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1.0 INTRODUCTION

The LM12458 family of data acquisition system (DAS) com-

ponents offers a self-calibrating, 12-bit a sign A/D convert-

er with choice of single ended, fully differential, or mixed

inputs, with on-chip differential reference, 4 or 8-input ana-

log multiplexer, sample-and-hold, an impressive, flexible

programmable logic system and a choice of speed/power

combinations. The programmable logic has the circuitry to

perform a number of tasks on its own, freeing the host proc-

essor for other tasks. This logic includes:

# An instruction RAM that allows the DAS to function on its

own (after being programmed by the host processor) with

programmable acquisition time, input selection, 8-bit or

12-bit conversion mode, etc.

# Limit registers for comparison of the inputs against high

and low limits in the ‘‘watchdog’’ mode.

# A 32-word FIFO register to store conversion results until

read by the host.

# Interrupt control logic with interrupt generation for 8 dif-

ferent conditions.

# A 16-bit timer register.

# Circuitry to synchronize signal acquisition with external

events.

# A parallel microprocessor/microcontroller interface with

selectable 8-bit or 16-bit data access.

Because the members of the LM12458 family are so versa-

tile, working with them may appear, at first, to be an over-

whelming task. However, gaining a basic understanding of

the device will prove to be fairly easy and using it to be as

easy as programming the host microprocessor or microcon-

troller.

The LM12458 family has 6 members, as shown in Table I.

This Application Note will simply refer to the DAS or to the

LM12458 as generic names for any member of the family.

The drawings illustrate only the 8-input versions of the fami-

ly, although references are meant to include the 4-input

members as well. A brief overview of the DAS and informa-

tion related to the subjects of discussion are given here, but

this Application Note should be used in conjunction with the

device data sheet and assumes that the reader has some

familiarity with the device. Similarly, the 80C51 family of mi-

crocontrollers is discussed briefly here, but the assumption

is that the reader is familiar with that device.

MCSTM is a trademark of Intel Corporation

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.



TABLE I. Members of the LM12454/8 Family

Device
Clock Operating Number of

Internal
Low

Number
Frequency Supply MUX

Reference
Voltage

(Max, MHz) Voltage Inputs Flag

LM12454 5 5.0g10% 4 Yes Yes

LM12458 5 5.0g10% 8 Yes Yes

LM12H454 8 5.0g10% 4 Yes Yes

LM12H458 8 5.0g10% 8 Yes Yes

LM12L454 6 3.3g10% 4 No No

LM12L458 6 3.3g10% 8 No No

2.0 GENERAL OVERVIEW

The DAS has 3 different modes of operation: 12-bit a sign

conversion, 8-bit a sign conversion, and 8-bit a sign com-

parison. The latter is referred to as the ‘‘watchdog’’ mode.

No conversion is performed in the watchdog mode, but the

DAS samples the selected input(s) and compares it/them

with values of the low and high limits stored in the instruc-

tion RAM. This comparison is done with a voltage compara-

tor with one comparator input being the selected multiplexer

input (pair) and the other input being the appropriate tap on

the internal capacitive ladder of the converter. This tap is

selected by a programmed value in the instruction register.

If the input voltage is outside of the user defined and pro-

grammed minimum/maximum limits, an interrupt can be

generated to indicate a fault condition, and the host proces-

sor could then service that interrupt, taking the appropriate

action.

The 8 possible interrupts can be individually masked or en-

abled as desired by the user.

The DAS is designed to be controlled by a processor, but

the DAS’ functionality off loads most of the data acquisition

burden from the processor, resulting in a great reduction of

software and processor overhead. The processor down-

loads a set of operational instructions to the DAS’ RAM and

registers, then issues a start command to the DAS, which

performs conversions and/or comparisons as indicated by

the instructions, loading conversion results into the FIFO,

while the processor is free to do other chores, or can be

idled, if not needed.

There are two basic options at this point. The DAS can gen-

erate an interrupt to the processor when a predetermined

number of conversion results are stored in the FIFO, or

when any other interrupt conditions have occurred. The

processor can then service the interrupt by reading the

FIFO or taking whatever corrective action is appropriate.

Alternatively, the processor can read the data or give a new

command to the DAS without waiting for an interrupt from

the DAS.

Internal operation ceases when the DAS is accessed by
pulllng the CS pin low.

2.1 The DAS Programming Model

Figure 1 illustrates the functional block diagram or user pro-

gramming model of the DAS, and is not intended to reflect

the actual implementation of the internal building blocks.

The Model contains the following blocks:

# A flexible analog multiplexer with differential output. The

inputs can be programmed with any input referenced to

any other input or to ground.

# A differential, self-calibrating 12-bit a sign A/D convert-

er.

# A 32-word by 16-bit FIFO as the output data register.

# An instruction RAM that can be programmed for a single

execution or to repeatedly perform a series of conver-

sions and/or comparisons on the selected input chan-

nels.

# A series of registers for overall control and configuration

of the DAS operation and indication of internal status.

# Interrupt generation logic to request service from the

processor under specific conditions.

# Parallel interface logic for input/output operations be-

tween the DAS and the processor. All registers shown in

the diagram can be read and most of them can also be

written to by the user through the input/output block.

# A controller unit that controls the interactions of the vari-

ous internal blocks, including performance of the conver-

sion, comparison, and calibration sequences.

The INSTRUCTION RAM is divided into 8 separate words of

48 (3x16) bits. Each word consists of three 16-bit sections,

each with a unique address. The three different sections of

each word are selected by a 2-bit RAM Pointer (RP) for

read/write operations. The RP is part of the Configuration

Register.

Figure 1 shows the Instruction RAM sections labeled as In-

structions, Limits Ý1, and Limits Ý2. The instruction sec-

tion holds operational information such as the input chan-

nels to be selected, the mode of operation of that instruc-

tion, and how long the acquisition time should be. The Limits

sections are used in the watchdog mode and hold user-de-

fined limits. The watchdog limits are usually one high and

one low limit, but it is possible to program two low or two

high limits.

The DAS begins executing from Instruction 0 and continues

executing subsequent instructions up to any user specified

instruction, where it ‘‘loops back’’ to Instruction 0 or pauses,

depending upon user programming. Not all 8 instructions

need to be executed. The cycle may be repeatedly execut-

ed until stopped by the user, until the FIFO is full, or until the

FIFO holds a user programmed number of conversion re-

sults.

The user should access the Instruction RAM only when the
sequencer is stopped.

2



TL/H/12068–1

FIGURE 1. DAS Functional Block Diagram, Programming Model

The FIFO Register is used to store the results of the conver-

sions. This register is ‘‘read only’’ to the user and all the

locations are accessed through a single address. Each time

a conversion is performed, the result is stored in the FIFO

and the FIFO’s internal write pointer points to the next loca-

tion. The pointer rolls back to location 0 after a write to

location 31. A similar flow occurs during FIFO reads. The

internal FIFO writing and the external FIFO reading do not

affect each other’s pointers.

The CONFIGURATION Register is the main ‘‘control panel’’

of the DAS. Writing data to the Configuration Register tells

the DAS to perform operations such as start or stop the

sequencer, reset the pointers and flags, enter standby

mode for low power consumption, calibrate offset and lin-

earity, and select RAM sections.

The INTERRUPT ENABLE Register allows the user to acti-

vate any or all of the 8 interrupt sources. It also holds a user

programmable value to indicate the number of conversions

to be stored in the FIFO before a data ready interrupt is

generated, and a user programmable value to indicate

which instruction will generate an interrupt just before that

instruction is to be executed.

The INTERRUPT STATUS and LIMIT STATUS Registers

are ‘‘read only’’ and are used to indicate which conditions

have generated the interrupt and what limits have been ex-

ceeded. The appropriate bits are set upon occurrence of

their corresponding interrupt conditions whether or not that

interrupt is enabled for external interrupt generation. All in-

terrupt bits in the Interrupt Status Register are cleared

whenever this register is read or a device reset is issued.

The Limit Status Register is likewise cleared whenever it

(Limit Status Register) is read or a device reset is issued.

The TIMER Register is used to insert a delay before execu-

tion of any selected instruction(s). This can be useful for

reducing the generation of redundant data when converting

slowly changing signals.

