
TL/F/11820

A
T
/
L
A

N
T
IC

S
o
ftw

a
re

D
e
v
e
lo

p
e
r’s

G
u
id

e
A

N
-8

8
7

National Semiconductor
Application Note 887
David Milne
May 1993

AT/LANTICTM Software
Developer’s Guide

INTRODUCTION

This document is designed to aid the development of soft-

ware for the AT/LANTIC device. It is recommended that the

AT/LANTIC data sheet be read before and then in conjunc-

tion with this description.

Table of Contents

1.0 INTRODUCTION TO THE AT/LANTIC DEVICE

2.0 CONFIGURING THE AT/LANTIC

2.1 Changing and Saving a Configuration

2.2 Enabling a ‘‘New’’ Adapter

2.3 Programming Configuration Register C

3.0 INITIALIZING THE AT/LANTIC

3.1 Hardware Reset

3.2 Get Bus Size/ID Bytes

3.3 lnitializing the Registers

3.4 Checking the Cable

3.5 Checking the Interrupt

3.6 Checking the Boot ROM

4.0 TRANSFERRING INFORMATION

4.1 I/O Mode Transfers

4.1.1 DMA Write Sequence

4.1.2 DMA Read Sequence

4.2 Shared Memory Transfers

5.0 TRANSMISSION SEQUENCE

5.1 Register Sequence

6.0 RECEPTION SEQUENCE

6.1 The Buffer Ring

6.2 Removing a Packet

6.3 Dealing with Overflows

1.0 INTRODUCTION TO THE AT/LANTIC

The AT Local Area Network Twisted Pair Interface Control-

ler provides a simple method of interfacing any ISA (Industry

Standard Architecture) bus based systems to an Ethernet

Network. This device can emulate one of the most popular

Ethernet Adapter architecturesÐNovell’s NE2000 adapter.

The configuration information describing the devices archi-

tecture, address, interrupt etc. can either be loaded from

switches or from an EEPROM. Use of the EEPROM method

allows the device to be configured solely by software thus

providing a more user friendly Ethernet adapter.

A brief introduction to the two Adapter architectures is given

below.

TL/F/11820–1

FIGURE 1. NE2000 Emulation Mode

The NE2000 mode utilizes a Data Port register through

which all transfers to/from the buffer RAM take place. Any

transfer requires the buffer RAM address, transfer size and

direction to be programmed into registers before the trans-

fer can be initiated.

This mode of operation is often referred to as I/O Mode.

TL/F/11820–2

FIGURE 2. Shared Memory Mode

In Shared Memory mode the buffer RAM is mapped into

system memory. This allows any data in the buffer RAM to

be directly transferred across the ISA bus.

The AT/LANTIC requires a 20H byte space in the PC’s I/O

Port map, this area contains all of the AT/LANTIC’s regis-

ters. The contents of this register block depend on the

mode the AT/LANTIC is operating in. One common factor is

the NIC core register section which contains 16 registers.

The location of the register block is given by ‘‘I/O address’’

(also referred to as I/O base). Figures 3 and 4 show the

contents of the register block for either mode.

The AT/LANTIC can access a RAM area of up to 64 kbytes,

however the standard is to only use 16 kbytes of this area.

AT/LANTICTM is a trademark of National Semiconductor Corporation.

C1995 National Semiconductor Corporation RRD-B30M75/Printed in U. S. A.



The method of accessing this RAM area is described in

Section 4.0 of this document. The AT/LANTIC’s memory

map depends on the mode of the device. Figures 5 and 6
show the full 64 kbyte memory map for each mode (each

mode with the chip in compatible mode utilizing only 16

kbytes for the RAM Buffer).

Base a 00H
IOR IOW

Base a 01H
Control 1

AT Detect

Base a 05H Control 2

Base a 08H

PROM

Base a 10H

DP8390

Core

Registers

Base a 1FH

FIGURE 3. Shared Memory Mode I/O Map

Base a 00H

DP8390

Core

Registers

Base a 0FH

Base a 10H

Data Transfer Port

Base a 18H

Base a 17H

Reset Port

Base a lFH

FIGURE 4. I/O Port Mode Register I/O Map

0000H
D15 D0

8k x 16

Buffer RAM

4000H

Aliased

Buffer RAM

8000H

Aliased

Buffer RAM

C000H

Aliased

Buffer RAM

FFFFH

FIGURE 5. Shared Memory Mode Memory Map

0000H
D15 D0

001FH
PROM

Aliased PROM

4000H

8k x 16

Buffer RAM
7FFFH

8000H

Aliased PROM

C000H

Aliased

Buffer RAM

FFFFH

FIGURE 6. I/O Port Mode Memory Map

2.0 CONFIGURING THE AT/LANTIC

The AT/LANTIC controller is designed such that it is fully

software configurable. The configuration information is held

in three registers A, B and C as described in the data sheet

under Section 5.1. As an added safety feature configuration

registers A and B are hidden, so that they cannot be acci-

dentally overwriften. Register C is only accessed during a

RESET and can not be directly accessed by software.

Register A controls the I/O address, interrupt and mode of

the AT/LANTIC device. Register B controls the cable type

selection and certain flags altering some interface timings to

the ISA bus (refer to Section 4.1 ‘‘Bus Error Condition’’).

2.1 Changing and Saving a Configuration

CHANGING THE CONFIGURATION

Registers A and B can be read directly at I/O address offset

0AH and 0BH respectively. To write to these registers a

read access must be immediately followed by a write ac-

cess. Interrupts should be disabled during the write se-

quence to ensure it is not corrupted. These registers can

only be accessed when the NIC command register is set to

page 0, refer to AT/LANTIC data sheet Section 5.3.

As register A can change the address location of the

AT/LANTIC registers (and hence of reg. B) then a software

update of both registers A and B should first change register

B and then register A. This allows the same base I/O ad-

dress to be used for both register updates.

THE GDLNK BIT

Special care should be taken when configuring the GDLNK

bit of register B. If this bit is set to 1 then the link integrity

checking (TPI mode) is disabled. If link integrity checking

has not been disabled (10BT standard) then this bit reads 1

for good link and 0 for link broken. If the AT/LANTIC is in

TPI mode with a good link and reg. B is read then the

GDLNK bit is shown to be 1, if this was written directly back

to reg. B then link integrity checking is disabled. Thus it is

necessary to mask out the GDLNK bit when writing to reg. B

unless the disabling of link integrity checking is required.

