Interconnecting National Semiconductor's TP3420A SID to Motorola SCP/HDLC **Devices** National Semiconductor Application Note 931 Raj Paripatyadar Victor Thang Van February 1994 When interconnecting the National Semiconductor's TP3420A to a Motorola SCP/HDLC device (such as the MC68302), it is necessary to consider the timings for two separate ports. The MICROWIRE™ to SCP connections for the device control and secondly the transfer to B and D channel data between the HDLC ports and the TP3420A Digital System Interface prot. #### 1.0 MICROWIRE/SCP CONNECTIONS NSC MICROWIRE and Motorola Serial Control Port (SCP) are examples of serial communication formats typically used to configure Telecom/ISDN components. They both consist of a 5-pin port. - Clock pin CCLK/SPCKL, - Data input pin CI/SPRXD - Data output tpin CO/SPTXD - A chip select pin/CS - An interrupt line from the transceiver TP3420A to the controller to indicate a change of status. There are 4 different modes for the relationship between the clock edges and data input/output for a serial communications port. 1. CCLK idling LOW, pulsing HIGH, then returning back to LOW for idle condition; data output on CO pin on the negative edge and data sampled in on the positive edge of CCLK (normal MICROWIRE mode). - 2. CCLK idling HIGH, pulsing LOW, then returning back to HIGH for idle condition; data output on CO pin on the negative edge and data sampled in on the positive edge of CCLK (supported by enhanced MICROWIRE on TP3420A and SCP). - 3. CCLK idling LOW pulsing HIGH, then returning back to LOW for idle condition: data output on CO pin on the positive edge and data sampled in on the negative edge of CCLK (supported only on the SCP). - 4. CCLK idling HIGH, pulsing LOW, then returning back to HIGH for idle condition; data output on CO pin on the positive edge and data sampled in on the negative edge The TP3420A SID supports modes 1 (NORMAL MICRO-WIRE mode) and mode 2. The SCP port of Mot 68302 supports modes 2 and 3. Hence set the SCP clock master to run in mode 2 above when interworking with the TP3420A (see Figure 1 and 2). Set the 68302 SCP Master as follows: Set CI = 1 in SPMODE register Set the PM3-PM0 in SPMODE register to select clock rate (up to 2.048 MHz) Use an I/O pin to perfrom chip select function $\overline{\text{CS}}.$ SCP port generates 8 clocks per command transfer which is compatible with the TP3420A. FIGURE 1. MICROWIRE to SCP Connections TL/H/11983-1 TBI-STATE® is a registered trademark of National Semiconductor Corporation COMBO II™ and MICROWIRE™ are trademarks of National Semiconductor Corporation FIGURE 2. TP3420A MICROWIRE/SCP Timing TL/H/11983-2 # 2.0 B AND D CHANNELS CONNECTIONS BETWEEN TP3420A AND MOTOROLA HDLC DEVICES The 2B channel data and the D-Channel data can be connected between the TP3420A (Rev 3.6) and the Motorola devices without any additional glued logic (TP3420A Rev 3.5 or prior revision devices when used in TEM application, will take a package of NOR gates and a TRI-STATE® buffer as shown in Appendix A). The following configurations should be used for the TP3420A (Rev 3.6) and the Motorola devices: #### FOR TEM APPLICATIONS ONLY: #### Settings For TP3420A: - TEM (TE Clock Master) Mode - DIF4A (Digital Interface Format 5) If the MC68302 operates in PCM Highway mode, the TP3420A may be set in DIF1 instead of DIF4A. - D-Channel Clock Enable, DCKE. #### Settings for MC145488: - Channel 0 routed to the IDL interface to cover a B channel - Channel 1 routed to the NMSI interface to cover the D channel Its connection with the TP3420A (Rev 3.6) is shown in $\it Figure~3$ #### Settings for MC68302: One SCC routed to the IDL interface to cover a B channel. For datacom applications, 2 SCCs routed to the same IDL interface to cover both B channels. One SCC routed to the NMSI interface. It is also possible to use PCM Highway Interface instead of the IDL interface in the MC68302, but this is not shown here. Its connection with the TP3420A (Rev 3.6) is shown in Figure 4. FIGURE 3. 2B+D Interconnection between the TP3420A (Rev 3.6) and the MC145488 TL/H/11983-3 FIGURE 4. 