
TL/F/12304

A
S
o
ftw

a
re

E
n
g
in

e
e
r’s

G
u
id

e
to

th
e

S
y
s
te

m
In

te
rfa

c
e

o
f
th

e
D

P
8
3
2
6
6

M
A

C
S
I
D

e
v
ic

e
A

N
-9

6
4

National Semiconductor
Application Note 964
Robert Macomber
August 1994

A Software Engineer’s
Guide to the System
Interface of the DP83266
MACSITM Device

1.0 INTRODUCTION

This document describes features and mechanisms of the

System Interface portion of National’s DP83200 FDDI chip-

set that are important for software designers to know about.

The information presented corresponds to the DP83256A

BSI-2TM Device. However, this information also applies to

the System Interface portion of the DP83266 MACSI Device

as well as the DP83256 BSITM Device. Throughout this doc-

ument we use the generic term System Interface (SI) to

refer to all three of these devices.

The goal of this document is to reduce your learning curve

(and implementation time) as a software designer using the

SI by clearly describing how the SI operates and suggesting

methods of interacting with the chip. Since the SI can be

used in many different system environments (e.g., direct bus

connection, local memory) an effort has been made to

make the discussion as general as possible. This document

includes:

An overview of the System Interface (SI)

A description of the data structures used to transmit and

receive FDDI frames

A complete tutorial on the SI queues

A description of the steps involved with sending and re-

ceiving FDDI frames

An examination of various software design issues (i.e.,

memory mgmt., performance)

An overview of some low-level SI operations

A description of the steps involved with initializing the SI

A description of the exception conditions and ideas for

handling them

This document should be read in conjunction with the ap-

propriate device datasheet; though it should be possible to

get a good understanding of the chip using this document

alone. An example of SI interface routines, the BSI Device

Primitives, is also available from National Semiconductor.

These example routines are free of charge. Please contact

your local Sales Engineer for more information.

2.0 AN INTRODUCTION TO THE

SYSTEM INTERFACE (SI)

This section of the document presents a basic overview of

the System Interface portion of the FDDI chipset, discusses

the design philosophy of the SI and offers a survey of fea-

tures that are important for software designers to know

about.

2.1 Overview of the System Interface (SI)

The SI architecture provides a high-level, high-performance

system interface for National Semiconductor Corporation’s

DP83200 FDDI (Fiber Distributed Data Interface) chip set. It

provides a simple, powerful interface for sending and receiv-

ing frames on FDDI networks. It includes features important

to software designers who are implementing high perform-

ance interfaces to FDDI networks. Figure 2-1 shows the

MACSI Device (which integrates both the SI functions and

the BMACTM functions) as well as the PLAYERaTM Physi-

cal Layer Controller.

TL/F/12304–1

FIGURE 2-1. FDDI Chip Set Block Diagram

The basic operation of the SI is straight forward. It receives

and sends FDDI frames. More specifically, it transfers FDDI

frames received from the BMAC Device into buffers previ-

ously defined by the host and generates status information

that describes where the received frames have been placed

in memory. It also transfers FDDI frames from buffers sup-

plied by the host to the BMAC Device and generates status

information about the frame transmission. At the center of

this activity is a set of circular queues located in memory

that is shared by the host and the SI. With these memory

resident queues, the SI and host engage in classic consum-

er/producer relationships. In particular:

The host produces transmit requests and consumes

transmission status information

MACSITM, BSI-2TM, BSITM, BMACTM, PLAYERaTM and SONICTM are trademarks of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.

The host produces buffers that will hold received frames

and consumes received frames

The SI consumes empty receive buffers and produces

received frames

The SI consumes transmit requests and produces trans-

mission status information

The host software controls the operation of the SI by manip-

ulating:

directly accessible registers (called Control Bus Regis-

ters)

registers that are internal to the SI and accessed indirect-

ly by the host (called Pointer RAM and Limit RAM Regis-

ters)

a memory resident mailbox (used to load and store some

internal registers)

several queue related data structures that reside in mem-

ory accessible by both the host processor and the SI.

See Figure 2-2 for an illustration of where these registers

and data structures exist. It should be noted that some

memory must be mutually accessible by both the host proc-

essor and the SI. The host accesses memory directly,

(though at the hardware level, the host and SI may arbitrate

for memory bandwidth). It does not use the FDDI chip set to

reach this memory (as is done with some other FDDI chip

sets).

28-bit address space

memory (contains

queues, mailbox and

frame data)

TL/F/12304–2

FIGURE 2-2. SI Device, Host Processor and

Memory Relationships

2.2 Design Philosophy of the SI

The architecture of the SI differs from many analogous

Ethernet chips (including National Semiconductor’s own

SONICTM Device). Why is this so? FDDI and Ethernet are

very different types of networks. FDDI is an order of magni-

tude faster than Ethernet. The way that stations arbitrate for

network bandwidth is completely different, albeit much more

equitable in FDDI. FDDI’s maximum frame size is roughly

three times bigger than Ethernet. FDDI requires that each

station engage in a rather complicated set of protocols for

network connection and operation (collectively called FDDI

Station Management or SMT), which greatly increase the

robustness of the network at the cost of more network soft-

ware/firmware. FDDI supports different classes of frames

that are intended for different entities within a station (SMT,

MAC, LLC, etc.). The SI was designed to meet these chal-

lenges of FDDI and provide features that facilitate the de-

sign of robust, high performance network products. Be-

cause FDDI is more demanding than Ethernet, different

tradeoffs were made.

The design of the SI was driven by many goals. The three

most important goals were 1) performance, 2) robustness

and 3) FDDI specific functionality.

Performance. FDDI is ten times faster than Ethernet (100

Megabits per second). Things happen much more quickly

and happen much more often than with Ethernet. Also,

due to the way that network bandwidth is distributed

among stations, traffic on an FDDI network can be very

‘‘bursty’’, so that a station can experience periods of very

intense network activity. Frames can arrive with very little

idle time between each frame. To handle this type of

traffic the SI is capable of simultaneously producing re-

ceived frame status for one frame while processing the

next incoming frame. The system interface is capable of

generating and receiving frames at full FDDI bandwidth.

The SI also has mechanisms in place to minimize the

volume of status information that the host needs to pro-

cess and make the best use of available memory band-

width. The data structures were designed to be efficient

for both the host and SI (i.e., minimize fetches). The con-

cept of minimizing the volume of status information is

also manifested in an interrupt batching scheme, where a

single interrupt is generated after multiple frames have

been received. Interrupt batching is very important when

dealing with FDDI speeds. For example, a series of 100

byte frames can arrive only 8 to 10 microseconds apart.

Robustness. The FDDI protocols have a lot of inherent

reliability features (e.g., dynamic reconfiguration and

monitoring of link quality). This emphasis on robustness

is also pervasive throughout the entire DP83200 FDDI

chip set. The SI was designed to be consistently reliable

and operate deterministically. The data structures and

queuing mechanisms, in particular, were designed to be

extremely robust. For example, all queues are unidirec-

tional with clearly defined producers and consumers;

which makes the debugging of queue logic quite straight-

forward.

FDDI Specific Functionality. To make FDDI work well,

there are a number of features that should be available.

For example, there are several different types of frames

that may each need to be handled by different software

or hardware agents (i.e., SMT frames, synchronous

frames, restricted dialogs, LLC Frames of different priori-

ties, etc.). The system interface needs to help the net-

work driver(s) multiplex and de-multiplex this frame traf-

fic. Also, FDDI requires that stations limit the amount of

bandwidth consumed under certain circumstances (e.g.,

synchronous frames) and control the capture and issu-

ance of different kinds of tokens (e.g., for restricted dia-

logs). National’s FDDI chip set also provides features

that take advantage of the fact that each station ‘‘strips’’

the frames that it transmits. The host may receive status

information that includes information gathered after the

frame has traversed the ring and is being stripped from

the FDDI network. For example, it is possible to deter-

mine if the receiving station has ‘‘dropped’’ a frame; per-

haps due to congestion.

2

2.3 SI Features

The SI supports two independent Transmit Channels and

three independent Receive Channels. Concurrently queued

transmit requests are serviced on a priority basis and incom-

ing FDDI frames are sorted to one of three Receive Chan-

nels (Receive Channel 0 is dedicated to SMT usage). Chan-

nels allow frames to be sent and received by different

pieces of software or they can be used to help software

meet performance goals by sorting incoming frames onto

different Receive Channels based upon the frame class. In

addition, there is an option for splitting frames where the

headers are placed in one buffer pool and the rest of the

frames are, optionally, placed into another buffer pool. See

Figure 2-3 for an illustration of the SI Channels.

TL/F/12304–3

FIGURE 2-3. SI Channels

A skip filter is available on Receive Channel 0 that causes

the SI to automatically discard duplicate MAC frames. Dur-

ing FDDI ring initialization thousands of duplicate MAC

frames (Claim and/or Beacon) can be circulating on the net-

work. When the skip filter is enabled the first instance of the

frame is received while redundant frames are ignored. Thus

the station can examine the MAC frames used in ring initiali-

zation without the penalty of having to perform unnecessary

frame processing.

The data structures used in frame transmission and recep-

tion map nicely to data structures frequently used with lay-

ered protocols. The SI is capable of doing ‘‘gather reads’’

when processing transmit requests and a limited form of

‘‘scatter writes’’ when receiving frames from the network.

On systems where the SI is attached to system memory it

may be possible to avoid copying frame data by configuring

the SI to read and write directly from system dependent

data structures. For example, on systems where the proto-

col stack uses mbuf/mcluster data structures the SI may be

configured to write frame data directly into mclusters (pro-

vided that the cluster size is 4 kb or larger).

The SI eliminates the need for network drivers to maintain a

separate link layer transmit queue. (The SI datasheet uses

OSI terminology where ‘‘Request’’ is equivalent to ‘‘Trans-

mit’’ and ‘‘Indicate’’ is equivalent to ‘‘Receive’’. For the sake

of readability the more conventional terms are used in this

document.) Instead frame transmission requests from up-

per-level software can be directly appended to one of the

SI’s Transmit Channel Queues. Frames can be dynamically

queued for transmission while the SI is concurrently sending

other frames from the same queue (without any race condi-

tions). In addition, there are mechanisms available to pro-

vide link layer flow control. This is very important when

sending FDDI synchronous frames, as each station must

explicitly limit the amount of synchronous network band-

width it uses at each token opportunity.

The MACSI and BSI-2 versions of the SI can be configured

to automatically flip address bits when sending and receiv-

ing FDDI frames (the ordering of bits within each FDDI ad-

dress octet is reversed from the IEEE canonical form used

on Ethernet networks). This option can be enabled on some

Channels and disabled on others; which is useful when SMT

doesn’t want the bits reversed and the ‘‘normal’’ LLC data

path does want the bits reversed (actually this is the most

common situation). This feature is not available on previous

versions of the BSI Device. The SI is page oriented. It logi-

cally divides memory into 4 kb pages. This notion per-

meates the internal design of the SI. As a general rule, the

host must not supply data to the SI that crosses a 4 kb page

boundary. (Frame data larger than 4k can be described to

the SI as multiple independent chunks of memory that hap-

pen to be contiguous. This concept is more fully explained

in Section 4 ‘‘Sending a Frame’’.) This is due to the way that

the SI internally generates addresses. The SI has a 28-bit

address space, but the internal address counter that the SI

uses to step through memory is 12 bits wide. The upper 16

address bits remain static during memory accesses of a giv-

en piece of data (i.e., descriptor queues, frame data, arrays

of descriptors, etc.). If the SI is instructed to read across a 4

kb boundary the 12 bit address counter will roll-over and the

effective address will ‘‘wrap’’ back to the beginning of the 4

kb page. SeeFigure 2-4 for an illustration of address ‘‘wrap-

ping’’. The SI presents interrupt status information in a hier-

archical manner. This decreases the amount of time re-

quired to determine what event caused a given interrupt to

occur.

TL/F/12304–4

a. Address Counter Roll-Over

TL/F/12304–5

b. Effect of Address Counter Roll-Over

FIGURE 2-4. Four kb Address Counter Roll-Over

3

The SI is a full-duplex device; meaning that it can simulta-

neously send and receive data. Full duplex operation is im-

plemented throughout the DP83200 chip set. This feature,

along with four available loopback paths in the MACSI and

PLAYERa devices, significantly increases the ‘‘testability’’

of a station’s network interface. As a Power Up Self Test,

the network interface software can test for good connectivi-

ty between the various DP83200 devices and proper opera-

tion of the entire chip set by sending and receiving frames

across the four available internal loopback paths.

3.0 DATA STRUCTURES

This section covers the data structures shared between the

host and the SI. As these data structures are all, in some

fashion, related to the SI queues, the discussion will start

with an overview of the SI queues, followed by an exposition

of the various data structures and then finish up with a thor-

ough tutorial about the SI queues. A full understanding of

the operation of these queues is absolutely crucial for any

software engineer who is developing software that will inter-

face with the SI.

3.1 Introduction to the SI Queues

The SI queues are the primary interface for communication

between the host and the SI. The host uses the queues to

produce frames for transmission (and consume transmit

status information) and consume frames that have been re-

ceived from the network (and produce empty receive buff-

ers). All SI queues are unidirectional; meaning that the SI

either consumes descriptors from a given queue or it pro-

duces descriptors for a given queue.

The SI operates independently and asynchronously from

the host processor. Many of the older network interface de-

vices use a ‘‘batch oriented’’ approach when transmitting

frames. In this scheme a limited number of frames are

placed in a staging area, a ‘‘Go’’ command is issued and the

host waits for all of the frames to be sent before attempting

any further frame transmission. This method of operation

sometimes requires that the network interface software pro-

vide a link layer queue to hold transmit requests that arrive

when the hardware is busy. In contrast the SI is designed to

dynamically accept transmit requests at any time (i.e., like a

FIFO). The host doesn’t have to ‘‘spoon feed’’ frames to the

SI.

A crude analogy can be made between network interface

hardware (i.e., the SI) and ovens for baking bread. A ‘‘batch

oriented’’ oven holds a limited number of loaves for a fixed

period of time, while a ‘‘continuous process’’ oven is con-

stantly moving loaves through the heated area. A ‘‘continu-

ous process’’ oven, of the same internal capacity, can bake

many more loaves of bread than a ‘‘batch oriented’’ oven

over the same span of time. To complete the analogy, the

SI may be thought of as a ‘‘continuous process’’ network

interface device with the queues acting as ‘‘conveyor belts’’

that carry frames. The net result is that a station can trans-

mit and receive more frames with less overhead. This is an

important concept and one that should be exploited by soft-

ware designers.

Where do the SI queues exist?

The SI queues exist in memory that is shared between the

host and the SI. The actual data of each queue does not

reside within the SI, although it does internally retain a

unique Queue Pointer for each queue.

What types of queues does the SI support?

There are four kinds of queues. Each queue is defined by

the type of descriptor used within it. Each queue type sup-

ports one and only one kind of descriptor.

Request Descriptor (REQ) queues contain Request De-

scriptors (REQs). This type of queue is used by the host

to queue frames for network transmission.

Confirmation Descriptor (CNF) queues contain Confirma-

tion Status Message Descriptors (CNFs). This type of

queue is used by the host to obtain confirmation about

previously queued (and sent) frames.

Input Data Unit Descriptor (IDUD) queues contain Input

Data Unit Descriptors (IDUDs). This type of queue is

used by the host to find out about frames that have been

received from the network.

Pool Space Descriptor (PSP) queues contain Pool Space

Descriptors (PSPs). This type of queue is used by the

host to declare empty buffers where the SI may store

incoming frames.

Each Channel has two queues associated with it. Transmit

Channels have a REQ queue and a CNF queue. Receive

Channels have an IDUD queue and a PSP queue.Figure 3-1
shows how descriptors flow between the host and the SI

using these four types of queues.

a. The SI consumes descriptors from

the REQ queue, transmits the

queued frames and reports back

the status of the transmission(s)

by producing CNF Descriptors on

the CNF queue.

b. The SI consumes PSP Descriptors

from the PSP queue (to determine

where buffers are available for

storing incoming frames), receives

frames from the network into

these buffers and reports the

status of the received frames by

producing IDUD Descriptors on

the IDUD queue.

