directive sets the location counter to a new value without
changing the current type. The new value is the sum of a multiple of the ba-
sis, expression1 , and the offset, expression2 . The new value is always
equal to, or greater than, the current location counter and satisfies the fol-
lowing equation:

new_value MOD expression1 = expression2

The new value is the multiple of the basis that is greater than, or equal
to, the current location counter. For example, if expression1 is 6 and
the current location counter is 20, then the new value is 24 (i.e., 4*6).
The default value of expression2 is zero.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-30

If both expression1 and expression2 are specified, the new value is
the sum of the multiple of the basis and the offset. For example, if
expression1 is 4, expression2 is 3, and the current location counter
is 22, then the new value is 27 (i.e., 6*4+3).

If the .align directive is used in the text section, it is filled with 2-byte
instructions that are equivalent to NOPs.

All other alignments are filled with combinations of the above.

If the .align directive is used in a data segment, the assembler zero-fills
all bytes between the current location and the specified address, and in-
cludes up to 128 bytes of the zero-filled bytes in the program listing.

Example 1 .data
2 D00000000 00 FIRST: .blkb
3 D00000001 000000 .align 4
4 D00000004 00 SECOND: .blkb
5 D00000005 00 .align 4, 2
6 D00000006 00 THIRD: .blkb

The preceding example contains two .align directives (lines 3 and 5).

In line 3, the directive sets the location counter to a multiple of 4. The
current location counter is D00000001 (data segment), so the new loca-
tion counter is D00000004 (i.e., 1*4).

In line 5, the directive sets the location counter to a multiple of 4 plus
2. If the current location counter is 5, then the new location counter is
6 (i.e., 1*4 + 2).

Example 1 _mail:
2 T00000000 a2 nop
3 LABEL:
4 T00000001 d439 .align 3
5 T00000003 0a00 .word 10
6 T00000005 d8a100 .align 4
7 T00000008 01 .byte 1
8 T00000009 0a00 .word 10
9 T0000000b a2 .align 2
10 T0000000c 1200 ret 0

The preceding example contains three .align directives (lines 4, 6, and 9).

In line 4, the directive sets the location counter to a multiple of 3. The
current location counter is T00000001 (text segment), so the new loca-
tion counter is T00000003 (i.e., 1*3). The 2-byte filler ‘‘movb r7,r7’’ de-
noted by the opcode d439 (low bytes first) is used.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-31

In line 6, the directive sets the location counter to a multiple of 4. The cur-
rent location counter is T00000005, so the new location counter is
T00000008 (i.e., 2*4). The 3-byte filler ‘‘orb $0,r7’’ denoted by the opcode
d8a100 is used.

In line 9, the directive sets the location counter to a multiple of 2. The
current location counter is T0000000b, so the new location counter is
T0000000c (i.e., 6*2). The single byte filler ‘‘nop’’ denoted by the opcode
a2 is used in this case.

6.7.9 .ident

.ident string

string is a quoted string.

The .ident directive takes its string argument and places it in the
.comment section of the object file. This directive may be used more
than once. The . comment section is given the section attribute of
STYP_INFO. The linker combines all .comment sections at link time.

Example 1 .text
2 .ident "This is .ident"
3 T00000000 a2a2a2a2 .space 1

a2a2a2a2
a2a2

4 .ident "Another .ident"

In this program, the strings "This is .ident" and "Another .ident" are
placed in the .comment section of the object file.

6.8 FILENAME DIRECTIVE

The filename symbol directive specifies the name of the source file:

6.8.1 .file

.file " symbol "

.file is the directive name.

Directive Function

.file specifies the source filename

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-32

“symbol ” specifies source filename for the current assembly. Must
be enclosed in double-quotes.

The .file directive specifies the name of the source file currently being
assembled. The CompactRISC Assembler records the filename in the ob-
ject file as an auxiliary symbol table entry of the special symbol .file.
Only one .file directive per source file is allowed. It may appear any-
where in the file. If no .file directive is specified, the filename is the
input source filename.

If more than one .file directive is specified, the first specified filename
is taken, and a warning message is issued for the rest of them.

The .file directive is used by compilers to associate the name of a
high-level language source file with the object file produced by the
CompactRISC Assembler.

Example .file "stress.c"

This example defines the symbol stress.c as the name of the source
file associated with the current assembly. When using the debugger, the
symbol must be the same as the filename since the debugger uses this
as the name of the source file.

6.9 SYMBOL TABLE ENTRY DEFINITION DIRECTIVES

The symbol table entry definition directives specify symbolic information
which the CompactRISC Assembler records in the object file. The directives
provide a means to record a variety of information useful to symbolic de-
buggers. Symbol table entry directives do not affect the execution of an as-
sembly language program.

The basic symbol table entry directives are .def and .endef . They
mark the start and the end of a symbol definition. Between these, vari-
ous directives may be used to assign attributes to the symbol, for exam-
ple, its size, value, and type or its location in the source file.

Each .def begins to define a new symbol table entry. Therefore, all in-
formation to be recorded about a single symbol must be included be-
tween the .def directive and the matching .endef directive.

Symbol table entry definitions may not be nested.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-33

The symbol table entry definition directives are as follows:

Sections 6.9.1 through 6.9.9 describe the symbol table entry directives
in detail. It is important to fully understand the Common Object File
Format (COFF) symbol table requirements before attempting to use
these directives. For a complete specification of COFF requirements re-
fer to the CompactRISC Toolset - Object Tools Reference Manual. For
useful constant definitions see the include files:

6.9.1 .def

.def " symbol "

.def is the directive name.

symbol is a symbol name. It consists of a series of characters
which may be letters, numbers, period (.), or underscore
(_). The first character must not be a number.

The .def directive causes the CompactRISC Assembler to begin the def-
inition of a Common Object File Format (COFF) symbol table entry for
the specified symbol. The CompactRISC Assembler creates the new
symbol table entry and enters the symbol name. The assembler does
not check the COFF validity of the given values for symbol table entries
definition.

Directive Function

.def begins symbol table entry definition

.dim defines the dimensions of an array

.line specifies a source line number

.scl specifies the symbol’s storage classification

.size specifies the symbol’s storage size

.tag specifies the tag name associated with a type

.type specifies the symbol’s type

.val specifies the symbol’s value

.endef terminates the symbol table entry definition

File Contents

syms.h
Symbol table entry definition, auxiliary entry definition, type
and derived type values

storclass.h Storage class values

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-34

Example .def _n_ptr
.val _n_ptr
.scl 2
.type 2 | (1 << 4)

.endef

.globl _n_ptr

.comm _n_ptr,4

This example is a symbolic definition associated with the C declaration:

char *n_ptr;

The .def directive starts the definition. The symbol table entry is as-
signed the value _n_ptr , a storage class of external (C_EXT) represented
by the value 2, a base type of character (T_CHAR) represented by the val-
ue 2, and a derived type of pointer (DT_PTR) represented by the value 1.
The .endef directive ends the definition. For more information about
the structure of a COFF symbol table entry, the meaning of various
fields, and the values each may contain, refer to the CompactRISC
Toolset - Object Tools Reference Manual.

6.9.2 .dim

.dim expression

.dim is the directive name.

expression specifies the size of one dimension of an array

The .dim directive defines the dimensions of an array. Each argument ex-
pression specifies the number of elements in one array dimension. The sym-
bol table entry format allows the specification of up to four array dimensions.

The CompactRISC Assembler enters the specified expressions into the
array dimension field of the auxiliary symbol table entry for the symbol
that is being defined. If no auxiliary entry exists, the CompactRISC As-
sembler creates one.

Example .dim 5,10

This example is a portion of the symbolic definition for a two-dimen-
sional array. Dimension one is 5, dimension two is 10.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-35

6.9.3 .line

.line expression

.line is the directive name.

expression is the source file line number of the symbol declaration.

The .line directive specifies the source file line number on which a symbol
has been declared. The CompactRISC Assembler enters the specified value,
expression , into the line number field of the auxiliary symbol table entry
for the symbol that is being defined. The assembler generates an auxiliary
entry if one does not exist.

The .line directive should be used when the symbol being defined is a
block symbol. Block symbols include the special symbols .bf and .ef
which define the beginning and ending of functions, the special symbols
.bb and .eb which define the beginning and ending of blocks, and all
symbols defined within a block. The .line directive should be used
only where the Common Object File Format symbol table entry specifi-
cation requires and accepts a line number. For additional information,
refer to the CompactRISC Toolset - Object Tools Reference Manual.

Example .line 25

This example is part of the definition of a block symbol declared on
source line number 25.

6.9.4 .scl

.scl expression

.scl is the directive name.

expression is the value of a storage classification as defined in the
CompactRISC Toolset - Object Tools Reference Manual.

The .scl directive assigns a storage class value to the symbol defini-
tion. The storage class of a symbol affects the interpretation of the “val-
ue” field of the entry. Storage classes are as follows:

C_AUTO automatic variable, whose value is a stack offset.

C_EXT external symbol, whose value is a relocatable address.

C_STAT C style static or local variable, whose value is a relocatable ad-
dress.

C_REG register variable, whose value is the number of the register.
For example, if the register is r0 the register number is 0.

C_LABEL an assembly language label, whose value is a relocatable address.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-36

C_MOS member of a structure, whose value is the offset of the
field from the start of the structure.

C_ARG function argument, whose value is a stack offset.

C_STRTAG structure tag (name), whose value is 0.

C_MOU member of a union, whose value is the offset of the field
from the start of the union.

C_UNTAG union tag (name), whose value is 0.

C_TPDEF type definition, whose value is 0.

C_ENTAG enumeration tag (name), whose value is 0.

C_MOE member of an enumeration, whose value is the enumera-
tion number.

C_REGPARM register parameter, whose value is the number of the reg-
ister.

C_FIELD bit field, whose value is the bit displacement.

C_BLOCK beginning or end of block, whose value is a relocatable ad-
dress.

C_FCN beginning or end of a function, whose value is a relocat-
able address.

C_EOS end of a structure, whose value is the structure size.

C_FILE filename entry, whose value is the symbol table index of
the next .file symbol or the beginning of the global
symbols if there are no more .file symbols.

C_ALIAS duplicate tag, whose value is the symbol table index of the
tag definition.

Example .scl 2

This example specifies a storage classification of C_EXT (external), repre-
sented by the value 2.

6.9.5 .size

.size expression

.size is the directive name.

expression specifies the size of a structured variable.

The .size directive specifies the total size of a structured type, array, or
enumerated type. The CompactRISC Assembler enters the specified value
into the size-field of the auxiliary symbol table entry for the symbol being
defined. If no auxiliary entry exists, the Assembler generates one. For ex-
ample, the C declaration:

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-37

char name_list[20] [200];

generates the following symbol specification:

1 .def _ name_list
2 .val _ name_list
3 .scl 2
4 .type 0362
5 .dim 20,200
6 .size 4000
7 .endef
8 .globl _name_list
10 .comm _name_list,4000

The storage size specified by the .size directive in line 6 is 4000 bytes
(20*200*sizeof(char)), where the size of a character is one byte.

Example .size 200

This example specifies a symbol’s storage size as 200 bytes. The Assem-
bler enters the value 200 into the size field of the auxiliary symbol table
entry for the symbol that is being defined

6.9.6 .tag

.tag symbol

.tag is the directive name.

symbol is a symbol. The symbol is the tag name of a data struc-
ture definition, for example, a C struct or union.

The .tag directive associates the tag name of a data structure with a
symbol. The CompactRISC Assembler enters the symbol table index of the
tag name into the tag index field of the auxiliary entry for the symbol that
is being defined. If no auxiliary entry exists, the CompactRISC Assembler
generates one.

Example .def _coord
.scl 10; .type 010; .size 12; .endef

.def _a
.val 0; .scl 8; .type 04; .endef

.def _b
.val 4; .scl 8; .type 04; .endef

.def _c
.val 8; .scl 8; .type 04; .endef

.def .eos
.val 12; .scl 102; .tag _coord; .size 12; .endef

.def _bar
.val _bar; .scl 2; .type 010; .tag _coord; .size 12;

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-38

.endef

.globl _bar

.comm _bar,12

This example defines the symbols associated with the C declarations:

struct coord {
int a;
int b;
int c;

};
struct coord bar;

The special symbol .eos (end of structure) uses the .tag directive to
point back to the definition of the structure coord.

The bar symbol, which is of type struct coord , also uses the .tag di-
rective to point to the entry for coord.

6.9.7 .type

.type expression

.type is the directive name.

expression specifies the type of a symbol .

The .type directive specifies type information associated with the symbol
that is being defined. The CompactRISC Assembler enters the expression
into the type field of the main symbol table entry for the symbol that is be-
ing defined.

