
TL/F/12460

D
P
8
3
8
0
0

S
o
ftw

a
re

P
ro

g
ra

m
m

e
rs

G
u
id

e
A

N
-9

9
5

National Semiconductor
Application Note 995
Roman Baker
July 1995

DP83800 Software
Programmers Guide

The DP83800 Software Programmers Guide is designed to

aid in the development of software for the DP83800 10/100

ISA based network adapter. It is recommended that the

DP83800 datasheet be read and understood before reading

this document.

TABLE OF CONTENTS

1.0 INTRODUCTION TO THE DP83800

1.1 10/100 Mb/s Operation

1.2 Buffer Architecture

1.3 Resource Configuration

1.4 Registers

1.5 Node Management

1.6 EEPROM Interface

1.7 Media Independent Interface

1.8 CAM Interface

2.0 CONFIGURATION

2.1 Plug and Play Configuration Mode

2.2 Legacy ISA Configuration Mode

2.3 EISA Configuration Mode

2.4 Changing Configuration Mode

3.0 INITIALIZATION

3.1 Software Reset

3.2 Transmit Modes

3.3 Normal/Early Transmit

3.4 Automatic Transmit Packet Padding

3.5 Transmit Retries

3.6 Receive Modes

3.7 Interrupt Options

3.8 Node Address Initialization

3.9 Enabling the DP83800

4.0 RUN-TIME OPERATION

4.1 Transmission

4.2 Reception

5.0 OTHER DP83800 FEATURES

5.1 Full-Duplex Operation

5.2 General Purpose Timer

1.0 INTRODUCTION TO THE DP83800

The DP83800 is designed specifically for ISA bus adapter

applications. Its design is optimized for high throughput, low

CPU utilization and low cost.

It implements a simple FIFO-based slave I/O interface to

the ISA bus to simplify the task of writing network device

drivers. Additionally, the DP83800 contains many features

that are aimed specifically at increasing overall performance

in the most popular network environments.

1.1 10/100 Mb/s Operation

The DP83800 is capable of operating as a 10 Mb/s stan-

dard EthernetÉ controller or as a 100 Mb/s Fast Ethernet

controller. When coupled with National Semiconductor’s

DP83840 10/100 Mb/s physical layer, mode configuration

is automatic. The DP83800 provides an interface to the

DP83840 through the Media Independent Interface (MII).

Through the MII, software can set the physical layer to auto

negotiate or it can force any physical layer configuration

mode desired.

1.2 Buffer Architecture

The DP83800 provides an easy to use buffer architecture.

As packets are received, they are stored sequentially in the

5 kbyte receive FIFO. The status and receive byte count are

also stored in a separate FIFOs. The driver need only per-

form a series of reads from a particular register to move the

packet from the FIFO into system memory. Similarly, the

driver need only perform a series of writes to the same reg-

ister in order to transmit a packet. This simplified buffer ar-

chitecture enables the driver to implement streamlined data

transfer routines.

1.3 Resource Configuration

The DP83800 conforms to the Plug and Play 1.0a specifica-

tion for auto-configuration of Plug and Play ISA devices. Be-

cause of this, the DP83800 will be automatically configured

when placed in any system which supports Plug and Play

isolation and configuration management routines. In these

systems, the drivers need only query the resident configura-

tion manager to obtain all necessary configuration informa-

tion such as base I/O address and IRQ.

The DP83800 also supports a ‘‘legacy’’ mode of operation

where it behaves like traditional ISA adapters and powers

up with pre-assigned resources. These resources are stored

in the EEPROM devices on the board and are loaded into

the DP83800 on power up. In this mode, the driver can ob-

tain configuration information in several different ways as

described below.

EthernetÉ is a registered trademark of Xerox Corporastion.

C1995 National Semiconductor Corporation RRD-B30M105/Printed in U. S. A.



The driver can obtain the base I/O location using methods

inherent in the specific driver specification being written to

(such as NET.CFG files for ODI and PROTOCOL.INI files for

NDIS drivers) and then read some of the DP83800 configu-

ration registers to obtain the other resources.

The driver can also perform its own Plug and Play isolation

to locate the DP83800 adapter. Once isolated, the driver

can read the resource information from special Plug and

Play registers. This allows the driver to locate the adapter in

traditional ISA systems without having to perform danger-

ous searches of I/O space and without requiring configura-

tion files.

And lastly, the DP83800 supports EISA configuration regis-

ters when used in an EISA system. In these systems, re-

sources are assigned by the EISA BIOS at boot time and

programmed into the IO/IRQ configuration register and the

boot PROM configuration register.

In all modes, the DP83800 will respond to Plug and Play

isolation sequences. This is the standard method of chang-

ing adapter configuration.

Supporting these three modes of configuration allows the

DP83800 to be easily configured and accessed in today’s

environments as well as future ones.