Appendix A shows the DAS accessible registers and a brief

description of their bit assignments. Appendix A also has

empty register models that can be used as a programming

tool and for design documentation.

2.2 Programming Procedure

Defining a general programming procedure is not practical

due to the high flexibility of the DAS and the broad variety of

possible applications. However, the following typical proce-

dure demonstrates the basic concepts of DAS program-

ming:

# Reset the DAS by setting the RESET bit and select RAM

section ‘‘00’’ through the Configuration Register.

# Load instructions to the Instruction RAM (1 to 8 instruc-

tions).

# Select RAM section ‘‘01’’ (if used) through the Configura-

tion Register to program the first set of watchdog limits.

# Load limits Ý1, 1 to 8 values (if used).

# Select RAM section ‘‘10’’ (if used) through the Configura-

tion Register to program the second set of watchdog lim-

its.

# Load limits Ý2, 1 to 8 values (if used).

# Initialize the Interrupt Enable Register by selecting the

conditions to generate an interrupt at the INT pin (if inter-

rupt used).

# Program the Timer Register for required delay (if used).

# Start the sequencer operation by setting the START bit in

the Configuration Register. Set the other bits in the Con-

figuration Register at the same time, as required.

After the DAS starts operating, the processor may respond

to interrupts from the DAS, or it may interrogate the DAS at

any time.

2.3 A Typical Program Flowchart

Figure 2 shows a typical DAS program flowchart as applied

to the DAS. Figure 2a shows initialization of the DAS and

the start of conversions, while Figure 2b illustrates one gen-

eral form of the DAS interrupt service routine. It is assumed

here that the processor reads the DAS registers and takes

appropriate action only upon receiving an interrupt from the

DAS, freeing the host processor for other tasks until an in-

terrupt is generated.

3



TL/H/12068–2

FIGURE 2a. Typical Program Flow Chart for DAS Initialization and Sequencer Start
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TL/H/12068–3

FIGURE 2b. Typical Program Flow Chart for DAS Interrupt Service Routine
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The Processor Initialization step is used to define address-

es, memory space and values, as well as any other system

initialization needed for the application.

After the DAS is initialized by writing the appropriate infor-

mation to it, the processor interrupts that will be used are

enabled and a full calibration cycle is ordered for the DAS,

which is required for 13-bit accuracy. One full calibration

may be done at power up with or without calibrations at

specified time intervals or upon occurrence of given condi-

tions. A full calibration cycle takes about 1 ms with a 5 MHz

clock, or about 0.6 ms with an 8 MHz clock. A delay can be

inserted into the processor code after initiating a calibration

cycle to allow for the calibration to be completed before

starting the DAS sequencer, the processor can wait for a

‘‘calibration complete’’ interrupt from the DAS as is done

with the example given in this Application Note, or the DAS’

Interrupt Status Register can be read for the corresponding

flag bit.

The full calibration cycle affects some of the DAS’ internal

flags and pointers, which will influence the execution of the

first instruction after completion of calibration, so the DAS

should be reset after a calibration cycle to avoid false in-

struction execution.

The sequencer is started by writing a ‘‘1’’ to the START bit

in the Configuration Register. The bits shown as ‘‘P’’ (Pro-

gram) in the flow chart are user defined and determine the

different modes of operation during conversions. These will

be discussed later. All other bits should be set as shown.

Note that words of 16 bits are shown in the flow chart, and

that the 80C51 family of microcontrollers will transfer only

8 bits of data at a time.

At the start of the interrupt service routine (Figure 2b) , a

zero is written to the START bit in the Configuration register

to stop conversion. This is not necessarily needed unless

required for accuracy or timing purposes. Results of conver-

sions can be noisier and less accurate if reads and/or writes

of the DAS are performed while it is converting. The degree

of any resulting inaccuracy depends upon many aspects of

system design and is not easily quantified. However, read-

ing during conversions has been shown not to cause seri-

ous accuracy problems in most systems.

There are two timing issues regarding the reading during

conversion that need to be addressed.

Whenever the CS line of the DAS is low, as when reading or

writing to the DAS, the internal clock is gated off to stop

internal bus activities. This is done to prevent internal con-

flicts. External reads and writes are asynchronous to inter-

nal bus activities. This pause of the internal clock will in-

crease the total acquisition plus conversion time for the in-

terrupted instruction. The amount of this time increase is

variable and is not easily predicted because the processor

and DAS are not synchronized with each other.

Sometimes it is critical to maintain equal time intervals be-

tween successive readings of the same input, as when per-

forming an FFT upon the data. There are two ways to insure

that the time intervals between conversions remain con-

stant. The first is to avoid reading the DAS while conver-

sions are being performed. This could be difficult if a lot of

data is being gathered as the FIFO has a 32 word limit.

The other way to insure equal time intervals between suc-

cessive readings of the same input is to use the SYNC input

of the DAS. To properly use this input, the I/O bit of the

Configuration Register (bit 7) must be set, as must be the

SYNC bit (bit 8) of the Instruction RAM. When this is done,

the input is acquired at the rising edge of the SYNC input,

and conversion begins at the rising edge of the next clock

(CLK) input.

There are a couple of concerns when doing this. The first is

that the SYNC signal period is long enough to allow execu-

tion of all programmed instructions. Second, there must be

enough time after completion of one sequencer cycle for

the processor to access the DAS and read the registers

before another rising edge of the SYNC input. This second

requirement, of course, is the most stringent and incorpo-

rates the first. Appendix B gives some insight into using the

SYNC input.

The main task of the interrupt service routine is to read the

DAS’ Interrupt Status Register and test its interrupt bits for

the source of the interrupt, followed by the appropriate ap-

plication dependent action. The sequence of bit tests in a

given system would depend upon the priority level of the

interrupts in that system. Also, actual systems may not use

all of the interrupts, so the extra bit tests may be eliminated

from the routine. The actual tasks to be performed for each

interrupt are system related, so cannot be specified here.

2.4 The DAS/Processor Interface

The 80C51 family of 8-bit microcontrollers is a popular one

with a still growing product line. Reference to the 80C51 in

this application note is intended to also include all deriva-

tives, as well as the NMOS versions.

The interface between the processor and the DAS is similar

to a memory or I/O interface; the 80C51 sees the DAS as a

group of I/O registers with specific addresses. Some of the

possible DAS/80C51 interface schemes are shown in Fig-
ures 3, 4 and 5.

Figure 3 shows a generic interface scheme for the 80C51.

This is a maximum system scheme, assuming that the mi-

crocontroller is accessing other peripherals or memory in

addition to the DAS. In this case external address latches

and an address decoder are required to select the DAS,

other peripherals, or memory. The exact configuration of the

address decoder, of course, would depend upon individual

system requirements.

The DAS can interface with both multiplexed and non-multi-

plexed address/data bus architectures. The DAS’ ALE input

and internal latches allow the DAS to interface to a multi-

plexed address/data bus when external address latches are

not required by the rest of the system. Figure 4 indicates

how this might be implemented.

In smaller systems it is possible to use a simpler address

decoding scheme, such as shown in the example of Figure
4, where all signals but a Chip Select come directly from the

80C51. The DAS latches the CS input signal with the ALE,

so a higher order address bit may be used to drive the CS,

reducing the circuit to the ultimate in simplicity, as indicated

in Figure 5. This does, however, limit the total available ex-

ternal address space.

The DAS can be accessed in either 8-bit or 16-bit data width

by using the BW (Bus Width) pin of the DAS to select 8-bit

or 16-bit access mode. Since the 80C51 is limited to 8-bit

data transfers, the BW pin is tied high for 8-bit access when

used with this family, and address line A0 selects the lower

or upper byte of a 16-bit register. As shown in Figure 6, the

DAS appears to the processor as a group of 28 separate

8-bit I/O locations. In 16-bit systems, the BW pin would be

tied low, and address line A0 would be a ‘‘don’t care’’. Note

that each set of eight 16-bit Instruction RAM words has the

6



TL/H/12068–4

FIGURE 3. LM12458 to 80C51 Microcontroller Interface (Maximum System)

TL/H/12068–5

FIGURE 4. LM12458 to 80C51 Microcontroller Interface (Simplified System)

TL/H/12068–6

FIGURE 5. LM12458 to 80C51 Microcontroller Interface (Minimum System)

same address. They are differentiated by the setting of the

two-bit RAM pointer in the Configuration Register.