The type field consists of sixteen bits, of which the low-order four con-
tain the base type. The remaining bits contain derived types, each of
which is specified in a two-bit field. For definition of types and derived
types see the CompactRISC Toolset - Object Tools Reference Manual.

Examples 1. .type (2 | (2 << 4)) | 1 << 6

2. .type 4

The first example is a type definition associated with the C declaration:

char *fn();

The base type is T_CHAR (type character) represented by the value 2.
The first derived type is DT_FCN (function) represented by the value 2.
The second derived type is DT_PTR (pointer) represented by the value 1.
The entire type field is interpreted as a pointer to a function that re-
turns a character.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-39

The second example is associated with the C declaration:

int flag;

The .type directive specifies the type T_INT (integer) represented by
the value 4.

6.9.8 .val

.val expression

.val is the directive name.

expression specifies the value of the symbol.

The .val directive specifies the value field of the main symbol table en-
try for the symbol that is being defined.

Example .val _flag

This example sets the value field of the symbol table entry to the ad-
dress of the symbol _flag .

6.9.9 .endef

.endef

.endef is the directive name.

The .endef directive causes the CompactRISC Assembler to end the
definition of a Common Object File Format (COFF) symbol table entry
for the specified symbol. The CompactRISC Assembler adds the new
symbol table entry to the symbol table. The CompactRISC Assembler
generates an auxiliary entry if the symbol specifications require one and
fills in any symbol table index fields as necessary.

Example .def _flag
.val _flag
.scl 2
.type 4

.endef

This example is a symbolic definition associated with the C declaration:

int flag;

The .endef directive ends the definition.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-40

6.10 LINE NUMBER TABLE CONTROL DIRECTIVE

Each section in the object file may have an associated line-number ta-
ble, for the purpose of source-level debugging support. The line-number
table maps source file line numbers to addresses within the section.
Each line number table entry is either a function entry or a line number
entry. Function entries record the symbol table index for the function.
Line number entries record a line number offset from the start of the
function and an associated physical address.

Function entries are generated automatically by the assembler when a
function is defined, refer to Section 6.9. Line number table entries are
created with the .ln directive.

6.10.1 .ln

.ln expression1 [expression1]

.ln is the directive name.

expression1 specifies the source file line offset from the beginning of a
function.

expression2 specifies an associated memory address. This value de-
faults to the current location.

This directive is used to equate higher level source code line numbers to
assembly code, normally generated by compilers. Expression1 must
yield a value of absolute type that gives a line number in the source
code. Expression2 if present, must have a value of type TEXT, DATA,
or BSS that gives the address within the section where the line number
occurs. If the second operand is missing, the value of the current loca-
tion counter is used as the address of the line number.

Example .ln 1

This example defines a line number entry for the first line of a function.
The associated memory address is the value of the current location
counter.

Directive Function

.ln specifies a line number entry

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-41

6.11 MACRO-ASSEMBLER DIRECTIVES

The macro-assembler directives provide the macro and conditional as-
sembly support. They enable the definition and usage of macros, and al-
low for the inclusion or deletion of optional assembly statements. Other
macro-assembler directives help minimize programming errors and
speed the development process. For more details see Chapter 7.

The macro-assembler directives are as follows:

6.11.1 .macro

.macro macro - name [formal-arg [, formal-arg] ...]

macro-name is the macro-procedure name. It may be any legal assem-
bler symbol.

formal-arg is a macro-variable defining a formal argument.

The .macro directive begins the macro-procedure definition. The macro-
procedure associates a macro name with a sequence of statements
which follow the .macro directive, up to the .endif directive.

Directive Function

.macro begins a macro-procedure definition

.endm ends a macro-procedure definition

.if begins a conditional macro-assembler statement

.elsif
begins an elsif close for the conditional macro-assem-
bler statement

.else
begins an else close for the conditional macro-assem-
bler statement

.endif ends a conditional macro-assembler statement

.repeat/.irp begins a macro repetitive block

.endr ends a macro repetitive block

.exit terminates processing of the current repetitive block

.macro_on enables macro-procedure expansions

.macro_off disables macro-procedure expansions

.include includes another file

.mwarning generates an assembler warning message

.merror generates an assembler error message

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-42

Example .macro clear_array size, base_reg

Defines a macro procedure named clear_array with two formal argu-
ments size and base_reg .

6.11.2 .endm

.endm [macro_name]

.endm ends the macro-procedure definition.

The .endm directive marks the end of the macro-procedure definition.
macro_name is an optional specification for the name of the macro to be
ended.

Example .macro clear_arraysize, base-reg# defines clear_array
macro statements

.

.endm clear_array # ends the definition
of clear_array

6.11.3 .if

.if if_condition

.if is an arithmetic macro-expression.

.The .if directive begins a conditional macro assembler statement.
if_condition is a condition to be tested during macro processing
phase. If found to be true, the statements following it (until a corre-
sponding .elseif, .else or .endif directive) are processed and ex-
panded by the macro processor.

Example .if {reg_num} = 6
movw $5, r{reg_num}

.elsif {reg_num} = 4
movw $3, r{reg_num}

.else if {reg_num} = 0
movw $1, r{reg_num}

.endif

If reg_num holds the value 6 this is expanded to:

movw $5, r6

if reg_num holds the value 4 this is expanded to:

movw $3, r4

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-43

and if reg_num holds the value 0 this is expanded to:

movw $1, r0

6.11.4 .elsif

.eisif elsif_condition

. elsif_conditional_body
consists of valid assembly language statements, direc-
tives, macro-procedure calls and macro-assembler direc-
tives, repetitive blocks and macro-procedure definitions.

. elsif_condition
is an arithmetic macro-expression.

If, in a conditional block, if_condition is found to be false, the argu-
ments of elsif_condition are evaluated until one is found to be true.
If elsif_condition is found to be true, the corresponding
elsif_conditional_body statements, following the elsif_condition ,
are processed.

6.11.5 .else

.else else_condition

. else_conditional_body
consists of valid assembly language statements, direc-
tives, macro-procedure calls and macro-assembler direc-
tives, repetitive blocks and macro-procedure definitions.

In a conditional block, if the previously specified if_condition or
elsif_condition is found to be false, then the else_conditional_body
statements (following the elsif_condition) are processed.

6.11.6 .endif

.endif

Ends an .if conditional macro-assembler statement.

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-44

6.11.7 .repeat

.repeat [iteration_count [, iteration_var]]

. iteration_count
specifies the number of iterations.

. iteration_var
is a macro-variable name used as an iteration index.

The .repeat directive begins a macro repetitive block, which ends with
a .endr directive. The number of repetitions is determined by the
iteration_count argument. Repetitive blocks may appear inside a
macro-procedure definition, in conditional blocks, and may be nested
without limit.

If given, the iteration_var argument holds a string representing the
current iteration number for each iteration. After the repetitive block
has been processed, it holds the iteration_count value. If the
iteration_count argument is evaluated as a negative or zero value,
the statements in the block are read textually without being processed
until an .endr directive is reached. If the iteration_count argument
is not given, then the repetitive block is processed repeatedly until an
.exit directive is processed (Section 6.11.10).

Example .repeat 8, i
 movd $0, r{{i} - 1}
.endr

(For CR32A) generates code that clears r0 through r7.

6.11.8 .irp

.irp iteration_var , iteration_list

. iteration_var
is a macro-variable name to be used as an iteration variable.

. iteration_list
is a macro-list

The .irp directive begins a special macro repetitive block, which ends
with a .endr directive. For each element in the iteration_list argu-
ment, the macro-processor assigns its string value to iteration_var ,
and processes the code between the .irp statement and the corre-
sponding .endr statement. If the iteration_list argument is an
empty macro-list, the statements in the block are read textually without
being processed. After the repetitive block has been processed,
iteration_var contains the last element of iteration_list .

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-45

Example .irp reg, [r0,r1,r2,r3,r4,r5,r6,r7]
movd $0,{reg}

.endr

(For CR32A) generates code that clears registers r0 through r7 .

6.11.9 .endr

.endr

The .endr directive ends a macro repetitive block.

6.11.10 .exit

.exit

Terminates the processing of the current repetitive block that begins with
either a .repeat or .irp directive. Statements following this directive are
read textually without being processed, until an .endr statement is en-
countered.

x:=1
.repeat

.if {x} > 30

.exit

.endif

.byte {x}
x:={{x}*2}

.endr

generates the code

.byte 1

.byte 2

.byte 4

.byte 8

.byte 16

6.11.11 .macro_on and .macro_off

The .macro_on and .macro_off directives enable and disable macro-
procedure expansions, respectively, in selective parts of the source text.

Example .macro addw op1,op
br count_additions

.macro_off

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-46

addw {op1},{op2}
.macro_on
.endm

the following macro-procedure call:

addw r1,r2

generates:

br count_additions
addw r1,r2

6.11.12 .include

.include inclulded_file

included_file
is an existing file name.

The .include directive allows for the inclusion of text from another file
as part of the file being assembled.

Example .include filehdr.h

If the included_file does not contain the full directory path of the file
to be included, the assembler searches for it in either the current direc-
tory, or in a directory specified with the -MI invocation option (macro
include directory).

6.11.13 .mwarning

.mwarning warning_message

.mwarning is the directive name.

The .mwarning directive generates an assembler warning message.

Example xx:= 222
.mwarning current value of "xx" is : {xx}.

.mwarning is used to write the current value of macro-variable xx to
the listing output. The assembler issues the following warning message:

Assembler (Macro-Processor): "filename.s" , line 2 , WARNING:
current value of "xx" is : 222

CompactRISC Assembler Reference Manual ASSEMBLER DIRECTIVES 6-47

6.11.14 .merror

.merror error_message

The directive .merror generates an assembler error message.

Example .merror Wrong value used for addr "address"

The assembler issues the following error message, and eliminates fur-
ther assembly passes:

Assembler (Macro-Processor) Error:
"filename.s", line 1, statement is ==> .merror "err"
Wrong value used for addr "address"<==
ERROR: Wrong value used for addr "address"

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-1

Chapter 7

MACRO AND CONDITIONAL ASSEMBLER

7.1 INTRODUCTION

The CompactRISC Macro-assembler makes writing assembly programs
easier. It eliminates the need to rewrite similar assembly source code re-
peatedly, and simplifies program documentation. The conditional as-
sembler feature allows for the inclusion or deletion of optional assembly
statements. Other macro-assembler features help minimize program-
ming errors and speed the development process.

The macro-assembler is automatically invoked by the assembler.

7.1.1 Overview of the Major Macro-Assembler Features

The CompactRISC macro-assembler supports the following features:

• Macro-procedures (“macros”)

A macro-procedure is equivalent to the common term “macro”. For ex-
ample, for the following macro-procedure:

Example .macro move_bytes source_add,dest_add,length

.repeat {length},i
next repeat iteration

addw $-4,sp
storw r1,0(sp)
loadb {source_add}+{i},r1
storb r1,{dest_add}+{i}
loadw 0(sp),r1
addw $4,sp

.endr
.endm

The macro-procedure call:

move_bytes aa,6(r13),3
generates the code:
next repeat iteration

addw $-4,sp
storw r1,0(sp)
loadb aa+1,r1
storb r1,6(r13)+1

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-2

loadw 0(sp),r1
addw $4,sp

next repeat iteration
addw $-4,sp
storw r1,0(sp)
loadb aa+2,r1
storb r1,6(r13)+2
loadw 0(sp),r1
addw $4,sp

next repeat iteration
addw $-4,sp
storw r1,0(sp)
loadb aa+3,r1
storb r1,6(r13)+3
loadw 0(sp),r1
addw $4,sp

• Conditional Code Generation

Code may be generated according to conditions tested in the macro-as-
sembly phase. For example the sequence:

Example .macro excp num
.if {STR_EQ[{OP_TYPE[{num}]}, EXPR]}

.word {CNV_HEX[{18145 |{{num}*2}}]}
.else

.macro_off
excp {num}

.macro_on
.endif

.endm

generates the encoding for all exceptions in CR32A (including unde-
fined). This feature is fully described in Section 7.8.1.

• Macro Variables

String values may be assigned to macro-variables. These variables may
be later utilized in place of the string value.

Example base_reg:= r0
movqd 0, 0({base_reg})
is equivalent to:
movqd 0, 0(r0)

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-3

This feature is fully described in Section 7.9.1.

• Repetitive Code Generation

This feature allows for the easy repetition of sequences of statements,
by specifying either

- the number of repetitions:

Example .repeat 3,index
.align 4
.word {index}
.endr

which is equivalent to the code

.align 4

.word 1

.align 4

.word 2

.align 4

.word 3

- or a repetition list:

Example .irp val, [25,3,1989]
.align 4
.word {val}
.endr

which is equivalent to the code

.align 4

.word 25

.align 4

.word 3

.align 4

.word 1989

This feature is fully described in Section 7.9.