1.4 Registers

1.4.1 Run-Time Registers

The DP83800 contains over 45 run-time registers used to

operate the device. Because the ISA platform has limited

I/O space, the DP83800 uses paged registers in order to fit

these 16-bit registers in 32 bytes of ISA I/O space. To re-

duce the need to continually switch register pages, the

DP83800 has registers arranged on one ‘‘fixed page’’, as

well as 5 ‘‘variable pages’’. The fixed page is always present

in the first 16 I/O locations of the base address. The second

16 I/O locations hold the variable page registers. Which of

the variable pages is present is indicated in the master

Command Register (CR, fixed page, offset 00h). The group-

ing is arranged so that after initial driver configuration, the

driver can leave page 1 the active variable page and have

little or no need to change to another.

Please refer to the DP83800 datasheet for a detailed de-

scription of each of the registers and its bit significance.

1.4.2 Plug and Play Registers

The DP83800 has a set of Plug and Play registers used for

configuration of the device. They are available only through

the Plug and Play interface after the adapter has been iso-

lated.

The DP83800 has all of the standard Plug and Play registers

used for isolation and resource allocation. It also has a

mode configuration register used to alter the power-up ac-

tions of the DP83800. Please refer to the DP83800 data-

sheet for a detailed description of all Plug and Play regis-

ters.

1.4.3 EISA Configuration Registers

The DP83800 has a set of registers which can be used in an

EISA system. These registers allow for detection of the

adapter as well as configuration.

The configuration registers are slot specific when placed in

an EISA machine. For example, if the DP83800 is placed in

slot 3 of the host machine, the EISA Product ID would begin

at 3C80h. Please refer to the DP83800 datasheet for a de-

tailed description of all EISA registers.

1.5 Node Management

1.5.1 Management Information Base (MIB)

Statistics Counters

The DP83800 contains an extensive block of statistics

counters that are automatically updated as each event oc-

curs. The counters provide a set of statistics compliant with

the following management specifications: MIB II, Ether-like

MIB and IEEE MIB.

With these counters, it is easy for drivers to keep accurate

statistics without needing to count them on a per-packet

basis. This allows for faster transmit and receive routines

and greater overall driver performance.

1.5.2 MIB Interface

To access the MIB statistics counters, the DP83800 pro-

vides a register interface to the MIB block. This interface

consists of the MIB Control Register (MCR, variable page 3,

offset 14h) and the MIB Data Registers (MDR0 and MDR1,

variable page 3, offsets 10h and 12h).

The MCR allows the software to choose which set of statis-

tics to enable (see datasheet) as well as clear, test and

access all the counters. In order to access the MIB coun-

ters, the software need only set the Access Pointer Reset

bit (bit 9) to reset the access pointers and then set the off-

set in bits 5-0 to begin reading the counters. The software

then reads from the MDR registers to retrieve the informa-

tion.

The two MDR registers provide a 32-bit interface to the MIB

counters. If the software performs 32-bit input instructions

to read the data, the CPU will read both MDR0 and MDR1

consecutively to get the full 32-bit value for each statistic.

The software may continue to read from the MDR registers

until all statistics have been gathered.

2



1.6 EEPROM Interface

The DP83800 provides an interface to directly access the

NM93C46 (or compatible) device which holds the Ethernet

address, Plug and Play information as well as other configu-

ration data. Specifications for the NM93C46 can be ob-

tained from the National Semiconductor Corp. Memory Da-

tabook.

The interface consists of the EEPROM Control Register

(EECR, variable page 2, offset 10h) and the EEPROM Data

Register (EEDR, variable page 2, offset 12h). To read from

the EEPROM, software must set the EEPROM command

field in bits 7–0 of the EECR to instruct the EEPROM to

read from a specified location (see NSC Memory Data-

book). The software would then poll bit 15, the EEPROM In

Use bit of the EECR to determine if the read operation is

completed. When bit 15 is cleared, the data is ready to be

read from the EEDR.

Write operations are similar to read operations except that

the write data needs to be placed in the EEDR before set-

ting bits 7–0 of the EECR to instruct the EEPROM to write

to a specific location.

1.7 Media Independent Interface

The DP83800 provides an interface so that software can

communicate with the Physical Media Device (PMD) over

the Media Independent Interface (MII). Typically the MII is

used to determine if the current PMD supports a particular

mode or to configure the PMD to operate in a specific mode.

The MII consists of the MII Control Register (MICR, variable

page 2, offset 14h) and the MII Data Register (MIDR, vari-

able page 2, offset 16h).

To perform a read operation from a register in the PMD, the

software would write to the MICR a value which contains the

register address field (bits 4–0), the PMD address field (bits

9–5) and the access mode set to management read (bits

11–10 set to 01 respectively). The software would then poll

bit 15 of the MICR to wait for the operation to complete.

When the operation is complete, the data is available in the

MIDR.

