Interfacing the NM29N 16 in
a Microcontroller
Environment

INTRODUCTION

The NM29N16 is a 2Mbyte NAND Flash EEPROM memory
that operates from a single 5V supply. This device does not
have the parallel data, address, and control bus interfaces
traditionally found on memory devices. The NM29N16 uses
a byte wide serial interface with internal address, data, and
control registers. The serial interface dramatically reduces
the number of pins required to interface to the NM29N16.
While the interface is nontraditional, it can easily be inter-
faced to standard microcontrollers. This application note de-
scribes how the NM29N16 can be interfaced to the Motoro-
la 68HC11 microcontroller.

68HC11 INTERFACE

The NM29N16 can be interfaced to a microcontroller using
the data bus, control bus, and a few 1/0 port bits. Figure 1
shows the NM29N16 interfaced to a minimal 68HC11 sys-
tem. The 68HC11 is configured in the expanded multiplexed
mode which allows access to external memory devices.
Most microcontrollers offer a mode that allows access to
external memory and the NM29N16 should fit easily into all
of these environments.

The 1/0s of the NM29N16 were connected directly to the
68HC11 data bus. The NM29N16 occupies addresses
CO00H to DFFFH in the 68HC11 memory map due to the
use of a three to eight (74HCT138) address decoder. While
8Kbytes of memory is taken in this design, the NM29N16
only requires a single address (COOOH) out of that block.
Due to timing constraints, the RE (Read Enable) and WE
(Write Enable) signals must be ORed with the COOOH ad-
dress decode signal. CE (Chip Enable), CLE (Command
Latch Enable), and ALE (Address Latch Enable) are con-
trolled directly from three 68HC11 1/0O port bits. The R/B
(Ready/Busy) status output of the NM29N16 is polled by
one |/0 port bit.

A MAX707 uP supervisory chip is used to drive the RESET
input of the 68HC11. The MAX707 forces its RESET output
low until Vg reaches 4.75V. Once Vg exceeds 4.75V the
RESET output remains low for an additional 200 ms before
going high. This RESET output is also used to drive the WP
(Write Protect) input of the NM29N16 to insure against inad-
vertent writes when Vg is below 4.75V.

National Semiconductor
Application Note 910
Cliff Zitlaw

Rob Frizzell

September 1993

68HC11 TO NM29N16 COMMUNICATION

Information is transferred back and forth with a series of
read and write operations that access the NM29N16 data,
address and control registers. Loading the address register
is accomplished by bringing CE low, ALE high and then
loading data through the data bus with write operations to
address COOOH. Control register access is performed in a
similar manner except that CLE is brought high instead of
ALE. Data register access is performed when both ALE and
CLE are low.

The EEPROM array in the NM29N16 is not directly accessi-
ble from the controller. An intermediate data register is used
to transfer a page (264 bytes) of information back and forth
between the EEPROM memory and the external controller.
There are three basic forms of data transfers; erase opera-
tions that operate on a 16 page block, program operations
that alter the contents of a single page, and read opera-
tions. During these three operations the R/B output goes
low until the transfer or erase has completed.

A read operation is performed with a four step sequence.
The command register is first loaded with the read instruc-
tion. The address register is then loaded with the page and
byte address to access. At this point an internal recall oper-
ation is performed to transfer the contents of an EEPROM
page to the 264 byte data register. After the recall has com-
pleted the accessed data is finally accessible by reading the
contents of the data register. This is accomplished by puls-
ing RE low to read out sequential bytes.

Erase and program operations are performed similarly by
accessing the data, control, and address registers. The sim-
ple access to these registers allow software routines that
are as simple as that required to interface with a traditional
parallel memory device.

SOFTWARE DRIVERS FOR A 68HC11 TO NM29N16
INTERFACE

A software listing is provided to demonstrate several fea-
tures of the NM29N16. Different subroutines were devel-
oped that perform the basic read and write functions. These
routines can be used with only minor modifications to inter-
face the NM29N16 to any microcontroller.

©1995 National Semiconductor Corporation TL/D/11925

RRD-B30M105/Printed in U. S. A.