SAVING A CONFIGURATION

The AT/LANTIC has a feature allowing the required config-

uration to be saved to an EEPROM such that on power up

the configuration registers are automatically loaded with the

correct values. There is a special algorithm which writes the

configuration to the EEPROM, this is described in the pseu-

do code below. This algorithm does not change the regis-

ters directly, i.e. the new state only appears on the next

power up.

2



CONFIGURATION SAVE ()

À

//Interrupts are disabled to ensure the

// sequence is not corrupted.

Disable interrupts;

// Set EELOAD bit in register B.

value 4 READ (Config Reg B);

value 4 value & (EGDLNK);

value 4 value l EELOAD;

WRITE (Config Reg B, value);

// Output the configuration info.

READ(Config Reg B);

WRITE(Config Reg B, config for A);

WRITE(Config Reg B, config for B);

WRITE(Config Reg B, config for C);

// Wait for EELOAD bit to go low.

while(value && EELOAD)

À

value 4 READ(Config Reg B);

WAIT();

Ó

Enable Interrupts;

Ó

2.2 Enabling a ‘‘New’’ Adapter

It is possible to place the AT/LANTIC controller in a ‘‘dis-

abled’’ state in which it shall not respond at any I/O base

location. This is a particularly useful mode for software con-

figurability as it allows the auto selection of an available

configuration before the AT/LANTIC based adapter is en-

abled. Hence potential conflicts of Interrupt and I/O base

address can be avoided.

The method of enabling the AT/LANTIC from this ‘‘dis-

abled’’ state consists of writing a byte four consecutive

times to port 278H, during which time interrupts should be

disabled to ensure the sequence is not corrupted. The lower

3 bits of this byte inform the AT/LANTIC of which address it

should enable to. More information on the mapping of these

three bits to I/O base locations can be found in the AT/

LANTIC data sheet under Section 5.1.

The port 278H is normally a PC’s secondary printer port.

Using the ‘‘four writes’’ sequence ensures that an adapter is

not accidentally enabled if the port is in use. If the port is

active when the adapter is to be enabled then it is possible

to corrupt a print sequence, to avoid this the code should

check if the port is active and if so wait until the port is free.

The printer uses port 278H as a data port and port 279H as

a control port, reference should be made to the PC’s techni-

cal manual for an explanation of these registers and how

the port operates.

Once the AT/LANTIC is enabled configuration register A

may contain old information in bits 3–7. Register A bit 7 is

the MEMIO (architecture ) bit, the offset of the configuration

registers varies depending on the state of this bit. Thus the

software has to detect which architecture mode the

AT/LANTIC has appeared in before bits 3–7 of reg. A and

all of reg. B can be overwritten with the new configuration

information.

DETECTING AT/LANTIC MODE

The AT/LANTIC can appear in either the I/O port mode or

the Shared Memory mode. As the I/O address is known

then the mode of operation can be found by checking the

data at the address of register A, i.e., check offset 0AH for

I/O mode and offset 1AH for Shared Memory mode. The

recommended method of detecting the architecture of an

AT/LANTIC at a known I/O base is given in the pseudo

code below.

FIND MODE()

À

// Check if in I/O mode

config a 4 READ(IO BASE 0 0AH);

// Check MEMIO is low i.e. I/O mode.

if((config a & 80H) 440)

À

// Check IOAD bits match the I/O base addr.

if((config a & 7) relates to 10 BASE)

return(IO MODE DETECTED);

Ó

// Check if in Shared Memory mode.

config a 4 READ(IO BASE 0 1AH);

// Check MEMIO is high i.e. S/M mode.

if((config a & 80H) 44 1)

À

// Check IOAD bits match the I/O base addr.

if((config a & 7) relates to IO BASE)

return(SHARED MEM DETECTED);

Ó

// No AT/LANTIC mode detected.

return(NO MODE DETECTED);

Ó

2.3 Programming Configuration Register C

Configuration register C can not be accessed directly by

software. Details on what configuration register C controls

can be found in the AT/LANTIC data sheet Section 5.1. The

upper four 4 bits of register C are fixed depending on the

design of the adapter card, the lower four bits vary depend-

ing on the boot ROM option selected. It is necessary to

know the boot ROM option selected so that register C is

correctly updated by the ‘‘ConfigurationÐSave’’ routine (as

given under Section 2.1). As register C can not be read

some mechanism is required to detect the boot ROM option

in use. The recommended method is to place a signature

text string in the boot ROM at a fixed location. This string

would contain information on the size of ROM in question.

The code should then scan the RAM space for this signa-

ture string. If found, then the location and size of the boot

ROM is known and the value required for register C can be

calculated. As register C can not be written to directly, the

only method of updating it is to use the ‘‘ConfigurationÐ

Save’’ routine.

It should be noted that any change to the value of register C

is not active until the AT/LANTIC has been reset (normally

a power off/on of a PC) and the new contents of the

EEPROM have been loaded into the registers.

3



3.0 INITIALIZING THE AT/LANTIC

The following section deals with all of the functions neces-

sary to initialize and partly test the AT/LANTIC device. It is

recommended that the code follows the order of each of the

sub-sections.

3.1 Hardware Reset

The first step in the initialization sequence is to provide a

reset pulse to the NIC core of the AT/LANTIC device. The

method of providing this signal depends on the architecture

selected for the AT/LANTIC.

I/O MODE RESET SEQUENCE

In this mode a portion of the I/O address map acts as a

reset port, offsets 18H to 1FH, any of these offsets can be

used as the reset port. To activate a reset the port should

be read from and then written to (with any value). Following

this a delay of 1.6 ms is required to make sure the reset has

completed.

SHARED MEMORY RESET SEQUENCE

This mode contains two control registers (refer to Section

5.2 of the AT/LANTIC data sheet). The MSB of control reg-

ister 1 is the RESET flag. To activate the reset this bit

should be toggled high then low. Again a delay of 1.6 ms is

required to allow the reset to complete.