Write operations are similar. Like the EEPROM interface, to

perform a write operation the data register (MIDR) first

needs to be programmed with the value to write. Next, the

software must write to the MICR with the register address

field, the PMD address field and the value 10 in bits 11–10

to indicate a management write. When polling of bit 15 of

the MICR returns 0, the operation is completed.

Before using the MII, the software should issue a manage-

ment reset to the MII to synchronize the DP83800 and the

PMD. This is achieved by writing an 11 to bits 11–10 in the

MICR.

1.8 CAM Interface

The DP83800 provides an interface to the on-board CAM

used for address matching. Through the interface, the soft-

ware can read and write to the CAM, mask certain CAM

entries and determine which CAM entry caused the last

match.

1.8.1 CAM Read and Write Accesses

Before any software CAM accesses, the CAM must be dis-

abled. To do so, bit 15 of the CAM Control Register (CCR,

variable page 2, offset 18h) must be cleared. After the ac-

cess to the CAM is performed, bit 15 must be set again to

resume CAM operation.

To perform a read from the CAM, the software must first set

the CAM entry pointer (the CAM has 14 locations, 10 for

physical/multicast address and 4 for broadcast locations) to

the desired location, then set bit 6 (the CAM read bit) to

initiate the read operation. The address in the specified

CAM location will then be available in the CAM Data Regis-

ter (CDR, variable page 2, offset 1Ah). For a physical/multi-

cast address, the full 6 bytes must be retrieved by reading 3

consecutive words from the CDR. The broadcast CAM en-

tries are slightly different and require only 2 word reads from

the CDR (see section in datasheet on CDR for further de-

tails).

To perform a CAM write operation, the software needs to

set the CAM entry pointer, set bit 7 (the CAM write bit) in the

CCR instead of bit 6 and then write the data to the CDR

instead of reading from it. This will set the specified CAM

entry.

1.8.2 CAM Mask Register

Once the address data has been written to the CAM, the

appropriate value in the CAM Mask Register (CMR, variable

page 2, offset 1Ch) needs to be set in order for the CAM

logic to use the entry. With the CMR, addresses can be left

in the CAM and enabled or disabled quickly simply by mask-

ing it.

1.8.3 CAM Match Register

The CAM Mask Register (CMTR, variable page 2, offset

1Eh) is used to determine which CAM entry caused the last

address match. Bits 0-13 in the CMTR correspond to the 14

CAM entries. If, for instance, bit 1 is set in the CMTR, then

the address in CAM entry 1 caused the match.

1.8.4 Other CCR Bits

Additionally, the CCR contains bits which control other ad-

dress match criteria. The Accept All Broadcast bit, when

set, allows all broadcast packets to pass address match.

The Accept All Multicast does the same for all multicast

addresses and the Accept All Physical works for physical

addresses. The CAM need not be disable when setting

these bits.

3



2.0 CONFIGURATION

The DP83800 supports three modes of configuration: Plug

and Play mode, legacy ISA mode and EISA mode. The con-

figuration requirements vary depending on the configuration

mode selected.

2.1 Plug and Play Configuration Mode

Plug and Play configuration mode is generally selected

when the adapter is to be placed in a system that has a Plug

and Play BIOS, Plug and Play device drivers or a Plug and

Play aware operating system. When in such a system, a

DP83800 configuration program need only ensure that the

EEPROM location containing the mode configuration byte

(word 28h, low byte) be set to load only the mode configura-

tion information. (The I/O, IRQ and boot ROM resources

are not loaded from the EEPROM.) The host system will

isolate and assign resources to all Plug and Play adapters in

the system at power-up.

When the driver loads, it must query the resident configura-

tion manager to obtain the resource information. Refer to

the Plug and Play Device Driver Kit for information on how

to locate the Plug and Play Configuration Manager and how

to obtain the resource information.

2.2 Legacy ISA Configuration Mode

Legacy ISA configuration mode is generally used when the

adapter is placed into an ISA system that does not support

Plug and Play isolation and resource allocation. In this

mode, the DP83800 will read the I/O, IRQ and boot ROM

configuration information from the EEPROM on power-up.

Drivers will need to use native methods, such as changes to

the NET.CFG file in the ODI case, to determine the I/O

base address of the adapter. Once the base address is de-

termined, the driver can read DP83800 registers to deter-

mine IRQ and boot ROM information.

In legacy mode, the DP83800 will still respond to Plug and

Play isolation sequences. Therefore, if an adapter is left in

legacy mode and is placed in a Plug and Play system, the

resources read from EEPROM at power-up will be overwrit-

ten by the Plug and Play system. With some Plug and Play

systems, an error message may be displayed indicating that

the adapter already had resources assigned before Plug

and Play isolation was performed.

2.3 EISA Configuration Mode

The DP83800 can be programmed to respond to access to

the EISA configuration registers in an EISA system. The

EISA BIOS can use the registers to program the DP83800

at power-up using parameters specified in an EISA configu-

ration file. To enable EISA mode, a DP83800 configuration

program need only ensure that the EEPROM location con-

taining the mode configuration byte (word 28h, low byte) be

set to load only the mode configuration information. The

host system will assign resources to the adapter at power-

up.