TL/F/12304–6

FIGURE 3-1. Flow of Descriptors between Host and SI

If the SI can do ‘‘gather reads’’ of frame data this im-

plies that more than one descriptor may be required to

completely describe a packet. How is this done?

All SI descriptors can be bound together into ‘‘multi-descrip-

tor objects’’. To achieve this grouping all SI descriptors

have two bits defined: the ‘‘First’’ and ‘‘Last’’ bits. The first

descriptor of an object must have the ‘‘First’’ bit set and, not

4

surprisingly, the last descriptor of an object must have the

‘‘Last’’ bit set. Any in-between descriptors are termed ‘‘Mid-

dle’’ and must have both the ‘‘First’’ and ‘‘Last’’ bits cleared.

A descriptor with both the ‘‘First’’ and ‘‘Last’’ bits set is

termed an ‘‘Only’’ and describes a complete object. See

Figure 3-2 for a graphical representation of a few of the

possible descriptor groupings using the First (F) and Last (L)

bits.

TL/F/12304–7

FIGURE 3-2. Sample Descriptor Groupings

This document uses the term ‘‘object’’ to denote one or

more descriptors that logically belong together. Groups of

REQ Descriptors are termed ‘‘Request Objects’’. Groups of

IDUD Descriptors are termed ‘‘Indicate Objects’’. Groups of

CNF Descriptors are termed ‘‘Confirmation Objects’’. Multi-

descriptor PSP objects are not currently processed in

groups, but rather on an individual basis. For future compati-

bility it is recommended that all PSP Descriptors be config-

ured as PSP.Only (both First and Last bits set). The follow-

ing sections on SI data structures supply concrete examples

of how the First and Last bits are used.

3.2 Transmit Data Structures

3.2.1 An Overview of the Transmit Data Structures

The SI has a three level transmit data structure. It consists

of two levels of descriptors and buffers of frame data. The

first level consists of Request Descriptors (REQ) that reside

in a Request Descriptor queue. Each REQ Descriptor in-

cludes a frame count and an address pointer to the second

level of the transmit data structure. The second level con-

sists of an array of Output Data Unit Descriptors (ODUDs)

that, in turn, each define the address and length of frame

data buffers (called Output Data Units (ODUs) in the data-

sheet). The third level consists of buffers of frame data. See

Figure 3-3 for an example of some single frame transmit

data structures.

The three level transmit data structure employed by the SI

offers a flexible vehicle for building multi-frame Request Ob-

jects. It supports applications that need to dynamically

batch single frame transmit requests into multi-frame Re-

quest Objects as well as applications that need to queue a

group of frames (i.e., a TCP window) in a single atomic oper-

ation. Building multi-frame Request Objects is important for

performance reasons. See Figures 3-4 and 3-5 for exam-

ples of some multi-frame transmit data structures.

TL/F/12304–8

FIGURE 3-3. Some Example Single Frame Transmit Data Structures

5

TL/F/12304–9

FIGURE 3-4. Some Example Multi-Frame Transmit Data Structures

(Shows the Two Mechanisms for Building Multi-Frame Request Objects)

TL/F/12304–10

FIGURE 3-5. Some Example Multi-Frame Transmit Data Structures

(Combines the Two Mechanisms for Building Multi-Frame Request Objects)

6

A Request Object consists of one or more REQ Descriptors

grouped together using First and Last bits and all of the

ODUDs and ODUs referenced by the REQ Descriptors.

(During normal operation Request Objects should be limited

to a maximum size of 255 frames.) The Request Object is

the unit of consumption used by the SI when consuming

transmit requests. The general flow control rule is that the

SI processes one Request Object per Channel per service

opportunity, thus the host may implement fine grained link

layer flow control (at the network service opportunity level)

by modulating the size of the Request Objects that it pro-

duces. If both of the two Transmit Channels each have at

least one Request Object queued, then two Request Ob-

jects will be consumed upon the next service opportunity.

(FDDI service opportunities are briefly described in the glos-

sary at the end of this document.)

The SI automatically performs a series of consistency

checks when consuming a Request Object. For example, if

the SI consumes a REQ.First followed immediately by an-

other REQ.First it will report a consistency failure and at-

tempt to discard REQ Descriptors until a REQ Descriptor is

found with the Last bit set.

Many Ethernet system interfaces, including National Semi-

conductor’s SONIC Device, chain together descriptors into

a linked list. The SI uses an array of ODUD Descriptors

instead of a linked list. This was done to minimize the num-

ber of memory fetches needed to consume a transmit re-

quest (no ‘‘next descriptor’’ pointer to fetch). Plus, the use

of First/Last bits allows the SI to perform consistency

checks when processing a stream of ODUD Descriptors.

3.2.2 Transmit Frame Layout

When the frame data buffers (ODUs) are concatenated

they present an entire FDDI frame to the SI. What frame

format does the SI expect to find inside these ODUs?

The FDDI MAC Standard (X3.139-1987) defines the format

of an FDDI frame as shown in Figure 3-6 .

TL/F/12304–11

SFS Start of Frame Sequence INFO Information

PA Preamble FCS Frame Check Sequence

SD Starting Delimiter ED Ending Delimiter

FC Frame Control FS Frame Status

DA Destination Address EFS End of Frame Sequence

SA Source Address

FIGURE 3-6. FDDI Frame Format

The SI expects to be presented with FDDI frames structured

with place holders for the Frame Control, Destination Ad-

dress and Source Address fields. The INFO field may be

zero or more bytes and the host may optionally supply its

own FCS field. The start of the frame data (or any of the

ODUs for that matter) need not be aligned in any special

way (i.e., frame data can start on any byte boundary). None

of the blocks of frame data may cross a 4 kb page bounda-

ry, though any single, contiguous block of frame data can be

represented by multiple ODUDs. The frame must always in-

clude a place for the Frame Control, whether or not Frame

Control Transparency is used. (Frame Control Transparency

is useful for SMT usage, which routinely uses different FDDI

Frame Control values. This mode is enabled via the Trans-

mit Channel’s Request Configuration Register (R0CR0 or

R1CR0).) The frame must always include a place for the

Source Address, whether or not Source Address Transpar-

ency is used. Source Address Transparency is useful in

transparent bridging applications. This mode is enabled via

the Transmit Channel’s Request Configuration Register

(R0CR0 or R1CR0) and is normally used with ‘‘Void Strip-

ping’’ (also enabled via the Request Configuration Register).

A typical frame (long addresses and FCS automatically gen-

erated by the BMAC device) will have the format shown in

Figure 3-7 .

TL/F/12304–12

FIGURE 3-7. Format of FDDI Frame within

Output Data Units

3.2.3 The Request Descriptor

Request Descriptors (REQ) exist on REQ queues and are

produced by the host. They function as the root of the three-

level transmit data structure. In addition to describing what

FDDI frames to transmit, the REQ Descriptor describes how

the FDDI frames should be transmitted and what type of

transmit status information the SI should produce. REQ De-

scriptors can be grouped together into a multi-descriptor

Request Object by using the First/Last bits found in all of

the SI descriptors. See Figure 3-8 for an illustration of the

REQ Descriptor.

31 30 29 28 27 24 23 16 15 12 11 8 7 0

RES UID SIZE CNFCLS RQCLS FC Word 0

F-L RES LOC Word 1

FIGURE 3-8. Request Descriptor (REQ)

7

The SI examines the UID, CNFCLS, RQCLS and FC fields

when consuming the first REQ Descriptor in a Request Ob-

ject (i.e., the First bit is set). These values are then used for

all REQ Descriptors in the rest of the Request Object. The

LOC (address of ODUD array) and SIZE (frame count) fields

of all REQ Descriptors are always used by the SI. A brief

explanation of each field follows. The databook should be

examined for a full explanation of these fields.

The UID, User Identification, field (6 bits) may be pro-

grammed by the host with any value. This value reap-

pears in the transmit status information (CNF Descrip-

tors) that correspond to the transmit request. This field

can be used by the host to match up transmit requests

with transmit status.

The SIZE, frame count, field (8 bits) declares the number

of frames described by the current REQ Descriptor; not

the number of ODUDs. The SI counts ODUD Descriptors

that have the Last bit set and compares this value with

SIZE.

The CNFCLS, Confirmation Class, field (4 bits) declares

the class of transmit status information that the SI should

produce. This class describes three different kinds of

status generating behavior, each represented by a bit,

that can be combined in the following ways (the device

datasheets includes a fourth bit, repeat frame (R) that is

not related to transmit status generation). Many applica-

tions use a confirmation class of Tend to generate trans-

mit status information solely for the purpose of transmit

data memory reclamation. See Table 3-1.

TABLE 3-1. CNFCLS Components

CNFCLS End Intermediate Full/Transmit Description

NONE False False Don’t Care NONE. CNF Descriptors areproduced only when a transmit exception

occurs.

TEND True False False TEND. A single CNF Descriptor isproduced for eachconsumed
Request Object (NOT one for each REQ Descriptor). CNF Descriptors

areproduced at frame transmission time.

TINT True True False TINT. The same as TEND, plus CNF Descriptors areproduced at the

end of each transmission (token) opportunity (provided that the

Request Object spans more than one transmission opportunity).

FEND True False True FEND. A single CNF Descriptor isproduced for eachconsumed
Request Object (NOT one for each REQ Descriptor). CNF Descriptors

areproduced at frame stripping time and populated with additional

status information about the returning frames.

FINT True True True FINT. The same as FEND, plus CNF Descriptors areproduced at the

end of each transmission (token) opportunity (provided that the

Request Object spans more than one transmission opportunity).

8

The RQCLS, Request Class, field (4 bits) denotes how

the BMAC device should behave when transmitting the

frames of the Request Object. It describes the type of

token (if any) that must be captured before sending the

frames, how the frames should be sent (e.g., synchro-

nous, asynchronous), the type of token (nonrestricted,

restricted, none) that will be issued after sending the

frames and whether or not the BMAC device should use

the normal (asynchronous) rules for determining token

usability in a restricted dialog. (Different criterion are

used for asynchronous and synchronous frames when

determining if a frame may be transmitted at a given to-

ken opportunity.) Restricted dialogs can be thought of as

a supervisor (kernel) mode for access to an FDDI net-

work. This capability is not currently used by FDDI Sta-

tion Management (SMT). Logical Link Control (LLC) traf-

fic would typically use a value of 1000 binary (Asyn) to

denote that the BMAC device should capture a non-re-

stricted token, send asynchronous frames in a manner

that respects the integrity of the FDDI timed token proto-

col and issue a non-restricted token after frame transmis-

sion. The network driver should enforce the use of appro-

priate request classes (e.g., don’t allow IP packets to go

out with a RQCLS of ‘‘immediate’’).

The FC, Frame Control, field (8 bits) can be used to op-

tionally override, at network transmission time, the FDDI

Frame Control value of the FDDI frames of the Request

Object. This will be done if Frame Control Transparency

has not been enabled in the Transmit Channel’s Request

Configuration Register (R0CR or R1CR).

The F-L, First-Last, fields (2 bits) are used to define

groupings of one or more descriptors.

The LOC, Location, field (28 bits) holds the address of an

array of ODUD Descriptors.

What is the difference between ‘‘Full’’ and ‘‘Transmit’’

Confirmation?

Both ‘‘Full’’ and ‘‘Transmit’’ confirmation result in the gener-

ation of CNF Descriptors on the Transmit Channel’s CNF

queue. They differ in the time at which CNF Descriptors are

produced and in the type of valid information contained in

the CNF Descriptors.

Transmit confirmation is generated at frame transmit time

and, therefore, includes only information that can be gath-

ered when transmitting frames. The UID is always valid as is

the Transmitted Frame Count (TFC) and the Request Status

(RS). When using transmit confirmation the Frame Attri-

butes (FRA), Frame Status (FRS), Confirmed Frame Count

(CFC), and some bits of the Confirmation Status (CS) are

invalid.

Full confirmation is generated at frame stripping time. The

information that is valid under full confirmation is a super set

of transmit confirmation (All of the fields of the CNF De-

scriptor are valid). While full confirmation does provide more

information, the real power of this option is that it provides

the ability to terminate wasteful transmissions.

When sending a large amount of data to another station

(i.e., a TCP window) the receiving station may be receiving

more frames than it can handle. In this case the sending

station is wasting network bandwidth and system resources

(e.g., bus bandwidth) by transmitting frames that will be

‘‘dropped’’. When using full confirmation the host may de-

fine certain conditions that will halt transmission and flush

the remainder of the current Request Object. This is accom-

plished by configuring the Transmit Channel’s Expected

Frame Status Register (R0FSR or R1EFSR). For example,

the host may specify that transmission will halt if the receiv-

ing station doesn’t copy a frame or if a frame becomes cor-

rupted on the network.

What is the difference between End and Intermediate

Confirmation?

The End confirmation classes, Transmit End (Tend) and Full

End (Fend), cause the SI to produce a single CNF Descrip-

tor for each Request Object.

The Intermediate confirmation classes, Transmit Intermedi-

ate (Tint) and Full Intermediate (FINT) cause the SI to pro-

duce a CNF Descriptor for each service opportunity in which

frames, of a given Request Object, have been sent. The

confirmation count fields of the CNF Descriptors contain a

cumulative, running count of what has been sent. For exam-

ple, if a Request Object includes 20 frames which are actu-

ally transmitted in three service opportunities, then the SI

will produce three CNF Descriptors perhaps with Transmit-

ted Frame Count (TFC) values of 7, 14 and 20. The actual

value depends upon the duration of each service opportuni-

ty.

3.2.4 The Output Data Unit Descriptor

Output Data Unit Descriptors (ODUDs) are the middle level

of the three-level transmit data structure. They do not exist

in a queue, but rather in arrays placed at arbitrary locations

within the 28-bit addressable memory range of the SI. Each

ODUD defines the address and length of part of a frame

(perhaps the entire frame) queued for transmission. Those

ODUD Descriptors that refer to a given frame are grouped

together via First and Last bits. See Figure 3-9 for a picture

of the ODUD. A brief explanation of each field follows. The

databook should be examined for a full explanation of these

fields.

31 30 29 28 27 13 12 0

RES CNT Word 0

F-L RES LOC Word 1

FIGURE 3-9. Output Data Unit Descriptor (ODUD)

9

The CNT, count, field (13 bits) tells the SI the length of a

chunk of frame data referred to by the ODUD.

The F-L, First-Last, fields (2 bits) are used to define

groupings of one or more descriptors.

The LOC, location, field (28 bits) holds the address of a

chunk of frame data referred to by the ODUD (called an

Output Data Unit (ODU)).

ODUD arrays may not cross 4 kb page boundaries. If the SI

is ‘‘asked‘’’ to fetch ODUDs from an array that spans two 4k

pages, the SI will ‘‘wrap’’ back to the beginning of the first

page. This behavior can be exploited to implement a very

simple memory management scheme for ODUDs. For ex-

ample, the host software could maintain a 4 kb page of

memory (aligned on a 4 kb page boundary) for ODUD ar-

rays. The same type of logic used to acquire space on a

REQ or PSP queue could be applied to managing such a

block of ODUD memory.

3.2.5 The Confirmation Status Message Descriptor

(CNF)

The SI produces transmit status information in the form of

CNF Descriptors on a CNF Descriptor queue. The host can

determine the success or failure of a transmit request by

consuming CNF Descriptors from the queue. Some of the

fields are not valid unless Full Confirmation is specified in

the first REQ Descriptor of the Request Object See Figure
3-10 for a picture of the CNF Descriptor. A brief explanation

of each field follows. The databook should be examined for

a full explanation of these fields.

The RS, Request Status, field (4 bits) enumerates the

status of the transmit request. This field is always valid.

The FRA, Frame Attributes, field (4 bits) describes the

terminating condition and address matching flags (Desti-

nation or Source Address equal to MAC address). These

values are collected as the frame is stripped off of the

ring. This field is only valid when Full Confirmation is

used.