PLACING THE AT/LANTIC IN STOP MODE

Following the hardware reset it is necessary to place the

NIC core of the AT/LANTIC in the STOP mode, which per-

forms a software reset. This is done by setting the STOP

and RS2 bits of the NIC command register (refer to the

AT/LANTIC data sheet Section 5.3 for more information on

the NIC core registers), PS0 and PS1 are cleared to ensure

that the NIC core is in ‘‘page 0’’. (The NIC core registers are

split into 3 pages of 16 registers, the bits PS0 and PS1 in

the command register define which page the NIC is current-

ly operating in.) The code should wait until the software re-

set is indicated as complete (when the RST bit of the Inter-

rupt Status register is set to a 1.

3.2 Get Bus Size/ID Bytes

This section deals with detecting the size of the slot an

adapter has been inserted into and checking ID byte values

are correct for the mode of operation selected. The two

AT/LANTIC modes are quite different in their approach to

this problem and shall be discussed separately.

I/O MODE

The I/O mode architecture maps PROM data into RAM

space locations 00H to 1FH. The contents of this RAM

space are given in Figure 7. Offset 1EH contains a word

value which depends on the size of slot in which the adapter

currently resides. If the value equals 5757H, then the slot is

16-bit, if the value equals 4242H, then the slot is 8-bit. If the

value does not equal either of the previous values, then the

adapter is not correctly functional in NE2000 emulation

mode, i.e., these bytes also act as ID bytes. An example of

the DMA read operation required to get the word from offset

1EH is described in Section 4.1.2 of this document. The

initial transfer requires the Data Configuration Register

(DCR) to be programmed for 8-bit operation, and the PC to

perform two byte wide reads of the Data Port. Once the data

has been transferred the DCR and PC transfers can be set

for the correct bus width.

SHARED MEMORY MODE

The shared memory mode contains a register which holds

information on the size of slot occupied by the adapter. The

LSB of this register, the AT detect register (refer to

AT/LANTIC data sheet Section 5.2) is set to 1 for 16-bit

mode and 0 for 8-bit mode.

Correct emulation of the Ethercard Plus16 requires an ID

byte. In this mode the registers at offsets 08H to 0FH (see

Figure 8 ) contain first the Ethernet address then an ID byte

followed by a checksum byte.

For the AT/LANTIC shared memory mode the ID byte at

offset 0EH should contain value 05H. The twos complement

sum of all of the eight bytes should equal FFH. If this is not

the case, then the adapter is not correctly operating in

Ethercard Plus16 emulation mode.

00H ETHERNET ADDR. 0

01H ETHERNET ADDR. 1

02H ETHERNET ADDR. 2

03H ETHERNET ADDR. 3

04H ETHERNET ADDR. 4

05H ETHERNET ADDR. 5

06H (BOARD ID BYTE)

07H (CHECKSUM)

1EH 42H or 57H

1FH 42H or 57H

FIGURE 7. NE2000 Mode PROM Memory MAP

0BH Addr. Byte 0

Addr. Byte 1

Addr. Byte 2

Addr. Byte 3

Addr. Byte 4

Addr. Byte 5

Board ID By1e

0FH Checksum

FIGURE 8. S/M Mode PROM Loaded Registers

3.3 Initializing the Registers

When initializing an adapter for Shared Memory mode it is

necessary to set up two control registers before initializing

the NIC core registers, the following step is ignored for I/O

Port mode.

SHARED MEMORY ADDRESS INITIALIZATION

In shared memory mode the Buffer RAM is mapped into the

PC address space. Two control registers define where in the

PC memory map this RAM shall appear, refer to Section 5.2

of the AT/LANTIC data sheet. Address bits A13–A18 of the

selected memory address should be programmed into bits

0–5 of control register one. Address bits A19–A23 should

4



be programmed into bits 0–4 of control register two. The

MEMW bit of control register 2 defines if the memory is 8

kwords or 8 kbytes in size. This bit should be defined during

this initialization. It may also be necessary to initialize the

MEME bit of control register 1, this depends on the method

of controlling the buffer RAMÐrefer to Section 4.2.

e.g. D0000H, 16 kbytes memory.

Control reg. 1 is 28H,

Control reg. 2 is 41H.

NIC CORE REGISTER INITIALIZATION

The following register initialization sequence is mandatory

for both I/O Port and Shared Memory modes. All of the

registers discussed are explained in detail under Section 5.3

of the AT/LANTIC data sheet.

1. Put the AT/LANTIC in STOP mode. Refer to Section

3.1 on putting the AT/LANTIC in STOP mode.

2. Initialize Data Configuration Register (DCR), WTS

(transfer width) dependent on the result of the previous

section, LS set, ARM is dependent on the method cho-

sen to control the receive buffer ring (refer to Section

6.0). The FIFO threshold is typically set to 8 bytes/4

words i.e., FT1 is set. (When in Shared Memory mode

the WTS bit can always be set if 16 kbytes of RAM are

being used.)

3. Clear Remote Byte count registers.

4. Initialize Receive Configuration Register (RCR), this

register determines which packets are accepted by the

AT/LANTIC and buffered into RAM. The options avail-

able are save errored packets, runt packets, multicast

packets, broadcast packets, physical address match

packets and all physical address packets (promiscuous

mode). Setting the register to 00H allows only physical

address match packets. Further discussion on setting

the physical and multicast addresses is given later in

this section.

5. Place the NIC in loopback mode 1 or 2 by setting bits

LB0 or LB1 in the Transmit Configuration Register.

Loopback is described in the data sheet under Section

6.5.

6. Initialize the Receive Buffer Ring,

Boundary Pointer (BNDRY),

Page Start (PSTART),

Page Stop (PSTOP),

Transmit Page Start (TPSR).

The values for these registers are discussed at the end

of this section.

7. Clear the Interrupt Status Register (ISR), by writing FFH

to it.

8. Initialize Interrupt Mask Register (IMR), this register

controls which sources of interrupt are allowed or disal-

lowed. It would be normal to set PRXE (packet re-

ceived), PTXE (packet transmitted), PTXEE (packet

transmission error) and OVWE (overflow) in the regis-

ter.

9. Program the Command Register for page 1 (set bits

PS0, RD2 and STP) and initialize the physical, multicast

and CURR registers as described later in this section.

10. Put the NIC in to START mode, set the START bit and

clear the STOP, PS0 and PS1 bits in the Command

Register. The receive is still not active as the NIC core

is in loopback mode.