• Text Inclusion

Text from another file may be included as part of the file being assem-
bled. For example:

 .include useful.definitions

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-4

places code that is the contents of file useful.definitions. This fea-
ture is fully described in Section 7.12.

• Listing of Expanded Code

A listing output may be produced to display all expanded code. The list-
ing output can be generated after either the macro-processing phase or
after the second phase of the assembly process. This feature is fully de-
scribed in Section 7.3.

• User Error and Warning Messages

You can issue error and warning messages.

Example given the following macro:

.macro check_reg_number reg_number

.if {reg_number} > 7

.merror invalid register number specified.

.endifnnnnnnn

.endm

the call:

check_reg_number 10

results in the error message:

Assembler (Macro-Processor) Error:
 "filename.s", line 4, statement is ==> .merror invalid regis-
ter number specified<==
 . . . from line 9 : while calling "check_reg_number" with
"ARG_LIST"=[10]

ERROR: invalid register number specified

These features are fully described in Section 7.13.

• Arithmetic Operations and Expressions

Arithmetic operations and expressions (including arithmetic compari-
sons) can be performed on constants and variables.

For example, assuming the macro-variable x holds the string value 100,
the statement:

 result:= { {x} * ({x} - 1) }

is processed by the macro-assembler so that the macro-variable result
holds the string value 9900.

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-5

Arithmetic operations and expressions are fully described in Section
7.5.

• Built-in Macro Functions

Built-in macro-functions provide the following capabilities:

• Manipulation of strings and lists.

• Integer and floating-point conversions.

• Manipulation of instruction operand strings.

7.2 THE MACRO-PROCESSING PHASE

Assembly source text is processed by the assembler in two distinct
phases: the macro-processing phase and the assembly phase.

The macro-processing phase involves the reading and processing of
source text statement by statement. Strings between braces ({}) are
handled and replaced with the appropriate value. If the resulting state-
ment is a macro-directive statement or a macro-procedure call it is act-
ed upon. All other statements are not processed by the macro-processor
and are passed directly to the assembly phase.

The assembly phase is performed in two passes and generates the ap-
propriate output files.

A more detailed explanation of the various stages of the macro-process-
ing follows below.

A string between braces is handled as follows:

• A macro-variable name is replaced with the current value of the
variable. For example, if the variable a holds the value xxy 100 ,
then {a} is replaced by xxy 100 .

• An arithmetic macro-expression is evaluated and replaced with the
result. For example, {100*(10+10)} is replaced by 2000 .

• A built-in macro-function call is evaluated and replaced by the re-
sult. For example, {STR_LEN[abcde]} is replaced by 5.

• All other braced strings cause an error message to be issued.

Pairs of braces may be nested, in which case the string contained by
the inner pair of braces is evaluated and replaced first.

Example assuming the macro-variable op holds the value r2 , the following state-
ment:

movd $0,r{ {SUB_STR[{op}, 2, 1]} + 4}

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-6

is replaced by:

movd $0,r6

– First, {op} is replaced by r2 .

– Then, the function call {SUB_STR[r2, 2, 1]} is replaced by 2.

– Finally, {2 + 4} is arithmetically evaluated and replaced by the
resulting string 6.

Braces are not processed in the macro-processing phase if they appear
within either an ASCII constant (such as "{1+1}") or a character constant
(such as ’{’).

A statement followed by a backslash (\) before a carriage-return (<CR>) is
concatenated with its previous statement. The statements are then treated
as a single statement (any number of lines may be concatenated in this
way). This does not apply to comments. Comments are terminated by a
carriage return (<CR>) even if preceded by a backslash (\). This feature
may be used in macros for breaking complex expressions into several lines.
All error messages refer to the first concatenated statement.

Macro-directives and macro-procedure calls are handled as follows:

• When the opcode field is the name of a previously defined macro-
procedure, the statement is considered a macro-procedure call. The
statements in the macro-procedure body are processed, as if they
were encountered at this point, after matching the actual argu-
ments with the formal arguments of the macro-procedure.

• When the statement is of the form "symbol := value" , the state-
ment is considered a macro-variable assignment.
The variable statement on the left side of the : = is assigned the
value specified on the right side.

• When the opcode field is a .macro directive, the statement is con-
sidered a macro-procedure definition.
The statements following the .macro directive, but before the .endm
directive, are read textually without being processed and are stored in-
ternally.

• When the opcode field is an .if directive, a conditional block is be-
gun.
Statements following a true clause are processed; statements fol-
lowing an untrue clause are read textually without being processed
and are discarded.

• When the opcode field is a .repeat or a .irp directive, a repetitive
block is begun. The statements of the block are repetitively pro-
cessed, according to the operands of the .repeat or .irp directive.

• When the opcode field is a .include directive, the specified file is
read and processed.

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-7

7.3 INVOCATION

Several aspects of macro-processing can be controlled by assembler in-
vocation options. The following table presents these specific options:

The -MD option assigns an initial value to a macro variable.

The -ML option includes an already existing macro-library. A macro-li-
brary is any valid assembly file using the Version 4 macro-assembler
features; as described in Section 7.12 for the included_file of the
.include directive.

The -MI option sets a search directory for included files. The assembler
searches for .include files which do not begin with a slash (/) in the di-
rectory of the specified input file first, then in the directory named in
this option.

The -MO option invokes only the macro-processing phase of the assem-
bler.

The -MP option causes the assembler to print the macro-processor’s
output to filename . If filename is not given, the output is written to
standard output.

7.4 MACRO VARIABLES

Macro-variables are variables that are active only during the macro-pro-
cessing phase.

The name of a macro-variable may be any assembly symbol as defined
in Section 3.5, i.e., a sequence of letters, digits, underscores (_) and pe-
riods (.). The first character may not be a digit. A period (.) should not
be used as the first character of the variable name since it may be con-
fused with a directive name.

Option Definition

-MDname or
-MDname=def

Defines name to macro assembler as if by macro assign-
ment statement.

-MLfilename Includes macro library file.

-MI dir Specifies an include search directory.

-MO Invoke only macro-processing phase.

-MPfilename Prints the macro-processing output.

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-8

The initial value of any macro-variable is the empty string, unless it has
been assigned a value on the invocation line (see Section 7.3) through
the -MD macro invocation option. Generally, you assign a value to a
macro-variable through a macro-variable assignment statement.

The value of an undefined variable is an empty string.

macro_var := { value }

This assigns the value of the macro variable value to macro_var , after
stripping leading and trailing blanks. If value is omitted, an empty
string is assigned to macro_var .

A macro-variable is substituted with its current value when its name is
enclosed within braces.

{ macro_var }

Examples AAA := 5+5

assigns the string value 5+5 to the macro-variable AAA.

XXX := 7
XXX := {XXX}+1

assigns the string value 7+1 to the macro-variable XXX.

XXX := 7
XXX := {{XXX} + 1}

assigns the value 8 to the macro-variable XXX.

VAR_NAME:= XXX
{VAR_NAME} := 7

assigns the value 7 to the macro-variable XXX.

EEE := eee
FFF := fff
LLL := [ddd, {EEE}, {FFF}, ggg]

assigns the value of the macro-list [ddd , eee , fff , ggg] to the macro-
variable LLL .

7.5 ARITHMETIC MACRO-EXPRESSIONS

An arithmetic macro-expression is a string whose contents are a legal
combination of integer constants, arithmetic operators, comparison oper-
ators and parentheses. This string can be evaluated as an integer value.

Examples of various arithmetic macro-expressions are:

• 1000

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-9

• 20+8*(3/2)

• assuming that the value of a is 50 and that the value of b is +,
then:
{a} {b} 27
is also a legal arithmetic macro-expression (equivalent to 50 + 27).

When an arithmetic macro-expression is enclosed between braces or
used in an arithmetic context (for example, the clause of a .if /
.elsif directive or as the first operand of a .repeat directive), it is
evaluated by the macro-processor and substituted with a string repre-
senting its value. This string contains an integer constant in signed dec-
imal notation with no leading blanks. Arithmetic macro-expressions are
evaluated and converted by the macro-assembler to a 32-bit signed in-
teger representation. All arithmetic operations are performed on 32-bit
signed integer operands, and also return a 32-bit integer value.

Each arithmetic macro-operator in a macro-expression has a level of
precedence. This determines the macro-expression’s order of evaluation.
Table 7-1 lists all the macro-operators and their precedence for evalua-
tion.

You must follow these rules when writing arithmetic macro-expressions:

• All unary operators must precede a single term and cannot be used
to separate two terms.

• All binary operators must separate two terms. For example, the
macro-expression 8*4 is legal, but 8**4 is illegal.

Table 7-1. Macro Operation Precedence

Precedence Operator Name Description of Operation

Unary Operator

1 - Unary minus Two’s complement (= negation).

1 ~ Unary complement One’s complement.

Binary Operator

2 * Multiply Multiply 1st term by 2nd term.

2 / Divide Divide 1st term by 2nd term.*

2 % Modulus
Remainder from 1st term divided by 2nd

term.**

2 << Shift left
Shift 1st term by 2nd term; emptied bits are
zero-filled.

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-10

1. Compound macro-expressions are valid. A macro-expression may be
constructed from other macro-expressions using unary and binary
operators. For example, the two individual macro-expressions {A}+1
and {B}+2 may be combined with a multiply operator and parenthe-
ses to form the single macro-expression ({A}+1)*({B}+2) . Note
that the parentheses override the default precedence rules.

2. Evaluation of a macro-expression is governed by three factors:

• Parentheses - macro-expressions enclosed in parentheses are eval-
uated first. For example, {8/4/2} is evaluated as 1, but {8/(4/2)}
is evaluated as 4.

• Precedence Groups - an operation of a higher precedence group is
evaluated before an operation of a lower precedence group whenev-
er parentheses do not otherwise determine the evaluation order. For
example, {8+4/2} is evaluated as 10, but {8/4+2} is evaluated as 4.

2 >> Shift right
Shift 1st term by 2nd term; emptied bits are
zero-filled.

2 ~
Logical OR /
complement

Bit-wise OR of 1st term and one’s complement
of 2nd term.

3 & Logical AND Bit-wise AND of 1st and 2nd terms.

3 | Logical OR Bit-wise OR of 1st and 2nd terms.

3 ^ Logical XOR Bit-wise XOR of 1st and 2nd terms.

4 + Add Add 1st and 2nd terms.

4 - Subtract Subtract 2nd term from 1st term.

5 = Equal 1 if 1st and 2nd terms are equal, 0 otherwise.

5 <> Not Equal
1 if 1st and 2nd terms are not equal, 0 other-
wise

5 > Greater Than
1 if 1st term is greater than 2nd term, 0 other-
wise

5 < Less Than 1 if 1st term is less than 2nd term, 0 otherwise

5 >= Greater or Equal
1 if 1st term is greater than or equal to 2nd

term, 0 otherwise

5 <= Less or Equal
1 if 1st term is less than or equal to 2nd term,
0 otherwise

* Rounds toward 0, e.g., -7/3 = -2 and 7/3 = 2

** e.g., -7%3 = -1 and 7%3 = 1.

Table 7-1. Macro Operation Precedence (Continued)

Precedence Operator Name Description of Operation

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-11

• Left to Right Evaluation - macro-expressions are evaluated from left
to right whenever parentheses and precedence groups do not deter-
mine evaluation order. For example, {8*4/2} is evaluated as 16,
and {8/4*2} is evaluated as 4.

7.6 MACRO LISTS

A macro-list is a sequence of strings separated by commas and enclosed
between brackets. Each string in the macro-list is called an element. An
element of a macro-list may itself be a macro-list, allowing for multilevel
macro-lists.

Macro-lists are useful for implementing macro data-structures (such as
arrays, records, stacks) in conjunction with built-in functions that per-
form macro-list manipulations, such as search, insertion and deletion
of elements (see Section 7.16). Some examples of various types of mac-
ro-lists are:

Examples []

a macro-list with no elements

[xx,yy]

a macro-list with two elements: xx and yy.

[a,,]

a macro-list with three elements: a and two empty strings.

[[r1,r2],100]

a macro-list with two elements: a macro-list with two elements and the
string 100.

[12[r2:w],@xx]

a macro-list with two elements.

7.7 BUILT-IN MACRO FUNCTIONS

The macro-assembler provides built-in functions to manipulate macro-
strings, arithmetic constants, macro-lists and assembly operands.

The general syntax for calling a macro-function is:

{macro_func param_list}

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-12

macro_func is the name of the function

param_list is a macro-list in which each element is a parameter to
the function.

Leading and trailing blanks of parameters are stripped before process-
ing the macro-function. The macro-function call is then evaluated and
replaced by the result of the function call.