Once EISA mode is enabled, changes to the configuration

can be made through the EISA Configuration Utility (ECU)

which comes with the EISA machine.

2.4 Changing Configuration Mode

In all configuration modes, the DP83800 will respond to Plug

and Play isolation sequences. Once the adapter has been

isolated, software can access the PnP Mode Configuration

Register (PMCR, index 0F0h) in the Plug and Play register

set (see datasheet for complete list of Plug and Play regis-

ters). From here, the adapter configuration can be changed

by setting the appropriate bits and issuing a configuration

‘‘snapshot’’ by setting the CS bit in the PMCR. When this is

done, the mode configuration register and the IO/IRQ con-

figuration registers are stored to the EEPROM.

3.0 INITIALIZATION

Several steps need to be performed in order to ready the

DP83800 for operation. The following section reviews these

steps in detail.

3.1 Software Reset

The first step in initializing the DP83800 is to perform a soft-

ware reset to the chip. This ensures that all registers are

initialized to their reset values even if a driver was previously

run on the adapter.

In order to perform a software reset, the driver must set bit

14, the software reset bit in the Command Register, as well

as bit 3, the modify bit. (The modify bit must be set to alter

any of the bits in the CR except for the page select bits.)

3.2 Transmit Modes

The DP83800 supports three different modes of transmis-

sion. The driver can select between blind transmit, halt on

error, and transmit acknowledge mode.

3.2.1 Blind Transmit

This is the default transmit mode of the DP83800. In this

mode, the DP83800 will, upon completion of transmitting

the first packet in the FIFO, move to the next and immedi-

ately attempt to transmit it. The DP83800 will continue to do

this until there are no more packets in the transmit FIFO. It

will move to the next packet regardless of whether the

transmission was successful or not.

This mode is particularly useful in environments where un-

successful transmissions need not be immediately reported

to upper layer software.

To enable blind transmit mode, set bits 5–4 in the Transmit

Configuration Register (TXCR, variable page 0, offset 16h)

to 00.

3.2.2 Halt on Error Transmit

When halt on error mode is enabled, the DP83800 will con-

tinue to transmit all of the packets in the transmit FIFO un-

less there is a fatal transmit error (such as excessive colli-

sions, out-of-window collisions, etc.). If such an error oc-

curs, the transmitter stops and the DP83800 will issue a

transmit error event. The driver can then determine the type

of error. Once the transmit status is read, the DP83800 will

continue to transmit the remaining packets in the FIFO.

This mode allows for faster transmit routines while enabling

the driver to handle error events as needed.

To enable halt on error mode, set bits 5–4 of the TXCR to

01.

4



3.2.3 Transmit Acknowledge Mode

When transmit acknowledge mode is enabled, the DP83800

transmits packets from the FIFO one at a time. After the

completion of a packet transmission, the DP83800 issues

either a successful or erred transmission interrupt. The driv-

er needs to then read the transmit status for the next trans-

mission to begin.

This mode is the slowest transmission mode because of the

need to acknowledge all packets. It does allow for tracking

of transmit packets on a per-packet basis.

To enable transmit acknowledge mode, set bits 5–4 of the

TXCR to 10.

3.3 Normal/Early Transmit

The DP83800 also supports normal and early transmission

of packets in all of the aforementioned transmit modes. With

normal and early transmit modes, the driver can be opti-

mized to provide the best possible throughput in the target

environment (10 or 100 Mb/s operation, full or half duplex,

etc.).

3.3.1 Normal Transmit

In normal transmit mode, transmission of the packet is not

started until after the last byte of information is entered into

the transmit FIFO. At that point, the DP83800 will begin to

transfer information to the physical media device (PMD).

To ensure that the DP83800 is set up for normal transmit,

the driver must set the Transmit Minimum Threshold Regis-

ter (TMTR, variable page 1, offset 12h) to the maximum

Ethernet packet size, 1518. With this value, the transmit

state machine will not initiate transmit until either the maxi-

mum 1518 bytes are entered into the FIFO or the last byte

of the packet, if smaller than 1518, is entered.

It is recommended that normal transmit mode be used when

the DP83800 is configured for 100 Mb/s operation. At

100 Mb/s, the wire speed is faster than the maximum

throughput of the ISA bus. If early transmit mode is used at

100 Mb/s, it is likely that the transmit FIFO will underrun and

the packet will be lost. Setting the DP83800 to normal trans-

mit ensures that it will not underrun.

3.3.2 Early Transmit

In early transmit mode, transmission of the packet will begin

when the number of bytes specified in the TMTR are en-

tered into the transmit FIFO. At this point, transmission will

begin and continue until either the total number of bytes for

the packet are transmitted or until the transmit FIFO under-

runs.