The FRS, Frame Status, field (8 bits) contains the FDDI

E, A, and C Indicators (Error Detected, Address Recog-

nized and Frame Copied) and two flags that indicate if

the FCS on the frame agrees with frame data and if the

frame is well formed. These values are collected as the

frame is stripped off of the ring. This field is only valid

when Full Confirmation is used.

The TFC, Transmitted Frame Count, field (8 bits) records

the number of frames transmitted. This field is always

valid. When using Tint or Fint confirmation the SI will

produce a CNF Descriptor at the end of each service

opportunity and this field will contain a running total of

the number transmitted frames. This field is not accurate

for Request Objects containing more than 255 frames.

The CFC, Confirmed Frame Count, field (8 bits) records

the number of frames confirmed. This count is based

upon frames stripped off of the ring. This field is only

valid when Full Confirmation is used. When using Tint or

Fint confirmation the SI will produce a CNF Descriptor at

the end of each service opportunity and this field will

contain a running total of the number of confirmed

frames. This field is not accurate for Request Objects

containing more than 255 frames.

The F-L, First-Last, fields (2 bits) are used to define

groupings of one or more descriptors.

The UID, User Identification, field (6 bits) matches the

UID field programmed by the host in the first REQ De-

scriptor of the Request Object. The basic idea is that all

CNF Descriptors produced by the SI include a tag that

identifies which Request Object the status information is

all about. The host can use the UID field to relate trans-

mit status information to a given Request Object. Since

this field is 6 bits wide, 26 (64) Request Objects can be

uniquely paired with CNF Descriptors. Request objects

may include multiple REQ Descriptors.

31 30 29 28 27 24 23 16 15 8 7 0

RS FRA FRS TFC CFC Word 0

F-L UID FC CS RES Word 1

FIGURE 3-10. Confirmation Status Message Descriptor (CNF)

10

The FC, Frame Control, field (8 bits) contains the FDDI

Frame Control value of the last confirmed frame. This

field is valid only when using Full Confirmation (Fend,

Fint).

The CS, Confirmation Status, field (8 bits) contains sev-

eral miscellaneous flags related to the confirmation pro-

cess. Some of these bits relate only to Full Confirmation.

3.3 Receive Data Structures

3.3.1 Overview of Receive Data Structures

The SI uses a two level data structure to represent frames

that have been received from the network. The receive data

structure is extremely straightforward. The top level consists

of Input Data Unit Descriptors (IDUDs) organized as a

queue and the bottom level consists of frame data that has

been placed in memory by the SI. See Figure 3-11 for a

depiction of the receive data structure generated by the SI.

The format of the IDUD is a super set of the ODUD. This

was done to allow FDDI-to-FDDI bridges to reuse IDUDs as

ODUDs.

3.3.2 Received Frame Layout

Frames that are received from the network contain the FDDI

Frame Control (FC), Destination Address (DA), Source Ad-

dress (SA), the FDDI Info field (i.e., packet data) and the

FDDI Frame Check Sequence (FCS, 4 bytes long). See Fig-
ure 3-12 for an illustration of the received frame format.

TL/F/12304–13

FIGURE 3-11. Receive Data Structure

TL/F/12304–14

FIGURE 3-12. Received Frame Layout

11

3.3.3 The Input Data Unit Descriptor (IDUD)

The SI produces IDUD Descriptors and the host consumes

them. Each IDUD Descriptor refers to part of a frame (possi-

bly an entire frame). IDUD Descriptors that describe a single

frame are grouped together via First and Last bits. The last

IDUD of an Indicate Object (one or more IDUD Descriptors

grouped together to completely describe a received frame)

contains status for the entire frame. See Figure 3-13 for a

picture of the Input Data Unit Descriptor. A brief explanation

of the fields in the IDUD Descriptor follows. The databook

should be examined for a full explanation of these fields.

The IS, Indicate Status, field (4 bits) reports the status of

the received frame. This field should be queried to deter-

mine if the received frame is suitable for processing.

The FRA, Frame Attributes, field (4 bits) describes the

terminating condition and address matching flags (Desti-

nation or Source Address equal to MAC address). This

field should be queried to determine if the received frame

is suitable for processing.

The FRS, Frame Status, field (8 bits) contains the FDDI

E, A, and C Indicators (Error Detected, Address Recog-

nized and Frame Copied) and two flags that indicate if

the FCS on the frame agrees with frame data and if the

frame is well formed. This field should be queried to de-

termine if the received frame is suitable for processing.

The VC (Valid Copy) field (1 bit) records how the SI sig-

naled the BMAC device with regard to copying the frame

off of the network. If VC is false then the BMAC device

will increment its Frames Not Copied counter.

The CNT (Count) field (13 bits) holds the length of the

part of the received frame data (Input Data Unit (IDU)) to

which the IDUD refers.

The F-L, First-Last, fields (2 bits) are used to define

groupings of one or more descriptors.

The LOC (Location) field (28 bits) holds the address of

the part of the received frame data (IDU) to which the

IDUD refers.

3.3.4 The Pool Space Descriptor (PSP)

For the SI to produce received frames it must be told where,

in memory, the incoming frame data can be stored. To de-

clare receive buffers the host must produce Pool Space De-

scriptors (PSP) for the SI to consume. See Figure 3-14 for a

picture of the PSP Descriptor.

The current implementation of the SI is heavily page orient-

ed. It does not currently use the PSP’s CNT field at all (it

does not even fetch the first word of the PSP Descriptor). It

uses the 28-bit address of the LOC field to define the start

of a receive buffer and the next 4 kb page boundary as the

end of a receive buffer. Also, the buffer memory defined by

the LOC field must be aligned on a ‘‘burst boundary’’; either

16 or 32 bytes. When dealing with frame data the SI access-

es memory in ‘‘bursts’’ of bus usage. It acquires the bus and

then reads or writes in 4 or 8 word (16 or 32 byte) chunks.

The SI can be configured to use only 4 word bursts or both

4 and 8 word bursts.

31 30 29 28 27 24 23 16 15 14 13 12 0

IS FRA FRS VC RES CNT Word 0

F-L RES LOC Word 1

FIGURE 3-13. Input Data Unit Descriptor (IDUD)

31 30 29 28 27 13 12 0

RES CNT Word 0

F-L RES LOC Word 1

FIGURE 3-14. Pool Space Descriptor (PSP)

12

How are received frames stored in memory? One frame

per page? Multiple frames packed in a page?

The SI has two modes of operation that affect the way that

incoming frames are stored: ‘‘normal’’ mode and ‘‘Frame

per Page’’ mode (FPP). When Frame per Page mode is en-

abled the SI will only put one frame in a given page; though

a single frame may split up into fragments that are stored in

multiple pages (i.e., frames greater than the page size).

When Frame per Page mode is not enabled the SI will pack

as many frames as possible into each page. Currently

Frame per Page mode affects all Receive Channels. See

Figure 3-15 for a picture showing the difference between

the two modes.

The SI writes frame data out in bursts of 4 or 8 words (16 or

32 bytes). When transferring a new frame to memory the SI

always starts writing at a burst boundary. The first word is

filled with four copies of the FDDI Frame Control and the

Destination Address starts with the second word. The LOC

field of the first IDUD points to the last byte in the first word.

This has the effect of starting the FDDI Info field with a

32-bit word alignment. This alignment is important (for per-

formance reasons) for applications that want to avoid copy-

ing frame data as it allows the host to use native accesses

(i.e., 16 and 32 bit integers) to parse the packet contents.

When a frame is split across multiple pages the SI begins

the next IDU on a burst boundary. Therefore, the bottom

two bits of the IDUD.LOC field will either contain 3 or 0, but

never 1 or 2 (this makes an IDUD with 0x00000001 or

0x00000002 in the LOC field a good candidate for marking

an IDUD queue slot as a ‘‘null descriptor’’). A ‘‘null descrip-

tor’’ is a descriptor value that signifies that a queue slot is

empty. This concept is presented more fully in the following

discussion about SI queues. See Figure 3-16 for an illustra-

tion of IDU alignments.

TL/F/12304–15

FIGURE 3-15. SI Memory Storage Modes

TL/F/12304–16

FIGURE 3-16. IDU Alignments

13

3.4 The SI Queues in Depth

This area of the document focuses in on the operational

details of the SI queues. Although there are four types of

descriptor queues, when examining the operation of the

queues we need only consider two basic types:

1. queues for which the host produces descriptors and from

which the SI consumes descriptors (REQ and PSP

queues) and

2. queues from which the host consumes descriptors and

for which the SI produces descriptors (CNF and IDUD

queues).

In the discussion that follows the REQ and PSP queues are

treated as equivalent and the IDUD and CNF queues are

treated as equivalent. The steps that the host performs to

produce or consume descriptors is the same.

How are the SI queues organized?

An SI queue is a 1 kb or 4 kb block of memory divided up

into 8 byte (descriptor sized) queue slots. The size of the

queues is defined at SI initialization time and is specified via

the Mode Register (SIMR0) Control Bus Register. A 1 kb

queue has 128 queue slots and a 4 kb queue has 512 queue

slots. This block of memory is reused in a circular fashion

(i.e., like a ring buffer); such that as descriptors are being

processed, the lowest addressed descriptor is considered

to logically follow after the highest addressed descriptor.

This behavior is termed a ‘‘queue wrap’’ in this document.

The point at which the queue wrap occurs is fixed at either a

1 kb or 4 kb boundary. All of the active SI queues are the

same size (either 1 kb or 4 kb). Also, since boundaries are

used to define the ‘‘wrap point’’ all SI queues must be

aligned on either 1 kb or 4 kb boundaries. See Figure 3-17
for illustrations of a queue before and after a queue wrap.

The SI uses two internal registers to represent the current

progress of a queue: a Queue Pointer that indicates where

the SI ‘‘is’’ in the queue and a Queue Limit that indicates

how far the SI can advance. The consumption and produc-

tion of descriptors is totally controlled via the Queue Pointer

and Queue Limit values. The SI does not use ‘‘ownership’’

bits. See Figure 3-18 for an illustration of how Queue Point-

ers and Queue Limits are logically used in queues.

The SI maintains a 28-bit Queue Pointer (internal Pointer

RAM Register) for each queue. This pointer indicates the

next queue slot that the SI will access. Also, because all

queues are aligned on 1 or 4 kb boundaries, the upper most

bits in the pointer (16 bits for 1 kb queues or 14 bits for 4 kb

queues) define the base location of the queue. The host

must load the Queue Pointer during initialization to tell the SI

where the queue is located. Thereafter it is totally main-

tained by the SI.

The SI uses a 9-bit Queue Limit (internal Limit RAM Regis-

ter) for each queue. The Queue Limit defines which queue

slots are available for either reading or writing by limiting

how far the SI can advance in the queue. A Queue Limit

value can be thought of as an offset from the base address

of the queue in units of 8 byte descriptors. Queue limits are

totally maintained by the host. The SI only looks at Queue

Limit values to determine when to stop queue processing.

Figure 3-19 shows how Pointer RAM Register and Limit

RAM Register data types are related.

How does the SI ‘‘know’’ when to examine the REQ and

PSP queues for new descriptors to consume?

Rather than implementing a special ‘‘queue ready’’ com-

mand or making the system interface repeatedly check for

the presence of a descriptor (i.e., an ‘‘ownership’’ bit), the

designers of the SI incorporated special logic in the portion

of the chip that deals with updates to Limit RAM Registers.

The act of updating a REQ or PSP Queue Limit is detected

and interpreted as a signal to begin consuming descriptors

from the queue. Thus the host may simply queue descrip-

tors without having to be concerned about whether the

Channel is active or inactive. If the host is queuing a group

of descriptors it may, for the sake of efficiency, update the

queue’s Queue Limit once for all of the descriptors. See

Figure 3-20 for a depiction of the actions necessary to

queue a single REQ or PSP Descriptor.

TL/F/12304–17

FIGURE 3-17. Queue Wrap at 1 kb or 4 kb Boundary

(Snapshots of a Queue Over Time)

14

TL/F/12304–18

FIGURE 3-18. Queue Pointers and Queue Limits

TL/F/12304–19

FIGURE 3-19. Comparison of Pointer RAM and Limit RAM Registers

(The Register Values Shown Are Considered to be Equivalent)

TL/F/12304–20

FIGURE 3-20. REQ or PSP Descriptor Queuing Example

15

How does the SI ‘‘know’’ when to stop consuming REQ

and PSP Descriptors?

As each descriptor is fetched the SI compares the Queue

Pointer with the Queue Limit. When these two registers are

equivalent the descriptor currently being fetched is con-

sumed and queue processing is stopped and remains inac-

tive until the Queue Limit is updated. If the Queue Limit is

updated before the above mentioned equivalence is detect-

ed the SI will automatically continue consuming descriptors

from the queue. This mechanism is very robust and allows

the host to dynamically produce transmit requests without

concern for race conditions between the host and SI.

What causes the SI to produce descriptors on CNF and

IDUD queues?

The CNF and IDUD queues are status queues. The SI pro-

duces CNF or IDUD Descriptors to report status information

back to the host. CNF Descriptors are produced when a

transmission request has completed or, optionally, a net-

work transmission opportunity has ended before the entire

Request Object has completed. (If a confirmation class of

‘‘none’’ is specified on a given Request Object then CNF

Descriptors will only be produced when an error occurs

while processing that Request Object.) IDUD Descriptors

are produced every time a frame is received from the net-

work. Multiple IDUD Descriptors are produced to describe a

frame that is split across 4 kb pages.

How does the SI ‘‘know’’ when to stop producing CNF

and IDUD Descriptors so that previously produced de-

scriptors are not overwritten before the host has con-

sumed them?

The SI compares the queue’s Queue Pointer and Queue

Limit after producing a CNF or IDUD Descriptor (the SI post-

increments the Queue Pointer after producing a descriptor).

When these two registers are found to be equivalent then

the SI ‘‘marks’’ the queue as full, by asserting a bit in one of

the directly accessible Control Bus Registers (No Space At-

tention Register (NSAR)), and stops Channel operation. The

user may configure the SI to generate an interrupt when this

bit is asserted. The Channel will remain stopped until the

host has cleared the bit. This mechanism keeps the SI from

overwriting previously produced descriptors before the host

has consumed them. The host should update the queue’s

Queue Limit (to denote which queue slots may be overwrit-

ten) before clearing the bit.

Due to internal ‘‘pipelining’’ of descriptors within the SI, it is

possible for two additional descriptors to be produced after

pointer/limit equality has been detected. This behavior must

be considered by the host when calculating Queue Limit

values. The Queue Limit should be set such that it refers to

the ‘‘next to the last’’ writable queue slot. Also, when re-

sponding to a full queue condition the host must ensure that

the Queue Limit is set to be logically ‘‘ahead’’ of the Queue

Pointer before clearing the bit that signals the queue full

condition. See Figure 3-21 for an illustration of the queue

full condition.

TL/F/12304–21

FIGURE 3-21. IDUD or CNF Queue Full Condition

16

How does the host ‘‘know’’ when to start consuming

IDUD or CNF Descriptors?

The host may either poll for new descriptors or respond to

an interrupt signifying the arrival of a single or group of de-

scriptors.

The SI can be configured to generate interrupts when pro-

ducing a CNF Descriptor and when frames have been re-

ceived (it can generate a single interrupt for a group of

frames or an interrupt after each frame is received). The

host may enable and disable specific interrupt causing at-

tentions at any time.

The host may poll for new descriptors in two different ways.

One way is for the host to repeatedly read the queue memo-

ry looking for a new descriptor to be written into memory. An

alternate method is for the host to configure the SI to gener-

ate an attention, yet disable that specific attention from

causing an actual interrupt. The host may then repeatedly

read one of the directly accessible Control Bus Registers,

waiting for the attention bit to become asserted.

How does the host ‘‘know’’ when to stop consuming

IDUD or CNF Descriptors? How does the host recog-

nize an ‘‘End of Queue’’ condition?

There are two different methods of dealing with this issue.