JUSWUOJIAUT J3]|0JJUOD0IDIN & Ul 9L N6ZINN 3Yl Buloepiaquj

01L6-NV

L 34NOI4

L=G26kE/a/L

QULOHYL
00L0HY L
- 00L0HY L
o
0 ou>
5)
EE)
- | 11 19Hg9 =
SELIONYL = H01 n01
mm>
az9 S b
v29)
T
19, mw|08> i 5
800N 7
k) 3 E ZHN 8
af= AR 5 £04XY =
[1 B4
T wixa b 5 e 13d]
[l =] 8 N a Bl ks
3 1353 7 Lasa B B
iy 353 w
3 s SO
| kM 3
33 4 5N
or] 0¥ W s
M £1810HY L = o M B
1y b 21 B]
oLy H rid foE—
3 20 oy 1Y evd T
8y vd e
=] n i e Lav vd fee—
5] ¢ v 90 90 9av ovd ==
50 ov O sofs sav
0 v 0 el vav
£a 43 £0 <a 3 cav X4/ 00d [
4 v m z 2 | zav axL/rad
1a M o 10 [Tl - 1oy 0SIK/70d s ZE |
00 ov f 00 oa b oav ISON/S0d [nsai>
%05/ vad I0id >
€0 o Ppo— 0 S5/504 =S
in
> >
n0L Aot Aot T
UO>

CELOHYL _

khkkkkkkhhhkhkhhkhhhkhkhkhkhhkhkhkhhhhkhhhhkhhhkhkhkhhkhhkkhhhkdhhkhkhdhhhhhhkhhkhkhhhhrkhkhkhtrhidkk
This code was developed to demonstrate how the NM29N16 EEPROM can be *

Three I/0 lines drive CLE, ALE, and CE.

The final mainline only

*
*
*

*
Read a page of information (264 bytes) out of the NM29N16*

® Ok ¥ Ok ¥ F Ok X F F *

The NM29N16 requires only one address¥*

*

* interfaced to the MC68HC1ll1l microcontroller. The software includes
* several subroutines that perform various interface functions. The
* subroutines include:

*

* RDPAG

* RDDAT1 : Read a byte from data memory

* RDRED1 : Read a byte from redundancy memory

* PGMRED : Program a byte in redundancy memory

* PGMDAT : Program a byte in data memory

* PGMPAG : Program an entire page (256 bytes data, 8 redundancy)
* ERASEl1 : Erase a block (16 pages)

* STATUS : Read the Status Register

* READID : Read the manufacturer code and the device code

* INIT : Tag blocks that are not fully functional

*

* The 68HC11l interfaces to the NM29N16 by using the data bus, control
* bus, and a few I/0 port lines.

* location when configured in this manner. The data bus is directly
* connected to the EEPROM.

* One I/0 line is used to monitor the R/B output.

*

*

* The subroutines can be copied directly into a customer’s program and
* be expected to operate as described.

* performs a block erase and verify.

*

*
*
*
*
The mainline was used to test the functionality of the subroutines. *
*
*
*
*

khkhhkkkkhhdhhkhhkhhkhhhhhhhkhkhhhhkhhhhhhhhhhhhhhhkhhihkhhhkhkhhkkhhhkkhbrkkkhhkd

khkkhkhkhhkhkhhkdhkhhhkhdhkhkrhkhhkhkk

* ADDRESS LOCATION EQUATES *
R R T

DDRD EQU $09
PORTD EQU $08
FLASH EQU $C000

dkkhkkhkkhdhhkhkhhkhkhkkkhhkhdk

* BIT POSITION EQUATES *
T]

CEBIT EQU $20
CLEBIT EQU $10
ALEBIT EQU $08

khkhkkhhkhkhhhhhhhhhkhkhhkhhhkhik

* VARIABLE ADDRESS EQUATES *
hhkhkhkkkhkhkhhhhkrhhhkrhrhkkhhx

HIPG EQU $0180
LOPG EQU $0181
ADD EQU $0182
DATVAL EQU $0183
BLOCK EQU $0184
BLOCKL EQU $0185

kkkkhkkhkhkhkhkkhtk

* RESET VECTOR *
kkkkkkhhkhkhkhkhhk

port D direction register =
port D data register =
NM29N16 = $C000 to S$DFFF

CE position in port D bit
CLE position in port D bit
ALE position in port D = bit

L]

high order page pointer
low order page pointer
byte pointer within a page
data transfer register