Because the possibility of an underrun still exists at

10 Mb/s, the driver must ensure that either the transmit

data transfer is an atomic operation or that the driver will not

be interrupted long enough to cause the transmit FIFO to

underrun.

When early transmit mode is used, transmission of the

packet occurs at the same time data is being transferred

from system memory to the transmit FIFO. This can improve

overall performance in many instances.

3.4 Automatic Transmit Packet Padding

The DP83800 supports automatic transmit padding of pack-

ets. This is useful when the upper layer protocol passes the

driver a packet to send where the total byte count is under

the minimum Ethernet packet size, 64 bytes. In traditional

Ethernet controllers, the driver needed to pad the packet in

software before passing it on to the hardware. When auto-

matic transmit packet padding is enabled, this padding in

software is not required. The hardware will automatically

pad the packet as it is being transmitted.

3.5 Transmit Retries

In compliance with the specification, an Ethernet controller

will attempt to transmit a packet up to 16 times. For in-

stance, if a controller tries to transmit and collides, it will try

15 more times. If after 16 attempts it is still unsuccessful,

transmission is usually aborted.

Many network environments require that the driver attempt

to re-transmit packets that failed. In the past, software

needed to keep track of how many times a packet was at-

tempted. The DP83800 has a register called the Transmit

Retry Register (TXRR, variable page 0, offset 1Ah) which

can be used to program the DP83800 to automatically at-

tempt to transmit these packets again.

The value programmed into the TXRR specifies the number

of additional retries in multiples of 16. For example, if it is

set to 0, the DP83800 will try the normal 16 times. If set to 1,

it will try the normal 16 times plus an additional 16 times.

3.6 Receive Modes

As with transmit, the DP83800 supports multiple modes of

reception so that the driver can optimize the hardware oper-

ation for the target environment. The DP83800 supports

three modes of reception: normal, early and burst.

3.6.1 Normal Receive

In normal receive mode, an interrupt for the receive packet

is not issued to the host until the entire packet is received

into the receive FIFO. At this point, the driver may move the

packet from the receive FIFO into system memory.

To ensure normal receive mode, the driver must set bit 15 of

the receive threshold register (RTR, variable page 1, offset

18h) to 0. This disables all receive threshold modes.

3.6.2 Early Receive

In early receive mode, the DP83800 is instructed to issue an

interrupt to the host after a certain number of bytes are

available in the receive FIFO. At this point, the driver may

move some of the bytes into system memory.

Early receive mode is particularly useful in environments

where data at the beginning of the packet, called lookahead

data, can be used to determine if any upper-layer protocol

needs the packet. In this environment it can be determined,

before the packet is fully received, whether it is needed. If

not, the DP83800 can be instructed to abort the current

reception and reclaim the space in the FIFO. If the packet is

needed by some protocol, the driver can begin to move the

data before it is entirely received.

5



To enable early receive mode, the enable bit in the RTR

must be set to 1 to enable the receive threshold logic. Then

bit 14 must be set to 0 to instruct the DP83800 to use early

thresholds instead of burst thresholds. Lastly, the number of

bytes necessary before an interrupt is generated should be

specified in bits 0–11. Typically, this is set to be the same

as the number of lookahead bytes required by the upper

layer software.

When early transmit mode is used, retrieval of the packet

from the receive FIFO can be done at the same time the

packet is being received from the wire. Again, overall per-

formance can be improved.

3.6.3 Burst Receive

In burst receive mode, the DP83800 will not issue an inter-

rupt for every packet that is received. Instead, an interrupt is

generated when the number of receive packets specified in

the RTR is reached.

To enable burst threshold mode, bit 15 of the RTR needs to

be set to enable the receive threshold logic. Then bit 14

needs to be set to instruct the DP83800 to use burst receive

instead of early receive. Lastly, the number of packets

needs to be specified in bits 11–0.

Because interrupts are not issued for each packet received,

it is possible that a number of packets received could be

less than the threshold set in the RTR. An interrupt would

not be issued for the packets that are received. For exam-

ple, let’s say that a server normally sends out 3 packets to a

workstation to query its status. If the threshold was set to 4

on the workstation, the upper-layer protocol on the worksta-

tion would not receive the packets to process until one

more packet is received. The server would timeout waiting

for the reply and would try to contact the workstation again.

When it does, more packets would be received and the

threshold would be met. The upper layer protocols on the

workstation would then process the first request from the

server and reply. There would also be another request in the

FIFO which might confuse the protocols.

To help ensure the error condition doesn’t occur, the

DP83800 has a receive timeout register (RTOR, variable

page 0, offset 1Ch). This register can be initialized so that if

some packets are received but the burst threshold is not

met in some specified time interval, an interrupt is generat-

ed anyway. This helps ensure that the workstation or server

need not wait for some long software timeout to occur.

Burst receive threshold is typically used in environments

where there are a large number of small packets and where

hardware interrupts can cause task switches to occur. In

these environments, enabling burst receive can greatly de-

crease the number of time-consuming task switches that

occur and boost overall system performance (compared to

using normal or early transmit mode).