The interface should provide the address, data and control

signals to the DAS with any needed address decoder to

generate an appropriate chip-select signal for the DAS. It

should also provide the proper timing relationship between

ALE, CS, RD, WR, address bus and data bus to satisfy the

DAS timing requirements, as specified in the data sheet.

When the DAS is working in an interrupt-driven I/O environ-

ment, a suitable service request link between the DAS and

the system should be provided. This can be as simple as

connecting the DAS’ INT output to the processor’s interrupt

input (INT0 or INT1 of the 80C51), as indicated in Figures 3,
4 and5, or interrupt arbitration logic can be used in systems

that have many I/O devices.

7



TL/H/12068–7

FIGURE 6. DAS Registers, Address Assignments, Interface Buses and Control Signals for 8-Bit Bus Width
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3.0 THE 80C51 MICROCONTROLLER FAMILY

The architecture of the 80C51 family of microcontrollers has

been optimized for sequential real time control applications.

The family includes versions that have RAM, ROM or

EPROM, or CPU only. The majority of the devices in the

family can address up to 64 kbytes of program memory, plus

64 kbytes of data memory. Features of these microcontrol-

lers include:

# 8-bit CPU

# Single-bit logic capabilities

# 32 bi-directional, individually addressable I/O lines

# On-board data RAM

# 64 kbytes program memory address space

# Full duplex UART

# On-chip clock oscillator

# On-chip program memory

# 5-source interrupt structure with 2 priority levels

# 16-bit timer/counters

# 64 kbytes data memory address space

# Broad choice of packages

Versions are available that operate at very low supply levels

(down to 1.5V), incorporate I2C (serial bus) interface, have

extended I/O, watchdog timer, up to 3 counter/timers, A/D

converters, analog comparators, CAN (Control Area Net-

work) bus interface, DMA to on-chip RAM, EEPROM, and

security features.

The basic architecture of the 80C51 is shown in Figure 7.

TL/H/12068–8

FIGURE 7. 80C51 Architecture

9



3.1 80C51 Memory Organization

All 80C51 derivatives have separate address space for pro-

gram and data memory, as shown in Figure 8. This logical

separation of data and program memory space allows both

memory areas to be addressed with 8-bit addresses. How-

ever, 16-bit data memory addresses can be generated by

using the 16-bit DPTR register.

Although up to 64 kbytes can be addressed, on-board pro-

gram memory of the 80C51 itself is 4 kbytes, with zero to

32 kbytes available in various family derivatives. The read

strobe for external program memory is the PSEN (Program

Store Enable). The entire 64k program memory area can be

addressed off-chip. So, in the 80C51, with 4 kbytes of ROM

(or the 87C51 with 4 kbytes of EPROM), we can have

64 kbytes of program memory off-chip, plus 4 kbytes on-

chip. Care must be exercised, however, in switching be-

tween on-board and external program memory. The EA (Ex-

ternal Access) pin is used to determine whether external or

internal program memory is being used. Note that only

those derivatives with more than 128 bytes of RAM have

the indirectly addressable data memory above address

7FH.

Data Memory (RAM) occupies a separate address space

from Program Memory. In the 80C51, the lower 128 bytes of

data memory are on-chip, and up to 64 kbytes of external

RAM can be addressed. Derivatives have from zero to

512 bytes of RAM.

TL/H/12068–9

FIGURE 8. 80C51 Memory Structure
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3.1.1 Program Memory

The lower portion of Program Memory contains the loca-

tions from which execution begins upon reset or the occur-

rence of an interrupt. After reset, the CPU begins execution

from location 0000H, and each interrupt is assigned a loca-

tion from which execution begins upon invocation of that

interrupt. There are 3 bytes allowed for reset programming,

so these should be used to cause a jump to the start of the

program, which should be above the interrupt vector loca-

tions. Eight bytes are allowed for each interrupt execution

location. These lower bytes are assigned as follows:

0000H Reset

0003H Interrupt 0

000BH Interrupt 1

0013H Interrupt 2

001BH Interrupt 3

0023H Interrupt 4

An interrupt causes the CPU to begin executing from the

above indicated location. If any given interrupt is not being

used, its service location is available as general purpose

Program Memory. These service locations are located at 8

byte intervals. If a given interrupt service routine is short

enough, it can be located within these 8 bytes. Longer serv-

ice routines can use a jump instruction to skip over subse-

quent interrupt service locations that are in use.

The lowest 64 bytes to 4 kbytes (whatever on-chip ROM is

present) of Program Memory can be either in the on-chip

ROM or in external ROM. This selection is made by con-

necting the EA pin either to VCC or VSS (Ground). With this

pin tied high, program fetches from addresses 0000H

through 0FFFH are from internal ROM, while program fetch-

es from 10000H through FFFFH are directed to external

ROM. With the EA pin tied low, all program fetches are from

external ROM.

A general hardware configuration to execute from external

Program Memory is shown in Figure 9. Note that 16 I/O

lines are used for bus functions during external Program

Memory access. Port 0 (P0) is a multiplexed address/data

bus, and carries the low byte of the Program Counter (PCL)

as an address, and then goes into a float state awaiting the

arrival of the code byte from the Program Memory. While

PCL is valid on Port 0, the ALE (Address Latch Enable)

signal clocks this byte into an address latch. Meanwhile,

Port 2 (P2) carries the high byte of the Program Counter

(PCH), PSEN strobes the Program Memory, and the code

byte is read into the microcontroller.

External Program Memory addresses are always 16 bits

wide, even though the actual amount of Program Memory

may not require the full 16 bits. External program execution

sacrifices two of the 8-bit ports, P0 and P2, to the function

of accessing Program Memory.

TL/H/12068–10

FIGURE 9. A General Hardware Configuration to Execute from External Program Memory
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3.1.2 Data Memory (RAM)

A complete discussion of 80C51 data memory would in-

clude both internal and external RAM, but the discussion

here will be limited to internal RAM. Also, since this discus-

sion of data memory is centered around the 80C51,this dis-

cussion is limited to those derivatives which, like the 80C51,

have 128 bytes of RAM.

The Lower 128 bytes of RAM are shown mapped in Figure
10. The SFRs (Special Function Registers) are mapped to

the 128 bytes of memory space immediately above the first

128 bytes, starting at address 80H. Those devices with

more than 128 bytes of RAM share this second 128 bytes

with the SFR memory space, but the SFRs can only be

directly accessed, while memory in this space can only be

indirectly accessed.

7FH

30H

2FH

Bank Bit-Addressable

Select Space

Bits in (Bit Addresses

PSW 00–07F)

v 20H

11 BANK 11 1FH

18H

10 BANK 10 17H

10H

01 BANK 01 0FH

08H

00 BANK 00 07H wReset Value of

00H Stack Pointer

FIGURE 10. Lower 128 Bytes of Internal RAM

Figure 11 details the 80C51 RAM organization. Care must

be taken not to use RAM locations that correspond to the

register banks that will be used. Each of these register

banks contains eight registers, referred to as Register R0

through R7 in program instructions. These registers can be

used for relative addressing, as counters, and for temporary

data storage. Two bits in the PSW (Program Status Word)

select which register bank is in use.

The next 16 bytes above the register banks is a block of bit-

addressable memory space. If the program uses only Regis-

ter Bank 00, then memory locations 08H through 1FH also

may be used for data storage. In the program detailed here,

data memory locations 40H through 5DH are used to store

the conversion results read from the DAS. Should more

RAM be required than is available in the 80C51 for a given

application, a member of the 80C51 family with more RAM

should be selected (the 80CE558 has 1024 bytes of RAM),

or up to 64 kbytes of external RAM may be used. Figure 11
shows RAM organization as used by the example program

we will develop here.