$1009
$1008

5
4

TL/D/11925-2

ORG
FDB

SFFFE
$E000

kkkhkhhkhkdkhhhkhkkhhkkhkhkhkhhkhkhkk

* PROGRAM STARTING LOCATION *
hhkhkkkhhkhhhhkhhhhhhhhhhhrhdhk

ORG
BEGIN: LDS
LDX
LDAA
STAA
LDAA
STAA
BCLR
BCLR

kkkkkkkkkkkk

* MAINLINE *
hkkhkkkhdkhdhk

LDAA
STAA
STAA
JSR
JSR

LOOP: BRA

$E000

#SO01FF

#$1000

#SFF

PORTD, X

#$3B

DDRD, X

PORTD,X #CLEBIT
PORTD,X #ALEBIT

#$00
LOPG
HIPG
ERASEL
STATUS

LOOP

reset vector to $E000

program execution begins at $E000
initialize stack pointer

initialize "address index register"
initialize I/O ports

CE=1 CLE=0 ALE=0 initially

wait until reset loop

khkkdkkkhkhkkkhkhkkkhhkhhdhkhdhkhohhhdhhkhdhhhhdhhhddkhddhdhhkhddrrddhrhbhxhdhdddts

* Ok ¥ O *

RDPAGE copies a page from the NM29N16 into SRAM memory on the 68HCll.*
All 264 bytes (data and redundancy) are copied into the SRAM buffer. *
The page number to be transfered is passed in the variables LOPG and *
HIPG. The EEPROM data is copied into the 68HC11 SRAM between *
addresses 0000H and 0107H.

*

khkkkhhhhhhhhkhhhhhhhhhhkhdrhdkhhdhrkdhdhhhhdhhhhdhhhkdkhhddhkhkdrhhrhokrkrdhhid

RDPAGE: BSET
BCLR
LDAA
STAA
BSET
BCLR
BSET
BCLR
LDAA
STAA
LDAA
STAA
LDAA
STAA
BCLR
JSR
LDY

NEXTR: LDAA
STAA
INY
CPY
BNE
BSET

PORTD,X #CLEBIT
PORTD,X #CEBIT
#$00

FLASH

PORTD,X #CEBIT
PORTD,X #CLEBIT
PORTD,X #ALEBIT
PORTD,X #CEBIT
#$00

FLASH

LOPG

FLASH

HIPG

FLASH

PORTD,X #ALEBIT
WAIT

#$0000

FLASH

$00,Y

#$0108
NEXTR
PORTD, X #CEBIT

load READ(1) instruction into
the command register

load the byte pointer in the address
register with 00H (start of page)

load low order page number
load high order page number
wait for recall into data register

read data from EEPROM and f£fill SRAM
buffer with data register contents

loop until all 264 bytes have
been transfered

TL/D/11925-3

JSR
RTS

WAIT

pause to

assure EEPROM is idle

B T L L T T L T L I T T T T T ey
* RDDAT1 and RDRED1 are used to read the contents of a single address *

in the EEPROM array.

Data can be read from either the DATA portion *

The value in the chosen location is returned in the variable DATVAL.*

*
* of the array (RDDAT1l) or the REDUNDANT portion (RDRED1). The *
* location to be accessed is defined in the variables ADD, LOPG, and *
* HIPAG. LOPG and HIPG define the page to be accessed and ADD *
* indicates a position within the page. ADD can range between 0 and *
* 255 for DATA accesses or between 0 and 7 for REDUNDANT accesses. *
*
*

khkkhhhdkkhkhkhhkhhkhdkhkhkhkhkhhkkhkkhhhhhhhhhhhhhhhhhhkdhhhhhhhkkhkhhhkhhkhkkdk

RDDAT1: LDAA
BRA

RDRED1: LDAA

RDIJMP: BSET
BCLR
STAA
BSET
BCLR
BSET
BCLR
LDAA
STAA
LDAA
STAA
LDAA
STAA
BCLR
JSR
LDAA

LDAA

STAA
BSET
JSR
RTS

#$00
RDIMP
#$50

PORTD,X #CLEBIT
PORTD,X #CEBIT

FLASH

PORTD,X #CEBIT
PORTD,X #CLEBIT
PORTD,X #ALEBIT
PORTD,X #CEBIT

ADD
FLASH
LOPG
FLASH
HIPG
FLASH

PORTD,X #ALEBIT

WAIT
FLASH

FLASH

DATVAL

PORTD,X #CEBIT

WAIT

READ(1) command

READ(2) command

load appropriate READ command into
the command retister

load the
address

load the
load the

wait for
load the

byte address into the
register

low order page number
high order page number

recall to data register
value from the chosen

address and save the result in DATVAL

pause until EEPROM is idle

dkdkhkkhkhkhkhkdrkhkrhhhhhkdhhdrhhhdhhkhhkhdhhhhhhdhhhrhhddhhhhhhhhdhrhhrordrrsk

unchanged.

the NM29N16
programming
in the SRAM
loaded with
filled with

ok kR ok ¥ R R ok R K R F ¥ F ¥ X ¥

address 0000H and 0107H.

cycle.