The most direct way for the host to determine which de-

scriptors it should consume is to read the value of the

queue’s Queue Pointer. The Queue Pointer is maintained by

the SI and defines the 28-bit address at which the next de-

scriptor will be written; thus the host may consume IDUD or

CNF Descriptors until reaching this point in memory. Since

the Queue Pointer is maintained by the SI as an internal

Pointer RAM Register the host must initiate an operation

that causes the SI to write out the Queue Pointer into a pre-

defined memory location (termed the mailbox). However,

this operation competes with other SI functions for access

to the SI’s ABus interface.

Another method is for the host to populate each empty

queue slot with a specially marked descriptor referred to as

a ‘‘null descriptor’’. When processing the queue the host

can recognize the ‘‘End of Queue’’ condition by detecting

the presence of a ‘‘null descriptor’’. In most environments

the ‘‘null descriptor’’ method will be fastest.

What is a good bit pattern for denoting a ‘‘null descrip-

tor’’?

The value used to denote a null descriptor must be one that

is impossible for the SI to produce and must be placed in

the second word of the descriptor. Null descriptors are only

needed for IDUD and CNF queues, since these are the

kinds of queues that the host uses to consume descriptors.

The SI writes descriptors out to memory using two distinct

bus request/grant cycles, so the host should look for ‘‘null-

ness’’ in the second word (which is written out last). There is

no single value that, in general, can be used for both IDUD

and CNF queues. Some ideas follow.

The SI will never produce an IDUD Descriptor with a value

of xÊ1Ê or xÊ2Ê in the least significant two bits of the LOC

field. It will only produce IDUDs with a value of xÊ0Ê or xÊ3Ê
for these two bits. It is recommended to use an IDUD with a

LOC field value of xÊ000001Ê or xÊ000002Ê to denote a null

descriptor on an IDUD queue. If the system environment

precludes the use of page 0 (e.g., that’s where the system’s

interrupt vectors are located), then the act of testing for

‘‘nullness’’ may be made more efficient by using an IDUD

with binary zeroes in the second word as the null descriptor;

which may permit a ‘‘Branch Not Zero’’ instruction to be

used.

The choice of a null descriptor for CNF queues is, unfortu-

nately, dependent upon the way that the SI is programmed.

Here are two suggestions.

When consistently using a confirmation class of None,

Tend or Fend the F-L field may be used. In particular, a

descriptor with both First and Last bits cleared could be

used to denote a null descriptor on a CNF queue.

If using a confirmation class of Tint or Fint the UID field

could be used. This requires that the host never create a

Request Object using a particular UID value (i.e., zero)

that is being used to denote a null descriptor on a CNF

queue.

The host produces REQ Descriptors when queuing a

frame for transmission, but how does the host ‘‘know’’

when to produce a PSP Descriptor?

The host produces PSP Descriptors to declare where the SI

can store incoming frames. So, the host should either at-

tempt to maintain a certain number of receive buffers (by

detecting when buffers are consumed by the SI) or respond

to the attention bit (in one of the directly accessible Control

Bus Registers) that signals the ‘‘Low Data Space’’ condi-

tion. This issue is discussed in greater detail in Section 7.1,

Memory Issues.

How can the host tell when it should stop producing

REQ or PSP Descriptors (to avoid overwriting descrip-

tors not yet consumed by the SI)? What is the ‘‘Queue

Full’’ condition for REQ and PSP queues?

The SI queues are circular, so it makes sense that the host

should consider a REQ or PSP queue full when producing

one more descriptor would cause the SI to treat the queue

as empty. The SI recognizes the queue as empty when it

detects pointer/limit equality while consuming a descriptor,

so the host should recognize the ‘‘Queue Full’’ condition

when the queue’s Queue Pointer is logically one descriptor

‘‘ahead’’ of the queue’s Queue Limit. The host should test

for the ‘‘Queue Full’’ condition before queuing an additional

REQ Descriptor.

If, for some reason, the host also wants to be able to deter-

mine if a REQ or PSP queue is empty by comparing the

Queue Pointer and Queue Limit values the above test for a

full queue will make a test for an empty queue impossible. In

this case the host should recognize the ‘‘Queue Full’’ condi-

tion when the queue’s Queue Pointer is logically two de-

scriptors ‘‘ahead’’ of the queue’s Queue Limit and recognize

an empty queue when the Queue Pointer is logically one

descriptor ‘‘ahead’’ of the Queue Limit. This is a non-typical

requirement, since there are more intuitive ways for the host

to determine when a REQ Queue is empty.

17

How does the host ‘‘know’’ which queue slot to access

when either producing or consuming a descriptor?

The SI does not maintain pointers to tell the host where to

read or write descriptors. The host must maintain these

pointers by itself, but it is a simple task. When the SI is

initialized the Queue Pointers are established with known

values (typically the base address of the queue). The SI

always advances sequentially in all queues; therefore the

host should start with the initialized value and proceed se-

quentially from then on (taking care to handle queue wraps).

Some example C macros for calculating the address of the

next queue slot can be found in Figure 3-22.

The host needs to ‘‘know’’ the value of Queue Pointers

to check for the ‘‘Queue Full’’ condition on REQ and

PSP queues (to avoid overwriting descriptors before

the SI consumes them). Does the host need to perform

Pointer RAM Operations each time it produces a de-

scriptor?

While directly reading Queue Pointers from the SI’s internal

Pointer RAM Registers is logically simple, it may be unac-

ceptable (for performance reasons) for the host to frequent-

ly perform Pointer RAM Operations in a synchronous man-

ner. (An alternate and efficient method is to asynchronously

schedue Pointer RAM Operations and update the Software

Queue Pointer when the read operation has completed.) In

stead the host may infer the value of an SI’s REQ or PSP

Queue Pointer when consuming the complementary status

queue. This requires that the host maintain a ‘‘Software

Queue Pointer’’ (SQP) that is a lower bound approximation

of the true value of the ‘‘Hardware Queue Pointer’’ (HQP,

located in a register internal to the SI). Note that this exer-

cise is not necessary for Queue Limits, since these are total-

ly maintained by the host. The Software Queue Pointer indi-

cates how far the Queue Limit can be advanced before ov-

erwriting descriptors that the SI has not yet consumed.

To maintain a REQ Software Queue Pointer (SQP) by infer-

ence the host must:

use a confirmation class other than none (Tend works

quite well for this purpose)

initialize the SQP and SI’s Queue Pointer with the same

value (at power-up time)

increment the REQ.UID field value for each REQ.Only or

REQ.First Descriptor

consume CNF Descriptors and use the CNF.UID field to

see which REQ Descriptors have been consumed by the

SI, incrementing the REQ queue’s SQP when scanning

through the REQ queue for matching UID values. See

Figure 3-23 for the pseudo-code of this step.

To maintain a PSP Software Queue Pointer (SQP) the host

must:

initialize the SQP and HQP with the same value (at pow-

er-up time)

when consuming IDUD Descriptors increment the SQP

when a page change is seen in the IDUs (input data buff-

ers). See Figure 3-24 for the pseudo-code of this step.

#define BSIQ NEXT 1K(p) ((((p) 0 8) & 0x3ff) l ((p) & 0x0ffffc00))

#define BSIQ NEXT 4K(p) ((((p) 0 8) & 0xfff) l ((p) & 0x0ffff000))

/* increment a Software Queue Pointer q ptr is 32 bit variable */

q ptr 4 BSIQ NEXT 4K(q ptr);

FIGURE 3-22. C Preprocessor Macros for Incrementing Queue Pointers

Get CNF Descriptor

WHILE CNF QUEUE NOT EMPTY

Get REQ Descriptor (at SQP location)

WHILE REQ.UID 4 CNF.UID
kreclaim transmit request memoryl

increment REQ queue’s SQP

Get next REQ Descriptor (at SQP location)

END WHILE

Get next CNF Descriptor

END WHILE

FIGURE 3-23. Maintaining a SQP for a REQ Queue

Get IDUD Descriptor
knormal IDUD processingl

IF (IDUD.LOC & PAGE MASK) not 4 Prev Page
krelease page or produce new PSPl

increment PSP queue’s SQP

Prev Page 4 IDUD.LOC & PAGE MASK

END IF

FIGURE 3-24. Maintaining a SQP for a PSP Queue

18

4.0 SENDING A FRAME

The steps for producing a frame for transmission are:

1. Make sure REQ queue isn’t full

2. Build the ODU(s)

3. Build the ODU Descriptor(s)

4. Produce a REQ Descriptor

5. Update the REQ queue’s Queue Limit

4.1 Make Sure REQ Queue Isn’t Full

The host may produce transmit requests faster than the net-

work can service them (i.e., a heavily loaded network), so

the host must make sure that is doesn’t overlay previously

produced REQ Descriptors before the SI has consumed

them (the SI queues are circular). This is accomplished by

doing a comparison between the Queue Limit and Software

Queue Pointer. See the discussion on SI queues in Section

3.4 for information on how to detect the queue full condition.

4.2 Build the ODU(s)

If the SI is directly attached to system memory this step may

not be necessary, since the SI can directly access the same

memory that the host uses for system dependent data

structures (i.e., mbufs/mclusters). (It may still be necessary

for the device driver to provide FDDI and/or LLC/SNAP en-

capsulation, which may be placed in an ODU that is sepa-

rate from the rest of the frame data.) If the SI is not directly

attached to system memory, then the host must allocate

one or more buffers (none of which may span across a four

kb page boundary) and populate the ODU(s) with frame

data.

4.3 Build the ODU Descriptor(s)

Each frame data buffer (ODU) must be ‘‘described’’ to the

SI with an ODU Descriptor (ODUD). The ODUDs must be

placed contiguously (back to back) in memory within a 4 kb

page. When dealing with system dependent data structures

some care must be taken to avoid asking the SI to read

across a 4 kb page boundary when fetching frame data. For

example, if a particular host buffer does span across a 4 kb

page boundary then two ODUDs must be used to describe

that buffer. See Figure 4-1 for picture of how to configure

ODUDs to handle this situation.

TL/F/12304–22

FIGURE 4-1. Two ODUDs Needed for a Buffer that

Crosses a 4k Page Boundary

4.4 Produce A REQ Descriptor

At this point there exists one or more buffers of frame data

and an array of ODUD Descriptors that define the address

and length of each buffer (termed ODUs in the datasheet).

A REQ Descriptor must be created on a REQ queue that

defines the address and frame count of the ODUD array.

This completes the three level data structure. If the REQ

Descriptor is marked as REQ.First or REQ.Only the host

must configure the REQ.UID, REQ.CNFCLS, REQ.RQCLS

and REQ.FC fields.

4.5 Update the REQ Queue’s Queue Limit

The SI will not consume REQ Descriptors beyond the queue

slot defined by the queue’s Queue Limit. (Queue limits are

updated via Limit RAM Operations (LMOP). LMOPs are de-

scribed in Section 6.0, ‘‘Low Level Operations’’.) So the

host must update the Queue Limit to denote how far in the

queue the SI will progress. If the queue is quiescent, the act

of updating the Queue Limit, located in the SI’s internal Limit

RAM, will ‘‘wake up’’ the Channel and cause the SI to start

consuming REQ Descriptors. If the SI is already actively

consuming REQ Descriptors from the queue, the newly

queued REQ Descriptor will be automatically consumed.

5.0 RECEIVING A FRAME

The steps for consuming a frame that has been received

from the network are:

1. Collect the IDUD Descriptors that describe the next re-

ceived frame

2. Check status fields in the last IDUD of those collected

3. Process the frame data

4. Reclaim Pool Space (receive data buffers)

5. Update the IDUD queue’s Queue Limit

5.1 Collect the IDUD Descriptors that Describe

the Next Received Frame

As a first step it is necessary to gather up all of the IDUD

Descriptors that describe the next frame. This is necessary

as the SI only includes status information in IDUDs with the

‘‘Last’’ bit set (IDUD.Only and IDUD.Last). As a general rule

the host software should be capable of dealing with up to

three IDUDs per frame. The host software should plan on

handling three IDUDs per frame; even when operating the

SI in ‘‘Frame per Page’’ mode. If buffers smaller than 4 kb

are used (i.e., PSP.LOC points to an offset within a 4 kb

page), then more than three IDUDs may be produced for a

single frame.

It is possible for the host to detect an ‘‘end of queue’’ while

collecting IDUDs. This can happen when the SI is in the

process of receiving a frame and the host is asynchronously

examining the queue. The host may either consider the

queue as currently empty or wait for the frame reception to

complete (note that IDUDs are produced after the corre-

sponding part of frame data has been copied to memory). If

the host considers the queue as empty in this situation and

interrupts are used to trigger received frame processing,

then the host should clear the attention only at the begin-

ning of the Interrupt Service Routine (ISR) code (so that the

frame reception in progress will not be missed). See Figure
5-1 for a snapshot of an IDUD queue displaying this tran-

sient condition.

19

TL/F/12304–23

FIGURE 5-1. Frame Reception in Progress

5.2 Check Status Fields in the Last IDUD

of Those Collected

The host must decide if the frame should be processed or

‘‘dropped’’. There are several status items in the IDUD that

provide all of the information required to make this decision.

These status indicators are only valid in an IDUD Descriptor

with the Last bit set (IDUD.Last or IDUD.Only). The host

should always check the following indicators.

Indicate Status (IDUD.IS). This field must be examined to

check for errors that may occur during frame reception.

Valid Frame Check Sequence (VFCS). As the frame is

being received a CRC calculation is done. If the calculat-

ed value doesn’t agree with the FCS field of the frame,

this bit in the IDUD will be zero to indicate a problem.

Valid Data Length (VDL). This bit will be zero if a length

problem has been detected (basically an odd number of

FDDI symbols (kind of like 4 bit nibbles)).

Terminating Condition (TC). This two bit field reports how

the received frame ended. The host must verify that the

frame ended with an FDDI Ending Delimiter. If the send-

ing station isn’t stripping the frame properly or if there is a

lot of noise on one of the links in the ring the frame may

be partially stripped. This fact is only recorded in this field

(just checking the IDUD.IS field isn’t enough).

5.3 Process the Frame Data

Clearly this step is very system dependent. On some sys-

tems this may only involve the creation of a few mbufs and a

scheduling of the protocol stack processing. On others the

frame may need to be actively copied into different data

structures.

5.4 Reclaim Pool Space (receive data buffers)

Again this is a fairly system dependent step. One thing is

true in all cases, though; the host can be sure that the SI

has finished using a receive buffer when an IDUD is con-

sumed that refers to a new buffer. (Assuming that the host

is processing the IDUD queue in a sequential manner.) The

process of determining when the host has finished using a

receive buffer is system dependent. Many systems use a

mechanism in which frames are passed to upper level pro-

tocols and may be relinquished in an arbitrary order. Section

7.4, Reclaiming Receive Buffer Memory, presents a mecha-

nism that deals with this situation by using buffer reference

counts.

5.5 Update the IDUD Queue’s Queue Limit

The SI will consider an IDUD queue as full when queue

pointer/limit equality is detected. Therefore, the host should

update the Queue Limit (in the SI’s internal Limit RAM) to

grant additional status space (i.e., queue slots) to the SI.

This need not be done for each frame (it can be done as

infrequently as almost once per queue wrap). For perform-

ance reasons, it is advantageous to delay this operation un-

til many frames have been consumed by the host. An exam-

ple of delaying Queue Limit updates can be found in the

nfÐretÐidud() routine of the SI Primitives. National Semi-

conductor makes the source code to these example rou-

tines available to National’s FDDI customers.

6.0 LOW LEVEL OPERATIONS

At the lowest, most primitive level the host must be able to

perform read and write operations to the SI’s Control Bus

Registers and memory that is accessible by both the host

and the SI. These operations are highly system dependent.

For example, the Control Bus Registers might be memory

mapped in one implementation and reached via some form

of programmed I/O in another system.

At the next higher level (where the host software has con-

trol) there are several low level operations.