Start RAM Space Usage End

Addr Addr

7FH

UNUSED

STORAGE SPACE

60H

5FH

CONVERSION RESULTS

STORAGE SPACE

40H

3FH

BIT ADDRESSABLE

SPACE

20H Start of Stack

1FH

REGISTER BANK 10 REGISTER BANK 11

10H

0FH

REGISTER BANK 00 REGISTER BANK 01

00H

FIGURE 11. 80C51 RAM Organization

as Used by Example Program

3.2 80C51 Hardware Description

The 80C51 maps 21 registers onto the upper portion of

Data Memory (RAM) in what is called SFR Memory. Those

registers with the three least significant address bits equal

to zero (addresses x0H and x8H) are bit addressable.Figure
12 indicates how these Special Function Registers are

mapped onto RAM. Note that, while the SFR memory map

of Figure 12 has many ‘‘holes’’ in it, these are not usable

data storage locations as nothing is located in these areas.

The SFRs are not actually part of memory, but are mapped

onto memory.

12
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Figure 12. 80C51 Special Function Register (SFR) Map

Most members of the 80C51 family use a dynamic CPU,

meaning that node capacitances are used for temporary,

dynamic storage within the CPU. For this reason, the CPU

can ‘‘forget’’ what it is doing if the clock rate is too slow.

Dynamic nodes are used to reduce transistor count, de-

crease die size, and provide a more economical device. The

on-chip RAM, however, is fully static; it is only the CPU that

is dynamic. Minimum clock frequency is individual product

dependent, but is 3.5 MHz for most of the dynamic CPU

devices in the family.

The 80(C)31 is ROMless, while the 80(C)51 contains a

mask programmable ROM, and the 87C51 has EPROM Pro-

gram Memory. For the derivatives of the family, the 80Cxx

devices are ROMless, the 83Cxx devices have mask pro-

grammable ROM, and the 87Cxx devices have EPROM Pro-

gram Memory. Many of the EPROM versions are available

as OTP. The 80C51 family Special Function Registers are

described below.

The ACC is the Accumulator, also referred to as, simply, A.

The B Register is used during multiply and divide opera-

tions. For other instructions it can be used as a scratch pad

register.

The Program Status Word (PSW) register contains pro-

gram status information, including the carry flag, an auxiliary

carry flag (for BCD operations), an overflow flag, two user-

defined flags, two register bank select bits, and a parity flag.

The Stack Pointer (SP) register indicates the last location

to hold information saved with the PUSH instruction, and

can reside anywhere in on-chip RAM. It is initialized to 07H

after reset, causing the stack to begin at 08H, which is

where Register Bank 01 is located. If it is desired to have

the stack at some other location, it should be initialized early

in the program and before a PUSH instruction is executed.

The Data Pointer (DPTR) consists of a high byte (DPH) and

a low byte (DPL). Its intended function is to hold a 16-bit

address and can be manipulated as a 16-bit register (DPTR)

or as two independent 8-bit registers (DPH and DPL).

Ports 0 to 3 are the SFR latches of the respective ports.

When used as an input, the external state of the port pin will

be held in the port SFR.

The Serial Data Buffer (SBUF) is used for serial data trans-

fer (UART operations).

The Timer Registers are in pairs (TH0, TL0 and TH1, TL1)

that form 16-bit counting registers for Timer/Counters 0 and

1, respectively.

The Interrupt Priority (IP) register is used to define high/

low priority for each of the five interrupt sources. The other

three bits are reserved and should not be written to. The five

priority sources have preset priority (see the 80C51 data

sheet).

The Interrupt Enable (IE) register is used to enable or

mask the interrupt sources, as desired.

The Timer Mode Control (TMOD) register is used to set

the counter/timers to count or time, enables the counters/

timers, and selects one of 4 operating modes. Each coun-

ter/timer can be set independently of the other.

The Counter/Timer Control (TCON) register carries the

counter/timer overflow flags, run control bits, interrupt flags

and control bits.

The Serial Port Control (SCON) register contains enabling

bits and mode control bits for serial communications.

The Power Control (PCON) register is mainly intended to

put the 80C51 into one of its power saving modes, but also

contains a Double Baud rate bit for use with serial communi-

cations, two general purpose flags and three reserved bits.

3.3 OTHER 80C51 FEATURES

Other features of the 80C51 family include Power-On Reset

capability, two power saving modes of operation (Power

Down and Idle), ONCE (ON-Circuit Emulation) mode, and an

on-chip oscillator.
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A Power-On Reset may be obtained upon application of

power by connecting the RST pin to VCC through a 10 mF

capacitor, and to VSS through an 8.2k resistor, as long as

the VCC rise time is no longer than 1 ms and the oscillator

start-up time is no longer than 10 ms. The CMOS devices

do not require the 8.2k resistor, but its presence does no

harm.

The 80C51 family has two Power-Saving Modes of opera-

tion. The Power Down mode is invoked when the PD bit in

the PCON register is set. In this mode the oscillator is dis-

abled, but the contents of the on-chip RAM and SFRs are

maintained and the port pins send out the values held by

their respective SFRs. The ALE and PSEN outputs are held

low.

VCC can be reduced to as low as 2V only after the Power

Down mode is invoked, but VCC must be restored to operat-

ing levels before this mode is terminated. The only recovery

from Power Down is a hardware reset, which redefines all

the SFRs, but does not change on-chip RAM.

The Idle mode is invoked when the IDL bit in the PCON

register is set. In this mode the on-chip oscillator continues

to run, but the clock signal to the CPU is gated off. The

Serial Port, Interrupt, and Timer blocks continue to be

clocked, and the CPU status is preserved in its entirety. The

ALE and PSEN pins hold at logic high levels.

The Idle mode can be terminated in two ways. Activation of

any enabled interrupt will clear the IDL bit and cause the

Interrupt to be serviced. Following the RETI (Return from

Interrupt) command, the next instruction to be executed will

be the one following the instruction that put the device into

idle. The other way to terminate the Idle mode is with a

hardware reset. At this time the CPU will resume execution

from where it left off (instruction following the one that set

the Idle mode). Three NOP instructions are recommended

following the instruction that invokes the idle mode.

The ONCE (ON-Circuit Emulation) mode eases testing

and debugging of systems without having to remove the

processor from the circuit. This mode is invoked by pulling

the ALE pin low while the device is in reset and PSEN is

high, then holding ALE low as RST is deactivated. In this

mode, the Port 0 pins float in a high impedance state and

the ALE and PSEN outputs are weakly pulled high and the

oscillator remains active. While in this mode, an emulator or

test CPU can be used to drive the circuit. Normal operation

is restored after a normal reset is applied.

The On-Chip Oscillator in the NMOS members of this fami-

ly is a single stage linear inverter, with the crystal used in its

fundamental response mode in parallel resonance with ex-

ternal capacitance. The external capacitors are not critical,

20 pF–30 pF being suitable with good quality crystals. A

ceramic resonator can be used in place of the crystal, with

the associated capacitors being, typically, about 50% higher

in value.

The On-Chip Oscillator in the CMOS members of this family

is very similar to that of the NMOS members, but there are

some important differences.

One difference is that the CMOS oscillators can be turned

off under software control (by writing a 1 to the PD bit in the

PCON Register). Another is that the internal circuitry is

clocked by the signal at EXTAL1 in the CMOS versions, and

by the signal at XTAL2 in the NMOS versions.

4.0 THE 80C51 HARDWARE INTERFACE

In this section we will detail the development of the inter-

face circuit and software for using the 80C51 (MCSTM-51)

family of microcontrollers with the DAS. The 80C51 family is

available in many versions suitable for a wide variety of ap-

plications. The reader is encouraged to refer to the many

80C51 suppliers for derivatives available and for complete

information and specifications. Where reference is here

made to the 80C51, all products in the family are included,

including both the NMOS and CMOS versions of them, un-

less otherwise noted or indicated.

Since there are many different devices in the 80C51 family

with differing pin configurations, no attempt is made on

schematics in this section to show connections to all pins of

the microcontroller. Device pin numbers shown for the mi-

crocontroller are those for the 80C51; other members of the

80C51 family may have different pin numbers for the same

function.

Internal program memory will be used in these examples so

the 80C51’s EA pin is tied high, and no external program

memory is used. The DAS is mapped to the lower 28 bytes

of external data memory.