11. Remove the AT/LANTIC from loopback mode by initial-

izing the Transmit Configuration Register (TCR) to its

correct value, typically 00H.

The AT/LANTIC is now ready to receive and transmit pack-

ets.

SETTING UP THE BUFFER RING

The values to be programmed in to the buffer ring pointers

PSTART, PSTOP, CURR, BNDRY and TPSR depend on the

mode of operation of the AT/LANTIC. There are several

possible modes NE2000 and Ethercard Plus16 emulation

modes which use 16k of Buffer RAM and a non-compatible

mode which allows up to 64k of Buffer RAM. The size of

transfers in question also alter the size of the Buffer Ring.

The buffer RAM is split into ‘‘pages’’ each containing 256

bytes. The standard is to have a transmit buffer followed by

the receive buffer ring. It is recommended that two transmit

buffers be utilized as this improves performance. One pack-

et can be loaded into the RAM while another is being trans-

mitted on the network. Each transmit buffer requires 6

‘‘pages’’ for a full Ethernet packet (some protocols may not

require a maximum Ethernet packet). The Transmit Page

Start Register (TPSR) should point to the buffer being trans-

mitted for the whole duration of a transmission, i.e., when

the alternate buffer is being loaded during a transmission

the TPSR should not be altered. The receive buffer ring

follows the transmit buffer. The Page Start register

(PSTART) is set to the page following the transmit buffer(s).

The Page Stop (PSTOP) register is set to the end of the

buffer RAM plus one page (the size of buffer RAM is deter-

mined by the bus width/memory width.)

Offsets

TPSRI 0000H

XMT Buffer 1

TPSR2 0600H

XMT Buffer 2

PSTART 1200H

Receive

Buffer

Ring

PST0P 4000H

FIGURE 9. Buffer RAM Layout

In NE2000 emulation mode the buffer RAM resides at loca-

tions 4000H to 8000H (refer to Figure 6 ). The Ethercard

Plus16 buffer RAM resides at 0000H to 4000H (refer to Fig-
ure 5 ).These examples are for 16-bit modes.

There are two possible methods of controlling the receive

buffer ring a software method and an automated method

called ‘‘send packet’’. These are discussed in more detail in

Section 6.0 of this document.

Initializing CURR and BNDRY for

(i) the software method,

CURR e PSTART a 1

BNDRY e PSTART

NextÐPKT e PSTART a 1

5



(ii) the ‘‘send packet’’ method,

CURR e BNDRY e NextÐPKT e PSTART

(‘‘NextÐPKT’’ is a software declared variable further de-

scribed in Section 6.0).

SETTING THE PHYSICAL ADDRESS REGISTERS

During initialization, the NIC core physical address registers

are loaded with the adapters Ethernet address (refer to Sec-

tion 5.3 of the AT/LANTIC data sheet). Each adapter con-

tains a unique six byte address for identification on a net-

work. The Ethernet address is held in a PROM store in the

AT/LANTIC, the method of retrieving the information de-

pends on its present architecture mode. In shared memory

mode the Ethernet address is held at register offsets 08H to

0DH, see Figure 3. These values can then be written to the

NIC physical address registers. In I/O mode the address is

held in the first three words of the RAM thus a Remote DMA

read is required to retrieve the information, refer to Section

4.1.2.

SETTING THE MULTICAST REGISTERS

To allow a network station to receive packets destination

addresses other than the stations physical node address, it

is necessary to store a list of these destination addresses. A

group of addresses to be received are referred to as multi-

cast addresses. This device can not hold all of the address-

es, thus the AT/LANTIC contains 8 multicast address regis-

ters (MAR0–7) which decode the addresses to be received.

These multicast registers provide filtering of multicast ad-

dresses hashed by the CRC logic. All destination addresses

are fed through the CRC logic and as the last bit of the

destination address enters the CRC, the 6 MSB’s of the

CRC generator are latched. These six bits are then used to

index a unique filter bit (FB0–63) in the multicast address

registers. When a software developer wishes to accept a

specific multicast address the above sequence should be

followed to determine which filter bit in the multicast regis-

ters should be set. Several bits can be set to accept several

multicast addresses. A pseudo code example of the routine

required for this is given below.

// Hexadecimal equivalent of the NIC’s CRC

// equn.

define CRC POLYNOMlAL 04C11DB6H

// The multicast address is held in a 6 byte

// array.

unsigned char mult addr[6];

crc 4 FFFFFFFFH;

// The following loops create the 32-bit CRC

// value.

// Loop through each byte of the address.

for(i40; ik6; i00)

À

// Loop through each bit of that byte.

for(bit40; bitk8; bit00)

À

carry4(crc31 )>((mult addr[i] &

(1mbit )) n bit);

crc me 1; if (carry)

crc e ((crc>CRC POLYNOMIAL) l carry);

Ó

Ó

// Extract the 6 MSB’s from the CRC value,

// this six bit value is used to index a

// unique filter bit.

index n4 26;

index &4 3FH;

// Find the multicast register number and

// bit of that register to set.

register no 4 crc n 3;

register bit 4 1 m (crc & 7);

// Calculate the new register value.

value 4 READ(MAR[register no]) l
register bit;

// Set the Multicast Address Register (MAR)

// value.

WRITE (MAR[register no], value);

3.4 Checking the Cable

There are four possible media types that can be selected

with the AT/LANTIC device. Both the TPI(10BT) and

TPI(non spec.) modes simply use the GDLNK bit of configu-

ration register B to indicate the cable status. The test for a

good ‘‘Thin’’ Ethernet cable is more involved and a pseudo

code description of what is required is given below. Thick

Ethernet cable can be checked by performing level 3 loop-

back as described in Section 6.5 of the AT/LANTIC data

sheet. However this test can only be guaranteed if per-

formed on a non-active network, i.e. no information is being

passed on the network during the test.

// Assume already initialized.

thin cable check()

À

// Set up a cable check packet for

// transmission. The destination addr.

// should equal the source address to avoid

// other stations receiving this pkt. The

// data field is of the developers choice.

packet 4 set up cable pkt();

length e size of (packet);

6



// Set the transmit byte count registers.

WRITE(TBCRO, length LSB);

WRITE(TBCR1, length MSB);

// Clear the Interrupt Status Register.