Pointer RAM Operations (PTOP)

Limit RAM Operations (LMOP)

Mailbox definition

Reading the SI’s silicon revision number

Updating Conditional Control Bus Registers

Updating ‘‘Stop Mode Only’’ Control Bus Registers

6.1 Pointer RAM Operations (PTOP)

All Queue Pointers are maintained by the SI in Pointer RAM

Registers that are internal to the chip. These registers are

not directly accessible via the SI’s Control Bus. Instead the

host performs a Pointer RAM Operation (PTOP) to load or

store one of the Pointer RAM Registers. The SI uses a spe-

cial memory location (a 32-bit word termed the mailbox) to

load and store 28-bit Pointer RAM Registers. The SI reads

the mailbox when loading a Pointer RAM Register and

writes to the mailbox when storing a Pointer RAM Register.

The steps required to perform a PTOP are:

1. make sure that the SAR.PTOP bit is asserted (SI able to

do a PTOP)

2. if loading a register from memory, put the new value in

the mailbox

3. configure the Pointer Control and Address Register

(PCAR) (defines load/store and which Pointer RAM Reg-

ister)

4. clear the PTOP bit in the Service Attention Register

(SAR.PTOP) (causes the SI to do the PTOP)

5. if storing a register to memory, when the SAR.PTOP bit

becomes asserted get the value out of the mailbox.

It is not necessary to ‘‘baby-sit’’ the SI during a Pointer RAM

Operation. This behavior can be used to reduce the cost of

reading the Queue Pointers of REQ and PSP queues. It is

possible to ‘‘schedule’’ a Pointer RAM ‘‘Read’’ Operation,

go perform other work and detect the completion of the

operation at a later time. Also, the act of detecting the com-

pletion of the PTOP can be made extremely efficient by pre-

loading the mailbox location with a value of xÊ00000003Ê (an

impossible value for Pointer RAM Registers) prior to starting

the PTOP. This scheme avoids accessing the Service Atten-

tion Register (SAR); which, on most systems, is more ex-

20

pensive than accesses to shared memory. Seeing a value

other than xÊ00000003Ê in the mailbox signifies that the op-

eration has completed.

See Figures 6-1 and 6-2 for illustrations of the steps in-

volved when loading a Pointer RAM Register from memory

and when storing a Pointer RAM Register to memory.

Steps:

1. Make sure SAR.PTOP is set

2. Place value in mailbox

3. Configure PCAR to define the offset

and type of operation (write)

4. Clear SAR.PTOP

TL/F/12304–24

FIGURE 6-1. Pointer RAM Operation (‘‘Write’’)

(Loading Register from Memory)

Steps:

1. Make sure SAR.PTOP is set

2. Configure PCAR to define the offset

and type of operation (read)

3. Clear SAR.PTOP

4. Get value out of mailbox after SAR.PTOP

becomes set again

TL/F/12304–25

FIGURE 6-2. Pointer RAM Operation (‘‘Read’’)

(Storing Register Contents to Memory

21

6.2 Limit RAM Operations (LMOP)

The host maintains all Queue Limit values by updating the

Limit RAM Registers that are internal to the SI. The host

must perform a Limit RAM Operation (LMOP) to load or

store one of the Limit RAM Registers. Limit RAM Operations

are accomplished solely via the directly accessible Control

Bus Registers. Two Control Bus Registers (8-bit) are need-

ed to hold a Limit RAM Register value (9-bit).The steps re-

quired to perform an LMOP are:

1. make sure that the SAR.LMOP bit is asserted (SI able to

do an LMOP)

2. configure the LAR (defines load/store, which Limit RAM

Register and one bit of data)

3. if loading a register, configure the LDR (bottom 8 bits of

the Limit RAM value)

4. clear the SAR.LMOP bit (causes the SI to do the LMOP)

5. if reading a register, poll for the SAR.LMOP bit to be-

come asserted and examine the LAR and LDR Control

Bus Registers to get the Limit RAM value.

The act of updating Limit RAM Registers is done quite fre-

quently by the host thus this operation should be coded as

efficiently as possible. Limit RAM updates can be done with

four accesses of the Control Bus. See Figure 6-3 for a de-

piction of the relationship between the LAR, LDR and Limit

RAM Registers. See Figures 6-4 and 6-5 for illustrations of

the steps involved in reading and writing to Limit RAM Reg-

isters. The ‘‘cost’’ of Limit RAM Operations is discussed in

Section 7.5, Performance Issues.

TL/F/12304–26

FIGURE 6-3. How LAR and LDR Create a 9-Bit Value

Steps:

1. Make sure SAR.LMOP is set

2. Place lower 8 bits in LDR

3. Configure LAR to define the offset, type of operation (write)

and top bit of value

4. Clear SAR.LMOP

TL/F/12304–27

FIGURE 6-4. Limit RAM Operation (‘‘Write’’)

22

Steps:

1. Make sure SAR.LMOP is set

2. Configure LAR to define the offset, type of operation (read)

3. Clear SAR.LMOP

4. After SAR.LMOP becomes set read LDR and LAR to get the value

TL/F/12304–28

FIGURE 6-5. Limit RAM Operation (‘‘Read’’)

6.3 Reading the SI’s Silicon Revision Number

All SIs contain a silicon revision number. This value can be

obtained immediately after resetting the SI by:

clearing the Pointer Control and Address Register

(PCAR) Control Bus Register. This setp is important be-

cause the PCAR is not initialized to known values at re-

set time.

reading the Mailbox Address Register (MBAR) Control

Bus Register four times.

A 32-bit revision number is returned in most significant byte

order. This operation is typically done as part of the initiali-

zation of the SI. See Table 6-1 for a list of defined silicon

revision numbers and how they correspond to the revisions

of the SI.

TABLE 6-1. Correlation of Silicon Revision Numbers

to SI Versions

Silicon Revision
SI Release Level

Number

0x00000004 BSI-1 Rev-B

0x0000004C BSI-2 Rev B

0x00000054 MACSI Rev C

0x00000058 MACSI Rev D

6.4 Mailbox Definition

The mailbox location must be defined before any Pointer

RAM Operations can be performed. The mailbox address is

defined by:

clearing the Pointer RAM Control and Address Register

(PCAR) Control Bus Register. This step is important be-

cause the PCAR is not initialized to known values at re-

set time.

writing the Mailbox Address Register (MBAR) Control

Bus Register four times to define a 28-bit address (most

significant byte first).

This operation is typically done as part of the initialization of

the SI.

6.5 Updating Conditional Control Bus Registers

Some of the directly accessible Control Bus Registers are

Conditional Registers that are used to report events or con-

ditions to the host (Attention Registers). These registers

may be read and written like regular Control Bus Registers

except that some extra logic is included to make sure that

the events are not missed. There is one Compare Register

on the SI (SICMP) that is shared by all SI Conditional Regis-

ters. Read operations for non-Conditional Registers do not

affect the contents of the Compare Register. When a Condi-

tional Register is read the contents are also cached in the

Compare Register. When a Conditional Register is written

the original contents of the register are compared bit by bit

with the contents of the Compare Register and only those

bits that are the same are updated with the new values. If

any of the bits don’t ‘‘compare’’ then the CWI attention bit is

asserted in the State Attention Register (STAR).

Why are Conditional Registers necessary?

The host and SI are operating independently and asynchro-

nously. An event may occur (i.e., a frame arrival) between

the time that the host has read an Attention Register and

the time that the host later writes back to the same Atten-

tion Register (e.g., to clear an attention bit). Without Condi-

tional Registers it is possible for some events to be missed.

The National Semiconductor FDDI chip set uses Conditional

Registers to solve this problem. There are other ways of

dealing with this issue, but Conditional Registers are used

because they make it easier to test software and hardware.

In many cases, the attention bits may be manually asserted

by the host (perhaps a debugger) to exercise the Interrupt

Service Routine (ISR) logic of the host software. Explicitly

setting a bit in a Conditional Register is much often much

easier than attempting to recreate the circumstances that

would cause the SI to generate a particular attention.

23

During normal operation, the host should:

read a Conditional Register at the start of Interrupt Serv-

ice Routine (ISR) logic

process the events

clear the processed events by:

1. loading the Compare Register with the original value and

2. updating the Conditional Register with the processed

event bits cleared.

Ð or Ð

read a Conditional Register at the start of ISR logic

individually clear each event by:

1. reading the Conditional Register,

2. masking the bit(s) associated with the event and

3. writing the modified value back to the Conditional Regis-

ter (without any intervening accesses of other Condition-

al Registers).

Ð or Ð

read a Conditional Register at the start of ISR logic to

determine what events have occurred

clear attention bits by:

1. loading the Compare Register with a bit pattern that de-

fines the bits to be cleared (1’s for those bits that will be

zeroed),

2. write all zeros to the Conditional Register and, optionally,

3. check the CWI bit in the State Attention Register (STAR)

to see if any other events need to be processed.

6.6 Updating ‘‘Stop Mode Only’’ Control Bus Registers

Several of the Control Bus Registers of the SI may only be

updated by the host when the Indicate State Machine is in

‘‘stop mode’’. This restriction exists because the configura-

tion of these registers affects indicate operation for all Re-

ceive Channels. These registers are the Indicate Mode Reg-

ister (IMR), the Indicate Threshold Register (ITR) and the

Indicate Header Length Register (IHLR).

7.0 IMPLEMENTATION ISSUES

This section of the document discusses some typical issues

that need to be addressed when designing a network inter-

face that uses the SI.

7.1 Memory Issues

The SI was designed to ‘‘fit’’ well in a wide variety of imple-

mentations. As such the way that the memory used by the

SI is allocated and released is very system dependent. On

systems where the SI directly accesses system memory,

the network interface software may be able to employ the

same memory management subsystem used by the upper

layer protocols (e.g., mbufs/mclusters); or an entire, addi-

tional memory management subsystem may need to be de-

veloped.

There are two cycles of memory usage that correspond to

the flow of FDDI frame data. On the transmit side, memory

is allocated before transmission and released after trans-

mission. On the receive side, memory is allocated before

frame reception and released after the received data has

been processed.

What items must memory management support? What

alignment, if any, is required for each item?

The host must supply memory management support for de-

scriptor queues (REQ, CNF, IDUD and PSP), receive buffers

(Pool Space), transmit data chunks (Output Data Units

(ODU)) and ODUD Descriptors.

The memory occupied by descriptors queues must be

aligned on 1 kb or 4 kb page boundaries (depending upon

the size of the queues). Any memory beyond the 1 kb or

4 kb page boundary is ignored by the SI. The memory used

to contain an array of ODUD Descriptors must be aligned on

an 8 byte boundary and may not cross a 4 kb page bounda-

ry (since the address counter will ‘‘wrap’’ at a 4 kb page

boundary). The memory used to store in-coming frame data

(Pool Space) must begin on an SI burst boundary (16 or 32

bytes) and continue to a 4 kb page boundary. If the buffer

spans across a 4 kb page boundary the SI will ignore that

portion of the buffer after the boundary. If the buffer, as

described in a Pool Space Descriptor (PSP), does not begin

on a burst boundary the SI, currently, will not operate cor-

rectly.

The memory used to contain a chunk of transmit data

(ODU) need not follow any special alignment, but it may not

cross a 4 kb page boundary. If the SI is presented with an

ODU that spans a 4 kb page boundary, the data will not be

transmitted as intended (since the address counter will

‘‘wrap’’ at a 4 kb page boundary). A buffer that crosses one

or more 4 kb page boundaries may be successfully de-

scribed to the SI using multiple ODUDs.

If a special memory management subsystem must be

developed for the SI, what is the simplest scheme?

A specially developed memory management system can be

as complicated or as simple as desired. An extremely sim-

ple, yet workable scheme would allocate all memory in 4 kb

pages (aligned on 4 kb page boundaries) for all purposes.

Small, 1 kb, queues would be statically packed into 4 kb

pages and, of course, 4 kb queues would occupy an entire

page. ODUD Descriptors could be stuffed into the first 16

bytes of a page also used to hold a fragment of transmit

data (See Figure 7-1) or serially allocated within one or two

statically allocated pages.

24

TL/F/12304–29

FIGURE 7-1. Example ODUD Allocation Methods

7.2 Reclaiming Transmit Data Structure Memory

The SI consumes transmit requests, but cannot complete

the buffer usage cycle by releasing the memory occupied by

each transmit request data structure (i.e., REQ and ODUD

Descriptors, frame data pieces). The host must explicitly re-

claim this memory after the SI has finished transmitting the

frames. There are at least two methods of determining

which transmit requests have been consumed by the SI and

are thus available for space reclamation.

The simplest method is to examine the REQ queue’s Queue

Pointer value (Pointer RAM Register). The host then scans

forward through the REQ queue (until reaching the Queue

Pointer’s memory location), parses the transmit data struc-

tures and releases those memory resources held by each

transmit request. This is simple and straightforward. Per-

forming synchronous PTOPs may not be suitable on some

systems, however, due to the system dependent nature of

PTOP performance. The cost of PTOPs can be minimized

by asynchronously ‘‘scheduling’’ a PTOP and delaying the

reclamation process until after the PTOP has completed

(see Section 6.1, ‘‘Pointer RAM Operations’’ for more infor-

mation).

Another method is to use a confirmation class

(REQ.CNFCLS) of ‘‘Tend’’ (Transmit-End) and increment

the REQ.UID field for each REQ Descriptor produced with

the REQ.First bit set (i.e., REQ.First, REQ.Only). This caus-

es the SI to produce a CNF Descriptor (with a matching UID

value) for each consumed Request Object. The UID field of

the CNF can be used to reclaim all of those REQ Descrip-

tors with a matching UID value. This method is somewhat

more complex than the first method, but it performs consist-

ently well in many different system environments.

7.3 Reclaiming Receive Buffer Memory

The exact mechanism used to manage receive buffer mem-

ory is highly system dependent. However, many of the dif-

ferent possible implementations fall into two categories:

those implementations that do copy frame data and those

implementations that do not copy frame data.

7.3.1 Receive Buffer Management

when Copying Frame Data

When the SI data structures are completely distinct from the

system data structure the host must explicitly copy frame

data from the SI addressable memory to the host address-

able memory. Under these circumstances (and assuming

that the host consumes IDUDs sequentially) the task of re-

claiming receive buffer space is trivial. It is simply a matter

of detecting that the SI is using a new receive buffer and

reusing (e.g., returning to a free list or requeuing on a PSP

queue) the ‘‘old’’ buffer (after copying out frame data, of

course). See Figure 7-2 for the pseudo-code required to im-

plement this simple algorithm.

25

/* at Channel initialization time */

previous page 4 kfirst page on the PSP

queuel

/* when processing IDUDs, after copying

frame data */

current page 4 IDUD.LOC AND 0x0ffff000

if previous page not 4 current page then
kreuse previous pagel

previous page 4 current page

endif

FIGURE 7-2. Simple Receive Buffer Reclamation when

Copying Frame Data

7.3.2 Receive Buffer Management when Not Copying

Frame Data

When the SI directly shares its receive buffers with the host

system, significant performance advantages may be gained

by avoiding the copying of frame data. In such an environ-

ment the software that ‘‘drives’’ the SI will typically maintain

a pool of buffers that the SI may transfer frame data to and

from which frame data will be ‘‘loaned’’ to upper level proto-

cols. The upper level protocols later invoke a registered rou-

tine to release the frame memory, but may release the

frames in a different order from which they were presented.

If ‘‘Frame-per-Page’’ (FPP) mode is used, then the receive

buffer(s) occupied by the frame may be immediately reused.

However, if FPP is not used there may be multiple frames

resident within a single receive buffer. A simple mechanism

for this environment uses reference counts to keep track of

the number of ‘‘active’’ frames of a given receive buffer. In a

nutshell, a buffer’s reference count is

1. Set to 1 when the buffer is queued on a PSP queue,

2. Incremented for each frame ‘‘loaned out’’ that includes a

reference to that buffer,

3. Decremented by 1 when it is recognized that the SI is

done using that page (see the pseudo-code in Figure
7-2),

4. Decremented by 1 for each release call received from

upper level protocols that includes a reference to that

buffer and

5. Finally reused when the reference count equals 0.

7.4 Synchronization Issues

The host and SI produce and consume descriptors indepen-

dently and asynchronously from each other, so it is impor-

tant for the designer of SI interface software to understand

which areas need special attention to avoid race conditions

between the SI and the host.