Interrupt handling is accomplished by the 80C51’s vectored

interrupt scheme. There are five possible sources of inter-

rupts, any or all of which are maskable. The external inter-

rupts, INT0 and INT1, can be programmed to be either level

sensitive or transition activated. Transition activation is used

in this example because the interrupt flag is cleared when

the service routine is vectored to only when transition acti-

vation is used freeing our programming from the need to

clear this flag. Using transition activation would be a disad-

vantage only if we enabled more than one interrupt source

because the 80C51 interrupt flag is cleared as program con-

trol is transferred to the service routine, preventing us from

determining what generated the interrupt. In this example,

however, only INT0 (where the DAS’ INT output is connect-

ed) is enabled, so we know that any interrupt must have

been generated by the DAS.

Two different interface circuits are presented in Figures 13
and 14. The circuit of Figure 13 uses complete address de-

coding with the external address latches, as would be need-

ed if the processor would be accessing other devices and/

or external memory. A circuit similar to that of Figure 14
would be used where only a few peripherals and/or a small

amount of other external memory would be used such that

no more than 64 kbytes of external memory (mapped)

space were needed. If the DAS were the only device in the

circuit, the address decoder could be eliminated and the CS

input to the DAS could be connected directly to one of the

higher order address pins (ADD5, ADD6, or ADD7). Of

course, there are many other address schemes that could

be used. These are shown only as examples.

The circuits of Figures 13 and 14 also show a method of

using the internal oscillator of the processor to drive the

clock input of the DAS. When this is done, the DAS cannot

function when the 80C51 is in the power down mode since

the oscillator does not function in this mode. The Idle mode

of power saving may be used to reduce power consumption

while the DAS is running, however.
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Because the 80C51 is an 8-bit machine with an 8-bit wide

data bus, we will only be able to transfer 8 bits of informa-

tion to and from the DAS’ 16-bit registers at a time, so the

DAS’ ‘‘BW’’ pin (pin 20) will be tied high and data lines D8

through D15 will not be used.

4.1 Complete Address Decoding

Figure 13 details the complete address decoding used to

generate the DAS’ CS signal. The DAS is accessed as

memory mapped I/O at the beginning of the external ad-

dress range (0000H to 001FH), and 8-bit data access is

selected for the DAS (‘‘BW’’ pin tied high). External address

latch U3 (74HC573) is used to latch the lower address byte

from the 80C51’s multiplexed 16-bit address/8-bit data

lines. An 8-bit magnitude comparator, U5 (74HC688), de-

codes the high order address byte (A15. . .A8) by comparing

it with the logic input from the address range selected by the

jumpers on header JP1, set for 00H in Figure 13. When the

address is within the correct range, the output of the magni-

tude comparator enables the 3-to-8 line decoder, U4

(74HC138). Output Y0 of U4 is the CS signal for the DAS.

The processor address lines A0 through A4 are directly con-

nected to the respective DAS address inputs. With this cir-

cuit we must use 16-bit (DPTR) addressing, even if we are

not using the high address byte.

The INT output of the DAS drives the INT0 input of the

80C51 processor, allowing the DAS to request service when

needed. The selection of this input is arbitrary in this case;

we could have selected interrupt input INT1.

4.2 Simple and Minimal Address Decoding

The circuit of Figure 14 does not use the external address

latch of the 8-bit magnitude comparator, or the address set-

ting jumpers. The 3-to-8 line decoder is still used and is

permanently enabled. The Y0 output of this decoder still

drives the DAS’ CS input. However, the ALE output of the

80C51 directly drives the DAS’ ALE input. The ALE signal

latches address and CS lines into the DAS at the start of

any data transfer cycle. The DAS is still accessed with the

same address range of the circuit of Figure 13, and all bits

of the higher order byte of the address are ‘‘don’t cares’’Ð

the DAS will be accessed regardless of the value of the high

order address byte.

Outputs Y1 through Y7 of the 3-to-8 line decoder

(74HC138) can still be used to access other peripherals, but

those devices should have internal address latches for the

address and CS line, as does the DAS.

If the DAS is the only peripheral/memory, or there are no

more than two additional devices to be addressed, one of

the high order address bits of the least significant address

byte (ADD5, 6 or 7) can be used to directly drive the CS

input of the DAS, eliminating the 3-to-8 Line Decoder entire-

ly, as shown in Figure 15.

4.3 Timing Analysis

The user should perform a timing analysis as part of the

interface hardware design to ensure proper interaction be-

tween the processor and the DAS. Each new hardware de-

sign should include a comparison of processor timing speci-

fications vs DAS timing requirements. Any timing problems

need to be addressed through hardware design or software

techniques.

4.3.1 Complete Address Decoding

A study of the switching characteristics of the DAS and the

80C51 with the complete address decoding of Figure 13
shows that the write cycle timing is more critical than is the

read cycle timing.

The closest to critical timing for the complete address de-

coding circuit of Figure 13 is the Data Valid to WR setup

time, which has a specification of 40 ns minimum. This re-

quirement is met as long as the processor clock does not

exceed 16.6 MHz. Although versions of the 80C51 are avail-

able with clock speeds up to 33 MHz, we used a clock

speed of 8 MHz in this application because we wanted to

use the 80C51 clock to drive the DAS, affording a more

economical approach. The LM12H454/8 has a maximum

8 MHz clock specification.

The Data Valid to WR setup time is not critical here because

the margin between the 40 ns minimum DAS requirement

and the 105 ns provided by the 80C51 operating at 8 MHz is

quite adequate. Maximum propagation delays considered

for the logic devices were those specified at 4.5V supply,

50 pF load and b40§C to a85§C temperature range.
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TL/H/12068–12

FIGURE 13. DAS/80C51 Microcontroller Interface (Complete Address Decoding)
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TL/H/12068–13

FIGURE 14. DAS/80C51 Microcontroller Interface (Simple Address Decoding)
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TL/H/12068–14

FIGURE 15. DAS/80C51 Microcontroller Interface (Minimal Address Decoding)
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4.3.2 Simple and Minimal Address Decoding

A study of the switching characteristics of the DAS and the

80C51 with the simple address decoding of Figure 14, as

well as minimal address decoding of Figure 15 with the

3-to-8 Line Decoder eliminated, shows that the write cycle

timing is again more critical than the read cycle timing.

Here the CS low to ALE low time is the limiting specification,

with 62 ns minimum provided by the 80C51, against a mini-

mum 40 ns required by the DAS. This timing relationship is

shown in Figure 16. Again, maximum propagation delays

considered for the logic devices were those specified at

4.5V supply, 50 pF load and b40§C to a85§C temperature

range.

5.0 A System Example:
A Semiconductor Furnace
In this example the DAS measures the inputs from five sen-

sors in a semiconductor furnace. This example will use one

of the circuits of Figures 13 through 15 as the data acquisi-

tion and control system. We will define the system require-

ments and, based upon these requirements, the DAS pro-

gramming will be specified and a typical assembly routine

for the 80C51 will be presented for DAS initialization and

data capture.

Figure 17 diagrams a typical semiconductor furnace ar-

rangement with sensors to measure gas flow, chamber

pressure, and three temperature sensors to measure fur-

nace temperature at each end and the middle of the fur-

nace.

TL/H/12068–15

a. Timing Requirements

TL/H/12068–16

b. Actual Timing CS Fall to ALE Fall

FIGURE 16. DAS/80C51 Interface Timing (Simple Address Decoding)
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TL/H/12068–17

FIGURE 17. Diagram of a Typical Measurement Arrangement in a Semiconductor Furnace

5.1 Assumptions and System Requirements

The following assumptions are made for this system:

# All of the sensor signals are conditioned (gain and offset

adjusted) to provide voltage levels within the 0V–2.5V

range for the DAS inputs.

# The output of all signal conditioning circuits are single

ended with respect to analog ground.

# The signal at the output of the flow sensor signal condi-

tioner has a 600X source impedance.

# The output of the temperature and pressure signal condi-

tioners have output impedances of less than 10X.

# The DAS reference voltage is 2.5V (VREFa e 2.5V and

VREFb e 0V e AGND)

# Any of the circuits of Figure 13 throughFigure 15 may be

used for the furnace measurement and monitoring sys-

tem.