2B \pm D Interconnection between the TP3420A (Rev 3.6) and the MC68302 The digital interconnection signals are shown in Figures $\it 3$ and $\it 4$ and the relevant timings are shown in Figure $\it 5$. The Motorola devices operate on the B-Channel data via its IDL interface, and on D-Channel data via its NMSI interface. For voice applications, one B-Channel data can be directly connected to a NSC COMBO such as the TP3076. For Datacom applications, both B-Channel data can be connected to the MC68302 to the same IDL interface. TL/H/11983-4 The B-Channel connection is straight forward, since DIF5 in the TP3420A is compatible with the IDL mode, its detailed operation is discussed in both the TP3420A Data Sheet, and the Motorola device Data Sheet. For the D-Channel connection, however, its data is shifted out from the TP3420A on BR output rising edge of the BCLK, and shifted into the TP3420A on the TxD input on the falling edge of BCLK. They both occur on the D-Channel timeslot. The RxCLK output generates 2 clock pulses every 125 µs frame (2 D bits per frame) on the assigned D-Channel timeslot. The Motorola uses this as its external clock input to shift D-Channel data in from BR. However, in TEM mode, the number of clock pulses the TxCLK output generates are controlled by the internal D-Channel Access circuitry. They can be 0, 1, or 2 clock pulses. For example, a DREQ1 (DREQ2) command is sent to the TP3420A to begin a packet transmission, the TxCLK starts pulsing (2 BCLKs per frame) and the TP3420A waits for an opening flag on TxD pin. During this time, the TxCLK may stay idle (no pulses at all). It then checks to see if the D-Channel timeslot on the S-Bus is available by counting the consecutive number of binary 1's present the Echoed bit. If these conditions are met, the TP3420A will transmit the packet data by again pulsing the TxCLK until it detects a closing flag at TxD pin or a collision is detected on the S-Bus. Notice that TxCLK and RxCLK phases are inverted from the BCLK's. #### **Recommended Software Steps:** Prepare the Packet for transmission on the D-Channel. Setup the DMA and HDLC registers and start the transmitter. The RTS will become active forcing its own CTS and the HDLC hardware is primed. - Send the DREQ1 (or DREQ2) Command to TP3420 via MICROWIRE/SCP port. This will cause TxCLK to generate clock pulses, when D-channel is available, to shift the data out. - 3. At the End of successful transmission of Packet. The SID will generate the EOM Interrupt status (serviced via MI-CROWIRE/SCP port). The software now knows about the successful transmission of the packet and may send the next one. Also the HDLC0 hardware will reset the RTS and thus CTS signals. - 4. If a D-channel Contention occurs, the SID will generate a CON interrupt status (serviced via the MICROWIRE/SCP port). The software must Reset the HDLC and DMA hardware and preset the buffer pointers. Note that the CTS does not indicate contention (CON interrupt) in this scheme (as it normally works in a complete Motorola architecture). When the HDLC hardware is set, the RTS goes inactive. SID can inter-work directly with HDLC controllers from Motorola (MC145488 or the MC68302). This allows the user more flexibility in the choice of Microprocessor while gaining the benefits of good transceiver performance of the TP3420A SID and the programmable features of NSC COMBO IITM TP3076. #### FOR NT OR TES APPLICATIONS: When the TP3420As are used in these applications, the D-Channel Access algorithm is disabled. The 2B + D Channel data can be connected between the TP3420A and the Motorola via the IDL bus. (Other physical interfaces are also possible). The connection diagrams are shown in Figures 7 and 8. TL/H/11983-7 FIGURE 7. 2B + D Interconnection between the TP3420A (either in NT or TES Mode) and the MC68302 TL/H/11983-8 FIGURE 8. 2B + D Interconnection between the TP3420A (either in NT or TES Mode) and the MC145488 ### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. National Semiconductor Corporation 2900 Semiconductor Drive P.O. Box 58090 Santa Clara, CA 95052-8090 Tel: 1(800) 272-9959 TWX: (910) 339-9240 National Semiconductor GmbH Livry-Gargan-Str. 10 D-82256 Fürstenfeldbruck Germany Tel: (81-41) 35-0 Telex: 527649 Fax: (81-41) 35-1 National Semiconductor Japan Ltd. Sumitomo Chemical Engineering Center Bldg. 7F 1-7-1, Nakase, Mihama-Ku Chiba-City, Ciba Prefecture 261 Tel: (043) 299-2300 Fax: (043) 299-2500 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductores Do Brazil Ltda. Rue Deputado Lacorda Franco 120-3A Sao Paulo-SP Brazil 05418-000 Tel: (55-11) 212-5066 Telex: 391-1131931 NSBR BR Fax: (55-11) 212-1181 National Semiconductor (Australia) Pty, Ltd. Building 16 Business Park Drive Monash Business Park Nottinghill, Melbourne Victoria 3168 Australia Tel: (3) 558-9999 Fax: (3) 558-9998