WRITE(INTSTATUS, FFH);

// Issue the transmit command.

WRITE(CMND, (RD2 l STA l TXP));

// Poll the interrupt status register until

// the packet is indicated as transmitted

// or there is a timeout.

while(time in loop k 1 second)

À

STATUS 4 READ(INTSTATUS);

if(STATUS & (ISR TXE l ISR PTX)

break;

updateÐtimeÐinÐloop();

Short Delay();

Ó

// If the routine timed out the tx failed.

if(time in loop l 1 second)

return(NO CABLE);

// Read the Transmit Status Register.

TSR value 4 READ(TSR);

// Check if there were excessive collisions.

if(TSR value & ABT)

return(UNTERMINATED);

// If there was 1 to 15 collisions the cable

// is good.

if(TSR value & COL)

return(CABLE OK);

// Check for other transmission failures

// only after collision check because if a

// collision occurred it can set some of

// the following bits in error.

if(TSR value & (CDH I CRS I FU));

return(NO CABLE);

// If this point is reached the tx passed.

return(CABLE OK);

Ó

More detail on the Interrupt Status Register (ISR) and the

Transmit Status Register (TSR) bits can be found in the

AT/LANTIC data sheet under Section 5.3.

3.5 Checking the Interrupt

When an interrupt is detected an interrupt handler is called.

This handler should then investigate the cause of the inter-

rupt and act accordingly. In the case of the AT/LANTIC

there is an Interrupt Status Register which provides informa-

tion on the cause of the interrupt. It is necessary for the

handler to be installed before this test is carried out.

The following pseudo code routine checks interrupt opera-

tion by assuming that when the interrupt handler is called

and the ISR is found to have its PTX bit set then a ‘‘pack-

etÐtransmitted’’ flag is incremented/set.

// Assume Initialized and ISR installed.

Interrupt check()

À

// Clear the ’packet transmitted’ flag.

packet transmitted 4 0;

// Clear the Interrupt Status Register.

WRITE(INTSTATUS, FFH);

// Set the transmit byte count zero.

WRITE(TBCR0, 0);

WRITE(TBCR1, 0);

// Issue the transmit command.

WRITE(CMND, (RD2 l STA l TXP));

// This transmission is used to generate an

// interrupt.

// Loop until ISR is called and

// packet transmitted flag is set

// or there is a time out.

while(time in loop k 1 second)

À

if(packet transmitted)

return(Interrupt 0K);

update time in loop();

Ó

return(Interrupt FAlLED);

Ó

3.6 Checking the Boot ROM

If a boot ROM has been identified as belonging to the

adapter under going diagnostics then it is possible to check

that its data has not been corrupted. The sum of all of the

ROM bytes should equal 0. The size of the ROM (in (/2 k

segments) is held at byte offset 03H, offsets 00H and 01H

should hold values 55H and AAH respectively.

7



4.0 TRANSFERRING INFORMATION

Before transmission of a packet or processing of a recep-

tion, it is necessary to store or retrieve data from the buffer

RAM. The two architecture modes available on the

AT/LANTIC have different methods of accessing the buffer

RAM.

4.1 I/O Mode Transfers

When in I/O mode the NIC core of the AT/LANTIC transfers

data to or from the buffer RAM using one of its DMA chan-

nels. The software programs the start address of the RAM

segment to be transferred, the size of transfer and the direc-

tion of the transfer. The DMA controller passes data be-

tween the data transfer port and the buffer RAM, byte or

word at a time. The system always writes or reads data via

this port. The Data Transfer Port is mapped from I/O base

offset 10H to 17H (any of these registers act as the Data

Transfer Port). It is important that no other value be written

to the command register during a DMA.

BUS ERROR CONDITION

On some implementations of the ISA bus it is possible for an

error condition to arise during a DMA transfer. This is

flagged by a ‘‘BE’’ (Bus Error) bit in configuration register B

being set (writing a one to this bit resets it). The

AT/LANTIC provides two differing methods for correcting

this condition, these are implemented by setting either the

‘‘IO16CON’’ bit or the ‘‘CHRDY’’ bit in configuration register

B. For a more detailed discussion on the cause of the error

and the remedies available reference should be made to the

AT/LANTIC data sheet Section 6.7 (‘‘16-Bit I/O Cycles with

CHRDY Fix’’).

It is recommended that a check for this error condition be

carried out before an adapter is enabled on a network. This

can be done by performing a DMA, checking if the ‘‘BE’’ bit

has been set and if so implementing one of the fixes. It is

also possible to perform the check at the end of every DMA

(as the error may not happen during all DMA sequences).

4.1.1 DMA WRITE SEQUENCE

The DMA write sequence is typically used to load up a pack-

et to be transmitted in to the transmit buffer, as in the exam-

ple below.

...

// Create a transmit packet and hold a

// pointer to its address in the PC RAM.

packet 4 set up xmt pkt();

Disable Interrupts;

// Write out the Buffer RAM address for the

// xmt packet to the Remote DMA addr.

// registers. This is either TPSR1 or TPSR2.

WRITE(RSAR0, TPSR LSB);

WRITE(RSAR1, TPSR MSB);

// Write out the size of the packet to the

// Remote DMA BYTE count registers.

length 4 SIZEOF(packet);

WRITE(RBCR0, length LSB);

WRITE(RBCR1, length MSB);

// Issue the Remote DMA write command.

WRITE(CMND, (RD1 l STA));

// Loop until all bytes/words transferred.

address 4 packet;

for(loop through the transmit pkt)

À

value 4 contents of address;

WRITE(DATA PORT, value);

increment address pointer;

Ó

// It is necessary to wait until the last

// transfer is flagged as being placed into

// memory. An access to the command

// register before the DMA has completed may

// corrupt the last transfer and lead to

// serious system errors.

while(time in loop k 1 second)

À

status 4 READ(INTSTATUS);

if(status & ISR RDC)

return(TRANSFER OK);

update time in loop();

Short Delay();

Ó

Enable Interrupts;

return(TRANSFER FAILED);

...

4.1.2 DMA READ SEQUENCE

The DMA read sequence is typically used for removing

packets from the receive buffer ring. However the example

below reads the Ethernet address from Buffer RAM (as

would be required during initialization).

...