# An approximate throughput rate of 50 Hz is desired for

each set of measurement results, providing a set of mea-

surement data about every 20 ms; because of the slowly

changing nature of the input signals, precisely controlled

throughput rate is not essential for proper system per-

formance.

Control of the furnace requires measurements of the follow-

ing:

# Temperature T1 at furnace center with 12-bit resolution.

# Temperature T1 relative to T2 with 12-bit a sign resolu-

tion.

# Temperature T1 relative to T3 with 12-bit a sign resolu-

tion.

# Gas flow, F, with 8-bit resolution and longer acquisition

time.

# Chamber pressure, P, with 8-bit resolution.

We also need to monitor the system for three conditions

that should produce an alarm:

# Gas flow, F, drops below a minimum limit.

# Gas flow, F, exceeds a maximum limit.

# Pressure, P, exceeds a maximum limit.

5.2 DAS Setup and Register Programming

The conditioned sensor outputs are assigned to the DAS

inputs as follows:

# IN0: T1

# IN1: T2

# IN2: T3

# IN3: F

# IN4: P

# IN5: Not usedÐgrounded

# IN6: Not usedÐgrounded

# IN7: Not usedÐgrounded

Seven DAS instructions are needed for measurement and

limit monitoring of the system. Five instructions are needed

to perform conversions for data collection, and two instruc-

tions are used to perform the ‘‘watchdog’’ function for com-

parison of gas flow and pressure against their respective

limits.

The following procedures are used for system operation and

DAS programming:

# A delay is added before the first instruction (Ý0) to pro-

vide an approximate 50 Hz throughput rate.

# The seven instructions are executed in sequence from 0

to 6 with no added delay between instructions.
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# After execution of the last instruction (Ý6), the DAS

loops back to instruction Ý0 and continues until told to

stop by the 80C51 host processor. Each loop is called an

instruction loop.

# Each instruction loop generates 5 conversion results.

When the FIFO contains 30 data points (6 sets of 5), the

DAS generates a FIFO Full interrupt to the 80C51.

# Start bit is not cleared when reading the FIFO. The read-

ing adds extra delay after each six instruction loops. (See

Section 2.3 and Appendix B for a discussion on maintain-

ing precise time intervals between successive readings

at the same input.

Since the input from the flow sensor has a source imped-

ance greater than 60X (recall that it is 600X), it requires

additional acquisition time for proper settling. The formula

from paragraph 2.1 of the DAS data sheet, where Bits 12–

15 are discussed, allows us to determine the number to be

stored in bits 12 through 15 to insure proper input settling

prior to start of conversion. Because we are using 8-bit reso-

lution to measure flow rate, this formula is

D e 0.36 c RS(kX) c fCLK(MHz).

Substituting the 600X (0.6 kX) source impedance and

8 MHz clock frequency,

D e 0.36 c 0.6 c 8 e 1.728

and we round up to a value of 2, or 0010 binary.

Now we are ready to specify the contents of the DAS regis-

ters.

INSTRUCTION REGISTER

Instruction Register definition

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Acquisition Time W-dog 8/12 Timer Sync VINb VINa Pause Loop

Instruction Ý0: Measuring T1 (IN0), Single Ended, 12-Bit Resolution, Timer Enabled

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Instruction Ý1: Measuring T1 (IN0) b T2 (IN1), Single Ended, 12-Bit Resolution

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Instruction Ý2: Measuring T1 (IN0) b T3 (IN2), Differential Mode, 12-Bit a Sign

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Instruction Ý3: Measuring F (IN3), Single Ended, 8-Bit Resolution, D e 2

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0

Instruction Ý4: Watchdog Mode, F (IN3), Single Ended, D e 2

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0

Instruction Ý5: Measuring P (IN4), Single Ended, 8-Bit Resolution

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0

Instruction Ý6: Watchdog Mode, P (IN4), Single Ended, Loop Bit Enabled

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1
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Instructions Ý4 and Ý6 also have limit values; instruction Ý4 has two limits and instruction Ý6 has one. These limits are

referred to as FÐMIN, FÐMAX and PÐMAX.

Instruction RAM, Limits Definition:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

Instruction Ý4, Limit 1

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 1 0 FÐMAX

Instruction Ý4, Limit 2

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 FÐMIN

Instruction Ý6, Limit 1

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 1 0 PÐMAX

Instruction Ý6, Limit 2. Limit value equal negative full scale to prevent false interrupts

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

INTERRUPT ENABLE REGISTER:

INT0: Comparison Limit: Enable

INT1: Instruction Number: Disable

INT2: FIFO Full: Enable

INT3: Auto Zero Complete: Disable

INT4: Calibration Complete: Enable

INT5: Pause: Disable

INT6: Low Supply: Disable

INT7: Standby Return: Disable

Address to generate INT1: 0, not used

Programmed number of results in FIFO for INT0: 30 (11110 binary)

Interrupt Enable Register:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Number of FIFO results for INT0 Address for INT1 INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 1
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CONFIGURATION REGISTER:

Ð We will not perform an auto zero or calibration before each conversion (D2 e 0).

Ð Bits D13 through D15 of the accumulated data will contain the instruction number that is associated with that data (D5 e 0).

Ð In this example, the Sync bit (D7) is programmed as an input (‘‘0’’), but is not used to start conversions.

Configuration Register, Start Conversion Command

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t care Diag. Test
RAM Sync A/Z Chan Stand Full Auto

Reset Start
Pointer I/O Each Mask by Cal Zero

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Configuration Register, Reset Command

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Configuration Register, Full Calibration Command

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

Configuration Register, RAM Bank 1 Selection Command (Conversion is stopped)

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Configuration Register, stopping the Conversion Command

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMER REGISTER:

To calculate the timer preset value, we must first determine the total sequence execution time. Table II shows the number of

clock cycles for each instruction. Please see the data sheet, Section 4.0 (Sequencer) for the discussion of the states and their

duration.

TABLE II. Instruction Execution Times

Instruction
Number of

Ý
State 0 State 1 State 7 State 6 State 4 State 5 Clock

Cycles

0 1 1 9 44 55

1 1 1 9 44 55

2 1 1 9 44 55

3 1 1 6 21 29

4 1 1 6 5 1 5 19

5 1 1 2 21 29

6 1 1 2 5 1 5 19

TOTAL: 253

State 2, Calibration, not used

State 3, Run Timer, Being determined here

There is a total of 253 clock cycles, plus a fixed 2 clock cycle Timer delay, resulting in 255 clock cycles, yielding a time delay of

255 d 8 MHz e 31.875 ms
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To get the needed timer delay, we must subtract this figure from the 20 ms desired between the beginning of successive

execution cycles.

20 ms b 31.875 ms e 19.968 ms

A single timer count is 32 clock cycles or, at 8 MHz clock frequency,

32 d 8 MHz e 4 ms

The desired timer delay is then

19.968 ms d 4 ms e 4992 e 1380H.

Timer Register

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 0 0 1 0 0 1 1 1 0 0 0 0 0 0 0

Now we can program the 80C51 controller to interact with the DAS.

5.3 Microcontroller Programming

External write operations are used to tell the DAS what to do and external read operations are used to gather information from

the DAS. Both of these are accomplished with the 80C51 through the MOVX (Move External) instruction. Internal data transfers

use the MOV instruction. The general form of these instructions is

MOV [destination], [source]
MOVX [destination], [source]

The DPTR (Data Pointer) Register is generally used as a 16-bit address, but we can just as easily use R0 or R1 as an 8-bit

address register or pointer as long as we realize that the high address byte at Port 2 will be at some unknown value unless we

assign it a value. Moving information to the Data Pointer requires a 3-byte instruction, whereas moving information to R0 or R1

requires a two byte instruction. The Data Pointer was chosen in this example so that the program could be used with all three

example circuits (Figures 13, 14 and 15 ).

Writing data to the DAS would, generally, follow the following example. The DASÐREGÐADD would be an 8-bit address for this

example.