Example The macro-function call

{SUB_STR[abcde , 3 , 2]}

is replaced by the string cd .

Below is a list of available built-in functions. The macro-list and oper-
and functions are advanced features of the macro-assembler and there-
fore may not be necessary for all users. For a detailed description of
these functions see Sections 7.15 through 7.18.

String
Functions

• {STR_LEN[string]}

• {STR_EQ[string1, string2]}

• {SUB_STR[string, start [, length]]}

• {STR_FIND[string, substring]}

Macro-List
Functions

• {LIST_GET[list, element_number]}

• {SUB_LIST[list, start [, length]]}

• {LIST_FIND[list, string]}

• {LIST_REPL[list, element_number, string]}

• {LIST_INS [list, string, element_number]}

• {LIST_DEL[list, element_number]}

• {LIST_LEN[list]}

Data
Conversion
Functions

• {CNV_HEX[integer_constant]}

• {CNV_HEXF[constant]}

• {CNV_HEXL[constant]}

Instruction
Operand
Functions

• {OP_TYPE[operand]}

• {OP_REG[operand]}

• {OP_DISP1[operand]}

• {OP_DISPSIZE1[operand]}

• {OP_VAL[operand]}

• {OP_VALSIZE[operand]}

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-13

7.8 CONDITIONAL ASSEMBLY

Sequences of statements may be generated according to conditions test-
ed during the macro-processing phase.

7.8.1 Conditional Block

.if if_condition
if_conditional_body

[.elsif elsif_condition
 elsif_conditional_body] ...

[.else
 else_conditional_body]

.endif

if_condition and elsif_condition(s)
are arithmetic macro-expressions.

A condition evaluated by the macro-assembler as a non-zero value is
considered to be true. See Section 7.5 for details of macro-expression eval-
uation.

In a conditional block the if_condition argument is evaluated first,
and only if found to be true the statements in if_conditional_body
are processed. If the if_condition is found to be false, the
elsif_condition(s) arguments are evaluated until one of them is
found to be true, in which case the corresponding
elsif_conditional_body statements are processed. Otherwise, if an
.else statement has been specified, the else_conditional_body
statements are processed.

The types of statements that are allowed in conditional_bodies are
valid assembly language statements, directives, macro-procedure call
and macro-assembly directives, with all the conditional blocks, repeti-
tive blocks and macro-procedure definitions being complete.

 Example .if {reg_num} > 5
movd $5, r{reg_num}

.elsif {reg_num} > 3
movd $3, r{reg_num}

.else
movd $1, r{reg_num}

.endif

If reg_num holds the value 6 this is expanded to:

movd $5, r6

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-14

if reg_num holds the value 4 this is expanded to:

movd $3, r4

and if reg_num holds the value 0 this is expanded to:

movd $1, r0

7.9 REPETITIVE DIRECTIVES

The basic constructs of a repetitive block are:

.repeat [iteration_count [, iteration_var]]

repetitive_body

.endr

and

.irp iteration_var, iteration_list

repetitive_body

.endr

Repetitive blocks may appear inside a macro-procedure definition, in
conditional blocks, and may be nested without limit.

The types of statements allowed in a repetitive block are valid assembly
language statements, directives, macro-procedure calls, macro-assembly
directives (except the .macro and the .endm directives) with all condi-
tional blocks and repetitive blocks being complete.

7.9.1 .repeat Directive

.repeat [iteration_count [, iteration_var]]

iteration_count
specifies the number of iterations.

iteration_var
is a macro-variable name used as an iteration index.

The iteration_count argument is evaluated by the macro-processor. If
its value is positive, the code following the .repeat statement through the
corresponding .endr statement, is processed iteration_count times.

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-15

If given, the iteration_var argument holds a string representing the
current iteration number for each iteration. It receives values from 1 to
iteration_count . After the processing of the repetitive block has been
completed, it holds the iteration_count value.
If the iteration_count argument is evaluated as a negative or zero
value, the statements in the block are read textually without being pro-
cessed until an .endr directive is reached.
If the iteration_count argument is not given, then the repetitive block
is processed repeatedly until an .exit directive is processed (see Sec-
tion 7.9.3.)

 Example .repeat 8, i
movd $0,r{{i} - 1}
.endr

generates code that clears r0 through r7 .

.repeat 4
 nop
.endr

generates four consecutive nop instructions.

7.9.2 .irp Directive

.irp iteration_var , iteration_list

iteration_var
is a macro-variable name to be used as an iteration vari-
able.

iteration_list
is a macro-list

For each element in the iteration_list argument, the macro-proces-
sor assigns its string value to iteration_var , and process the code be-
tween the .irp statement and the corresponding .endr statement.

If the iteration_list argument is an empty macro-list, the state-
ments in the block are read textually without being processed.

After the processing of the repetitive block has been completed,
iteration_var contains the last element of iteration_list .

Example .irp reg, [r0,r1,r2,r3,r4,r5,r6,r7]
movd $0,{reg}
.endr

generates code that clears registers r0 through r7 .

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-16

7.9.3 .exit Directive

.exit

Terminates the processing of the current repetitive block. Statements
following this directive are read textually without being processed, until
an .endr statement is encountered.

Example x:=1
.repeat
 .if {x} > 30
.exit
.endif
.byte {x}
x:={{x}*2}
.endr

generates the code

.byte 1

.byte 2

.byte 4

.byte 8

.byte 16

7.10 MACRO PROCEDURES (MACROS)

With a macro-procedure you can associate a macro name with a se-
quence of statements. This sequence can be generated by specifying the
macro name in the opcode field, optionally with arguments.

7.10.1 Macro Procedure Definition

.macro macro-name [formal-arg [, formal-arg] ...]
macro-procedure-body
.endm [macro-name]

macro-name is the macro-procedure name. It may be any legal assem-
bler symbol.

formal-arg is a macro-variable defining a formal argument.

macro-procedure-body
are the statements to be inserted into the assembler code
when the macro-procedure is called.

The statements of the macro-procedure body are read textually without
being processed and are stored internally.

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-17

Within a macro-procedure body, other macro-procedure definitions are
not allowed and all conditional and repetitive blocks must be complete.
If macro-name is given in the .endm directive, it must be the same as
given in the corresponding .macro directive.

A macro-procedure can only be defined once in an assembly file and its
definition must precede any call to it.

The formal arguments in the .macro directive specify the names of the
macro-variables to be assigned values according to the actual argu-
ments, when the macro-procedure is called and expanded. The specifi-
cation of formal arguments in the definition of a macro-procedure is
optional.

Example .macro clear_array size, base_reg
clears an array of ’size’ double-words whose
base address is in ’base_reg’

.repeat {size}, elem_num
clear_elem {elem_num}, {base_reg}
.endr
.endm
.macro clear_elem elem_num, base_reg

clears element number ’elem_num’ of
an array whose address is in ’base_reg’

movd $0, {4 * ({elem_num} - 1)}({base_reg})
.endm
clear_array 3, r4

expands to

movd $0, 0(r4)
movd $0, 4(r4)
movd $0, 8(r4)

7.10.2 Macro Procedure Call and Expansion

macro-name [actual-arg [, actual-arg] ...]

A macro-procedure is called by specifying its name in the opcode field
of the statement, provided it has already been defined. The name of the
invoked macro-procedure may be followed by a sequence of actual argu-
ments separated by commas.

When a macro-procedure call is processed, the current value of each
macro-variable specified as formal argument is saved, and the macro-
variable is assigned the value of its corresponding actual argument in-
stead.

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-18

The body of the called macro-procedure is read from storage and pro-
cessed as if it were inserted instead of the macro-procedure call state-
ment. This is called macro-procedure expansion.

A macro-variable specified as a formal argument for the macro-proce-
dure may be used in the macro-procedure body as any other macro-
variable.

The number of actual arguments and the number of formal arguments do
not have to correspond. If there are more formal arguments than actual ar-
guments, the unmatched formal arguments are assigned the value of an
empty string. If there are more actual than formal arguments, the un-
matched actual arguments can be accessed by using the predefined mac-
ro-procedure ARG_LIST. See the following section for more details on
ARG_LIST.

7.10.3 Predefined Macro Procedure Variables

Three macro-variables, ARG_COUNT, ARG_LIST, and ARG_LABEL are pre-
defined macro-procedure variables. When a macro-procedure is called
and expanded, their current values are saved, and they are assigned
new values according to:

• ARG_COUNT - is assigned the number of arguments actually passed
to the macro-procedure.

• ARG_LIST - is assigned the value of a macro-list, whose elements
are the actual arguments to the macro-procedure. The first element
of ARG_LIST is always the first actual argument.

• ARG_LABEL - is assigned the value of the label of the macro-proce-
dure invocation. It is assigned a value only if a label appears on the
same line as a macro invocation.

These predefined variables cannot be specified as formal arguments.

Example "print_i_call" creates a calling sequence for the subroutine
"print_integers" by pushing its parameters, and the number of parame-
ters on the stack.

#PIKE

.macro print_i_call

i := 0
addw ${-2* ({{ARG_COUNT} +1})},sp
.irp arg,{ARG_LIST}

movw {arg},{i}(sp)
i := {{i}+2}

.endr
movw ${ARG_COUNT},{i}(sp)

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-19

bal ra,print_integers
addw ${2*({ARG_COUNT} +1)},sp

.endm

The following call:

print_i_call $100,xx,0(r3)

generates:

addw $-8,sp
movw $100,0(sp)
movw xx,2(sp)
movw 0(r3),4(sp)
movw $3,6(sp)
bal ra,print_integers

addw $8,sp

7.11 .MACRO_ON AND .MACRO_OFF DIRECTIVES

The macro_on and macro_off directives enable and disable macro-pro-
cedure expansions, respectively, in selective parts of the source text.
This is useful when macro-procedure names contradict opcode mne-
monic or assembler directives. Thus, if for example opcode addd is re-
defined as a macro-procedure without the using the .macro_off
directive (as shown below), it would develop into an infinite sequence of
recursive macro-procedure calls. However, the macro_off directive al-
lows disabling of macro-procedure expansions. As can be seen for:

 .macro addw op1,op2
 bal ra, count_additions
 .macro_off
 addw {op1},{op2}
 .macro_on
 .endm

the following macro-procedure call:

 addd r1,r2

generates:

 bal ra, count_additions
 addd r1,r2

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-20

7.12 TEXT INCLUSION

This feature allows for the inclusion of text from another file as part of
the file being assembled. The inclusion of text can also be specified from
the invocation line by use of the -ML macro-library option.

.include included_file

included_file
is an existing file name

An .include directive causes the macro-processor to process state-
ments from the file named included_file before processing the state-
ments following the .include directive in the original file.

By default, if the included_file argument does not start with a / , only
the directory in which the source file resides is searched. Additional di-
rectories for the included_file argument can be searched as specified
on the invocation line using the macro Include Search Directory option
(-MI) .

Included files may contain any valid assembly directives and state-
ments, macro-procedure call or macro-assembly directives (in particular
.include directives), macro-procedure calls or macro-assembly direc-
tives, with all conditional blocks, repetitive blocks and macro-procedure
definitions being complete.

Example .include filehdr.h

7.13 MACRO WARNING AND ERROR MESSAGES

The directives .mwarning and .merror generate assembler warning and
error messages.

7.13.1 .mwarning Directive

.mwarning warning_message

When a statement with a .mwarning directive is processed by the mac-
ro-processor, a warning message with the source file name, the current
line number and warning_message is displayed on the assembler list-
ing output (or written to the standard error file, if no listing output has
been requested in the invocation line).

Example xx:= 222
.mwarning current value of "xx" is : {xx}.

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-21

In this example the .mwarning directive may be used to write the cur-
rent value of macro-variables on the listing output. The assembler is-
sues the following warning message:

Assembler (Macro-Processor): "filename.s", line 2 , WARNING :
current value of "xx" is : 222

7.13.2 .merror Directive

.merror error_message

When a statement with a .merror directive is processed by the macro-pro-
cessor, an error message with the source file name, the current line num-
ber and error_message is displayed on the listing output (or written to
the standard error file, if no listing has been requested in invocation line).
The assembly process that follows is terminated after the macro-processing
phase is completed, and the second phase, the assembly phase, is sup-
pressed.

Example .merror Wrong value used for addr "address"

The assembler issues the following error message:

Assembler (Macro-Processor) Error:
"f.s", line 1, statement is ==> .merror Wrong value used for
addr "address" <==
ERROR: Wrong value used for addr "address"

7.14 LISTING CONTROL

Macro processor expansions can be output in two ways. After the macro
processing phase, expansions can be output to the assembler. After the
full assembly process is completed, a complete assembly listing file can
be produced.