FFH.

PGMRED, PGMDAT, and PGMPAG are used to program either a single byte *
or an entire page.

During program operations the entire data register*

byte that is to be programmed.

must be loaded and then the contents transfered to an EEPROM page.
EEPROM bits can only be flipped from a one (erased state) to a zero
(programmed state) during a program operation.
byte the entire data register must be filled with FFH except for the
During the programming cycle bits
that are zero in the data register will force the corresponding bits
in the chosen page to the zero state, other bits will remain

These routines use a SRAM data array located on the 68HC11 between
This array is transfered byte for byte into
data register during the data load portion of the

If single byte is to be altered the location
array corresponding to the address to be programmed is
the new data and all other addresses in the array are

To program a single

k% Gk R ok % R b ok % 3k ok ¥ B F

TL/D/11925-4

The routines PGMRED and PGMDAT are used to program a single byte in
redundant or data memory respectively.
is contained in the variable DATVAL, the page number is contained in
PGLO and PGHI, and the byte position within the page is contained in

The routine PGMPAG assumes that the SRAM array already has the data
that will be programmed into the EEPROM. PGLO and PGHI contain the

page number to be programmed.

*
*
*
*
*
* ADD.
*
*
*
*
*

kkkhkkkhhkkhhkhkhkdhhkhkhkhhhhhhkdhhhhhhhhhdrhhhhhhhhdhkhhdkhhdhkhddhhhhhhhhrhhhkhhrkd

PGMRED: JSR
LDY
BRA
PGMDAT: JSR
LDY
PGMB: LDAB
ABY
LDAA
STAA
PGMPAG: BSET
BCLR
LDAA
STAA
BCLR
BSET
LDAA
STAA
LDAA
STAA
LDAA
STAA
BCLR
LDY
LOADB: LDAA
STAA
INY
CPY
BNE
BSET
LDAA
STAA
BSET
BCLR
JSR
RTS

FILLFF: LDY
LDAA

LOOPF: STAA
INY
CPY
BNE
RTS

FILLFF
#$0100
PGMB
FILLFF
#$0000
ADD

DATVAL
$00,Y
PORTD, X
PORTD, X
#s80
FLASH
PORTD, X
PORTD, X
#500
FLASH
LOPG
FLASH
HIPG
FLASH
PORTD, X
#$0000
$00,Y
FLASH

#$0108
LOADB
PORTD, X
#510
FLASH
PORTD, X
PORTD, X
WAIT

#$0000
#SFF
$00,Y

#$0108
LOOPF

#CLEBIT
#CEBIT

#CLEBIT
#ALEBIT

#ALEBIT

#CLEBIT

#CEBIT
#CLEBIT

The data value to be updated

*
*
*
*
*
*
*
*
*
*
*

fill SRAM array with FFH
load Y with redundant memory offset

fill SRAM array with FFH

load Y with data memory offset

data or redundant address to alter
calculate absolute address in page
write new data byte into SRAM array

load command register with
data input command

load address register with
start of page

load low order page number

load high order page number

transfer data from SRAM array
into the NM29N16 data register

loop until all 264 bytes have
been transfered

load command register with
start program command

pause to make sure EEPROM idle

fill SRAM addresses 0000H to
0107H with FFH

khkkkkhkhkhhhkhhkhhkhkhhddhhdhbhhhkhkhdhhhhkhhhkddhbhhhkhkddhhhbhrhbhkhbdhhdddhbrtdrhdthk
* ERASEl performs an erase operation on a single block (16 pages). The *
* block to be erased is specified in the variables LOPG and HIPG. The *
* lower 4 bits of LOPG are not used so that the least significant bit of*