// Read the Ethernet address and place it at

// PC RAM space pointed to by ’addr’.

Disable Interrupts;

// Set the Remote read start address to 0.

WRITE(RSAR0, 0);

WRITE(RSAR1, 0);

8



// Set the Remote DMA BYTE count to 6.

WRITE(RBCR0, 6);

WRITE(RBCR1, 0);

// Issue the Remote DMA read command.

WRITE(CMND, (RD0 l STA));

// Read 3 words or 6 bytes depending on bus

// width.

for(loop 3 or 6 times)

À

contents of addr 4 READ(DATA PORT);

increment address;

Ó

Enable Interrupts;

return(TRANSFER COMPLETED);

...

The above examples often refer to the Command and Inter-

rupt Status registers and there associated bits. More details

on these registers can be found in the AT/LANTIC data

sheet Section 5.3.

The size of access to the data port is dependent on the

width of the bus detected during the initialization sequence.

However, it should be noted that in 16-bit mode the length

of transfer is programmed in bytes even if the transfers to/

from the data port are to be word wide.

There are some assembly language commands that greatly

simplify the transfer loop to the data port.

e.g., for the Intel 286 Processor.

set cx to byte count;

set es:di to pc RAM destination;

set dx to DATA PORT;

set direction flag;

rep insw/outsw

4.2 Shared Memory Transfers

When in Shared Memory mode the buffer RAM is mapped

into a portion of the PC RAM space. Access to the buffer

uses the same method as access to any portion of the PC

address space. The location at which the buffer RAM ap-

pears is controlled by two Shared Memory Control Regis-

ters. These registers also set the size and width of transfer

as well as enabling or disabling the RAM buffer. The buffer

RAM can be set to 16 kbytes or 8 kbytes in size (as deter-

mined by the adapter hardware) and the CPU transfer width

can be 8-bit or 16-bit wide (as determined in Section 3.2).

These settings are controlled by two register bits, the

MEMW bit of control register 2 controls the width of memory

i.e., 8 kbytes/16 kbytes and the 8-bit/16-bit of control reg. 2

controls whether the transfer is 8-bit or 16-bit wide. If the

transfers are to be 16-bit wide then the 8-bit/16-bit should

be set only for the duration of the transfer. It is also possible

to disable the buffer RAM when there is no transfer in prog-

ress by using the MEME bit of control register 1. This allows

more than one adapter to utilize the same RAM location in

the PC memory map. It should be noted that if multiple

adapters are to use the same RAM location then all the

adapters must disable the RAM when transfers are not in

progress. If only one adapter is allowed to use the RAM

location then the memory can be enabled at initialization.

If the software being developed has to be fully compatible

with the Ethercard Plus16 architecture then the control reg-

isters cannot be assumed to be readable. Thus when tog-

gling the MEME and 8-bit/16-bit during a transfer it is nec-

essary to either re-calculate the value of the address bits in

the register or recall some store of the initialized value.

EXAMPLE TRANSFER

This example is for 16 bit wide transfers with memory only

enabled for the duration of the transfer.

// ’Cntrll’ and ’Cntrl2’ are stored at

// initialization.

// Enable the buffer memory.

WRITE(CNTRL1, (cntrl1 l MEME));

// Enable 16-bit wide transfers.

WRITE(CNTRL2, (cntrl2 l 8/16);

// Memory transfer.

MEMCOPY(PCaddr, BufferAddr, size);

// Disable the buffer memory.

WRITE(CNTRL1, cntrl1);

// Disable 16-bit wide transfers.

WRITE(CNTRL2, cntrl2);

There are some assembly language commands that provide

a simple and efficient means of doing the ‘‘memcopy()’’

function in the above example.

e.g., for the Intel 286 Processor.

set cx to byte count;

set es:di to pc RAM destination;

set ds:si to pc RAM source;

set direction flag;

rep movsw

4.3 The Boot ROM

The AT/LANTIC provides support for both standard boot

ROMs and FLASH PROMS. Configuration register C con-

trols the location at which the ROM is enabled, access to

the ROM is then the same as access to any area of PC

RAM.

The use of a FLASH prom allows software to directly update

a boot ROM with the latest driver software for an adapter,

thus eliminating the need to replace a ROM for each new

release of software. It is necessary to set the BPWR bit of

configuration register B when a FLASH prom is to be updat-

ed. Write cycles to the ROM area are only allowed when this

bit is set. After this bit is set the software should follow the

algorithm to program the FLASH prom (as given in the

PROM’s data sheet).

5.0 TRANSMISSION SEQUENCE

When a transmission is required, it is necessary to select a

free transmit buffer to place the packet information into (as-

suming there is more than one transmit buffer in the buffer

RAM). The packet should then be transferred, as described

in Section 4.0, to this location. A check is then required to

see if a packet is presently being sent out onto the network.

If a transmission is in progress then the address and size of

9



this new packet should be held in a ‘‘store’’ until the trans-

mission completes. If a transmission is in progress then this

packet can be sent directly out on to the network. This re-

quires the Transmit Page Start Register and the Transmit

Byte Count Registers to be programmed with the address

and length of the packet respectively. Following this the

transmit command can be issued to the Command Register.

It is important to remember that the TPSR cannot be altered

during a transmission.

ISSUING A TRANSMIT

...

// No transmission in progress. The new

// packet is held at transmit buffer

// address XMT BUFFERx

WRITE(TPSR XMT BUFFERx MSB);

// Set the byte size of the packet, held in

// ’length’.

WRITE(RBCRO, length LSB);

WRITE(RBCR1, length MSB);

// Issue the transmit command.

WRITE(CMND, (RD2 l STA l TXP));

5.1 Transmission Status Checking

Once a transmission has completed the AT/LANTIC will re-

turn an interrupt. It is the task of the Interrupt Service Rou-

tine (ISR) to determine whether the transmission was suc-

cessful or not and deal with it accordingly. If the transmis-

sion completed successfully, a check should be made to

see if more transmissions are required, the details of which

may be held in the ‘‘store’’ described in the above para-

graph.