To display macro processor expansions after the macro processing phase,
invoke the assembler with the -MP option. The display contains the ex-
pansions of the macro processor as assembly statements, with other non-
macro assembly statements. See Section 7.3 for full details on the -MP
option.

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-22

To list macro processor expansions after the full assembly process, in-
voke the assembler with the -L option. This option produces a complete
listing. When the -L option is used, the .list and .nolist directives
can be used to select parts of the assembly source file to be listed. In ad-
dition, qualifiers can be used with these directives to include or exclude
certain levels of macro expansions. .list turns the qualifiers ON and
.nolist turns them OFF.

The qualifiers are:

mac_source When mac_source is ON, the assembler lists user source lines, before
any macro expansions or macro substitutions have been made. The de-
fault setting is ON.

mac_
expansions

When mac_expansions is ON, the assembler lists user source lines, after
all macro substitutions have been performed on them. The default setting
is OFF.

mac_
directives

When mac_directives is ON, the macro directives also appear in the
source listing. The default setting is ON.

It is not necessary to include the .list directive to use the default set-
tings of the qualifiers. The -L option automatically produces a list and
assumes the default qualifier settings.

For source level debugging, use the default settings of the qualifiers to
produce a listing in which the displayed lines correspond to the line
numbering recognized by the debugger.

For assembly level debugging, set mac_source and mac_directives
OFF and mac_expansions ON to produce a listing in which the dis-
played lines correspond to the actual generated code.

When both mac_source and mac_expansions are OFF, no listing is pro-
duced. This combination is equivalent to .nolist with no parameters.

You should not use the mac_source option when both mac_directives
and mac_expansions are OFF. This combination produces output
which is difficult to read.

In the default setup, the expansions of macro procedure calls, .repeat,
and .irp blocks, are not listed.

Example (Default)

mac_source = ON
mac_expansions = OFF
mac_directives = ON

This source file:

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-23

#PIKE
.macro zero_reg regno

movw $0,r{regno}
.endm
lab1:
zero_reg 0
.repeat 7,i
zero_reg {i}
.endr

Produces this listing:

CompactRISC Assembler Version X.X Date Page: 1

File "ex8.s"

1 #PIKE
2 .macro zero_reg regno
2 movw $0,r{regno}
2 .endm
5
6 T00000000 lab1:
7 T00000000 0038 zero_reg 0
8 .repeat 7,i
8 zero_reg {i}
8 T00000002 20384038 .endr

60388038
a038c038
e038

When mac_expansions is ON, and mac_source and mac_directives
are both OFF, only the output of the macro processing phase, as passed
on to phase-1 of the assembler, is listed.

Example mac_source = OFF
mac_expansions = ON
mac_directives = OFF

This source file:

#PIKE
.list mac_expansions
.nolist mac_source mac_directives
.macro zero_reg regno

movw $0,r{regno}
.endm
lab1:
zero_reg 0
.repeat 7,i
zero_reg {i}
.endr

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-24

Produces this listing:

CompactRISC Assembler Version X.XX Date Page: 1

File "ex9.s"

1 #PIKE
2 .list mac_expansions
3 .nolist mac_source
mac_directives
7
8 T00000000 lab1:
9 T00000000 0038 movw $0,r0
10 T00000002 2038 movw $0,r1
10 T00000004 4038 movw $0,r2
10 T00000006 6038 movw $0,r3
10 T00000008 8038 movw $0,r4
10 T0000000a a038 movw $0,r5
10 T0000000c c038 movw $0,r6
10 T0000000e e038 movw $0,r7

When both mac_source and mac_expansions are ON, each source line
expanded by the macro assembler is printed twice: first as it appears in
the source, and then as it appears after the expansion.

Example mac_source = ON
mac_expansions = ON
mac_directives = OFF

This source file:

#PIKE
.list mac_expansions
.macro zero_reg regno

movw $0,r{regno}
.endm
lab1:
zero_reg 0
.repeat 7,i
zero_reg {i}
.endr

produces this listing:

GNX Assembler Version X.XX Date Page: 1

File "ex10.s"

1 #PIKE
2 .list mac_expansions
3 .macro zero_reg regno
3 movw $0,r{regno}
3 .endm
6

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-25

7 T00000000 lab1:
8 zero_reg 0
8 movw $0,r{regno}
8 T00000000 0038 movw $0,r0
9 .repeat 7,i
9 zero_reg {i}
9 zero_reg 1
9 movw $0,r{regno}
9 T00000002 2038 movw $0,r1
9 zero_reg {i}
9 zero_reg 2
9 movw $0,r{regno}
9 T00000004 4038 movw $0,r2
9 zero_reg {i}
9 zero_reg 3
9 movw $0,r{regno}
9 T00000006 6038 movw $0,r3
9 zero_reg {i}
9 zero_reg 4
9 movw $0,r{regno}
9 T00000008 8038 movw $0,r4
9 zero_reg {i}
9 zero_reg 5
9 movw $0,r{regno}
9 T0000000a a038 movw $0,r5
9 zero_reg {i}
9 zero_reg 6
9 movw $0,r{regno}
9 T0000000c c038 movw $0,r6
9 zero_reg {i}
9 zero_reg 7
9 T0000000e e038 movw $0,r{regno}
9 movw $0,r7
9 .end

After expansion of a macro or a . repeat/.irp block has started, it
cannot be reversed. However, it is possible to expand only one level by
starting a macro or .repeat/.irp block with mac_expansion ON, and
switch it OFF inside a block. Only the outer level is expanded.

Example This source file

#PIKE
.list mac_expansions
.macro zero_reg regno

movw $0,r{regno}
.endm
lab1:
zero_reg 0
.repeat 7,i
.if {i} = 2

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-26

.nolist mac_expansions
.endif
zero_reg {i}
.endr

produces this listing:

GNX Assembler Version X.XX Date Page: 1

File "ex11.s"

1 #PIKE
2 .list mac_expansions
3 .macro zero_reg regno
3 movw $0,r{regno}
3 .endm
6
7 T00000000 lab1:
8 zero_reg 0
8 movw $0,r{regno}
8 T00000000 0038 movw $0,r0
9 .repeat 7,i
9 .if {i} = 2
9 .if 1 = 2
9 .endif
9 zero_reg {i}
9 zero_reg 1
9 movw $0,r{regno}
9 T00000002 2038 movw $0,r1
9 .if {i} = 2
9 .if 2 = 2
9 .nolist mac_expansions
9 .endif
9 T00000004 4038 zero_reg {i}
9 .if {i} = 2
9 .endif
9 T00000006 6038 zero_reg {i}
9 .if {i} = 2
9 .endif
9 T00000008 8038 zero_reg {i}
9 .if {i} = 2
9 .endif
9 T0000000a a038 zero_reg {i}
9 .if {i} = 2
9 .endif
9 T0000000c c038 zero_reg {i}
9 .if {i} = 2
9 .endif
9 T0000000e e038 zero_reg {i}

.endr

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-27

7.15 STRING FUNCTIONS

The macro-assembler provides a set of built-in functions to manipulate
strings: string length, string comparison, substring extraction, and sub-
string search.

Characters in strings are counted starting number 1. For example, in
the string abcde, a is character number 1, b is character number 2,
and so on.

7.15.1 String Length

{STR_LEN[string]}

Evaluates as the number of characters in string .

Examples {STR_LEN[abcd]} is evaluated as 4.

{STR_LEN[ab cd]} is evaluated as 5.

{STR_LEN[]} is evaluated as 0.

7.15.2 String Comparison

{STR_EQ[string1 , string2]}

Evaluates as 1 if string1 and string2 are the same, and as 0 if they
are not.

 Example #SR
.macro movmem src_add, dest_add

.if {STR_EQ[{src_add}, {dest_add}]}

.else
addd $-4,sp
stord r1, 0(sp)
loadd src_add,r1
stord r1,dest_add
loadd 0(sp),r1
addd $4,sp

.endif
.endm

7.15.3 Substring Extraction

{SUB_STR[string, start [, length]]}

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-28

Extracts a substring of the string argument from position start . Gen-
erally, length is taken to be substring size. If the length argument is
omitted or is greater than the remaining length of the string argument,
then the length of the substring is the remaining length of the string.

The function call is evaluated as an empty string when:

• start is less than or equal to zero.

• start is greater than the length of the string.

• length is less than or equal to zero.

Examples: 1. {SUB_STR[abcdefgh,2,3]} evaluates to bcd.

2. {SUB_STR[abcdefgh,3]} evaluates to cdefgh.

3. {SUB_STR[abcdefgh,1000,3]} evaluates to an empty string.

7.15.4 Substring Search

{STR_FIND[string , substring]}

Evaluates as the position of the first character of substring in its first
occurrence in string . If substring is not found, the value of the func-
tion is 0.

Examples: 1. {STR_FIND[abcdefgh,cde]} evaluates to 3.

2. {STR_FIND[abcabc,c]} evaluates to 3.

3. {STR_FIND[abcdefgh,zz]} evaluates to 0.

7.16 MACRO-LIST FUNCTIONS

A macro-list is a string that contains substrings separated by commas
and that is enclosed between brackets. Each of these substrings is
called an element of the macro-list. See Section 7.6 for more details
about macro-lists.

The macro-assembler includes a set of built-in functions to process
macro-lists that allow creation and manipulation of array-like and other
complex structures (stacks, queues, etc.). The built-in functions are:
sub-list extraction, retrieval, search, insertion and deletion of elements
into/from lists. Another built-in function returns the number of ele-
ments in a macro-list.

Elements in macro-lists are counted starting from the left with number
1. For example, in the macro-list [aa, bb, cc, dd], element number 1
is aa, element number 2 is bb, and so on.

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-29

7.16.1 Get Element From List

{LIST_GET[list, element_number]}

Evaluates as the element whose number is specified by
element_number .

Example {LIST_GET[[a,b,c,d],2]} is evaluated as the string b.

7.16.2 Sublist Extraction

{SUB_LIST[list, start [, length]]}

Evaluates as a macro-list of length elements from the list , starting at
element number start . If length is omitted or is greater than the
number of remaining elements, all remaining elements are included in
the sublist.

In the following cases, the function call is evaluated as an empty macro-
list [] :

• start is less than or equal to zero.

• start is greater than the number of elements in list .

• length is less than or equal to zero.

Examples: 1. {SUB_LIST[[a,b,c,d,e,f,g,h],2,3]} is evaluated as [b,c,d].

2. {SUB_LIST[[a,b,c,d,e,f,g,h],3]]} is evaluated as [c,d,e,f,g,h].

3. {SUB_LIST[[a,b,c,d,e,f,g,h],1000,3]} is evaluated as [].

7.16.3 Find An Element In List

{LIST_FIND[list, string]}

Evaluates as the position (element number) of the first occurrence of
string as an element of list . If string is not an element of list , the
function call is evaluated as 0.

Example After the assignment:

dummy_list:=[hhh,r1,ii,x,hh,x]

then:

1. {LIST_FIND[{dummy_list},r1]} is evaluated as 2.

2. {LIST_FIND[{dummy_list},yyy]} is evaluated as 0.

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-30

3. {LIST_FIND[{dummy_list},x]} is evaluated as 4.

7.16.4 Replace An Element In A List

{LIST_REPL[list, element_number, string]}

Evaluates as list after replacing the element, whose number is speci-
fied by element_number , with the given string . This macro-function is
useful, when a macro-list is handled as an array, for assigning a value
to a specified element in a macro-list.

Example dum_list:=[xx,yy,zz]
dum_list:={LIST_REPL[{dum_list},2,aa]}

The second element of dum_list has been "assigned" (replaced with) the
string aa, and dum_list now holds the value [xx,aa,zz] .

7.16.5 Insert An Element Into A List

{LIST_INS[list, string, element_number]}

Evaluates as list after inserting string as an element before the ele-
ment specified by element_number .

Example list1:=[aa,bb,cc]
list2:={LIST_INS[{list1},dd,3]}
list2 holds the value [aa,bb,dd,cc].

7.16.6 Delete An Element From A List

{LIST_DEL[list, element_number]}

Evaluates as list after removing the element whose number is speci-
fied by element_number .

Example list1:=[aa,bb,cc]
list2:={LIST_DEL[{list1},2]}

list2 holds the value [aa,cc].

list1 remains to hold the original value [aa,bb,cc].

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-31

7.16.7 Number Of Elements In A List

{LIST_LEN[list]}

Evaluates as the number of elements in list.

Example vars_list:=[-12(fp),-16(fp),-20(fp),r0,r1[r4:b],r2]
{LIST_LEN[{vars_list}]}.

evaluates to 6.

7.16.8 Example of Macro-List Function Usage

Included here is an example showing the capability of the different mac-
ro-list functions. A stack-list is implemented using the macro-list func-
tions. We define a set of macro-procedures: PUSH, POP, TOP, RESET.