The host need not be concerned about race conditions

when producing a REQ or PSP Descriptor. The SI handles

the synchronization of Queue Limit updates and queue pro-

cessing internally. The host may produce REQ or PSP De-

scriptors without having to double check to make sure that

the queued frame is actually processed. The host doesn’t

have to ‘‘spoon feed’’ the SI as is required with many other

network interface devices.

When the host is consuming descriptors and reading the

Queue Pointer values from the SI’s internal Pointer RAM

Registers to detect the ‘‘End of Queue’’ condition, the host

need not be concerned about race conditions. This method,

while simple and straightforward, may not be suitable for

many system environments. However, when the host is

consuming descriptors and using ‘‘null descriptors’’ to de-

tect the ‘‘End of Queue’’ condition some care must be taken

to avoid a race condition. The SI uses single word (32-bit)

bus cycles when producing a CNF or IDUD Descriptor; thus

two distinct bus Request/Grant cycles are required for the

SI to write out a descriptor into memory. This makes it theo-

retically possible for the host to fetch both descriptor words

after the SI has written the first word, but before the SI has

written the second word. This race condition can be avoided

by:

1. using the second word of the CNF or IDUD Descriptor to

denote a ‘‘null descriptor’’ and

2. adopting a ‘‘Probe and Fetch’’ mechanism for consum-

ing descriptors (i.e., check for ‘‘End of Queue’’ by prob-

ing the second word of a descriptor and then, if it is not a

null descriptor, read entire descriptor).

Also, when using null descriptors the software designer

should scrutinize the way that the host interfaces with the SI

addressable memory. For example, on the SI Evaluation

Card the host has an 8-bit interface to SI addressable mem-

ory; which introduces a race condition with a much larger

window than the one just described.

7.5 Performance Issues

The performance of an FDDI interface is clearly very impor-

tant. There are several issues that need to be considered

during the design of SI interface software. These issues are

presented in the form of questions and answers.

How expensive are Control Bus read and write opera-

tions?

Control Bus accesses are internally synchronized with the

ring clock (the SI spans two timing domains using both sys-

tem and ring clocks). It takes 4 or 5 ring clock cycles (the

FDDI ring clock runs at 12.5 MHz) for a Control Bus access

to complete; thus each access takes approximately 320 ns

to 400 ns.

How expensive are Limit RAM Operations?

In relative terms, Limit RAM Operations (LMOP) are expen-

sive. LMOPs usually take a little less than 2 ms to complete

(four Control Bus accesses e 400 ns c 4 e 1.6 ms; plus

some host cycles). There are times when LMOPs must be

done (i.e., queuing a Request Object) and there are times

when LMOPs may be delayed (i.e., granting queue space on

IDUD and CNF queues, queuing a PSP Descriptor); such

that instead of performing many incremental LMOPs a sin-

gle LMOP is done to reach the same value. Whenever pos-

sible, LMOPs should be delayed. A significant increase in

performance can be realized by delaying LMOPs for CNF,

IDUD and PSP queues. Also, there is absolutely no reason

for the host to read Limit RAM Registers during normal op-

eration, since the SI never changes Limit RAM values.

How expensive are Pointer RAM Operations?

The performance of Pointer RAM Operations (PTOP) is ex-

tremely dependent upon the bandwidth of the memory inter-

face to which the SI is attached (i.e., dedicated RAM, con-

nected to system bus) and the volume and pattern of frame

traffic, because PTOPs use the same bus as frame data and

PTOPs are given lower priority than frame data and descrip-

tor transfers. A best case estimate is somewhat less than 2

ms (3 Control Bus accesses e 400 ns c 3 e 1.2 ms; plus

an ABus access a some host cycles). The cost of reading

Pointer RAM Registers can be minimized by scheduling

26

asynchronous PTOPs (useful for reading REQ and PSP

Queue Pointer values, but not appropriate for reading IDUD

and CNF Queue Pointer values).

Why build multi-frame Request Objects?

The SI uses Request Objects to implement flow control at

the token opportunity level. This is required for stations that

send FDDI Synchronous frames. However, if the host gen-

erates only single frame Request Objects the station’s ef-

fective bandwidth can suffer on heavily loaded FDDI net-

works (if the network can keep up with the host, then single

frame Request Objects are fine). This is due to the way that

transmission time is allocated among the stations on the

network (timed token protocol); which favors those stations

that send bursts of many frames at each service opportuni-

ty. Since today’s typical implementations of protocol stacks

produce single frame requests, it is important for the net-

work interface software to bundle together frame transmis-

sion requests from upper level software into multi-frame Re-

quest Objects whenever possible (e.g., when the host pro-

duces frames faster than the ring can consume them).

In systems where the network device driver accepts

single frame requests (most of the world), how can the

network software present multi-frame Request Objects

to the SI without any race conditions and without in-

creasing the ‘‘end-to-end’’ delay?

The recommended algorithm takes advantage of the fact

that multi-frame Request Objects are only important when

the station is generating frames faster than the network can

send them. If the network can keep up with the host, then

single frames Request Objects are fine. This algorithm is

similar, in principle, to a scheme used to avoid small TCP

packets sizes proposed by J. Nagle. (J. Nagle, ‘‘Congestion

Control in IP/TCP Internetworks’’, RFC 896, January 1984.)

The basic idea is that when the REQ queue is empty, a

REQ.Only Descriptor is generated (single frame request

made immediately available for transmission). When the

REQ queue is not empty a multi-frame Request Object is

dynamically, incrementally built by producing suitable REQ

Descriptors (i.e., REQ.First, REQ.Middle and REQ.Last De-

scriptors), but delaying the updating of the REQ queue’s

Queue Limit until a REQ.Last has been produced. To make

this scheme work well the host needs to:

Use the Transmit End (Tend) Confirmation Class. This is

done so that the completion of a Request Object can be

detected. Transmit Intermediate could be used as well,

but it increases the complexity of the CNF processing

logic and does not provide any additional information re-

lated to this task. Similarly, Fend and Fint could be used.

Provide a method that notifies the driver that the CNF

queue should be checked. This can be done by enabling

interrupts for CNF Descriptor arrivals (CNF breakpoint)

or, if a watchdog timer is already being used, check for

CNF Descriptors when the watchdog timer expires. The

method chosen here has an effect on the ‘‘end- to-end’’

delay.

Maintain three variables per Transmit Channel:

1. a count of the number of Request Objects currently

queued,

2. a Boolean variable that indicates the presence of an

‘‘open’’ Request Object (no REQ.Last yet) and

3. a count of the number of frames in the currently ‘‘open’’

Request Object.

A nice feature of this algorithm is that the overhead involved

with frame transmission decreases as the frame traffic load

increases. When the host gets ahead of the ring, fewer Limit

RAM Operations are necessary to send the same number of

frames and fewer CNF Descriptors are produced by the SI

for the same number of frames. SeeFigure 7-3 for the algo-

rithm in pseudo-code.

The ‘‘end-to-end’’ delay is increased in only one circum-

stance. This occurs when an ‘‘open’’ Request Object exists

on a REQ queue and the ring load drops enough to empty

out the REQ queue. In this situation there will be frames

awaiting transmission that the SI doesn’t ‘‘know’’ about. The

host must detect that the queue has emptied out and

‘‘close’’ the Request Object by producing a REQ Descriptor

with a SIZE field set to zero and the Last bit set. Note that

this requires that the test for the Queue Full condition be

modified to reserve a position in the queue for this REQ.Last

Descriptor.

27

IF Queued Cnt 4 0 THEN

produce REQ.Only

Open Req 4 FALSE

Queued Cnt 4 1
kupdate Queue Limitl

ELSE

IF Open Req 4 FALSE THEN

produce REQ.First

Open Req 4 TRUE

Queued Cnt 4 Queued Cnt 0 1

Req Size 4 1
kdelay Queue Limit updatel

ELSE

IF Req Size k MAX FRAMES PER REQ OBJECT THEN

produce REQ.Middle

Req Size 4 Req Size a 1
kdelay Queue Limit updatel

ELSE

produce REQ.Last

Open Req 4 FALSE
kupdate Queue Limitl

ENDIF

ENDIF

ENDIF

CNFs are consumed by the host to determine when transmit requests have completed.

Get CNF Descriptor

WHILE CNF QUEUE NOT EMPTY

Get REQ Descriptor (at SQP location)

WHILE REQ.UID 4 CNF.UID
kreclaim transmit request memoryl

increment REQ queue’s SQP

if REQ.Last or REQ.Only then

Queued Cnt 4 Queued Cnt 1 1

if Queued Cnt e 1 and Open Req 4 TRUE then

produce null REQ.Last
kupdate Queue Limitl

endif

Get next REQ Descriptor (at SQP location)

END WHILE

Get next CNF Descriptor

END WHILE

FIGURE 7-3. Dynamic Construction of Multi-Frame Request Objects

28

Under heavy load the number of interrupts coming out

of some network devices can be a real burden for the

host. What mechanisms does the SI have for minimizing

the number of interrupts generated?

Many other network interface devices have a rather rigid set

of rules for the generation of interrupts. Typically, the host

gets a choice between no interrupts or an interrupt for each

and every frame. Polling for events is fairly common on

bridges and routers. The DP83200 FDDI chipset can be

configured to work well in this environment as the host can

choose exactly which events will generate an interrupt (per-

haps none). The SI can be configured to ‘‘batch’’ events

and generate interrupts at reasonable times. For example,

multi-frame Request Objects can be structured to generate

a single interrupt to signal that an entire group of frames has

been transmitted and various interrupt batching rules can be

applied to cause the SI to signal the arrival of groups of

frames. See Table 7-1 for information on batching interrupts

that signal the arrival of incoming frames (indicate break-

points).

Breakpoint on Service Opportunity (BOS) generates the

coarsest granularity of interrupts, Breakpoint on Burst (BOB)

has a somewhat finer control and Breakpoint on Threshold

(BOT) has the finest granularity (can be configured with a

threshold of 1 to cause an interrupt for each frame re-

ceived). See Figure 7-4 for an illustration of how the SI indi-

cate breakpoints work.

TABLE 7-1. Indicate Breakpoint (Interrupt) Rules

Breakpoint Rule Description

Breakpoint on Service An indicate breakpoint is generated when an end of a service opportunity, for other stations, has

been detected (i.e., a token was received) and one or more frames have been received. This optionOpportunity (BOS)
must be enabled to cause the SI to generate breakpoints on Receive Channel 0 (dedicated to SMT/

MAC frames).

Breakpoint on Burst An indicate breakpoint is generated when a change is detected in the Destination Address, Source

Address, first four octets of the FDDI information field or Indicate Channel. The basic idea is that the(BOB)
SI generates a single interrupt for a ‘‘burst’’ of packets (i.e., a TCP window).

Breakpoint on Threshold An indicate breakpoint is generated after a predefined number of frames have been received. This

option is designed to make BOB and BOS behave reasonably when a huge number of frames are(BOT)
received from a single station in a single service opportunity. The count of received frames used to

compare against the threshold is reset after each service opportunity or burst.

TL/F/12304–30

1. Station A captures the token and sends 15 frames to station E

2. Station B captures the token and sends 20 frames to Station E

3. Station C captures the token and sends 25 frames to Station E

4. Station D captures the token and sends 30 frames to Station E

5. Station E receives 90 frames followed by the token!

Station E receives the following frames and indicate breakpoint attentions:

TL/F/12304–31

FIGURE 7-4. Example of the Various Indicate Breakpoints

29

7.6 Miscellaneous Issues

How are the station’s addresses (MAC, broadcast and

multi-cast) defined to the SI?

The SI does not recognize addresses, per se. The BMAC

Device includes address matching logic for the MAC ad-

dress, broadcast address and a range of multi-cast address-

es. When an address match occurs, the BMAC Device as-

serts a signal on one of the pins that connect the SI and

BMAC Devices.

What issues are involved when implementing FDDI Sta-

tion Management (SMT) with the SI?

The majority of SMT can safely ignore the SI and concen-

trate on the BMAC and PLAYER Devices. There are two

exceptions however.

FDDI SMT sends and receives frames as part of normal

operation. It is necessary, therefore, to provide a facility for

frame transmission and reception to SMT. This can be ac-

complished in basically two ways. The simplest way is to

dedicate one of the Transmit Channels to SMT traffic. Since

Receive Channel 0 is already dedicated to SMT, this pro-

vides SMT with guaranteed access to the FDDI ring. If the

station cannot dedicate a Transmit Channel to SMT (e.g.,

has already set aside one Channel for synchronous frame

transmission), then it will be necessary to multiplex (in soft-

ware) SMT frame transmission requests with ‘‘regular’’

asynchronous LLC frame transmission requests.

The Ring Management (RMT) state machine of SMT in-

cludes a state (RMT:DIRECTED) that requires the station to

send a special type of MAC frame called a ‘‘Directed Bea-

con’’. These frames must be sent out ‘‘back to back’’ for at

least 370 ms. The BMAC Device, which does send out the

‘‘normal’’, Undirected Beacon frames, cannot (by itself)

generate the Directed Beacon frames mandated by the

SMT standard. So, the SI must be used to generate Direct-

ed Beacons. A User Information Note exists that describes

how to configure the SI to send approximately 370 ms of

Directed Beacon frames. Please refer to this note for de-

tailed information.

What is Header/Info Splitting Mode and how does it

work?

Header/Info splitting mode is intended for use by high per-

formance protocol processing applications and by network

protocol monitors. This mode of operation is selected via

the Indicate Mode Register (IMR). Header/Info splitting

mode ‘‘cracks’’ incoming frames into two or more pieces at

a user defined offset into the frame (defined via the Indicate

Header Length Register (IHLR)). The point at which frames

are split can range from 4 words to 255 words with the FDDI

Frame Control byte occupying an entire word; so the net

effect is that the radix can range from the beginning of the

FDDI Info field through 1004 bytes into the FDDI Info field.

When using this mode the Header portion is routed to Re-

ceive Channel 1’s buffers, the Info portion is routed to Re-

ceive Channel 2’s buffers and all of the IDUDs are produced

on Receive Channel 1’s IDUD queue. Thus the host de-

clares two different sets of buffers for frame data reception

(header buffers and info buffers) and processes the frames

from a single IDUD queue.

Some network monitoring applications are only interested in

examining frame headers (perhaps the first 60 bytes of the

FDDI info). In this environment the host need only supply

buffers to accept the header portion (using Receive Chan-

nel 1’s PSP queue) and the Info portion of received frames

will be discarded.

The SI uses two Indicate Breakpoint attention bits (in the

Indicate Attention Register (IAR)) when operating in Head-

er/Info splitting mode. A breakpoint may be generated for

either Channel 1 or 2 depending upon the length of the

frame being received. The host must accept either attention

bit as a signal that frames have arrived and clear both bits

when handling the interrupt. In other words, enable inter-

rupts for both bits and clear both bits when clearing frame

arrival events.

8.0 SERVICING INTERRUPTS

The SI provides facilities for selecting which events will gen-

erate an interrupt and a mechanism for determining which

events are present after an interrupt has been raised.

8.1 Event Registers

The SI supports a two-level hierarchy of Event Registers;

where the presence of attention signals in lower level Atten-

tion Registers is recorded in a single upper level Attention

Register. Attention signals may be disabled at either of the

two levels. Events may only be cleared by resetting the ap-

propriate bits in the lower level Attention Registers.

The upper level Attention Register is called the Master At-

tention Register (MAR). It contains five attention bits that

indicate the presence or absence of any events recorded in

each of the five corresponding lower level Attention Regis-

ters. Those registers are listed in Table 8-1.

TABLE 8-1. Attention Registers

Attention Registers

Master Attention Register (MAR)

State Attention Register (STAR)

No Space Attention Register (NSAR)

Service Attention Register (SAR)

Request Attention Register (RAR)

Indicate Attention Register (IAR)

The host may control which attention bits will generate an

interrupt by configuring the Notify Registers (see Table 8-2).