When called the ISR should check the Interrupt Status Reg-

ister. If the PTX bit is set then this indicates that the packet

was transferred without error and the transmission can be

flagged as successful. If the TXE bit is set, then an error has

occurred and more information is required. This extra infor-

mation is provided by the Transmit Status Register (TSR)

from which the relevant error flags and statistics counters

can be updated before the transmission can be flagged as

completed with error. If collisions occurred during transmis-

sion then the COL bit of the TSR is set and the number of

collisions that occurred is held in the Number of Collisions

Register (NCR). The software can use this register to keep

statistics on the amount of collisions occurring on a net-

work.

6.0 RECEPTION SEQUENCE

6.1 The Buffer Ring

As packets are received they are placed in to the buffer ring

and as they are processed they are removed from the ring.

At initialization an area of memory is allocated to act as the

receive buffer ring and the AT/LANTIC’s buffer manage-

ment scheme controls the operation of the memory.

Four pointers are used to control the ring; the page start

(PSTART) and page stop (PSTOP) pointers to determine

the size of the buffer ring, the current page (CURR) pointer

to determine where the next packet will be written to from

the network and the boundary (BNDRY) pointer to show

where the next packet to be read and processed lies. As

packets are received, the boundary pointer follows the cur-

rent page pointer around the ring. During operation the page

start and page stop registers remain unchanged.

The receive buffer ring is divided into 256 byte buffers

(called ‘‘pages’’) and these are linked together as required

by the received packets. Since all AT/LANTIC registers are

byte wide the ring pointers refer to the page (256 byte)

boundaries, see Figure 10.

TL/F/11820–3

FIGURE 10. The Receive Buffer Ring

10



On a valid reception the packet is placed in the ring at the

page pointed to by CURR plus a 4 byte offset (see

Figure 11 ) . The packet is transferred to the ring through the

AT/LANTIC which links the page buffers as necessary until

the complete packet is received. The first and last buffers

(PSTART and PSTOP) are linked just as the first and sec-

ond buffers would be. At the end of a reception, the status

from the Receive Status Register (RSR), a pointer to the

next packet and the byte count of the current packet are

written into the 4 byte offset (see Figure 12 ).

6.2 Removing a Packet

Once packets are in the receive buffer ring they must be

processed. The AT/LANTIC supports two differing adapter

architectures which have there own method of accessing

the buffer memory, these are discussed in Section 4.0 of

this document. As packets are removed from the buffer ring,

the boundary (BNDRY) pointer must be updated. The

BNDRY follows CURR around the ring (see Figure 13 ).

If the current local DMA address (the place where a newly

received packet is being stored) ever reaches BNDRY then

the ring is full and any more receptions cannot be achieved

until some processing has been done on the ring. This con-

dition is known as overflow. More details on this condition

and how to overcome it are given in Section 6.3.

TL/F/11820–4

FIGURE 11. Receiving a Packet

TL/F/11820–5

FIGURE 12. Receive Packet Header

11



TL/F/11820–6

FIGURE 13. Removing a Packet

When the CURR and BNDRY pointers are equal, the buffer

ring can either be full or empty. To ensure that the software

never misinterprets this condition the BNDRY pointer can

be kept one less than the CURR pointer when the ring is

empty, and only equal to CURR when the ring is full, as

shown below.

1. Use a variable (NextÐpkt) to indicate where the next

packet will be removed from the buffer ring.

2. At initialization set (see Section 3.3):

BNDRY 4 PSTART

CURR 4 PSTART 0 1

Next pkt 4 PSTART 0 1

3. After each packet is removed from the ring, use the next

packet pointer in the header information (the second

byte of the header), HNXTPKT and set:

Next pkt 4 HNXTPKT

BNDRY 4 HNXTPKT

if (BNDRY k PSTART)

BNDRY 4 PSTOP 1 1

THE SEND PACKET COMMAND

When in I/O mode the Remote DMA channel can be auto-

matically initialized to transfer a single packet from the re-

ceive buffer ring. The transfer is initiated by issuing a ‘‘send

packet’’ command, setting bits RD1, RD0 and STA in the

command register. The DMA will be initialized to the value

of the BNDRY pointer and the Remote Byte Count registers

will be initialized to the values found in the buffer header of

each received packet. After the data has been transferred,

the BNDRY pointer is advanced and the Remote DMA is

then prepared to receive the next packet.

This method does not require the manual updating of regis-

ters as discussed in Steps 1–3, however it does limit the

software to accessing a packet just once.

The receive sequence is initiated by an interrupt generated

by the AT/LANTIC when data is ready to be removed from

the ring or an overflow has occurred. The Interrupt Service

Routine should then interrogate the Interrupt Status Regis-

ter which flags a PRX bit when a packet is ready to be

removed or OVW if the buffer ring is full. When this PRX bit

is set then a receive subroutine following the above se-

quence should be called, if the OVW bit is set the overflow

routine discussed in Section 6.3 should be called.

The receive buffer ‘‘ring’’ is a linear section of RAM forced

into a ring by linking the end (PSTOP) and beginning

(PSTART) of the buffer. Some of the received packets shall

overlap or ‘‘wraparound’’ this link in the buffer, i.e. the start

of the packet is held up to PSTOP and the rest is held from

PSTART. This condition is automatically dealt with when in

I/O mode however Shared Memory mode requires more

care. In Shared Memory mode a ‘‘wraparound’’ packet has

to be transferred in its two sections, i.e., the section up to

PSTOP and the section from PSTART.

A pseudo code example of the sequence is given below.

RECEIVE ROUTINE

Receive subroutine()

À

// This routine loops until all the packets

// currently held in the buffer ring are

// removed.

while(Next pkt !4 CURR)

À

12



// Get the 4 byte header from the packet

// pointed to by Next pkt, the method of

// removing the data depends on the mode of

// the AT/LANTIC.

status 4 read status();

// If in shared memory mode then check if

// the packet wraps around the PSTOP

// pointer.

if(in shared memory mode)

À

if (status.length 0 Next pkt l PSTOP)

À

transfer up to PSTOP0;

transfer from PSTART();

Ó

else

transfer all at once();

Ó

else

// I/O mode automatically carries out

// wraparound.

transfer all once();

// Set the Next pkt pointer to equal the

// next packet pointer in the status bytes.

Next pkt 4 status. next packet;

// Update the boundry pointer.

BNDRY 4 Next pkt 1 1;

if(BNDRY k PSTART)

BNDRY 4 PSTOP 1 1;

WRITE(BNDRY);

Ó // end of while loop.