.macro PUSH list_name,element
pushes an element into a stack list

{list_name}:={LIST_INS[{{list_name}},{element},1]
{list_name} evaluates to the NAME of the list.
{{list_name}} evaluates to its VALUE.
.endm
.macro POP list_name,el_var_name

returns the first element of a list, and
removes that first element from it.

{el_var_name}:={LIST_GET[{{list_name}},1]}
{list_name}:={LIST_DEL[{{list_name}},1]}

.endm

.macro TOP list_name,el_var_name
returns the last element of a list.

{el_var_name}:={LIST_GET[{{list_name}},1]}
.endm
.macro RESET list_name

assignan empty listvalue [] to the list.
{list_name}:=[]

.endm

In the following sequence of macro-procedure calls, the values of the
variables after each call are specified in the comments.

var:=
RESETstack1
RESETstack2

value of :
stack1 | stack2 | var
====== | ====== | ===
[] | [] | empty string

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-32

PUSH stack1,aa # [aa] | [] | empty string
PUSH stack1,bb # [bb,aa] | [] | empty string
PUSH stack1,cc # [cc,bb,aa] | [] | empty string
POP stack1,var # [bb,aa] | [] | cc
PUSH stack2,{var} # [bb,aa] | [cc] | cc
TOP stack1,var # [bb,aa] | [cc] | bb
RESETstack1 # [] | [cc] | bb

7.17 DATA CONVERSION FUNCTIONS

The macro-assembler provides a set of built-in functions to convert
strings representing assembly numerical constants (as defined in Sec-
tion 3.4) into hexadecimal digit strings. These are integer hexadecimal,
float hexadecimal or long float hexadecimal.

7.17.1 Convert To Integer Hexadecimal

{CNV_HEX[integer_constant]}

Evaluates as a string of eight hexadecimal digits representing the con-
stant in hexadecimal integer format. The integer_constant may be
specified in any of the integer notations.

Example Given the definition

const := 1024

then { CNV_HEX[{ const }]} is evaluated as X’00000400 .

7.17.2 Convert To Float Hexadecimal

{CNV_HEXF[constant]}

Evaluates as a string of eight hexadecimal digits representing the con-
stant in float-hexadecimal format. If constant is not a single precision
floating point constant, it is first converted to this representation.

Examples: 1. {CNV_HEXF[{5-4}]} is evaluated as f’3f800000.

2. {CNV_HEXF[1.0e0]} is evaluated as f’3f800000.

3. {CNV_HEXF[l’3ff0000000000000]} # long representation of 1.
is evaluated as f’3f800000.

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-33

7.17.3 Convert To Long Float Hexadecimal

{CNV_HEXL[constant]}

Evaluates as a string of the 16 hexadecimal digits representing the con-
stant in long hexadecimal-decimal format. If constant is not a long
floating point constant, it is first converted to this representation.

Examples: 1. {CNV_HEXL[{5-4}]} evaluates to 1’3ff0000000000000.

3. {CNV_HEXL[1.0e0]} evaluates to 1’3ff0000000000000.

4. {CNV_HEXL[F’3F8000000]} # long representation of 1.
evaluates to 1’3ff0000000000000.

7.18 INSTRUCTION OPERAND FUNCTIONS

The macro-assembler includes a set of built-in functions for processing
instruction operands, including recognition of operand type and extrac-
tion of subfields from operands strings. These functions provide for ease
in using the diversity of operands types and addressing modes provided
by the CompactRISC architecture and the CompactRISC assembler.

For example, given an operand string specifying a memory location, an-
other operand string can be created which points to the double word
next to that location (i.e., "location+4"). If the operand is a symbol, a
leading 4+ string can be concatenated to the operand string. If the op-
erand has been specified with a leading @ (absolute addressing mode),
4+ can be inserted after the @. However with many other operand nota-
tions adding such an offset to the location is not as simple. Therefore
some convenient built-in functions are provided which recognize the no-
tation (type) in which the operand has been specified, and extract sub-
fields in operand strings.

7.18.1 Recognize The Type Of An Operand

{OP_TYPE[operand]}

Evaluates as a string describing the type of operand , or as an empty
string if the string is not a legal operand. A list of possible operands
types are:

EXPR : any legal combination of symbols, constants and arith-
metic operators optionally followed by a displacement size
specification (:s , :m , :l).

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-34

examples: xx:s
12
ss+3+(kk-9):l

GREG : r0,r1 ...

FREG : f0,f1,...

LREG : l0,l1,...

PREG : processor register : cfg,sp ..

REG_REL : expression1(register)

EXPL_SB_REL : ̂ expression1

IMM : $expression1

 Examples 1. {OP_TYPE[12(sp)] }

is evaluated as REG_REL.

2. {OP_TYPE[$xx+121]}

is evaluated as IMM.

Note The OP_TYPE built-in macro-function can not always provide the definite
addressing mode that is used for the operand. Information returned by
this function is just the most accurate conclusion that can be drawn about
the nature of the operand, through scanning the operand string and with-
out any knowledge of the context in which the operand appears or of the
type of the user-symbols (e.g., labels) involved in the operand. Since this
knowledge is mandatory for determining the exact addressing mode in
which the operand is encoded, and since the macro-processing phase is
done prior to the assembly phase, this information is unavailable during
the macro-processing phase.

7.18.2 Operand Subfields

The following are the various operand subfield functions

{OP_REG[operand]}

If the operand is a register, it is evaluated as that register. If the oper-
and has a base register, it is evaluated as the base register. No register
is returned if the operand is a register list.

Example {OP_REG[yy+8(sp)]}

is evaluated as sp.

{OP_DISP1[operand]}

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-35

If the operand contains at least one displacement field, with or without
a displacement size specification, the function call is evaluated as the
innermost displacement string without the displacement size specifica-
tion. Otherwise the empty string is returned.

Note that when the operand type is DREF_SYM, the innermost displace-
ment string is returned.

Example {OP_DISP1[yy+8(sp)]}

is evaluated as yy+8.

{OP_DISPSIZE1[operand]}

If the innermost displacement string has a size specified, that size spec-
ification is returned. Otherwise, the empty string is returned.

Example {OP_DISPSIZE1[yy+8(sp)]}

evaluates to an empty string.

{OP_VAL[operand]}

If the operand is EXPR, ABS, IMM, EXPL_PC_REL, or EXPL_SB_REL, it is
evaluated as the expression without the size or any preceding literals.

Example {OP_VAL[$yy+8]}

is evaluated as yy+8.

{OP_VALSIZE[operand]}

If the operand is EXPR, ABS, IMM, EXPL_PC_REL, or EXPL_SB_REL, it
evaluates to its specified size.

Example {OP_VALSIZE[$yy+8:s]}

is evaluated as :s

The following table defines the subfields that are relevant to various op-
erand types.

Type Reg Disp Size1 Val Valsize List

EXPR + +

GREG +

FREG +

CompactRISC Assembler Reference Manual MACRO AND CONDITIONAL ASSEMBLER 7-36

LREG +

PREG +

REG_REL + + +

EXPL_PC_REL + +

EXPL_SB_REL + +

IMM + +

Type Reg Disp Size1 Val Valsize List

CompactRISC Assembler Reference Manual DIRECTIVE SUMMARY A-1

Appendix A

DIRECTIVE SUMMARY

The following is a comprehensive summary of the CompactRISC Assem-
bler Directives.

SYMBOL GENERATION

.set symbol, expression sets symbol to the value and type specified by ex-
pression . Scope is local.

DATA GENERATION

[label] . string generates a string constant. string specifies con-
stant value.

[label] .byte ([[repetition-factor]]string),,,
generates byte constant or string. expression or
string specifies constant value. repetition-fac-
tor specifies number of occurrences of value.

[label] .word ([[repetition-factor]] {expression | string}),,,
generates word constants. expression specifies
constant value.

[label] .double ([[repetition-factor]] {expression | string}),,,
generates double-word constants.

[label] .float ([[repetition-factor]]expression),,,
generates single-precision floating-point constants.

[label] .long ([[repetition-factor]]expression),,,

generates double-precision floating-point constants.

[label] .field ([subfield-length] subfield-value),,,

generates bit fields. subfield-length specifies
length of field. subfield-value specifies field val-
ue.

CompactRISC Assembler Reference Manual DIRECTIVE SUMMARY A-2

STORAGE ALLOCATION

[label] .blkb [expression] allocates consecutive bytes of memory for storage.
expression specifies the number of bytes.

[label] .blkw [expression] allocates consecutive words of memory for storage.
expression specifies the number of words.

[label] .blkd [expression] allocates consecutive double-words of memory for
storage. expression specifies the number of double-
words.

[label] .blkf [expression] allocates consecutive double-words for single-preci-
sion floating-point storage. expression specifies the
number of double-words.

[label] .blkl [expression] allocates consecutive quad-words for double-preci-
sion floating-point storage. expression specifies the
number of quad-words.

[label] .space expression allocates consecutive bytes for storage. expression
specifies the number of bytes.

LISTING CONTROL

[label] .title string prints the specified string at the top of each page
of the listing file.

[label] .subtitle string prints the specified string at the top of each page
of the listing file and below the title string (if any).

[label] .nolist suppresses the printing of source statements to the
listing file.

[label] .list restores the printing of source statements to the
listing file.

[label] .eject causes the listing to continue at the top of the next
page.

[label] .width expression sets the width (in characters) of the listing line to
the value specified by expression .

LINKAGE CONTROL

.globl symbol declares symbol ‘‘global,’’ that is, available for use
by other software modules. symbol may or may not
be defined in the current assembly.

.commsymbol, expression declares global data symbol , assigns it the external
undefined type, and allocates for it the number of
bytes specified by the expression . The symbol will
be placed in the .bss section by the linker.

CompactRISC Assembler Reference Manual DIRECTIVE SUMMARY A-3

.code_label symbol qualifies a symbol as a label of code. In the CR16
architectures, the address of such a label is shifted
by 1 to the right, in some cases, when it is used as
an operand.

SEGMENT CONTROL

.dsect symbol , [expression] begins a user-defined segment symbol , with current
location counter expression .

.text sets location counter to type text and the value of
the next available .text address.

.data sets location counter to type data and the value of
the next available .data address.

.bss symbol, expression1, expression2

defines a symbol of type bss, aligns the bss location
counter to a multiple of expression2 , and incre-
ments the bss location counter by expression1
bytes. The current location counter is not affected.

.udata sets location counter to type bss and the value of
the next available .bss address.

.org expression advances the location counter to expression . ex-
pression must be of the same type as the location
counter or of type absolute.

.align
expression1[,expression2]

sets location counter offset to a multiple of
expression1 or the sum of a multiple of
expression1 and expression2 . The location
counter type remains unchanged. New value (>=
current value.

.ident string places the string argument in the .comment section
of the object file. This directive may be used more
than once. The .comment section is given the sec-
tion attribute of STYP_INFO. The linker will combine
all .comment sections at link time.

.section
section_name[,string]

defines a section with attributes. The section_name
is the name of the section, and each character in
string represents an attribute. Symbols declared with-
in a section belong to that particular section. A section
is active until the next .section, .text, .data , .uda-
ta, .link or .static directive. In the default case,
reference to symbols of a user-defined section are ref-
erenced via the absolute addressing mode.

CompactRISC Assembler Reference Manual DIRECTIVE SUMMARY A-4

FILE NAME DIRECTIVE

.file "symbol " assigns the source filename symbol to the current
assembly.

SYMBOL TABLE ENTRY DEFINITION DIRECTIVES

.def symbol specifies the start of the definition of a symbol table
entry for symbol .

.dim expression,,, specifies the dimensions of an array variable. Up to
four dimensions may be specified.

.line expression specifies the source file line number, expression ,
on which a symbol is defined.

.scl expression specifies the storage classification, expression , of a
symbol.

.size expression expression specifies the size in bytes of a symbol.

.tag symbol symbol specifies the tag name of a structured data
type.

.type expression specifies the type, expression , of a symbol.

.val expression expression specifies the value of the symbol that is
being defined.

.endef terminates the definition of a symbol table entry.

LINE NUMBER TABLE CONTROL DIRECTIVE

.ln expression1
[, expression2]

specifies the source file line number offset from the
start of a function and an optional, associated memo-
ry address.

MACRO DEFINITION DIRECTIVES

.macro macro-name formal-argument-list

begins the definition of the macro-procedure.

.endm end the macro-procedure definition.

.if if_condition begins a conditional macro assembler statement.

.elsif elsif_condition specifies an elsif clause for the conditional macro
assembler statement.

.else
else_conditional_body

specifies an else clause for the conditional macro
assembler statement.

CompactRISC Assembler Reference Manual DIRECTIVE SUMMARY A-5

.endif ends the conditional macro assembler statement.