3.7 Interrupt Options

3.7.1 Interrupt Vector Register

The DP83800 provides a slightly different interrupt reporting

mechanism than previous generation Ethernet products. In-

stead of having an interrupt status register, where each bit

represents an event, the DP83800 provides an Interrupt

Vector Register (IVR, fixed page, offset 02h). With the IVR,

the driver need not read a status register, test each bit,

perform an action if that bit is set and then clear the bit.

Instead, the driver need only read from the IVR. It can then

use the value to determine what to do next. The act of read-

ing the IVR clears the event from the event queue so the

driver need not clear any status bits. To service all of the

events pending, the driver just reads the IVR, services the

event and reads again until the IVR returns 0.

For drivers written in assembly language, it is possible to set

up a jump table in memory to further streamline the servic-

ing of interrupts. With a jump table, the driver can simply use

the value returned by the IVR to jump directly to a subrou-

tine. The following code illustrates how it can be done:

Jump table initialization for x86 system:

JumpTable label word

ISRNoPending dw 0

ISRReceiveError dw 0

ISRReceiveThreshold dw 0

ISRReceive dw 0

ISRTransmitError dw 0

ISRTransmit dw 0

ISRTxDataSpace dw 0

ISRTimer dw 0

ISRSoftware dw 0

ISRMIBOver dw 0

(The values for all ISR variables need to be initialized to the

offset of the appropriate service routine.)

Sample section of driver interrupt service routine to handle
IVR return values as indices into a jump table of service
routines. RHPA is a macro that returns the value of the
named register.

DriverISR0:

RHPA ax, HPA int vector

mov bx, ax

jmp JumpTable[bx]

3.7.2 Vector Sizes

The IVR can be programmed to return either 16- or 32-bit

vector values. This choice is often made depending on what

environment the driver will be used in. For example, some

drivers run in DOS real mode environments. Here, only the

offset needs to be specified for the jump table. Therefore,

16-bit values should be used. Other drivers run in 386 en-

hanced mode where 32-bit values would be desirable.

The IVR size can be set by setting bit 0 of the Mode Config-

uration Register (MDCR, variable page 0, offset 12h). A 1

will enable 32-bit IVR values while a 0 enables 16-bit values.

6



3.7.3 Interrupt Mask Register

The Interrupt Mask Register (IMR, variable page 0, offset

14h) is used to inform the DP83800 what events should

cause an interrupt and be reported in the IVR.

Choices for the IMR should be based on environments,

transmit operating mode, receive operating mode, etc.

3.8 Node Address Initialization

The Ethernet node address is stored beginning at location

24h on the EEPROM device. Most operating systems re-

quire that the driver configure itself to accept packets ad-

dressed to its own Ethernet address. To do this, the data

must be moved from the EEPROM into the CAM.

Setting up the DP83800 to accept its own Ethernet address

is a two part process. First the data needs to be moved from

the EEPROM into a temporary storage location. Once com-

pleted, the CAM can be programmed with the data read

from the EEPROM. The sample code below illustrates how

this might be done:

int Address[3];

int Count;

// First read 3 words from EEPROM

for (Count 4 0; Count k 3; Count00)
À

putReg(EECR, READ l (24h0Count));

while (getReg(EECR) & InUse)

;

Address[Count] 4 getReg(EEDR);
Ó

// Next write 3 words to CAM. First

// disable CAM and the write to

// CAM entry 0.

putReg(CCR, CAM DISABLE);

putReg(CCR, WRITE l 0);

for (Count 4 0; Count k 3; Count00)
À

putReg(CDR, Address[Count]);
Ó

// Enable CAM again

putReg(CCR, CAM ENABLE);

3.9 Enabling the DP83800

To complete initialization of the DP83800, the driver must

enable the transmitter, the receiver and the generation of

interrupts.

Enabling of the transmitter and receiver entails setting bits 9

and 12 (Receive Enable and Transmit Enable respectively)

in the Command Register.

Enabling interrupt generation is done by writing a 1 to the

Interrupt Enable Register (IER, variable page 1, offset 1Eh).

Once these steps are done, the DP83800 will be ready to

send and receive packets over the network.

4.0 RUN-TIME OPERATION

After initialization and configuration, a driver’s main purpose

is to transmit and receive packets. Although there may be

instances when a driver may need to reset or reconfigure

hardware, transmission and reception of packets consti-

tutes a large majority of the tasks a driver performs during

run-time.

4.1 Transmission

As previously stated, the DP83800 can be configured to op-

erate in a variety of transmit modes. Depending on the

mode, transmit operation can vary.

The most common DP83800 transmit configuration will be

illustrated below (blind transmit, non-early with automatic

transmit padding). Following this will be an explanation of

variations required for different modes.