For each Attention Register a corresponding Notify Register

exists. Each Attention Register is ANDed with its corre-

sponding Notify Register and then all of the resulting signals

are ORed together and presented to the next level (see

Figure 8-1).

TABLE 8-2. Notify Registers

Notify Registers

Master Notify Register (MNR)

State Notify Register (STNR)

No Space Notify Register (NSNR)

Service Notify Register (SNR)

Request Notify Register (RNR)

Indicate Notify Register (INR)

30

TL/F/12304–32

FIGURE 8-1. Attention/Notify Registers

For example, to disable all interrupts caused by service

events: clear the Service Attention Register Notify (SVAN)

bit in the Master Notify Register (MNR). To disable only in-

terrupts caused by Pointer RAM Operations: set the SVAN

bit in the MNR and clear the PTOPN bit in the Service Notify

Register (SNR).

When checking Attention Registers for the cause of an in-

terrupt, one should perform a bit-wise AND operation be-

tween the attention and notify Registers and examine the

result. Just checking the Attention Registers may be mis-

leading. For example, on an unused Indicate Channel one

may wish to leave its PSP queue empty and mask off the

‘‘Low Data Space’’ attention bit for that Channel. This mask-

ing is accomplished via the Indicate Notify Register (INR).

Under these circumstances the IAR, by itself, may contain

misleading information.

8.2 Example Procedure

A typical procedure for servicing SI interrupts is as follows:

disable host interrupts

determine the event that triggered the interrupt by check-

ing the Master Attention Register and then querying the

appropriate lower level Attention Register

process the event (or post the event to a service queue)

clear the attention bit (or mask the attention bit)

enable host interrupts.

8.3 The No Space Attention Register (NSAR)

The No Space Attention Register (NSAR) requires some

special treatment. The host must never explicitly clear the

‘‘Low Data Space’’ attention bits. When additional pool

space is given to the SI it will automatically clear these bits.

In the current implementation of the SI, clearing the ‘‘Low

Data Space’’ attention bits can cause the SI to fetch a PSP

before an LMOP has occurred. For example, if the NSAR is

cleared immediately after reset the SI will attempt to pre-

fetch two PSP descriptors for all three Receive Channels;

using whatever contents happen to be located in the Queue

Pointers for each PSP queue. Also, the host must be careful

to update a CNF or IDUD queue’s Queue Limit before clear-

ing the ‘‘No Status Space’’ attention bit for that Channel and

the host must be careful to place the Queue Limit logically

after the Queue Pointer. Section 3.4 discussed the ‘‘queue

full’’ condition in detail.

9.0 INITIALIZATION

Before SI operation can begin, the device must be initial-

ized. The BMAC and PLAYER devices must also be individ-

ually initialized. To initialize the SI, the steps shown below

should be followed. Each action is explained further in the

sub sections that follow:

Reset the SI

Read the Silicon Revision Number

Set the Mailbox Address Register

Set the Mode Register

Load the Pointer RAM Registers

Set the Event Notify Registers

Set the Request Configuration Registers

Set the Request Expected Frame Status Registers

Set the Indicate Configuration Register

Set the Indicate Mode Register

Set the Indicate Threshold Register

Set the Indicate Header Length Register (if using Head-

er/Info splitting mode)

Load the Limit RAM Registers

Clear the Attention Registers. The No Space Attention

Register (NSAR) cannot be simply cleared. The Low

Data Space attention bits must not be explicity cleared

by the host. The SI automatically clears these bits when

consuming PSP Descriptors. See Section 8.3 for details.

Put the SI in Run Mode.

9.1 Reset the SI

During initialization the SI must be in Stop Mode. This is

necessary to prevent the device from attempting to perform

any actions or respond to any external stimulus prior the

completion of the initialization sequence. The SI may be

placed in Stop Mode by setting three bits in the State Atten-

tion Register (STAR): SPSTOP, RQSTOP and INSTOP.

However, the SI automatically places itself in Stop Mode

after a reset. Since the entire device is being initialized any-

way, it makes sense to go ahead and reset the entire SI.

This is done by setting the MRST bit in the Mode Register

(offset xÊ00Ê of the Control Bus).

31

9.2 Read the Silicon Revision Number

The host may obtain the revision number of a given SI im-

mediately after resetting the SI. The process of reading the

revision number is discussed in detail in Section 6, Low Lev-

el Operations. Basically, the host clears the PCAR and

reads the MBAR Control Bus Register four times.

9.3 Set the Mailbox Address Register

When loading Pointer RAM data into the SI, a ‘‘mailbox’’

mechanism is used. The mailbox is a 32 bit word in off-chip

memory which the SI uses to load or dump the Pointer RAM

Registers. This mailbox may be located anywhere within the

28-bit ABus address space of the SI and accordingly its

address must be explicitly defined. The process of loading

the mailbox address is discussed in detail in Section 6, Low

Level Operations. It works a lot like reading the revision

number; clear the PCAR and write to the MBAR four times

(in most significant byte order).

9.4 Set the Mode Register

Load the SI Mode Register (MR) to configure the SI with

global bus and queue parameters. For example a value of

0x52 causes the SI to generate 32 byte bursts when ac-

cessing the data bus, use 1k (small) queues, operate in a

physical memory environment, use ‘‘big-Endian’’ data align-

ment, check parity on access to the ABus and Control Bus

and optimize operation for clock speeds over 12.5 MHz.

9.5 Load the Pointer RAM Registers

As described in Section 3.4, the SI Queues in depth, the

Queue Pointers define the memory location of the queues

and which queue slot the SI will access next. The Queue

Pointers are located in the internal Pointer RAM Registers

(not directly accessible by the host). The actions required to

load and store Pointer RAM Registers are covered in Sec-

tion 6, Low Level Operations.

The above steps must be done for all pointers associated

with those Channels that will be used.

9.6 Set the Event Notify Registers

You may specify which events will trigger an interrupt by

setting the corresponding bit in the Notify Registers; where

a 1 enables interrupts from that event and a 0 disables

those interrupts. The Notify Registers may be written with-

out being read previously (not conditional write registers).

9.7 Set the Request Configuration Registers

Load the Request Configuration Registers (R0CR and

R1CR) for both Request Channels (RCHN0 and RCHN1) to

establish Channel specific operating parameters; such as

Source Address and Frame Control Transparency.

9.8 Set the Request Expected Frame Status Registers

This step is only required when using Full Confirmation.

Load the Request Expected Frame Status Registers

(R0EFSR and R1EFSR) for both Request Channels

(RCHN0 and RCHN1) to set up the expected status for

frame confirmation services. A value of 0x00 in these regis-

ters means that any frame status is acceptable. These reg-

isters are used for Full Confirmation of transmitted frames to

declare the condition under which the SI should stop send-

ing frames (i.e., the receiving station stopped copying them).

If this behavior is not desired when using Full Confirmation,

then the host may load the Request Expected Frame Regis-

ters with 0x00.

9.9 Set the Indicate Configuration Register

Load the Indicate Configuration Register (ICR) to establish

copy control parameters for each Indicate Channel. A typi-

cal register value is 0x49; which instructs the SI to copy

frames addressed for the station’s own MAC address or to

an externally matched group address.

9.10 Set the Indicate Mode Register

Load the Indicate Mode Register (IMR) to set the frame

sorting mode, skip option and the desired Indicate break-

points. This register may only be updated when the frame

reception logic (Indicate Machine) is stopped.

Indicate breakpoints are instances that generate interrupts.

You may configure the SI to interrupt at the end of each

service opportunity, at the end of a burst (i.e., Channel

change) or after a user defined number of frames have

been received. Prudent use of Indicate breakpoints can sig-

nificantly reduce interrupt processing overhead by reducing

the number of interrupts generated by the SI.

9.11 Set the Indicate Threshold Register

The Indicate Threshold Register (ITR) specifies the maxi-

mum number of frames that can be received before a

threshold breakpoint is realized. The value in this register is

only used when the appropriate bits (BOT1, BOT2) are set

in the IMR.

Loading the ITR with 0x00 specifies a value of 256. This

value is loaded into an internal working register each time

the current Receive Channel changes (i.e., on a burst

boundary). In this context ‘‘burst boundary’’ refers to a

change in the stream of received frames (e.g., sent from a

different station), not the transfer of frame data to and from

memory.

9.12 Set the Indicate Header Length Register

If the Header/Info frame sorting mode is specified, one

must load the Indicate Header Length Register (IHLR) with

the length (in units of four byte words) of the header portion

of the frame. The FC field occupies an entire word. For ex-

ample, to separate an 8 octet header when using long, six-

octet MAC addresses, one would load a value of 6 (FCe1,

DA/SAe3, headere2) into this register.

9.13 Load the Limit Ram Registers

During normal operation of the SI, the CNF and IDUD

queues must be given status space. This may be done as

part of the initialization procedure. Though, the Limit RAM

Registers assigned to the PSP and REQ queues should only

be updated when actually placing descriptors on the given

queues. The actions necessary to load Limit RAM Registers

are covered in Section 6, Low Level Operations.

9.14 Clear the Attention Registers

Clear the Request Attention (RAR) and Indicate Attention

Registers (IAR) by first reading the register, which has the

side-effect of loading the Compare Register (CMP), and

then writing a 0x00 value to the register. Both of these regis-

ters are automatically initialized to 0 upon SI reset.

The No Space Attention Register (NSAR) must be treated

carefully. Only the No Status Space attention bit in the

NSAR should be modified and only those bits that corre-

spond to Channels that are being configured for operation.

32

Don’t clear the Low Data Space bits. The Low Data Space

bits are cleared automatically as PSP Descriptors are

fetched.

9.15 Put the SI in Run Mode

Initialization of the SI is now complete. The device may be

made fully operational by reading the State Attention Regis-

ter (STAR) and immediately writing 0x00 to it. This will clear

the stop bits for the Indicate, Request and Status/Space

machines; putting them in Run Mode. The SI should imme-

diately begin fetching PSP Descriptors for the Indicate

Channels to use for frame reception. At this point a write to

one of the REQ queue Limit RAM Registers would cause

the SI to begin fetching REQ Queue Descriptors for frame

transmission.

10.0 EXCEPTION HANDLING

This section of the document describes some of the error

events that can be generated by the SI. It discusses some

of the possible causes of various error conditions and sug-

gests possible actions for the host to take in response to

these exceptional conditions. A distinction is made between

errors that are transient (i.e., trying to transmit asynchro-

nous frames when the ring is non-operational) and errors

that are serious enough to warrant resetting the SI.

Exception conditions are reported via several Attention

Registers (accessible via the Control Bus) and descriptors

in the status queues (CNF and IDUD).

10.1 Serious Errors

The State Attention Register (STAR) reports errors that

software should consider to be serious. For example, parity

errors on the Control Bus or BMAC Interface and errors on

the ABus (address/data bus). A quick description of the

‘‘serious’’ attention bits in the STAR follows.

INSTOP. When the INSTOP bit is set the Indicate Ma-

chine (frame reception logic) is stopped. The SI sets this

bit when it is reset and when an internal error of the

Indicate Machine has been detected. The host should

reset the SI if this bit goes high during normal operation.

RQSTOP. When the RQSTOP bit is set the Request Ma-

chine (frame transmission logic) is stopped. The SI sets

this bit when it is reset, when an internal error of the

Request Machine has been detected and when an ABus

error has occurred during REQ, ODUD, ODU or CNF ac-

cesses. The host should reset the SI if this bit goes high

during normal operation.

SPSTOP. When the SPSTOP bit is set the Status/Space

Machine is stopped. The SI sets this bit when it is reset

and when an unrecoverable error occurs during a PSP

fetch of a Pointer RAM Operation (PTOP). The host

should reset the SI if this bit goes high during normal

operation.

ERR. The ERR bit is set whenever any ABus error occurs

and if any internal state machine errors are detected.

This is a good attention bit to use for getting notification

of ‘‘serious’’ errors (interrupts). The host should reset the

SI if this bit goes high anytime during normal operation.

10.2 Parity Errors

The State Attention Register (STAR) reports parity errors on

the Control Bus and the interface between the SI and BMAC

Devices. Parity checking is only done when the FLOW bit is

set in the SI’s Mode Register (MR). A quick description of

these attention bits follows:

CPE. The CPE bit is set when a parity error is detected

on the Control Bus during a write operation. The host

should then retry the write operation again.

BPE. The BPE bit is set when a parity error is detected

on the interface between the SI and BMAC Devices dur-

ing frame reception. The host doesn’t have to take any

particular action since the parity error will be also report-

ed in an IDUD Descriptor. However, this bit is a ‘‘sticky

bit’’, so the host should either clear it or completely ig-

nore it.

10.3 Request (Transmit) Exceptions

Request (transmit) exceptions are reported in the Request

Attention Register (RAR) and CNF Descriptors. There are

two types of exceptions events that are reported in the

RAR: ‘‘exceptions’’ and ‘‘unserviceable requests’’ (separate

bits are defined for each Channel). A description of these

types of attention bits follows:

EXC. The EXC bit (EXC0 or EXC1) is set when an excep-

tion occurs on the corresponding Transmit Channel.

There are a lot of different conditions that can cause this

bit to go high. Some examples are: ABus error, MAC re-

set, RINGOP change during transmission, FIFO under-

run, etc. Most of these errors can be considered to be of

a transient nature, so the host should make note of the

condition and clear the attention bit. The SI will also set

this bit when an ABus error occurs during transmission

(which generally should trigger the host to reset the SI).

However, since the ERR bit in the State Attention Regis-

ter (STAR) will also be set, the code that deals with this

bit need not deal with the possibility of an ABus error.

USRR. The USRR bit (USRR0 or USRR1) is set when

the SI cannot service a transmit request. The most com-

mon reason for this is that the network goes down while

there are active Request Objects on a REQ queue. For

example, say there are three Request Objects on a REQ

queue and while the SI is consuming the first Request

Object the ring goes non-operational. The SI will flush

the first Request Object, stop the Channel and set this

bit. The other two Request Objects are still valid. When

the host clears the USRR bit the SI will start consuming

Request Objects again and attempt to send the second

and third Request Object. For ‘‘just like Ethernet’’ behav-

ior, the host should just clear this bit whenever it be-

comes set.

CNF Descriptor. The Request Status field of the CNF

Descriptor (CNF.RS) offers more detail on the causes of

transmit exceptions. For example, if a FIFO underrun oc-

curs the EXC bit in the RAR will be set and the CNF.RS

field will report that a FIFO underrun is the cause of the

exception.

10.4 Indicate (Receive) Exceptions

Indicate (receive) exceptions are reported in the Indicate

Attention Register (IAR) and IDUD Descriptors. The IAR has

an EXC bit for each of the three Receive Channels. These

bits get set when an ABus error occurs when writing frame

data or an IDUD Descriptor. On BSI-1 Devices if the host

sees this bit go high, then it should consider the last frame

in the corresponding Channel’s IDUD queue to be in error

(regardless of the status reporting in that frames IDUD De-

scriptors). The Indicate Status field of the IDUD Descriptor

(IDUD.IS) offers detailed information on the quality of re-

33

ceived frames. This field should always be checked when

deciding whether or not to accept a frame from the network.

The Terminating Condition, Valid FCS and Valid Data

Length fields in the IDUD should also be checked when

determining frame acceptabiity. See the appropriate Device

datasheet for more information.

10.5 Low Data Space Attentions

When the SI reaches the ‘‘end of queue’’ condition on a

PSP queue it notifies the host by raising a Low Data Space

attention bit in the No Space Attention Register (NSAR). It is

called ‘‘Low Data’’ instead ‘‘No Data’’, because it may still

have one more page available for storing incoming frame

data.

The host must never explicitly clear these attention bits in

the NSAR (even when initializing the SI). The host must

effectively clear these bits by producing PSP Descriptors.

Thus the host must either produce more PSP Descriptors or

mask off the attention from raising an interrupt.