.repeat [iteration_count [,iteration_var]]
begins a macro repetitive block.

.irp iteration_var,
 iteration_list

begins a special macro repetitive block.

.endr ends a macro repetitive block.

.exit ends the processing of the current repetitive block.

.macro_on enables macro-procedure expansions.

.macro_off disables macro-procedure expansions.

.include included_file allows for the inclusion of text from another file.

.mwarning warning_message generates an assembler warning message.

.merror error_message generates an assembler error message.

CompactRISC Assembler Reference Manual RESERVED SYMBOLS B-1

Appendix B

RESERVED SYMBOLS

All instructions and registers, and other symbols defined in the archi-
tecture, are reserved symbols.

In addition to these, the assembler itself has the following reserved sym-
bols:

.align

.ascii

.blkb

.blkd

.blkf

.blkl

.blkw

.byte

.callseq

.code_label

.comm

.cross_bound

.def

.dim

.double

.dsect

.dspmincr

.dspminit

.dspmtype

.dspmwrap

.eject

.endef

.field

.file

.float

.fp_mask

.frame_size

.freg_mask

.fsize

.globl

.gp_mask

.ident

CompactRISC Assembler Reference Manual RESERVED SYMBOLS B-2

.intr

.line

.list

.ln

.long

.minit

.msize

.nolist

.org

.reg_mask

.regoff

.retaddr

.scl

.section

.set

.size

.space

.subtitle

.tag

.title

.type

.type_ext

.udata

.val

.width

.word

mac_directives

mac_expansions

mac_source

reordered_code

CompactRISC Assembler Reference Manual GLOSSARY C-1

Appendix C

GLOSSARY

.gnxrc A GNX target specification file that is used by GNX tools to obtain the
CPU, FPU, MMU, system bus-width, and OS target specifications.

.Assembly Pro-
gram segment

Part of an assembly program that resides in a contiguous area. Every
GNX assembly program produces at least three program segments in
the output object file: text, data, and bss. These segments correspond to
the .text, .data, and .bss sections of the COFF file. Other Series 32000
segments or user-defined sections may be included in the assembly
source file.

Assembly direc-
tive

Provides the assembler with control information. Directives define la-
bels, generate data, define procedures, control program listings, control
macro-assembly, allocate storage, control linkage, define module table
entries, control line number tables, control program segments, define
symbol table entries, and define file names.

Assembly ex-
pression

A combination of terms and operators which evaluate to a single value
and type. Valid expressions include addresses and integer expressions,
but not floating-point expressions.

Assembly label A user-defined symbol specified at the beginning of an assembly state-
ment, followed by a colon (:) or a double colon (::).

Assembly state-
ment

Composed of an optional label, which is a user-defined symbol; followed
by an optional instruction or directive mnemonic that is an assembler-
reserved symbol; followed by optional operands that are composed of
symbols, constant values, and delimiters.

Built-in Macro
Functions

A set of macro-assembler functions used to manipulate strings, lists,
type conversions and Series 32000 operands.

COFF Acronym for the Common Object File Format. This is the standard ob-
ject file format for many software development tools, as well as the
CompactRISC software development tools. A COFF file contains ma-
chine code and data and additional information for relocation and de-
bugging purposes.

Calling conven-
tion

A standard CompactRISC convention for calling procedures from either
an assembly or a HLL written code. It defines the way parameters are
passed, register usage and how a value should be returned.

Compound As-
sembly expres-
sion

An expression constructed from other assembly expressions using una-
ry and binary operators.

CompactRISC Assembler Reference Manual GLOSSARY C-2

Conditional
Macro State-
ment

Sequences of statements specified between the .if and the .endif direc-
tives. They are generated according to a condition specified with the .if
directive.

Cpp An acronym for the C preprocessor.

Cross configu-
ration

When the compilation and execution of the compiled program are done
on different machines (the host and target machines are different).

DBUG CompactRISC symbolic debugger. DBUG provides a window-oriented
user interface for both X-windows and ASCII terminals. It is used for
the symbolic debugging of high level and assembly language programs.

Development
board

The 32000 based system used for developing/running programs and
user applications.

Displacement An integer constant that is specified as part of an instruction operand.
Its value is an offset added to a specified base address for operand ad-
dress calculation. It may be encoded as either a byte, word, or double-
word.

Displacement
operand

A displacement size specification that determines a displacement encod-
ing as either small, medium, or large-word.

Dummy seg-
ment

Defines a symbolic offset for each of its defined labels. It does not con-
tain generated code or data and does not allocate space. It is useful for
overlaying portions of specific segments.

External symbol A symbol which is defined outside the assembled file. It can be defined
either in another assembly file or in a HLL file.

Floating-point
constant

An immediate floating-point value. Can be either a four byte single pre-
cision value or an eight byte double precision value.

Global symbols Global symbols are symbols to be used by multiple software modules,
either assembly or HLL modules.

Host machine The machine on which the assembler runs.

Initialized data
segment

Contains initialized data, follows the .data directive, and corresponds to
the .data section of the COFF file. The initialized data segment has the
same functionality as initialized data in the C language. This function-
ality enables the start-up of a target system with an automatically ini-
tialized data area.

Instruction op-
erand

The instruction operand is defined by the microprocessor architecture
as one of nine possible addressing modes: register, immediate, absolute,
register-relative, memory space.

CompactRISC Assembler Reference Manual GLOSSARY C-3

Integer con-
stant

An immediate integer value. Can be specified either in decimal, hexa-
decimal or octal format. Integers can be used within assembly expres-
sions that are part of either an instruction or directive operand.

Link segment A special segment of the assembly program that corresponds to the
.link section of the COFF file. The link segment defines a module’s link
table, thereby supporting Series 32000 modularity. The actual link table
entries are specified following the assembly .link directive.

Location
counter

A relocatable memory address of the current statement within the cur-
rently assembled segment.

Macro Proce-
dure

Known by the more common name: macro. Consists of legal assembly
statements to be expanded on a macro call, according to given parameters.

Object file A file that is the output of either the assembler or the compiler. It con-
tains compiled code, data and additional control information such as
relocation or symbolic information. The assembler’s object file conforms
to the COFF Common Object File Format.

Option A parameter, specified on the command line, used to control the utility.

Output listing An optional assembler output of the assembled source file. It displays
the original assembly source, along with additional useful information.
Each source line has an annotated line number, segment type informa-
tion, and the generated code or data. Macro expansions are also dis-
played where applicable.

Relative value A symbol or expression that specifies an address within one of the
COFF sections or the corresponding assembly program segment. Be-
cause such addresses are not bound to actual memory locations until
link-time, their value is relative to the base or starting address of the
segment. Relative values are relocatable, and have a relocatable entry in
the generated COFF object file. They are resolved later at link-time.

Relocatable ob-
ject files

Output of the assembly process. Relocatable object files may be linked
to create executable files for a Series 32000 target.

Repetitive Mac-
ro Statement

Sequences of statements specified between the .repeat or .irp directives
and the .endr directive. They are generated repeatedly according to an
iteration index specified with the .repeat directive.

Return value An integer or floating-point value that is returned by a function through
register R0 or F0, respectively, according to the CompactRISC standard
calling convention.

Series 32000 in-
struction

A Series 32000 instruction mnemonic. Should appear within a text sec-
tion in order to be executed.

CompactRISC Assembler Reference Manual GLOSSARY C-4

Source file Assembler input. The source file is a text file containing the source pro-
gram to be assembled.

Target machine The machine on which the program being compiled will run.

Text segment Contains code for execution, follows the .text directive and corresponds
to the .text section of the COFF file.

Uninitialized
data segment

Contains uninitialized data, follows the .bss or the .udata directive. Cor-
responds to the .bss section of the COFF file.

CompactRISC Assembler Reference Manual INDEX-1

A

Absolute addressing mode 4-3, 6-26, 6-27, A-3
Absolute operands 5-6
Absolute symbols 3-11
Absolute value 1-3
Addressing mode 1-2, 3-10, 3-21, 4-2, 4-3, 5-4, 5-

5, 5-7, 6-25, 6-26, 6-27, 7-34, A-3, C-2
Absolute 5-7, 6-26, 6-27
absolute 4-3
Immediate 5-5
Program Counter Relative 4-2
Register Relative 5-4, 5-7

.align directive 6-29
Architecture support 1-2
ASCII character set 3-1
.ascii directive 6-3
.ascii directive 2-6
Assembler directives 1-2, 3-2
Assembler directives functional groups 6-1
Assembler statements 3-2

assembler directives 1-2, 3-2
assembly language instructions 3-2

B

Binary operators 3-18
.blkb directive 6-12
.blkd directive 6-14
.blkf directive 6-14
.blkl directive 6-15
.blkw directive 6-13
Board

development C-2
.bss directive 3-11, 3-13, 6-26
.bss section 2-10
bss segment location counter 4-3
Bss symbols 3-11
Built-in macro functions

example 7-12
.byte directive 6-4

C

Carriage return 3-2
Character constant syntax 3-7
Character constants 3-21

Character set 3-1
Code lines

comments 3-3
examples 3-3
label 3-3
mnemonic 3-3
operands 3-3
rules 3-3

COFF 3-9, 4-1, 6-33, 6-35, 6-39
COFF symbol table requirements 6-33
.comm directive 3-11, 6-22
.comment 6-31
comment 3-3
.comment section 2-11
Comment segments 4-4
Common symbols 3-11, 3-13
Compound expressions 3-18
Conditional assembler 7-1
Conditional assembly 7-13
Configuration

cross C-2
Constants 3-1
crasm 2-2
Cross-reference file 2-2
Cross-reference Table 2-9
Cross-reference table listing 2-9

sample 2-9

D

.data directive 6-25
Data generation directives 6-2, A-1

.ascii directive 6-3

.byte directive 6-4

.double directive 6-7

.float directive 6-8

.long directive 6-9

.word directive 6-6
.data section 2-10
Data segment 4-1, 4-2
Data symbols 3-10
Data types 1-2
Decimal 3-5
Decimal floating-point syntax 3-5
.def directive 6-32, 6-33
Default cross-reference file 2-2
Defining common symbols 3-13
Defining symbols 3-11
Defining uninitialized symbols 3-13
Definition of terms 1-3

INDEX

CompactRISC Assembler Reference Manual INDEX-2

Development board C-2
.dim directive 6-34
Directive mnemonics 3-9
Directive summary A-1
Directives 1-2
Displacement 2-10, 5-3, 5-5, 5-7, 6-36, 7-33, 7-35,

C-2
field 7-35
size 7-35
string 7-35

.double directive 6-7
Double-precision floating-point constant 3-6
.dsect directive 4-1, 6-24
Dummy procedures 2-5
Dummy segments 4-3

E

.eject directive 6-20

.else directive 6-43

.elsif directive 6-43

.endef directive 6-32, 6-39

.endif directive 6-43

.endm directive 6-42, 7-16

.endr directive 6-45
Error messages 2-10
Example

built-in macro functions 7-12
code line 3-3
integer constants 3-4
macro-list 7-11
macro-list functions 7-31

Exception operands 5-8
EXCP instruction 5-8
.exit directive 6-45, 7-16
Expressions 3-1, 3-15

evaluation 3-18
rules for 3-18

External symbols 3-11

F

Far relative operands 5-4
Features 1-2
.field directive 6-10
File

cross-reference 2-2
default cross-reference 2-2
input 1-2, 2-1
listing 2-1
object 2-1
object code 1-2
output 1-2, 2-1
source 2-1

symbol table 2-2
temporary 2-2

.file directive 6-31
Filename directive 6-31, A-4

.file directive 6-31
.float directive 6-8
Floating-point number syntax 3-5

G

-g option 2-5
Global Symbols 3-11
.globl directive 3-11, 6-21

H

Hexadecimal floating-point syntax 3-6

I

.ident directive 2-11, 4-1, 6-31

.if directive 6-42
Immediate operands 5-5

minimizing code size 5-5
range 5-6

.include directive 6-46
Initialized data segment 4-2
Input and output files

listing file 2-7
listing file with error flag 2-8

Input and output files listing file 2-1
Input and output files macro-processor output 2-1
Input files 1-2, 2-1
Instruction mnemonics 3-9
Integer constants 3-21

range of values 3-4
Integer syntax 3-4
Invocation options 2-2
Invoking the Assembler 2-2
.irp directive 6-44, 7-15

L

-L option 2-1, 2-10
label 3-3
Labels 3-11, 3-12

temporary 3-12
Limitations 2-10

expression 2-10, 7-34

CompactRISC Assembler Reference Manual INDEX-3

line length 2-10
range of values 2-10
section 2-10
string length 2-11
symbol name length 2-11

.line directive 6-35
Line feed 3-2
Line limitations 2-10
Line number table control directives 6-40, A-4