4.1.1 Common Transmit Routine

When the driver gets a packet to be transmitted, it must first

assemble the transmit command word. The transmit com-

mand word informs the transmitter how to transmit the next

packet in the FIFO. Bits 11–0 of the transmit command

word indicate the total length of the transmit data. This does

not include the transmit command word, handle word or any

pad bytes (see below). The other bits in the transmit com-

mand word are seldom used. Refer to the datasheet for

further explanation.

After the transmit command word is assembled, the driver

sends it to the transmit FIFO by writing to the Transmit Re-

ceive Data Registers (TRDR0, TRDR1, fixed page, offset

0Ch and 0Eh). Next the transmit handle word should be

written. If handles are not being used by the driver, just write

any 16-bit value.

Next, the actual packet data should be written to the TRDR

registers. (If 32-bit OUT instructions are available, they

should be used as they increase performance.) The driver

may do 8-, 16- or 32-bit out instructions without need for

data steering. After all packet data has been moved to the

transmit FIFO, the driver needs to dword align the FIFO.

The total number of bytes passed to the FIFO (including the

command word, handle packet data) must be divisible by 4.

If it is not aligned, the driver needs to write the appropriate

number of bytes to the TRDR registers in order to align it.

Once the FIFO is aligned, transmission will begin and con-

tinue until the entire packet is sent. Refer to Figure 1 on the

following page for a diagram of the transmit data structure.

4.1.2 Halt on Error and Transmit Acknowledge

Unlike with blind transmit mode, halt on error and transmit

acknowledge require that the driver read the Transmit

Status Register (TSR, fixed page, offset 06h) to continue

transmission after the generation of a transmit interrupt.

7



In halt on error mode, the driver need only configure the

DP83800 to issue interrupts when a fatal transmit error oc-

curs (FIFO underruns, excessive deferrals, out-of-window

collisions, etc.). After the transmit error interrupt is generat-

ed, the driver would read the vector and then read the TSR

to retrieve the status. Upon reading the TSR, the DP83800

transmitter will begin transmitting the next packet in the

FIFO.

For transmit acknowledge mode, all transmit status words

must be read, regardless of whether the transmission was

successful or erred. The driver must program the DP83800

to interrupt when there is a transmit error or transmit com-

plete event. Again, upon reading the TSR, the DP83800 will

begin to transmit the next packet in the FIFO.

4.1.3 Transmit Free Space Registers

When a driver needs to send a packet, it can determine if

there are enough bytes in the transmit FIFO by reading the

Transmit Free Space Register (TFSR, variable page 1, off-

set 16h). Reading the TFSR will return how many bytes are

currently free in the transmit FIFO. If there are enough for

the transmit packet, transfer can begin immediately.

If there are not enough bytes, the driver has two choices: it

can wait for enough to become available or it can request

that the DP83800 interrupt it when enough space is avail-

able.

To have the DP83800 generate an interrupt when a certain

amount of free space is available, the driver must program

the Transmit Free Space Threshold Register (TFTR, vari-

able page 1, offset 14h) with the desired number of free

bytes. When the desired number of bytes are available, the

DP83800 will generate an interrupt and the driver can then

transmit the packet.

4.1.4 Miscellaneous Transmit Options

When automatic transmit padding is disabled, the DP83800

can be programmed to issue runt packets (packets less

than 64 total bytes). This is usually undesirable on the part

of a driver but can be useful to diagnostics software. Many

times protocols will pass packets where the useful data is

smaller than 64 bytes. In this case, the protocol assumes

that the packet will be padded with bytes so that it is of the

minimum length when transmitted. With automatic transmit

padding disabled, the driver will need to do this padding

before it is passed to the transmit FIFO.

With early transmits, the driver need only ensure that the

data transfer to the FIFO is not interrupted so long as to

cause a transmit FIFO underrun. If this happens, it will se-

verely degrade network performance.

TL/F/12460–1

FIGURE 1. Transmit Data Structure

8



4.2 Reception

As with transmission, the DP83800 can be configured to

receive packets in a variety of different manners. The sim-

plest form of operation is when no threshold mode (early or

burst) is being used.

4.2.1 Normal Receive Mode

Figure 2 shows the data structure for each packet received.

Following reception, the receive packet data is available

from the FIFO. Following the receive data are pad bytes (to

dword align the packet) as well as one reserved word and

the Rx management status. The Rx management status is

retrieved when the Receive Packet Advance Register

(RPAR, fixed page, offset 0Ah) is read. Also stored for each

packet is the status/current size in FIFO (this size value will

decrement as data is moved from the FIFO).

When a receive complete interrupt is generated by the

DP83800 the packet data is available through the TRDR

registers. By simply reading these registers, the data from

the packet is moved from the receive FIFO to either a regis-

ter or into system memory, depending on the instructions

used.

The receive FIFO can be accessed byte-wide, word-wide or

dword-wide so the driver does not need to perform any

byte-steering functions. Because of this, receive fragments

presented to the driver by the protocols are easy to handle.