MOV DPH, Ý0 ;Set DPTR high byte to zero

MOV DPL, ÝDASÐREGÐADD ;Set address pointer

MOV A, ÝLOWÐBYTEÐDATA ;low byte data to ACC (Accumulator)

MOVX @DPTR, A ;Write data low byte to DAS

INC DPTR ;Increment Data Pointer

MOV A, ÝHIGHÐBYTEÐDATA ;high byte data to accumulator

MOVX @DPTR, A ;Write data high byte to DAS

Reading data from the DAS is very similar to writing to it.

MOV DPH, Ý0 ;Clear DPTR high byte

MOV DPL, ÝDASÐREGÐADD ;Set address pointer for read address

MOVX A, @DPTR ;Read data low byte from DAS to ACC

MOV [destinationÐ1],A ;Move data from ACC to memory

INC DPTR ;Increment Data Pointer

MOVX A, @DPTR ;Read data high byte from DAS to ACC

MOV [destinationÐ2],A ;Move data from ACC to memory

Paragraph 3.0 of the data sheet cautions that, when reading the FIFO, the lower byte of data (A0 e 0) should be read first,

followed by reading of the upper byte (A0 e 1), in order to prevent a loss of the lower data byte. This is adhered to in this

application example.
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5.4 80C51 Assembly Routine for the Semiconductor

Furnace Example

The program listing of Figure 18 is the 80C51 assembly rou-

tine for the semiconductor furnace example. The program

only contains the DAS initialization routine and the DAS in-

terrupt service routine. A complete program for the applica-

tion would have all the data manipulation and control func-

tions included.

The routine closely follows the flowcharts of Figures 2a and

2b and is well commented. However, the DAS’ START bit is

not cleared at the start of the interrupt service routine even

though the flow chart indicates that it is.

The DAS initialization routine saves program memory and

execution time by incrementing the Data Pointer (DPTR) to

step through the DAS register addresses.

The interrupt service routine uses the JB (Jump if Bit set)

instruction to test the state of the interrupt status bits.

The READÐFIFO routine reads the FIFO contents and

stores them in a specified memory block. The size of the

block and number of FIFO locations being read is program-

mable. This example reads 30 16-bit locations. This routine

takes 5 lines of assembly code and 11 bytes of program

memory.

TL/H/12068–18

FIGURE 18. 80C51 Assembly Program Listing

25



TL/H/12068–19

FIGURE 18. 80C51 Assembly Program Listing (Continued)
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TL/H/12068–20

FIGURE 18. 80C51 Assembly Program Listing (Continued)
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TL/H/12068–21

FIGURE 18. 80C51 Assembly Program Listing (Continued)
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TL/H/12068–22

FIGURE 18. 80C51 Assembly Program Listing (Continued)
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APPENDIX A:

Register Bit Assignments and Programmer’s Notes

The following is an information summary concerning the various registers of the DAS, together with forms for programmer’s

notes to aid in setting instructions and in providing design documentation.

CONFIGURATION REGISTER (Read/Write):

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care Diag. Test
RAM Sync A/Z Chan Stand Full Auto

Reset Start
Pointer I/O Each Mask by Cal Zero

D0: START: ‘‘0’’ stops instruction execution. ‘‘1’’ Starts instruction execution.

D1: RESET: ‘‘1’’ stops the sequencer (resets the start bit), resets instruction pointer in the Interrupt Status Register,

resets all interrupt flags, and clears the conversion FIFO. Automatically resets itself after two clock cycles.

D2: AUTO-ZERO: ‘‘1’’ causes a long auto-zero calibration cycle to be performed.

D3: FULL CALIBRATION: ‘‘1’’ causes a full calibration cycle to be performed.

D4: STANDBY: ‘‘1’’ puts the DAS into low-power standby mode. ‘‘0’’ returns the DAS to operational status identical to

that caused by setting the RESET bit. The Instruction RAM can be accessed through the Read/Write operations

while in the Standby mode.

D5: CHANNEL MASK: ‘‘0’’ causes bits 13 through 15 of the conversion result to be the instruction number associated

with the conversion result in bits 0 through 12. ‘‘1’’ causes bits 13 through 15 to hold the extended sign bit.

D6: A/Z EACH: ‘‘1’’ causes a short auto-zero cycle to be performed before each conversion.

D7: SYNC I/O: ‘‘0’’ causes Sync pin to be an input; ‘‘1’’ causes it to be an output.

D9–D8: RAM POINTER: Selects the section of the Instruction RAM:

00 e Instructions, 01 e Limits Ý1, 10 e Limits Ý2.

D10: TEST: This bit is used for production testing and must be kept at ‘‘0’’ for normal operation.

D11: DIAGNOSTIC: ‘‘1’’, along with a correctly chosen instruction, allows verification that the DAS’ ADC is performing

correctly. See paragraph 2.2 of the data sheet for details. Available only in the LM12(H)458.

D15–D12: DON’T CARE

PROGRAMMER’S NOTES:

Configuration Register: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care Diag. Test
RAM Sync A/Z Chan Stand Full Auto

Reset Start
Pointer I/O Each Mask by Cal Zero

X X X X

Hexadecimal value:

Configuration Register: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care Diag. Test
RAM Sync A/Z Chan Stand Full Auto

Reset Start
Pointer I/O Each Mask by Cal Zero

X X X X

Hexadecimal value:

Configuration Register: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care Diag. Test
RAM Sync A/Z Chan Stand Full Auto

Reset Start
Pointer I/O Each Mask by Cal Zero

X X X X

Hexadecimal value:
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INSTRUCTION RAM (Read/Write):

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Acquisition Time W-dog 8/12 Timer Sync VINb VINa Pause Loop

D0: Loop: ‘‘0’’ causes flow to the next instruction, ‘‘1’’ causes loop back to instruction Ý0.

D1: PAUSE: ‘‘0’’ causes no action. ‘‘1’’ causes sequencer to stop before executing current instruction and to reset Start

bit in Configuration Register to ‘‘0’’. Writing a ‘‘1’’ to the Start bit restarts instruction execution.

D4–D2: VINa: Selects which input channel is connected to A/D’s non-inverting input.

D7–D5: VINb: Selects which input channel is connected to A/D’s inverting input.

D8: SYNC: ‘‘0’’ causes operation with internal timing. ‘‘1’’ causes S/H and conversion timing to be controlled by the

SYNC input pin. If this bit is high, bit D7 of Configuration register must be high to prevent the DAS from getting hung

up.

D9: TIMER: ‘‘0’’ causes no delay; ‘‘1’’ causes a halt to instruction execution until the timer counts down to zero.

D10: 8/12: ‘‘0’’ causes 12-bit a sign conversion, ‘‘1’’ causes 8-bit a sign conversion.

D11: WATCHDOG: ‘‘0’’ causes no comparison; ‘‘1’’ causes watchdog comparison.

D15–D12: ACQUISITION TIME: Determines S/H acquisition time

For 12-bit a sign: (9a2D) clock cycles, for 8-bit a sign: (2a2D) clock cycles

For 12-bit a sign: D e 0.45 c RS(kX) c fCLK (MHz)

For 8-bit a sign: D e 0.36 c RS (kX) c fCLK (MHz)

where D e Content of D15–D12, RS e input source resistance

PROGRAMMER’s NOTES:

Instruction Ý0: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Acquisition Time W-dog 8/12 Timer Sync VINb VINa Pause Loop

Hexadecimal value:

Instruction Ý1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Acquisition Time W-dog 8/12 Timer Sync VINb VINa Pause Loop

Hexadecimal value:

Instruction Ý2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Acquisition Time W-dog 8/12 Timer Sync VINb VINa Pause Loop

Hexadecimal value:

31



Instruction Ý3: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Acquisition Time W-dog 8/12 Timer Sync VINb VINa Pause Loop

Hexadecimal value:

Instruction Ý4: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Acquisition Time W-dog 8/12 Timer Sync VINb VINa Pause Loop

Hexadecimal value:

Instruction Ý5: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Acquisition Time W-dog 8/12 Timer Sync VINb VINa Pause Loop

Hexadecimal value:

Instruction Ý6: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Acquisition Time W-dog 8/12 Timer Sync VINb VINa Pause Loop

Hexadecimal value:

Instruction Ý7: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Acquisition Time W-dog 8/12 Timer Sync VINb VINa Pause Loop