.ln directive 6-40
Line terminators 3-2
Linkage control directives 6-21, A-2

.comm directive 6-22

.globl directive 6-21
.list directive 6-19
List of invocation options 2-3
Listing control directives 6-17, A-2

.eject directive 6-20

.list directive 6-19

.nolist directive 6-18

.subtitle directive 6-18

.title directive 6-17

.width directive 6-20
Listing file 2-1

error message 2-8
.ln directive 6-40
Location counter 3-1, 3-14

M

mac_directives 7-22
mac_expansions 7-22
Machine

host C-2
target C-4

Macro
list of arguments 7-18
number of arguments 7-18

Macro assembler 7-1
Macro assembly

arithmetic expressions 7-8
built-in function 7-11
data conversion functions 7-32
error messages 7-20
instruction operand functions 7-33
invocation options 7-7
list functions 7-28
listing control 7-21
macro procedures 7-16
macro-list 7-11
.macro_off directive 7-19
.macro_on directive 7-19
processing 7-5
repetitive directives 7-14
string functions 7-27
text inclusion 7-20
variables 7-7
warning messages 7-20

Macro assembly data conversion functions

convert to float hexadecimal 7-32
convert to integer hexadecimal 7-32
convert to long float hexadecimal 7-33

Macro assembly instruction operand functions
operand subfields 7-34
recognize operand type 7-33

Macro assembly list functions
delete a list element 7-30
example 7-31
find a list element 7-29
get element from list 7-29
insert a list element 7-30
number of elements 7-31
replace a list element 7-30
sublist extraction 7-29

Macro assembly string functions
string comparison 7-27
string length 7-27
substring extraction 7-27
substring search 7-28

Macro definition directives A-4
.macro directive 6-41, 7-16
Macro directives 6-41

.else directive 6-43

.elsif directive 6-43

.endif directive 6-43

.endm directive 6-42

.endr directive 6-45

.exit directive 6-45

.if directive 6-42

.include directive 6-46

.irp directive 6-44

.macro directive 6-41

.macro_off directive 6-45

.macro_on directive 6-45

.merror directive 6-47

.mwarning directive 6-46

.repeat directive 6-44
Macro Operator precedence

list 7-9
Macro-assembler

arithmetic operations and expressions 7-4
built-in functions 7-5
conditional code generation 7-2
error and warning messages 7-4
features 7-1
invocation 7-1
listing of expanded code 7-4
macro variables 7-2
macro-procedures 7-1
repetitive code generation 7-3
text inclusion 7-3

Macro-directive handling 7-6
Macro-Expression Evaluation

rules 7-9
Macro-list

examples 7-11
.macro_off directive 6-45
.macro_on directive 6-45
Macro-preprocessor 1-2
Macro-procedure

defining 7-16
predefined variables 7-18

CompactRISC Assembler Reference Manual INDEX-4

Macro-procedure call handling 7-6
Macro-processor invocation option

-MD 7-7
-MI 7-7
-ML 7-7
-MO 7-7
-MP 7-7

mac_source 7-22
-MD invocation option 7-7
.merror directive 6-47, 7-21
-MI invocation option 7-7
-ML invocation option 7-7
mnemonic 3-3
-MO invocation option 7-7
-MP invocation option 7-7
.mwarning directive 6-46, 7-20

N

.nolist directive 6-18
Number syntax 3-4

O

Object code file 1-2
Object file 2-1
Object file format 1-3, 3-9, 4-1, 6-33, 6-35, 6-39
Operand

absolute 5-6
exception 5-8
far relative 5-4
immediate 5-5
processor register 5-2
program counter relative 5-4
register 5-1
register relative 5-3
static-base relative 5-7

operands 3-3
Operator

binary 3-15
unary 3-15

Operator precedence, list of 3-15
Operators 3-15
Optimization

displacement size 2-4
Option

-g 2-5
-L 2-1, 2-10
-x 2-2, 2-11
-y 2-2, 2-11

Options 2-1
definitions 2-3
invocation 2-2
syntax 2-3

.org directive 6-28

Output files 1-2, 2-1
Output listing 2-6

P

Parentheses 3-18
Precedence groups 3-18
Printable characters, list of 3-1
Processor register operands 5-2
Program Counter Relative addressing mode 4-2
Program counter relative operands 5-3
Program segments 4-2

initialized data 4-2
Program structure 4-1

R

Register operands 5-1
Register relative operands 5-2
Relative value 1-3
.repeat directive 6-44, 7-14
Reserved symbol names 3-9
Reserved symbols, list of 3-12
Rules for expressions 3-18

S

Sample assembly language program 2-6
Sample assembly program 2-6
Sample cross-reference source file 2-9
Sample cross-reference table listing 2-9
Sample program containing errors 2-8
Sample symbol table listing 2-8, 2-9
Sample symbol table source file 2-8
.scl directive 6-35
.section directive 2-10, 4-1, 6-27
Section limitations 2-10
Segment

comment 4-4
dummy 4-3
user-defined 4-3

Segment control directives 6-23, A-3
.align directive 6-29
.bss directive 6-26
.data directive 6-25
.dsect directive 6-24
.ident directive 6-31
.org directive 6-28
.section 6-27
.text directive 6-25
.udata directive 6-27

CompactRISC Assembler Reference Manual INDEX-5

Segment, form of 4-2
.set directive 3-13, 6-2
Single-precision floating-point constant 3-6
.size directive 6-36
Software module 1-3
Source file 2-1
.space directive 6-16
Statements 3-1

assembler 3-2
Static-base relative operand 5-7
stderr 2-10
Storage allocation directives 6-11, A-2

.blkb directive 6-12

.blkd directive 6-14

.blkf directive 6-14

.blkl directive 6-15

.blkw directive 6-13

.space directive 6-16
String limitations 2-11
String syntax 3-4, 3-8
.subtitle directive 6-18
Symbol creation directive (.set) 6-2
Symbol generation directives A-1
Symbol names 3-9
Symbol Table Dump 2-8
Symbol table entry definition directives 6-32, A-4

.def directive 6-33

.dim directive 6-34

.endef directive 6-39

.line directive 6-35

.scl directive 6-35

.size directive 6-36

.tag directive 6-37

.type directive 6-38

.val directive 6-39
Symbol table file 2-2
Symbol table listing 2-8

sample 2-8
Symbol types 3-10
Symbols 3-1, 3-9

absolute 3-11
Bss 3-11
data 3-10
defining 3-11
defining common 3-13
defining with .bss directive 3-13
defining with .set directive 3-13
external 3-11
global 3-11
text 3-10
type absolute 3-10
type external 3-10
undefined 3-10
user-defined 3-11

Syntax
character constant 3-7
decimal floating-point 3-5
floating-point numbers 3-5
hexadecimal floating-point 3-6
integer 3-4
string 3-8

T

.tag directive 6-37
Temporary files 2-2
Temporary labels 3-12
Terminators for lines 3-2
Terms in expressions 3-15
Terms used in this document 1-3

absolute value 1-3
relative value 1-3
software module 1-3

Terms with absolute type 3-20
Terms with relative type 3-20
Text 4-2
.text directive 6-25
.text section 2-10
Text segment 4-2
.text segment 3-10
Text symbols 3-10
.title directive 6-17
TMPDIR environment variable 2-2
Type assignment 2-5
.type directive 6-38
Types in Expressions 3-18

U

.udata directive 6-27
Unary operators 3-18
Undefined symbols 3-10
Uninitialized data 4-3
Uninitialized data (bss) segment 4-3
Uninitialized symbols 3-11, 3-13
User-defined segments 4-1, 4-3
User-defined symbols 3-11

V

.val directive 6-39
Value

absolute 1-3
relative 1-3

W

.width directive 6-20

.word directive 6-6

CompactRISC Assembler Reference Manual INDEX-6

X

-x option 2-2, 2-11

Y

-y option 2-2, 2-11

Z

-z option 2-5, 2-10
-znfilename option 2-5, 2-10

	CONTENTS
	FIGURES
	TABLES
	OVERVIEW
	INTRODUCTION
	OVERVIEW OF ASSEMBLER FEATURES
	DEFINITION OF TERMS

	INVOKING THE ASSEMBLER
	INTRODUCTION
	INPUT AND OUTPUT FILES USED/GENERATED BY THE A...
	ASSEMBLER INVOCATION
	Assembler Symbolic Debugging

	ASSEMBLER OUTPUT LISTINGS
	Assembler Symbol Table Listing
	Cross-Reference Table Listing

	ASSEMBLER ERRORS
	ASSEMBLER LIMITATIONS

	ELEMENTS OF THE ASSEMBLY LANGUAGE
	INTRODUCTION
	CHARACTER SET
	ASSEMBLER STATEMENTS
	STRING AND NUMBER SYNTAX
	Integer Syntax
	Floating-Point Number Syntax
	Character Constant Syntax
	String Syntax

	SYMBOLS
	Symbol Names
	Symbol Types
	Global Symbols

	LOCATION COUNTER
	EXPRESSIONS
	Rules for Expressions
	Types in Expressions
	Encoding of Expressions

	ASSEMBLER PROGRAMS
	INTRODUCTION
	ASSEMBLER PROGRAM STRUCTURE
	PROGRAM SEGMENTS
	USER-DEFINED, DUMMY AND COMMENT SEGMENTS

	INSTRUCTION OPERANDS
	REGISTER OPERANDS
	REGISTER PAIR OPERAND (CR16B LARGE MODEL ONLY)...
	PROCESSOR REGISTER OPERANDS
	REGISTER RELATIVE OPERANDS
	PROGRAM COUNTER RELATIVE OPERANDS
	FAR RELATIVE OPERANDS
	IMMEDIATE OPERANDS
	ABSOLUTE OPERANDS
	STATIC-BASE RELATIVE OPERANDS
	EXCEPTION OPERANDS

	ASSEMBLER DIRECTIVES
	INTRODUCTION
	SYMBOL CREATION DIRECTIVE
	.set

	DATA GENERATION DIRECTIVES
	.ascii
	.byte
	.word
	.double
	.float
	.long
	.field

	STORAGE ALLOCATION DIRECTIVES
	.blkb
	.blkw
	.blkd
	.blkf
	.blkl
	.space

	LISTING CONTROL DIRECTIVES
	.title
	.subtitle
	.nolist
	.list
	.eject
	.width

	LINKAGE CONTROL DIRECTIVES
	.globl
	.comm
	.code_label

	SEGMENT CONTROL DIRECTIVES
	.dsect
	.text
	.data
	.bss
	.udata
	.section
	.org
	.align
	.ident

	FILENAME DIRECTIVE
	.file

	SYMBOL TABLE ENTRY DEFINITION DIRECTIVES
	.def
	.dim
	.line
	.scl
	.size
	.tag
	.type
	.val
	.endef

	LINE NUMBER TABLE CONTROL DIRECTIVE
	.ln

	MACRO-ASSEMBLER DIRECTIVES
	.macro
	.endm
	.if
	.elsif
	.else
	.endif
	.repeat
	.irp
	.endr
	.exit
	.macro_on and .macro_off
	.include
	.mwarning
	.merror

	MACRO AND CONDITIONAL ASSEMBLER
	INTRODUCTION
	Overview of the Major Macro-Assembler Featur...

	THE MACRO-PROCESSING PHASE
	INVOCATION
	MACRO VARIABLES
	ARITHMETIC MACRO-EXPRESSIONS
	MACRO LISTS
	BUILT-IN MACRO FUNCTIONS
	CONDITIONAL ASSEMBLY
	Conditional Block

	REPETITIVE DIRECTIVES
	.repeat Directive
	.irp Directive
	.exit Directive

	MACRO PROCEDURES (MACROS)
	Macro Procedure Definition
	Macro Procedure Call and Expansion
	Predefined Macro Procedure Variables

	.MACRO_ON AND .MACRO_OFF DIRECTIVES
	TEXT INCLUSION
	MACRO WARNING AND ERROR MESSAGES
	.mwarning Directive
	.merror Directive

	LISTING CONTROL
	STRING FUNCTIONS
	String Length
	String Comparison
	Substring Extraction
	Substring Search

	MACRO-LIST FUNCTIONS
	Get Element From List
	Sublist Extraction
	Find An Element In List
	Replace An Element In A List
	Insert An Element Into A List
	Delete An Element From A List
	Number Of Elements In A List
	Example of Macro-List Function Usage

	DATA CONVERSION FUNCTIONS
	Convert To Integer Hexadecimal
	Convert To Float Hexadecimal
	Convert To Long Float Hexadecimal

	INSTRUCTION OPERAND FUNCTIONS
	Recognize The Type Of An Operand
	Operand Subfields

	DIRECTIVE SUMMARY
	RESERVED SYMBOLS
	GLOSSARY
	INDEX