Through the Receive Status Register (RSR, fixed page, off-

set 08h), the driver has access to statistics such as the

completion status, whether it was received OK or bad, and

the number of bytes remaining to be moved.

Reading of the RPAR will unconditionally move the receive

FIFO pointers to the next packet. Reading of this register is

usually performed after the entire packet has been moved

from the FIFO. However, if interrogation of the lookahead

data indicates that no protocol needs the packet, the driver

can simply read the RPAR at any time to advance the FIFO

to the next packet.

4.2.2 Early Receive Mode

With early receive threshold mode, the DP83800 will gener-

ate interrupts before the entire packet is received in the

FIFO. The number of bytes required before an interrupt is

generated is specified in the RTR.

Typically, the threshold programmed into the RTR matches

the number of lookahead bytes required by the protocols.

When these bytes are available, they can be moved from

the FIFO into system memory for interrogation. If the packet

is not needed by any protocols, the driver can read the

RPAR to advance the FIFOs to the next packet.

If the packet is needed by at least one of the protocols, the

driver can either wait for blocks of data to be received or

can wait for the end of packet interrupt to move the data.

TL/F/12460–2

FIGURE 2. Receive Data Structure

9



A
N

-9
9
5

D
P
8
3
8
0
0

S
o
ft

w
a
re

P
ro

g
ra

m
m

e
rs

G
u
id

e
If the driver waits for blocks of data to be received, it can

read the RSR to see how many bytes are available in the

FIFO. When the desired number of bytes are available, they

can be moved. Then the driver will wait again until either the

desired number of bytes are available or until the packet

reception is complete. This method of reception provides

high raw throughput but can ‘‘hog’’ processor cycles in a

multi-threaded operating system.

Alternatively, the driver can exit the receive routine and wait

for the end of packet interrupt. This allows for other pro-

cesses to use the CPU while the reception is completing but

results in multiple interrupts being generated for each pack-

et. This could affect system performance in some environ-

ments.

4.2.3 Burst Receive Mode

With burst receive mode, interrupts are not generated for

each packet received. Instead, the number of packets spec-

ified in the RTR must be received before a receive complete

interrupt is generated.

This is helpful if the DP83800 is to be used in an operating

system when interrupt hits are costly. (See section 3.6.3 for

more information on burst receive mode.)

5.0 OTHER DP83800 FEATURES

5.1 Full-Duplex Operation

With standard Ethernet controllers, only one node may

transmit at a time. If more than one attempts to transmit,

collisions occur. If a workstation has a packet to transfer but

another workstation is already doing so, it has to defer. Col-

lisions and deferrals cause a node to be idle when it could

otherwise be active.

With full-duplex operation, a node can begin transmission

even if it is receiving a packet from another node. This con-

figuration, when combined with a full-duplex switching hub,

eliminates the need to collide or defer and boosts total net-

work performance.

The DP83800 supports full-duplex at both 10 and 100 Mb/s.

To configure it to operate in full-duplex, several registers

need to be accessed.

First, there needs to be a full-duplex capable PMD attached

to the DP83800, such as the DP83840. The PMD can be

interrogated over the MII to determine if it can support full-

duplex and if it is configured to operate in that mode.

If so, the driver then needs to alter some bits in the Transmit

Configuration Register (TXCR, variable page 0, offset 16h)

and the Receive Configuration Register (RXCR, variable

page 0, offset 18h).

Two bits in the TXCR need to be set. Bit 9 (carrier sense

ignore) and bit 8 (heartbeat ignore). And a single bit in the

RXCR, bit 3 (accept transmit packets) needs to be set.

Once set, the DP83800 will operate in full-duplex mode.

If the DP83800 needs to be changed back to normal mode

(for instance, if the PMD is in auto configuration mode and it

detects a change from full- to half-duplex), all of the bits

mentioned above need to be cleared. If they are not, the

DP83800 may cause errors on other nodes.

5.2 General Purpose Timer

The DP83800 contains a general purpose timer which can

be used to generate a single or periodic interrupts.

The timer is controlled by the Timer Control Register (TCR,

variable page 3, offset 16h), the Timer Max Count Registers

(TMR0 and TMR1, variable page 3, offsets 18h and 1Ah)

and the Timer Count Registers (TCR0 and TCR1, variable

page 3, offsets 1Ch and 1Eh).

The TCR is used to specify whether the timer will run once

or in continuous mode. If it is run once, it will generate a

single interrupt. If it is set to continuous mode, it will gener-

ate periodic interrupts.

The TMR registers control how high the timer must count

before issuing an interrupt. The TCR0 and TCR1 registers

give a current reading of the timer value.

The timer increments once every 800 ns, or the time it takes

to move a single byte over Ethernet.

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (a49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@ tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (a49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (a49) 0-180-532 78 32 Hong Kong

Fran3ais Tel: (a49) 0-180-532 93 58 Tel: (852) 2737-1600
Italiano Tel: (a49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