Hexadecimal value:

INSTRUCTION RAM (Read/Write): (Continued)

Limits Ý1

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

D7–D0: LIMIT: 8-bit limit value

D8: SIGN: Sign bit for limit value; ‘‘0’’ e Positive, ‘‘1’’ e Negative

D8: l/k: High or low limit determination; ‘‘0’’ e inputs lower than limit generate an interrupt, ‘‘1’’ e inputs higher than

limit generate an interrupt

D15–D10: Don’t Care
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PROGRAMMER’S NOTES:

Instruction Ý0, Limit Ý1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

Instruction Ý1, Limit Ý1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

Instruction Ý2, Limit Ý1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

Instruction Ý3, Limit Ý1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

Instruction Ý4, Limit Ý1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

Instruction Ý5, Limit Ý1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:
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Instruction Ý6, Limit Ý1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

Instruction Ý7, Limit Ý1: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

INSTRUCTION RAM (Read/Write): (Continued)

Limits Ý2

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

D7-D0: LIMIT: 8-bit limit value

D8: SIGN: Sign bit for limit value; ‘‘0’’ e Positive, ‘‘1’’ e Negative

D8: l/k: High or low limit determination; ‘‘0’’ e inputs lower than limit generate an interrupt, ‘‘1’’ e inputs higher than

limit generate an interrupt

D15–D10: Don’t Care

PROGRAMMER’S NOTES:

Instruction Ý0, Limit Ý2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

Instruction Ý1, Limit Ý2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

Instruction Ý2, Limit Ý2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:
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Instruction Ý3, Limit Ý2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

Instruction Ý4, Limit Ý2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

Instruction Ý5, Limit Ý2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

Instruction Ý6, Limit Ý2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

Instruction Ý7, Limit Ý2: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Don’t Care l/k Sign Limit

X X X X X X

Hexadecimal value:

INTERRUPT ENABLE REGISTER (Read/Write):

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Number of conversion results in FIFO to Instruction Number that INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

Generate Interrupt INT0 Generates Interrupt INT1 Standby Power Pause Cal A/Z Result Instr W/D

D0: INT0: Generate interrupt when a watchdog limit is passed

D1: INT1: Generate interrupt when the programmed instruction (D10–D8) is reached

D2: INT2: Generate interrupt when the number of conversion results in the FIFO is equal to the programmed value

(D15–D11)

D3: INT3: Generate interrupt when an auto-zero cycle is completed

D4: INT4: Generate interrupt when a full calibration cycle is completed

D5: INT5: Generate interrupt when a pause condition is encountered

D6: INT6: Generate interrupt when low power supply is detected

D7: INT7: Generate interrupt when the DAS is returned from standby and is ready

D10–D8: Programmable instruction number to generate an interrupt when that instruction is reached. When this instruction

is reached, D1 is set high.

D15–D11: Programmable number of conversion results in the FIFO to generate an interrupt. When this instruction is reached,

D2 is set high.
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Interrupt Enable Register: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Number of conversion results in FIFO to Instruction Number that INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

Generate Interrupt INT0 Generates Interrupt INT1 Standby Power Pause Cal A/Z Result Instr W/D

Hexadecimal value:

Interrupt Enable Register: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Number of conversion results in FIFO to Instruction Number that INT7 INT6 INT5 INT4 INT3 INT2 INT1 INT0

Generate Interrupt INT0 Generates Interrupt INT1 Standby Power Pause Cal A/Z Result Instr W/D

Hexadecimal value:

TIMER REGISTER (Read/Write):

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

N e Timer Preset Value

The timer delays the execution of an instruction if the Timer bit is set in that instruction.

The time delay in clock cycles is:

Delay e 32 c N a 2

PROGRAMMER’S NOTES:

Timer Register: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

N e Timer Preset Value

Hexadecimal value:

Timer Register: Address: Symbol:

Note:

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

N e Timer Preset Value

Hexadecimal value:

FIFO REGISTER (Read Only):

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Instruction Number or
Sign Conversion Result

Extended Sign

Hexadecimal value:

D11–D0: CONVERSION RESULTS:

For 12-bit a sign: 12-bit result value

For 8-bit a sign: D11–D4 e result value, D3–D0 e 1110

D12: SIGN: Conversion result sign bit: ‘‘0’’ e Positive, ‘‘1’’ e Negative

D15–D13: INSTRUCTION NUMBER associated with the conversion result OR the EXTENDED SIGN BIT for 2’s comple-

ment arithmetic. Selected by bit D5 (Channel Mask) of Configuration Register
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INTERRUPT STATUS REGISTER (Read Only):

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Number of Results in FIFO
Instruction Number being INST7 INST6 INST5 INST4 INST3 INST2 INST1 INST0

executed Standby Power Pause Cal A/Z Result Instr W/D

Bits Ý0 through 7 are interrupt flags that will be set to ‘‘1’’ when the conditions indicated below occur. The bits are set to ‘‘1’’

whether or not the interrupt is enabled in the Interrupt Enable register. The bits reset to ‘‘0’’ when the register is read, or

when the device is reset through the Configuration register.

D0: INST0: set to 1 when a watchdog limit is passed

D1: INST1: set to 1 when the programmed instruction (D10–D8) is reached

D2: INST2: set to 1 when number of conversion results in FIFO equals the programmed

value (D15–D11)

D3: INST3: set to 1 when an auto-zero cycle is completed

D4: INST4: set to 1 when full calibration cycle is completed

D5: INST5: set to 1 when a pause condition is encountered

D6: INST6: set to 1 when low power supply is detected

D7: INST7: set to 1 when the DAS is returned from standby and is ready

D10–D8: Holds the instruction number being executed or, (during a Pause or Timer delay) will next be executed

D15–D11: Holds the current number of conversion results present in the FlFO

FIFO Register: Address: Symbol:

Note:
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CRITICAL TIMING CONSIDERATIONS

The solution presented in this application note does not in-

sure equal time delays between successive sets of data.

The controller could be interrupted by a higher priority inter-

rupt, delaying servicing of the DAS’ interrupt. Also, the time

from interrupt request until that interrupt is serviced can vary

because the interrupt is not serviced until completion of the

controller instruction currently being executed. Sometimes

these delays are unacceptable, as in DSP applications, or

whenever an FFT is to be performed on the data.

To insure that the time interval between the start of succes-

sive data acquisitions is constant, we can use the SYNC

input to the DAS. To do this, the I/O bit of the Configuration

Register (bit 7) must be set to a ‘‘0’’, configuring the SYNC

pin as an input and making it possible to synchronize the

start of conversion to an external event. The SYNC bit of

the Instruction RAM (bit 8) of the first instruction can now be

set to a ‘‘1’’ causing the sequencer to suspend operation at

the end of the internal S/H’s acquisition cycle and to wait (in

the ‘‘sample’’ mode of the S/H) until a rising edge appears

at the SYNC pin of the DAS, at which time the S/H acquires

the input signal (goes into the ‘‘hold’’ mode) and the ADC

begins performing a conversion on the next rising edge of

the clock. The falling edge at the SYNC input is totally insig-

nificant, and there is no need to synchronize the SYNC sig-

nal with the clock. Of course, the stability of the SYNC input

signal will determine the repeatability of the time intervals

between sets of data.

We must ascertain that there is sufficient time to retrieve the

data from the DAS while the DAS is awaiting another rising

edge at the SYNC pin. Bringing the CS line low to access

the DAS (reading from or writing to it) will cause the clock to

be internally gated off, affecting the timing of successive

data gathering if acquisition, conversion, or a comparison is

in progress. In the example of this application note there

should be no problem as there is a very long 20 ms between

successive SYNC rising edges. In some applications, how-

ever, this may not be the case and we need to be sure that

we are not accessing the DAS during the SYNC input rise or

while it is doing anything but awaiting the next rise of the

SYNC input. Ensuring proper timing will entail an analysis of

the time needed for the DAS to go through one sequencer

cycle and the time needed for the processor or controller to

retrieve information from the DAS. Since, in this application,

the DAS is performing operations for only about 32 ms out of

every 20 ms, there is more than enough time to retrieve

information from the DAS.
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