TL/D/11925-5

* the block number is the Sth bit of LOPG. The block number is *
* specified in LOPG (bits 4-7) and HIPG (bits 0-4). *
khkkhkhhkhkhkhhkhhkrrhhhhhkhkhhhkhrhrhkhdhhkhhkhhhhkhhhhbhhbhhhkhdhhhhhhhhkhdhhkhkdddk

ERASEl: BSET PORTD,X #CLEBIT
BCLR PORTD,X #CEBIT
LDAA #$60 load command register with
STAA FLASH block erase command
BCLR PORTD,X #CLEBIT
BSET PORTD,X #ALEBIT
LDAA LOPG load low order block number
STAA FLASH (XXXX0123)
LDAA HIPG load high order block number
STAA FLASH (45678XXX)
BCLR PORTD,X #ALEBIT
BSET PORTD,X #CLEBIT
LDAA #$DO load command register with erase
STAA FLASH execution command

BCLR PORTD,X #CLEBIT

BSET PORTD,X #CEBIT

JSR WAIT pause until EEPROM is idle
RTS

dhhkhhhkhkhkhkhkhhhhkhkddhdhkhhrhkhhdhhhhhhhhhdhhhhhhhdhddhhkhhhhkdhkhhhddhhhhhkhkhkhdhkds
* STATUS is used to read the NM29N16 status register. This command can *

* be used after erase and program cycles to determine if the results *
* were successfull. The contents of the status register are returned in*
* the variable DATVAL. *

dhkkhkkkkhdhhkhkhhhkhhhkdhhkhhhkhhkrkkhkhkhhhhhhhrhhhhhdhhhhhkhhhrdrhddkdkhdhhhhrhdhtd

STATUS: BSET PORTD, X #CLEBIT
BCLR PORTD,X #CEBIT

LDAA #$70 load command register with
STAA FLASH status read command

BSET PORTD,X #CEBIT

BCLR PORTD, X #CLEBIT

BCLR PORTD, X #CEBIT

LDAA FLASH read status register

STAA DATVAL save results

BSET PORTD,X #CEBIT

RTS

T R T R R SR S R IR S s R TR
* READID is used to read the NM29N16 device and manufacturer codes. *
* The manufacturer code is returned in the A register and the device*

*# code is returned in the B register. *
khkkhkhkkhhhkdhkhbhhhhhrrrhhhhhhhrrdhdhkdhdhrdhkddhkdhhrdhd ko hkrhhrhhhhkhhdhk

READID: BSET PORTD,X #CLEBIT
BCLR PORTD,X #CEBIT
LDAA #$90 load the command register with
STAA FLASH the ID read command
BSET PORTD,X #CEBIT
BCLR PORTD,X #CLEBIT
BSET PORTD,X #ALEBIT
BCLR PORTD,X #CEBIT
LDAA #$00 load the address register with
STAA FLASH address 0
BCLR PORTD,X #ALEBIT
LDAA FLASH read the manufacturer code

TL/D/11925-6

LDAB FLASH read the device code
BSET PORTD,X #CEBIT
RTS

khkhkhkkkdhhhkhhrdhhhkkhkkhkhdhhkhkkhhdkhrdhhhhrdhhhhkdhhhhkhkrhhhhrhdhhhhkhhhhdhhhrd

* WAIT is used to pause until the NM29N16 returns to the ready mode. *

* The routine polls the R/B (ready/busy) pin until it returns high. *
khkhkhkkhhkhkkkhkhddhkhkdhdhhhdhhhkhhhkhhhhddhhhhhhhhkhhdkdhhhrhhhhhhhbrhhhhhhhkkdi

WAIT: LDAA PORTD, X check bit 2 of port D (R/B line)
ANDA #504
CMPA #$00
BEQ WAIT loop until R/B returns high
RTS

dkkhkhhkkkhhkhhhhkhkhhkhkhhhhhhhkhrbhhhhhkhdrkhhkhdhkahbhhhdhhdhhhhbddhhdhhhkhdhhdhhk

% INIT is used to determine which blocks in the NM29N1é6 are usable. The *
* sequence is as follows: *
* *
¥ 1 Start with block 0 *
* 2 Erase and verify block *
* 3 Write $AA to each page in the block and verify *
* 4 Erase and verify block *
* 5 Write $55 to each page in the block and verify *
* 6 Erase and verify block *
* 7 If steps 1-5 were successful tag the good block with data $FO0 *
* in address 0 of the redundancy memory in page 0 of the block *
* just verified *
* 8 Step through all 512 blocks *
khkkhkhkhkhkhkhkhhdhkkdhhhdhhkhddhhrdthhhkdhkdhhhhhdddhbhhkihbddhhhbdhhhddhhdkdhkhhrhhhdk
INIT: LDY #$0000 start with block 0