Ó

6.3 Dealing with Overflows

In heavily loaded networks it is possible for the receive buff-

er ring to be filled with packets that still require processing,

i.e., the CURR pointer reaches the BNDRY pointer. If this

situation occurs then the AT/LANTIC suspends further re-

ceptions and posts an overflow (OVW) interrupt.

In the event of an overflow condition occurring it is neces-

sary to follow the routine given below. If this routine is not

adhered to then the AT/LANTIC may act in an unpredict-

able manner. A flow chart of the routine is given in Figure 8.

Note: It is necessary to define a variable in the driver, which will be called

‘‘Resend’’.

1. Read and store the value of the TXP bit in the

AT/LANTIC Controller’s Command Register.

2. Issue the STOP command to the AT/LANTIC Control-

ler. This is accomplished by setting the STP and RD2

bits in the AT/LANTIC Controller’s Command Register.

3. Wait for at least 1.6 ms. Since the AT/LANTIC Control-

ler will complete any transmission or reception that is in

progress, it is necessary to time out for the maximum

possible duration of an Ethernet transmission or recep-

tion. By waiting 1.6 ms this is achieved with some guard

band added. Previously, it was recommend that the

RST bit of the Interrupt Status Register be polled to

insure that the pending transmission or reception is

completed. This bit is not a reliable indicator and subse-

quently should be ignored.

4. Clear the AT/LANTIC Controller’s Remote Byte Count

registers (RBCR0 and RBCR1).

5. Read the stored value of the TXP bit from step 1,

above.

If this value is a 0, set the ‘‘Resend’’ variable to a 0 and

jump to step 6.

If this value is a 1, read the AT/LANTIC Controller’s

Interrupt Status Register. If either the Packet Transmit-

ted bit (PTX) or Transmit Error bit (TXE) is set to a 1, set

the ‘‘Resend’’ variable to a 0 and jump to step 6. If

neither of these bits is set, place a 1 in the ‘‘Resend’’

variable and jump to step 6.

This step determines if there was a transmission in

progress when the stop command was issued in step 2.

If there was a transmission in progress, the AT/LANTIC

Controller’s ISR is read to determine whether or not the

packet was transmitted by the AT/LANTIC Controller. If

neither the PTX nor TXE bit was set, then the packet

will essentially be lost. If a packet was ‘‘lost’’ then a

transmit command can be reissued to the AT/LANTIC

Controller once the overflow routine is completed (as in

step 11). Also, it is possible for the AT/LANTIC Control-

ler to deter indefinitely, when it is stopped on a busy

network. Step 5 also alleviates this problem. Step 5 is

essential and should not be omitted from the overflow

routine, in order for the AT/LANTIC Controller to oper-

ate correctly.

6. Place the AT/LANTIC Controller in either mode 1 or

mode 2 loopback. This can be accomplished by setting

bits D2 and D1, of the Transmit Configuration Register,

to ‘‘0,1’’ or ‘‘1,0’’, respectively. Further explanation of

loopback can be found in the AT/LANTIC data sheet

under Section 6.5.

7. Issue the START command to the AT/LANTIC Control-

ler. This can be accomplished by setting the START

and RD2 bits in the Command Register. This is neces-

sary to activate the AT/LANTIC Controller’s Remote

DMA channel.

8. Remove one or more packets from the receive buffer

ring.

9. Reset the overwrite warning (OVW, overflow) bit in the

Interrupt Status Register.

10. Take the AT/LANTIC Controller out of loopback. This is

done by writing the Transmit Configuration Register

with the value it contains during normal operation. (Bits

D2 and D1 should both be programmed to 0.)

11. If the ‘‘Resend’’ variable is set to a 1, reset the ‘‘Re-

send’’ variable and reissue the transmit command. This

is done by the TXP bit in the Command Register. If the

‘‘Resend’’ variable is 0, nothing needs to be done.

Note: If Remote DMA is not being used, the AT/LANTIC Controller does

not need to be started before packets can be removed from the

receive buffer ring. Hence, step 8 could be done before step 7, elimi-

nating or reducing the time spent polling in step 5.

Note: When the AT/LANTIC Controller is in STOP mode, the Missed Pack-

et Tally counter is disabled.

13



A
N

-8
8
7

A
T
/
L
A

N
T
IC

S
o
ft

w
a
re

D
e
v
e
lo

p
e
r’
s

G
u
id

e

TL/F/11820–7

FIGURE 14. Overflow RoutineLIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT

DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL

SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or 2. A critical component is any component of a life

systems which, (a) are intended for surgical implant support device or system whose failure to perform can

into the body, or (b) support or sustain life, and whose be reasonably expected to cause the failure of the life

failure to perform, when properly used in accordance support device or system, or to affect its safety or

with instructions for use provided in the labeling, can effectiveness.

be reasonably expected to result in a significant injury

to the user.

National Semiconductor National Semiconductor National Semiconductor National Semiconductor National Semiconductores National Semiconductor
Corporation GmbH Japan Ltd. Hong Kong Ltd. Do Brazil Ltda. (Australia) Pty, Ltd.
2900 Semiconductor Drive Livry-Gargan-Str. 10 Sumitomo Chemical 13th Floor, Straight Block, Rue Deputado Lacorda Franco Building 16
P.O. Box 58090 D-82256 F 4urstenfeldbruck Engineering Center Ocean Centre, 5 Canton Rd. 120-3A Business Park Drive
Santa Clara, CA 95052-8090 Germany Bldg. 7F Tsimshatsui, Kowloon Sao Paulo-SP Monash Business Park
Tel: 1(800) 272-9959 Tel: (81-41) 35-0 1-7-1, Nakase, Mihama-Ku Hong Kong Brazil 05418-000 Nottinghill, Melbourne
TWX: (910) 339-9240 Telex: 527649 Chiba-City, Tel: (852) 2737-1600 Tel: (55-11) 212-5066 Victoria 3168 Australia

Fax: (81-41) 35-1 Ciba Prefecture 261 Fax: (852) 2736-9960 Telex: 391-1131931 NSBR BR Tel: (3) 558-9999
Tel: (043) 299-2300 Fax: (55-11) 212-1181 Fax: (3) 558-9998
Fax: (043) 299-2500

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.