10.6 No Status Space Attentions

When the SI detects that a given status queue (CNF and

IDUD queues) is full it raises a ‘‘No Status Space’’ attention

bit in the No Space Attention Register (NSAR). All SI Chan-

nels require status space (even Transmit Channels). So,

when a status queue becomes full the Channel stops. The

host must manually clear this attention bit for Channel oper-

ation to continue and must first update the status queue’s

Queue Limit to denote which queue slots the SI may use

when producing descriptors.

10.6.1 A Suggested Method for Handling

NSAR Attentions

Typically the NSAR attentions occur when receiving frames.

For example, if the station is being flooded with lots of small

frames the IDUD queue may fill up, because the host can’t

keep up with the network. Also, if the station is getting

‘‘pounded’’ with lots of big frames it may run out of receive

buffer before the IDUD queue fills up. In both of these situa-

tions, the host can free up the needed resource by consum-

ing frames, since the act of consuming frames frees up both

queue and data space. Thus, the host may treat the NSAR

attentions like yet another signal to go consume frames and

handle the clearing of the No Status Space attention bit as

part of the normal mechanism for granting more IDUD

queue slots. This turns out to be a good place to clear No

Status Space attentions, since the Queue Limit must be up-

dated first anyway. In summary, the host may

Use NSAR.LDIx and NSAR.LSIx like another indicate

breakpoint or simply ignore them if some other mecha-

nism is in place for scheduling received frame processing

(e.g., Indicate Breakpoints or polling for frame arrivals).

Produce PSP Descriptors as part of the frame reception

logic (the SI clears Low Data Space attention bits auto-

matically).

Update the IDUD queue’s Queue Limit (Limit RAM Regis-

ter) to indicate that the queue space occupied by the

consumed IDUDs is available for the SI. For performance

reasons it is desirable to delay updates to IDUD Queue

Limits until after a threshold has been reached (i.e., half

the queue size). This threshold value may actually ap-

proach the size of the queue. How close the threshold

gets to the queue size depends upon the latency be-

tween arrivals and Queue Limit updates. This improves

the performance of the station and eliminates the need

to include special logic to verify that the Queue Limit is

logically ahead of the Queue Pointer.

Make sure that the No Status Space attention bit is

cleared after updating the IDUD queue’s Queue Limit.

11.0 SI REGISTERS

The SI has three sets of registers: Control Bus Registers

(which can be directly accessed by the host), Pointer RAM

Registers (which are internal to the SI) and Limit RAM Reg-

isters (which are also internal to the SI). The SI datasheet

should be examined for detailed information about each

register.

11.1 SI Control Bus Registers

The MACSI device datasheets has a complete explanation

of each of the Control Bus Registers. Here is a quick refer-

ence table for locating offsets and bit fields (useful when

debugging).

34

TABLE 11-1. System Interface Registers

Addr Name D7 D6 D5 D4 D3 D2 D1 D0 Read Write

100 SIMR0 SMLB SMLQ VIRT BIGEND FLOW MRST FABCLK TEST Always Always

101 SIMR1 ABÐA31 ABÐA30 ABÐA29 ABÐA28 ATM ASM RES EAM Always Always

102 PCAR BP1 BP0 PTRW A4 A3 A2 A1 A0 Always Always

103 MBAR Mailbox Address [27:24], [23:16], [15:8], [7:0] Always Always

104 MAR STA NSA SVA RQA INA RES RES RES Always Ignored

105 MNR STAN NSAN SVAN RQAN INAN RES RES RES Always Always

106 STAR ERR BPE CPE CWI CMDE SPSTOP RQSTOP INSTOP Always Conditional

107 STNR ERRN BPEN CPEN CWIN CMDEN SPSTOPN RQSTOPN INSTOPN Always Always

108 SAR RES RES RES RES ABR0 ABR1 LMOP PTOP Always Conditional

109 SNR RES RES RES RES ABR0N ABR1N LMOPN PTOPN Always Always

10A NSAR NSR0 NSR1 LDI0 NSI0 LDI1 NSI1 LDI2 NSI2 Always Conditional

10B NSNR NSR0N NSR1N LDI0N NSI0N LDI1N NSI1N LDI2N NSI2N Always Always

10C LAR LRA3 LRA2 LRA1 LRA0 LMRW RES RES LRD8 Always Always

10D LDR LRD7 LRD6 LRD5 LRD4 LRD3 LRD2 LRD1 LRD0 Always Always

10E RAR USRR0 RCMR0 EXCR0 BRKR0 USRR1 RCMR1 EXCR1 BRKR1 Always Conditional

10F RNR USRR0N RCMR0N EXCR0N BRKR0N USRR1N RCMR1N EXCR1N BRKR1N Always Always

110 R0CR0 TT1 TT0 PRE HLD FCT SAT VST FCS Always Always

111 R1CR0 TT1 TT0 PRE HLD FCT SAT VST FCS Always Always

112 R0EFSR VDL VFCS EE1 EE0 EA1 EA0 EC1 EC0 Always Always

113 R1EFSR VDL VFCS EE1 EE0 EA1 EA0 EC1 EC0 Always Always

114 IAR RES RES EXCI0 BRKI0 EXCI1 BRKI1 EXCI2 BRKI2 Always Conditional

115 INR RES RES EXC0N BRK0N EXC1N BRK1N EXC2N BRK2N Always Always

116 ITR THR7 THR6 THR5 THR4 THR3 THR2 THR1 THR0 Always INSTOP e 1 or

EXC e 1 Only

117 IMCR SM1 SM0 SKIP FPP BOT2 BOT1 BOB BOS Always INSTOP e 1 Only

118 ICCR CC0 RES CC1 RES CC2 Always Always

119 IHLR HL7 HL6 HL5 HL4 HL3 HL2 HL1 HL0 Always INSTOP e 1 or

EXC e 1 Only

11A ACR PCKI2 PCKI1 PCKI0 RSWP1 RSWP0 ISWP2 ISWP1 ISWP0 Always Always

11B R0CR1 EFT RES RES RES RES RES RES ETR Always Always

11C R1CR1 EFT RES RES RES RES RES RES ETR Always Always

11D–11E Reserved RES RES RES RES RES RES RES RES N/A N/A

11F SICMP CMP7 CMP6 CMP5 CMP4 CMP3 CMP2 CMP1 CMP0 Always Always

120–1FF Reserved RES RES RES RES RES RES RES RES N/A N/A

Note: Bits in the conditional write registers are only written when the corresponding bit in the System Interface Compare Register is equal to the bit to be

overwritten.

35

11.2 Pointer RAM Registers

The MACSI datasheet has a complete explanation of each

of the Pointer RAM Registers. Here is a quick reference

table for locating offsets. The defined Pointer RAM Regis-

ters are always readable and writable.

11.3 Limit RAM Registers

The SI datasheet has a complete explanation of each of the

Limit RAM Registers. Here is a quick reference table for

locating offsets. All of the defined Limit RAM Registers are

always readable and writable.

TABLE 11-2. Pointer RAM Registers
Access Rules

Group Address Register Name Read Write

00 ODU Pointer RCHN1 (OPR1) Always Always

01 ODUD List Pointer RCHN1 (OLPR1) Always Always

02 CNF Queue Pointer RCHN1 (CQPR1) Always Always

03 REQ Queue Pointer RCHN1 (RQPR1) Always Always

04 ODU Pointer RCHN0 (OPR0) Always Always

05 ODUD List Pointer RCHN0 (OLPR0) Always Always

06 CNF Queue Pointer RCHN0 (CQPR0) Always Always

07 REQ Queue Pointer RCHN0 (RQPR0) Always Always

08 IDU Pointer ICHN2 (IPI2) Always Always

09 IDUD Queue Pointer ICHN2 (IQPI2) Always Always

0A PSP Queue Pointer ICHN2 (PQPI2)* Always Always

0B Next PSP ICHN2 (NPI2) Always Always

0C IDU Pointer ICHN1 (IPI1) Always Always

0D IDUD Queue Pointer ICHN1 (IQPI1) Always Always

0E PSP Queue Pointer ICHN1 (PQPI1)* Always Always

0F Next PSP ICHN1 (NPI1) Always Always

10 IDU Pointer ICHN0 (IPI0) Always Always

11 IDUD Queue Pointer ICHN0 (IQPI0) Always Always

12 PSP Queue Pointer ICHN0 (PQPI0)* Always Always

13 Next PSP ICHN0 (NPI0) Always Always

14 IDUD Shadow Register (ISR) Always Always

15 ODUD Shadow Register (OSR) Always Always

16–1F Reserved N/A N/A

P
O

IN
T
E
R

R
A

M

*Note: Bit position D2 of these Pointer RAM Locations is always forced to a 1,

(The first word of a PSP is not fetched).

TABLE 11-3. Limit RAM Registers

Access Rules

Group Address Register Name Read Write

0 REQ Queue Limit RCHN1 (RQLR1) Always Always

1 CNF Queue Limit RCHN1 (CQLR1) Always Always

2 REQ Queue Limit RCHN0 (RQLR0) Always Always

3 CNF Queue Limit RCHN0 (CQLR0) Always Always

4 IDUD Queue Limit ICHN2 (IQLI2) Always Always

5 PSP Queue Limit ICHN2 (PQLI2) Always Always

6 IDUD Queue Limit ICHN1 (IQLI1) Always Always

7 PSP Queue Limit ICHN1 (PQLI1) Always Always

8 IDUD Queue Limit ICHN0 (IQLI0) Always Always

9 PSP Queue Limit ICHN0 (PQLI0) Always Always

A-F Reserved N/A N/A

L
IM

IT
R

A
M

36

12.0 GLOSSARY OF TERMS

ABus The Address/Data bus interface of the SI.

This interface is 32 bits wide. The SI always

acts as a Bus Master on this interface. [2]

Asynchronous A class of data transmission service where-

by all requests for service contend for a

pool of dynamically allocated ring band-

width and response time. [1]

Channel A logical I/O port on the SI. All channels

are either used to transmit frames or re-

ceive frames. Each channel has two

queues associated with it. [2]

Control Bus The Control Bus Interface of the SI (as well

as the BMAC and PLAYER Devices). This

interface is 8 bits wide. The SI always acts

as Bus Slave on this interface. [2]

CNF Descriptor An 8-byte descriptor that reports the status

of previously transmitted frames. [2]

FDDI Fiber Distributed Data Interface. FDDI pro-

vides a high-bandwidth (100 megabits per

second), general purpose interconnect

among computers and peripheral equip-

ment using fiber optics as the transmission

medium in a ring configuration. [1]

FIFO First-In-First-Out

Frame A PDU transmitted between cooperating

MAC entities on a ring, consisting of a vari-

able number of octets and control symbols.
[1]

Indicate OSI terminology for receive.

Input Data A contiguous range of memory which con-

Unit (IDU) tains part or all of a Frame that has been

received from the FDDI network and trans-

ferred to memory by the SI. IDUs will never

cross a 4 kb page boundary and will always

be aligned on an ABus burst boundary (ei-

ther 16 or 32 bytes). The first IDU of a

frame will begin on the last byte of the first

word. [2]

IDU Descriptor An 8-byte descriptor that describes a par-

(IDUD) ticular IDU. The format of the IDU Descrip-

tor (IDUD) is a superset of the ODUD. The

IDUD informs the host of the IDU’s location

in memory, the size of the IDU and, in the

last IDUD for a frame, status information re-

garding frame reception. [2]

Limit RAM A sequence of actions taken by a host

Operation processor to access (read or write) a Limit

(LMOP) RAM Register (internal to the SI). LMOPs

are accomplished strictly via several Con-

trol Bus Registers. [2]

Logical Link Part of the IEEE 802.2 standard.

Control (LLC)

Media Access The Data Link Layer responsible for sched-

Control (MAC) uling and routing data transmissions on a

shared medium Local Area Network (e.g.,

an FDDI ring).[1]

Octet A data unit composed of eight ordered bits

(a pair of data symbols). [1]

Output Data A contiguous range of memory which con-
Unit (ODU) tains part or all of a Frame to be transmitted

by the SI. This memory may not cross a four

kb page boundary. ODUs are presented to

the SI as a complete Frame via one or more

ODU Descriptor s (ODUD). [2]

ODU An 8-byte descriptor that describes a particu-

Descriptor lar ODU. It informs the SI of the ODU’s loca-

(ODUD) tion in memory, the ODU’s size and (together

with zero or more other ODU Descriptors

(ODUD)) the ODU’s position within the entire

Frame to be transmitted. [2]

Pointer RAM A sequence of actions taken by a host proc-

Operation essor to access (read or write) a Pointer

(PTOP) RAM Register (internal to the SI). PTOPs in-

volve the use of a memory mailbox word and

some Control Bus Registers. [2]

Physical The Physical Layer responsible for delivering

Layer (PHY) a symbol stream produced by an upstream

MAC Transmitter to the logically adjacent

downstream MAC Receiver in an FDDI ring.
[1]

PMD The Physical Medium Dependent Layer.

Protocol Data The unit of data transfer between communi-

Unit (PDU) cating peer layer entities. It may contain con-

trol information, address information, data

(e.g., an SDU from a higher layer entity), or

any combination of the three. The FDDI MAC

PDUs are Tokens and Frames. [1]

Pool Space An 8-byte descriptor that is used to declare a

Descriptor pool of buffers into which received frame

(PSP) data will be copied. It is also used to declare

the sequence in which these buffers will be

used. [2]

Queue A block of memory registered to act as a de-

scriptor FIFO between the host and SI. Each

queue has a Queue Pointer and a Queue

Limit associated with it. There are two

queues per channel.

Queue Limit An internal register of the SI that defines how

far the SI may advance when producing or

consuming descriptors in a descriptor queue.

Queue Limits are maintained solely by host

software.

Queue An internal register of the SI that defines the

Pointer next position in a queue that the SI will ac-

cess when next producing or consuming a

descriptor. Queue Pointers are initialized by

host software and maintained by the SI

thereafter.

Repeat The action of a station in receiving a Token

or Frame from the adjacent upstream station

and simultaneously sending it to the adjacent

downstream station. The FDDI MAC may re-

peat received PDUs (Tokens and Frames),

but does not repeat the received symbol

stream between PDUs. While repeating a

Frame, a MAC may copy the data contents

and modify the control indicators as appro-

priate. [1]

37

A
N

-9
6
4

A
S
o
ft

w
a
re

E
n
g
in

e
e
r’
s

G
u
id

e
to

th
e

S
y
s
te

m
In

te
rf

a
c
e

o
f
th

e
D

P
8
3
2
6
6

M
A

C
S
I
D

e
v
ic

e
Request OSI terminology for transmit.

Request An 8-byte descriptor that describes an array

Descriptor of ODU Descriptors; which in turn describe

(REQ) one or more frames. The REQ Descriptor

acts as the top level of the three level trans-

mit data structure used by the SI. [2]

Service A span of time triggered by the capturing of a

Opportunity usable Token during which a station may

transmit Frames onto the ring.

Station An addressable logical and physical attach-

ment in a ring, capable of transmitting, receiv-

ing and repeating information. An FDDI sta-

tion has one or more PHY entities, one or

more MAC entities and one SMT entity. [1]

Station The supervisory entity within an FDDI station

Management that monitors and controls the various FDDI

(SMT) entities including PMD, MAC and PHY. [1]

Symbol The smallest signaling element used by MAC,

i.e., the PHY Service Data Unit. The symbol

set consists of 16 data symbols and 8 control

symbols. Each symbol maps to a specific se-

quence of five code bits as transmitted by the

Physical Layer. [1]

Synchronous A class of data transmission service whereby

each requester is pre-allocated a maximum

bandwidth and guaranteed a response time

not to exceed a specific delay. [1]

Token An explicit indication of the right to transmit

on a shared medium. On a Token Ring, the

Token circulates sequentially through the sta-

tions in the ring. At any time, it may be held by

zero or one station. FDDI uses two classes of

Tokens: restricted and nonrestricted. [1]

REFERENCES

1. ANSI X3.139-1987

2. National Semiconductor 1991 FDDI Databook

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