STY BLOCK
LOOP1: LDY BLOCK

STY HIPG

JSR ERASEl erase block

JSR STATUS see if erase was successful

LDAA DATVAL

ANDA #$01

BEQ NXTSTP jump to BADBLK if erase unsuccessful

JMP BADBLK
NXTSTP: LDAA #SAA verify that $AA can be written

JSR FILLXX to all pages in the block

LDY BLOCK

LDAB #SOF start with page 15 and work down

CLC to page 0

ABY

STY HIPG

LDAA #$00

STAA ADD
LOOPAA: JSR PGMPAG program page with $AA

JSR STATUS see if programming is successful

LDAA DATVAL

ANDA #$01

BNE BADBLK jump to BADBLK if bad page found

LDAA LOPG

ANDA #SOF loop until all pages have been

BEQ DONEAA tested

DEC LOPG step to next page in the block

BRA LOOPAA being verified

TL/D/11925-7

DONEAA:

LOOP55:

DONE55:

BADBLK:

DONE:

FILLXX:
LOOPF2:

JSR
JSR

ANDA
BNE
LDAA
JSR
LDY
LDAB
CLC

JMP
RTS

LDY
STAA
INY
CPY
BNE
RTS

ERASEL
STATUS
DATVAL
#01
BADBLK
#$55
FILLXX
BLOCK
#SOF

HIPG
#$00
ADD
PGMPAG
STATUS
DATVAL
#$01
BADBLK
LOPG
#$OF
DONES55
LOPG
LOOP55
ERASE1
STATUS
DATVAL
#01
BADBLK
#$FO
DATVAL
BLOCK
HIPG
#$00
ADD
PGMRED
BLOCK
#$1FFO
DONE

#510
BLOCK
LOOP1
#$0000
$00,Y

#$0108
LOOPF2

erase block
see if erase was successful

jump to BADBLK if erase unsuccessful
verify that $55 can be written to
all pages in the block

start with page 15

program page with $55
see if programming is successful

jump to BADBLK if bad page found
loop until all pages in block

have been verified

step to next page

erase block

see if erase is successful

jump to DATVAL if bad block found
jump to BADBLK if erase unsuccessful
tag good block by writing $FO0 into

byte 0, page 0 (redundancy memory)
of the block just verified

exit routine if all 512 blocks
have been tested

step to next block (16 pages)

go verify next block

£ill SRAM addresses 0000H to
0107H with value in A reg

TL/D/11925-8

Interfacing the NM29N 16 in a Microcontroller Environment

AN-910

SUMMARY

The NM29N16 provides an extremely flexible interface for
many systems. By not utilizing address lines, the device
gives designers the ability to incorporate multiple mega-
bytes of memory without the use of an expensive processor
or system bus. The application described here is only one
example of this. With this architecture, the NM29N16 should
enable new types of portable systems to be developed.

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL
SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or

systems which, (a) are intended for surgical implant
into the body, or (b) support or sustain life, and whose
failure to perform, when properly used in accordance
with instructions for use provided in the labeling, can
be reasonably expected to result in a significant injury

2. A critical component is any component of a life

support device or system whose failure to perform can
be reasonably expected to cause the failure of the life
support device or system, or to affect its safety or

effectiveness.

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor
Corporation Europe Hong Kong Ltd. Japan Ltd.
1111 West Bardin Road Fax: (+49) 0-180-530 85 86 13th Floor, Straight Block, Tel: 81-043-299-2309
Arlington, TX 76017 Email: cnjwge@tevm2.nsc.com Ocean Centre, 5 Canton Rd. Fax: 81-043-299-2408
Tel: 1(800) 272-9959 Deutsch Tel: (+49) 0-180-530 85 85 Tsimshatsui, Kowloon
Fax: 1(800) 737-7018 English Tel: (+49) 0-180-532 78 32 Hong Kong

Frangais Tel: (+49) 0-180-532 93 58 Tel: (852) 2737-1600

ltaliano Tel: (++49) 0-180-534 16 80 Fax: (852) 2736-9960

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

